
Error Handling

Giuseppe Primiero

FWO - Research Foundation Flanders
Centre for Logic and Philosophy of Science, Ghent University

Giuseppe.Primiero@Ugent.be
http://www.philosophy.ugent.be/giuseppeprimiero/

GROLOG Lecture Series - 21 March 2013 - Groningen

Intro

Psychology: very large literature on practical errors, see e.g.
[Reason, 1990], [Woods, 2010], [Dekker, 2011];

Epistemology&Philosophy of Science: error detection and
resolution in paradigm definition and change (Popper, Lakatos,
Kuhn, Bayesian epistemology); see e.g. [Mayo, 1996],
[Allchin, 2001], [Mayo, 2010];

Applications: fault tolerance ([Goodenough, 1975],
[Cristian, 1982]); specification design; technological
malfunctioning; see e.g. [Turner, 2011].

G. Primiero (Ghent University) Error Handling GROLOG 2 / 45

Logic

Philosophical Logic: defeasible conditions and bounded
resources for knowledge as approximations to errors; see e.g.
[Williamson, 1992]; [Williamson, 2002]; [Woods, 2004];
[Sundholm, 2012]; [Bonnay and Egre’, 2011];

What about formal logic?: PDEL; proof-theoretical approach.

G. Primiero (Ghent University) Error Handling GROLOG 3 / 45

Tasks

1 formulate a full, empirically-informed characterization of error
states for informational systems; presented in [Primiero, 2013];

2 TODAY: a formal model of logical processes with error states.

G. Primiero (Ghent University) Error Handling GROLOG 4 / 45

Outline

1 Type System (in a nutshell)

2 Making and Eliminating Errors in 3 Steps

3 Conclusions

G. Primiero (Ghent University) Error Handling GROLOG 5 / 45

1 Type System (in a nutshell)

2 Making and Eliminating Errors in 3 Steps

3 Conclusions
G. Primiero (Ghent University) Error Handling GROLOG 6 / 45

Types

Types are semantic categories of objects:
- n = 0 and S(n) are terms of the type Nat ;
- true; false are terms of type Bool ;
- values on a continuous line are terms of type Real ;
- proofs are terms of the type Prop;
- programs are terms of the type Spec;

Complex expressions are construed by functional operations:
- introduction and elimination for connectives (proof-theoretical style)
- abstraction and applications (λ-style)
- predications over sets of functions for quantifiers (Σ,Π)

validity is by type-checking (truth for Prop; termination for Spec).

G. Primiero (Ghent University) Error Handling GROLOG 6 / 45

Types

Types are semantic categories of objects:
- n = 0 and S(n) are terms of the type Nat ;
- true; false are terms of type Bool ;
- values on a continuous line are terms of type Real ;
- proofs are terms of the type Prop;
- programs are terms of the type Spec;

Complex expressions are construed by functional operations:
- introduction and elimination for connectives (proof-theoretical style)
- abstraction and applications (λ-style)
- predications over sets of functions for quantifiers (Σ,Π)

validity is by type-checking (truth for Prop; termination for Spec).

G. Primiero (Ghent University) Error Handling GROLOG 6 / 45

Types

Types are semantic categories of objects:
- n = 0 and S(n) are terms of the type Nat ;
- true; false are terms of type Bool ;
- values on a continuous line are terms of type Real ;
- proofs are terms of the type Prop;
- programs are terms of the type Spec;

Complex expressions are construed by functional operations:
- introduction and elimination for connectives (proof-theoretical style)
- abstraction and applications (λ-style)
- predications over sets of functions for quantifiers (Σ,Π)

validity is by type-checking (truth for Prop; termination for Spec).

G. Primiero (Ghent University) Error Handling GROLOG 6 / 45

A Basic Language for the Type of Propositions

Definition (Syntax)
The basic alphabet is composed as follows:

Terms := x | a, variables and constants;
Types := α | ⊥ | α + β | α× β | α→ β

G. Primiero (Ghent University) Error Handling GROLOG 7 / 45

Connectives

a :α b :β
I×

(a,b) :α× β
(a,b) :α× β

E × (l)a :α

a :α I + (1)
a :α + β

b :β
I + (2)

b :α + β

α + β a :α ` c :γ b :β ` c :γ
E+c :γ

a :α α ` b :β
I →

(x)b :α→ β

(x)b :α→ β (x/a) :α
E →

α ` b :β

G. Primiero (Ghent University) Error Handling GROLOG 8 / 45

Standard ⊥

Standard rule for falsehood (a similar approach in PDEL):

∆, Γ ` m :⊥
∆; Γ ` ABORT (m) :α

1 No use of the distinction between local Γ and global resources ∆;
2 No internal structure for the error term m;
3 No available recovery from ABORT .

G. Primiero (Ghent University) Error Handling GROLOG 9 / 45

Standard ⊥

Standard rule for falsehood (a similar approach in PDEL):

∆, Γ ` m :⊥
∆; Γ ` ABORT (m) :α

1 No use of the distinction between local Γ and global resources ∆;
2 No internal structure for the error term m;
3 No available recovery from ABORT .

G. Primiero (Ghent University) Error Handling GROLOG 9 / 45

Wishlist

1 Control on local/global validity;

2 Define minimal (in-)correctness conditions;

3 Analyse errors in view of the different conditions breaches;

4 Design formal strategies to identify and correct errors.

G. Primiero (Ghent University) Error Handling GROLOG 10 / 45

1 Type System (in a nutshell)

2 Making and Eliminating Errors in 3 Steps

3 Conclusions
G. Primiero (Ghent University) Error Handling GROLOG 11 / 45

A Premise: Errors as Limits of Validity

Errors as emergence of uncertainty;

To express uncertainty, we need to limit validity;

Our calculus will admit local validity.

G. Primiero (Ghent University) Error Handling GROLOG 11 / 45

Step 1: Add Local Execution Functions

runi : execution of a term bounded to a location; call by value;

exec: global unbounded value, valid for every other term to call;
call by name;

→: to express implication from exec;

⊃: to express implication from run;

synchro: to pass a ⊃ construction to an exec value.

G. Primiero (Ghent University) Error Handling GROLOG 12 / 45

Modified Syntax

Definition (Syntax)
Functions and their values are given as:

Terms := xi | ai , for i ∈ I
Types := α | ⊥ | α× β | α + β | α→ β | α ⊃ β
Locations := 1 < · · · < n
Operations := exec(α) | runi (α) | runi∪j (α · β) | runi∩j (α · β) |
synchroj (β(exec(α))), where · ∈ {+,×}

G. Primiero (Ghent University) Error Handling GROLOG 13 / 45

Connectives I

Global
∆i ,ai :α ` exec(α)

ai :α ` exec(α) bj :β ` exec(β)
I×` runi∩j (α× β)

` runi∩j (α× β)
E × (l)

` exec(α)

ai :α ` exec(α)
I + (l)

` runi (α + β)

bj :β ` exec(β)
I + (r)

runj (α + β)

` runi∪j (α + β) runi (α) ` ck :γ runj (β) ` ck :γ
E+` runi∩j∩k (γ)

` runi (α) xi :α ` runj (β)
I ⊃

runi∩j (α ⊃ β)

` runi∩j (α ⊃ β) xi :α
E ⊃

xi :α ` runj (β)

G. Primiero (Ghent University) Error Handling GROLOG 14 / 45

Connectives II

` exec(α) ai :α ` exec(β)
I →` runi∪j (α→ β)

` runi∪j (α→ β) ai :α
E →exec(α) ` exec(β)

` runi∩j (α ⊃ β) ai :α
Synchro

` synchroj (β(exec(α)))

G. Primiero (Ghent University) Error Handling GROLOG 15 / 45

A Premise: Local means Mobile

Locally valid terms can be made mobile;

Errors occur for terms that can be fetched, accessed,
broadcasted;

Our calculus will admit mobility.

G. Primiero (Ghent University) Error Handling GROLOG 16 / 45

Step 2: Add Modal Functions for Mobility

GLOB: is a 2-Intro rule; it says that an exec value is everywhere
valid;

BROAD: is a 3-Intro rule; it says that a run term can be
transmitted to a given location;

RET : is a 2-Elim rule; it says that a GLOB value can be returned
to a specific address;

SEND: is a 3-Elim rule; it moves a run term from a place to
another.

G. Primiero (Ghent University) Error Handling GROLOG 17 / 45

Modified Syntax

Definition (Syntax)
Mobility is given as:

Remote Operations := GLOB(2i∪j Γ, α) | BROAD(3i∩j Γ, α)

Portable Code := RET (Γi∪j , α) | SEND(Γi∩j , α)

G. Primiero (Ghent University) Error Handling GROLOG 18 / 45

Rules for Modality (Intro & Elimination)

Γi , xj :α ` runj (α) 2i Γ, xj (aj) : α ` exec(α)
RPC1GLOB(2i∪j Γ, α)

Γi , xj :α ` runj (α) 3i Γ ` runj (α)
RPC2BROAD(3i∩j Γ, α)

2i Γ,aj :α ` exec(α) GLOB(2i∪j Γ, α)
PORT1RET (Γi∪j , α)

2i Γ, xj :α ` runi∩j (α) BROAD(3i∩j Γ, α)
PORT2SEND(Γi∩j , α)

G. Primiero (Ghent University) Error Handling GROLOG 19 / 45

A Premise: Which Errors

We consider two main kinds of errors:
I Mistakes; semantic or syntactic errors, generated by non-valid

terms at locations;

I Failures: procedural errors, generated by failing mobility
instructions.

G. Primiero (Ghent University) Error Handling GROLOG 20 / 45

Step 3: Add Error Functions

Two kinds of errors:
1 fail@i (τ): the state of the system where a term of type τ induces a

failure when accessed at index i ;

2 mistake(τ): the state of the system where reference to type τ
induces an error.

Two concurrency functions:
1 access@i (t : τ \ ⊥): a command to access a term at a given

address;

2 φ(τ)WITH(Π ∪ I ∪ Γ): a command to execute a resource
φ := {run, exec} with a local term;

G. Primiero (Ghent University) Error Handling GROLOG 21 / 45

Step 3: Add Error Functions

Two kinds of errors:
1 fail@i (τ): the state of the system where a term of type τ induces a

failure when accessed at index i ;

2 mistake(τ): the state of the system where reference to type τ
induces an error.

Two concurrency functions:
1 access@i (t : τ \ ⊥): a command to access a term at a given

address;

2 φ(τ)WITH(Π ∪ I ∪ Γ): a command to execute a resource
φ := {run, exec} with a local term;

G. Primiero (Ghent University) Error Handling GROLOG 21 / 45

Modified Syntax

Definition (Syntax)
Errors are defined/use:

H(Error Functions) := fail@i (t) | mistake(τ)

C(Concurrency Functions) := access@i (t) |
φ(τ)WITH(Π ∪ I ∪ Γ)

G. Primiero (Ghent University) Error Handling GROLOG 22 / 45

Rules for Concurrency

∆i ,ai :α ` exec(α)
@I

∆i ` access@i (a :α)

∆i ; Γi ` access@i (a :α)
@E

∆i ; Γi , xi :α ` runi (α)

∆i ; Γi ` φ(α)
WITH-I

∆i ` φ(α)WITH(t , Γ)

∆i ` φ(α)WITH(t , Γ) ∆i ; Γ ` t :α
WITH-E

∆i ; Γ, t :α ` φ(α)

G. Primiero (Ghent University) Error Handling GROLOG 23 / 45

Mistakes: semantic errors

Mistake1: a dependency from a locally invalid value

∆i ; Γi ` runi (τ → ⊥) ∆i ; xi :τ ` runi (υ)
Mistake1

Γi ; ∆i ` mistake(exec(υ)WITH(τ))

HandleMistake1: re-define dependency from local resource:

Γi ` mistake(exec(υ)WITH(τ)) Γi , tj :τ ′ ` exec(τ ′)
HandleMistake1

Γi ` synchroj (υ(exec([τ/τ ′])))

G. Primiero (Ghent University) Error Handling GROLOG 24 / 45

Mistakes: semantic errors

Mistake1: a dependency from a locally invalid value

∆i ; Γi ` runi (τ → ⊥) ∆i ; xi :τ ` runi (υ)
Mistake1

Γi ; ∆i ` mistake(exec(υ)WITH(τ))

HandleMistake1: re-define dependency from local resource:

Γi ` mistake(exec(υ)WITH(τ)) Γi , tj :τ ′ ` exec(τ ′)
HandleMistake1

Γi ` synchroj (υ(exec([τ/τ ′])))

G. Primiero (Ghent University) Error Handling GROLOG 24 / 45

Mistakes: syntax error

Mistake2: dependency from a locally invalid term

∆i ; Γi ` runi (t ⊃ ⊥) Γi , xi :τ ` runi (υ)
Mistake2

Γi ; ∆i ` mistake(runi (υ)WITH(ti))

HandleMistake2: re-define dependency from required resource

Γi ` mistake(runi (υ)WITH(ti)) Γi , [ti/xj] :τ ` runi (υ)
HandleMistake2

Γi ` runj∩i (τ ⊃ υ)

G. Primiero (Ghent University) Error Handling GROLOG 25 / 45

Mistakes: syntax error

Mistake2: dependency from a locally invalid term

∆i ; Γi ` runi (t ⊃ ⊥) Γi , xi :τ ` runi (υ)
Mistake2

Γi ; ∆i ` mistake(runi (υ)WITH(ti))

HandleMistake2: re-define dependency from required resource

Γi ` mistake(runi (υ)WITH(ti)) Γi , [ti/xj] :τ ` runi (υ)
HandleMistake2

Γi ` runj∩i (τ ⊃ υ)

G. Primiero (Ghent University) Error Handling GROLOG 25 / 45

Failures: access wrong resources

Failure1: access wrong resources possibly at right location

2i Γ, tj :τ ` exec(υ) GLOB(2i∪j Γ, τ)
FailPort1

2i Γ,access@j (t ′ : τ ′) ` fail@i∪j (υ) (t ′ 6= t ; τ ′ 6= τ)

HandleFailure1: re-execute access to local resource

2i Γ,access@j (t ′ :τ ′) ` fail@i∪j (υ) RET (Γi∪j , τ) τ 6= τ ′
HFP1

2i Γ, [t ′j :τ ′/tj : τ] ` exec(υ)

G. Primiero (Ghent University) Error Handling GROLOG 26 / 45

Failures: access wrong resources

Failure1: access wrong resources possibly at right location

2i Γ, tj :τ ` exec(υ) GLOB(2i∪j Γ, τ)
FailPort1

2i Γ,access@j (t ′ : τ ′) ` fail@i∪j (υ) (t ′ 6= t ; τ ′ 6= τ)

HandleFailure1: re-execute access to local resource

2i Γ,access@j (t ′ :τ ′) ` fail@i∪j (υ) RET (Γi∪j , τ) τ 6= τ ′
HFP1

2i Γ, [t ′j :τ ′/tj : τ] ` exec(υ)

G. Primiero (Ghent University) Error Handling GROLOG 26 / 45

Failures: access wrong locations

Failure2: access right resources at wrong locations

2i Γ; xj :τ ` runi∩j (υ) BROAD(3i∩j Γ, τ)
FailPort2

3i Γ,access@k>j (t :τ) ` fail@i∩j (υ)

HandleFailure2: re-execute access to local resource

3i Γ,access@k>j (t :τ) ` fail@i∩j (υ) SEND(Γi∩j , τ)
HFP2

3i Γ, [tk/xj] : τ ` runi∩j (υ)

G. Primiero (Ghent University) Error Handling GROLOG 27 / 45

Failures: access wrong locations

Failure2: access right resources at wrong locations

2i Γ; xj :τ ` runi∩j (υ) BROAD(3i∩j Γ, τ)
FailPort2

3i Γ,access@k>j (t :τ) ` fail@i∩j (υ)

HandleFailure2: re-execute access to local resource

3i Γ,access@k>j (t :τ) ` fail@i∩j (υ) SEND(Γi∩j , τ)
HFP2

3i Γ, [tk/xj] : τ ` runi∩j (υ)

G. Primiero (Ghent University) Error Handling GROLOG 27 / 45

Some interesting theorems

Local Soundness and Completeness: Error Rules and Handling
Rules behave as Introduction and Elimination Rules; by
normalization, one obtains an equivalent rule without detour;

Structural: Weakening, Contraction and Exchange for Mistake
and Failure expressions are provable;

Reductions: Equivalent or Inducible Errors can be substituted
preserving Error states; β-reductions and η-expansions hold;

Termination: either an error state or its handling is at some point
a non-further reducible expression (based on non-iteration of
errors).

G. Primiero (Ghent University) Error Handling GROLOG 28 / 45

Some interesting theorems

Local Soundness and Completeness: Error Rules and Handling
Rules behave as Introduction and Elimination Rules; by
normalization, one obtains an equivalent rule without detour;

Structural: Weakening, Contraction and Exchange for Mistake
and Failure expressions are provable;

Reductions: Equivalent or Inducible Errors can be substituted
preserving Error states; β-reductions and η-expansions hold;

Termination: either an error state or its handling is at some point
a non-further reducible expression (based on non-iteration of
errors).

G. Primiero (Ghent University) Error Handling GROLOG 28 / 45

Some interesting theorems

Local Soundness and Completeness: Error Rules and Handling
Rules behave as Introduction and Elimination Rules; by
normalization, one obtains an equivalent rule without detour;

Structural: Weakening, Contraction and Exchange for Mistake
and Failure expressions are provable;

Reductions: Equivalent or Inducible Errors can be substituted
preserving Error states; β-reductions and η-expansions hold;

Termination: either an error state or its handling is at some point
a non-further reducible expression (based on non-iteration of
errors).

G. Primiero (Ghent University) Error Handling GROLOG 28 / 45

Some interesting theorems

Local Soundness and Completeness: Error Rules and Handling
Rules behave as Introduction and Elimination Rules; by
normalization, one obtains an equivalent rule without detour;

Structural: Weakening, Contraction and Exchange for Mistake
and Failure expressions are provable;

Reductions: Equivalent or Inducible Errors can be substituted
preserving Error states; β-reductions and η-expansions hold;

Termination: either an error state or its handling is at some point
a non-further reducible expression (based on non-iteration of
errors).

G. Primiero (Ghent University) Error Handling GROLOG 28 / 45

1 Type System (in a nutshell)

2 Making and Eliminating Errors in 3 Steps

3 Conclusions
G. Primiero (Ghent University) Error Handling GROLOG 29 / 45

Philosophical Remarks

1 Validity is here intended as a local notion;

2 Errors originate from such a restricted understanding of validity
and from the additional use of the notion of accessibility;

3 Handling is always a procedural request to reformulate the
correct version of a given process.

G. Primiero (Ghent University) Error Handling GROLOG 29 / 45

Related Work

1 Data Quality as defined by Errors elimination;

2 Definition of Distrust and Mistrust Propagation by Error
Production in information channels; with application to Expertise;

3 Future Work: Risk, Doubt, Consensus reaching strategies by
error resolution.

G. Primiero (Ghent University) Error Handling GROLOG 30 / 45

Thanks

Enough to think about? Then, Thanks!

Want to see more? Semantics is waiting for you after this slide...

G. Primiero (Ghent University) Error Handling GROLOG 31 / 45

A Semantics of Transitions

Satisfaction: define the operations that allow to transit to the
state of the system where that expression holds; for every
satisfiable expression of the system there is such a transition;

Validity: for every transition, there is a final state that is reached;
at such state, every valid expression holds;

Correctness: one needs to show that a satisfiable transition does
not invalidate an expression it moves from.

G. Primiero (Ghent University) Error Handling GROLOG 32 / 45

Transitions

Definition (Operational Model)
An operational model of the procedural semantics for the machine is
a model where each S is evaluated by transition to some S′. An
indexed transition system, called a Network

Network := (S, 7→, I)

is a triple with S ⊆ States, I ⊆ Indices and 7→ a ternary relation
over indexed states (S × I × S). If S,S′ ∈ S and i , j ∈ I, then
7→ (S, i , j ,S′) is written as Si 7→ S′

j . This means that there is a
transition 7→ from state S valid at index i to state S′ valid at index j
defined according to the machine typing rules.

G. Primiero (Ghent University) Error Handling GROLOG 33 / 45

The Domain of Correct Expressions

Definition (Standard Domain)

SD := {S | ∃S′ : (S,S′) ∈ Network & (S 7→ S′) :α}

G. Primiero (Ghent University) Error Handling GROLOG 34 / 45

Moving in SD

Definition (Transitions of the Standard Domain)

The rewriting of a state S into a valid state S′ ∈ SD is established by
the following transitions:

S 7→ S′

run (Γi , xi :α) 7→ (3i Γ, runi (α))
exec (Γi , ai :α) 7→ (2i Γ, exec(α))
corun (Γi , runi (α) ` bj :β) 7→ (2i Γ, runi∩j (α(β))
coexec (Γi , exec(α) ` bj :β) 7→ (2i Γ, runi∪j (α(β))
synchro (2i Γ, runi∪j (α(β)) 7→ (2i Γ, synchroj (β(exec(α))))
product (Γi , exec(α), exec(β)) 7→ (2i Γ, runi∩j (α× β))
extraction1 (2i Γ, runi∩j (α× β)) 7→ (2i Γ, exec(α))
extraction2 (2i Γ, runi∩j (α× β)) 7→ (2i Γ, exec(β))
tagunion (Γi , exec(α)) 7→ (2i Γ, runi∪j (α+ β))
patternmatch1 (2i Γ, runi∪j (α+ β) ` ck :γ) 7→ (2i Γ, runi∩k (α(γ)))
patternmatch2 (2i Γ, runi∪j (α+ β) ` ck :γ) 7→ (2i Γ, runj∩k (β(γ)))
21 (2i Γ, exec(α)) 7→ (GLOB(2i∪j Γ, α))
22 (2i∪j Γ, α) 7→ (RET (Γi∪j , α))
31 (3i Γ, runj (α)) 7→ (BROAD(3i∩j Γ, α))
32 (3i∩j Γ, α) 7→ (SEND(Γi∩j , α))

G. Primiero (Ghent University) Error Handling GROLOG 35 / 45

The Semantics of Error Expressions

Definition (Exit Network)

An indexed exit transition system called an ExitNetwork

ExitNetwork := (S, 7→e, I)

is a triple with S ⊆ States, I ⊆ Indices and 7→e a quaternary
relation over indexed states (S × I × S × E), with E the set of all
declared exit points. If S,S′ ∈ S and i , j ∈ I, then 7→ (S, i , j ,S′,e) is
written as Si 7→ Sj 7→ e. This means that there is a transition 7→ from
state S valid at index i to state S′ invalid at index j defined according
to the machine typing rules which leads to an exit point e.

G. Primiero (Ghent University) Error Handling GROLOG 36 / 45

The Semantics of Error Expressions

Definition (Failure Domain)

FD := {S | ∃S′ : (S,S′) ∈ ExitNetwork & S /∈ SD ∪ Network}

or in other words (S 7→ S′ 7→ e) :¬α.

G. Primiero (Ghent University) Error Handling GROLOG 37 / 45

Moving in FD

Definition (Transitions of the Failure Domain)

The rewriting of a state S ∈ SD into an invalid state S′ ∈ FD is
established by the following transitions:

S 7→ S′

mistake1 (3i Γ, runi (τ(⊥)) ` exec(υ)) 7→ (2i Γ,mistake(exec(τ(υ))))

mistake2 (3i Γ, runi (t(⊥)) ` runi (υ)) 7→ (3i Γ,mistake(runi (τ(υ))))

failport1 (GLOB(2i∪j Γ, τ(υ))) 7→ (RET (2i∪j Γ, fail(t ′(υ))))

failport2 (BROAD(3i∩j Γ, (τ(υ)))) 7→ (SEND(2i∩k>j Γ, fail(t(υ))))

G. Primiero (Ghent University) Error Handling GROLOG 38 / 45

Moving to Resolve

Definition (Resolve Transitions)

The rewriting of an invalid state S ∈ FD into a valid state S′ ∈ SD is
established by the following transitions:

S 7→res S′

resolveM1 (2i Γ,mistake(exec(τ(υ)))) 7→res (2i Γ, runi∪j (τ
′(υ))

resolveM2 (3i Γ,mistake(runi (τ(υ))) 7→res (2i Γ, runi∩j (τ
′(υ))

resolveFP1 (RET (2i∪j Γ, fail(t(υ)))) 7→res (2i Γ, exec(τ ′) ` uj :υ)

resolveFP2 (SEND(2i∩k>j Γ, fail(t(υ)))) 7→res (2i Γ, runj (τ) ` uj :υ)

G. Primiero (Ghent University) Error Handling GROLOG 39 / 45

Moving to Abort

Definition (Abort Transitions)

The final abort state is a valid state S ∈ SD established by the
following transitions:

S 7→abort S′

abortM1 (GLOB(2i Γ,mistake(exec(τ(υ))))) 7→ab (Γi∪j , abort(τ(υ))

abortM2 (BROAD(3i Γ,mistake(runi (τ(υ)))) 7→ab (Γi∩j , abort(τ(υ))

abortFP1 (2i∪j Γ, fail(t(υ))) 7→ab (Γi∪j , abort(τ(υ))

abortFP2 (2i∩k>j Γ, fail(t(υ))) 7→ab (Γi∩k , abort(τ(υ)))

G. Primiero (Ghent University) Error Handling GROLOG 40 / 45

Some interesting theorems
Theorem (Progress)

For every state in SD, either there is a transition or its type is the
output value. For every state in FD, either there is a resolution
transition or an abort transition and the type of the latter is the output
value.

Theorem (Preservation)

For every state in SD, its transition is type-preserving. For every state
in FD, every resolution transition is type-preserving w.r.t. another
state and every abort transition is of output value.

Theorem (Type Safety)

The ExitNetwork semantics is safe: for every state in SD, there is
either a type-preserving transition or the state provides the output
value; for every state in FD, there is either a type-preserving
transition to a resolved state or the ⊥-type provides the output value.

G. Primiero (Ghent University) Error Handling GROLOG 41 / 45

Some interesting theorems
Theorem (Progress)

For every state in SD, either there is a transition or its type is the
output value. For every state in FD, either there is a resolution
transition or an abort transition and the type of the latter is the output
value.

Theorem (Preservation)

For every state in SD, its transition is type-preserving. For every state
in FD, every resolution transition is type-preserving w.r.t. another
state and every abort transition is of output value.

Theorem (Type Safety)

The ExitNetwork semantics is safe: for every state in SD, there is
either a type-preserving transition or the state provides the output
value; for every state in FD, there is either a type-preserving
transition to a resolved state or the ⊥-type provides the output value.

G. Primiero (Ghent University) Error Handling GROLOG 41 / 45

Some interesting theorems
Theorem (Progress)

For every state in SD, either there is a transition or its type is the
output value. For every state in FD, either there is a resolution
transition or an abort transition and the type of the latter is the output
value.

Theorem (Preservation)

For every state in SD, its transition is type-preserving. For every state
in FD, every resolution transition is type-preserving w.r.t. another
state and every abort transition is of output value.

Theorem (Type Safety)

The ExitNetwork semantics is safe: for every state in SD, there is
either a type-preserving transition or the state provides the output
value; for every state in FD, there is either a type-preserving
transition to a resolved state or the ⊥-type provides the output value.

G. Primiero (Ghent University) Error Handling GROLOG 41 / 45

References I

Allchin, D. (2001).
Error types.
Perspectives on Science, 9:38–59.

Bonnay, D. and Egre’, P. (2011).
Knowing One’s Limits - An analysis in Centered Dynamic
Epistemic Logic.
Synthese, Springer.

Cristian, F. (1982).
Exception handling and software fault-tolerance.
IEEE Transactions on Computers, C-31:531–540.

Dekker, S. (2011).
Drift into Failure.
Ashgate.

Goodenough, J. (1975).
Exception handling: issues and a proposed notation.
Commun. ACM, 8:683–696.

G. Primiero (Ghent University) Error Handling GROLOG 42 / 45

References II

Mayo, D. (1996).
Error and the Growth of Experimental Knowledge.
Chicago University Press.

Mayo, D. (2010).
Learning from error, severe testing, and the growth of theoretical
knowledge.
In Mayo, D. and Spanos, editors, Error and Inference. Cambridge
University Press.

Primiero, G. (2013).
A taxonomy of errors for information systems.
Minds & Machines.

Reason, J. (1990).
Human Error.
Cambridge University Press.

G. Primiero (Ghent University) Error Handling GROLOG 43 / 45

References III

Sundholm, B. (2012).
Error.
Topoi.

Turner, R. (2011).
Specification.
Minds & Machines, 21(2).:135–152.

Williamson, T. (1992).
On intuitionistic modal epistemic logic.
Journal of Philosophical Logic, 21:63–89.

Williamson, T. (2002).
Knowledge and its Limits.
Oxford University Press.

Woods, D.D, D. S. C. R. J. L. S. N., editor (2010).
Behind Human Error.
Ashgate.

G. Primiero (Ghent University) Error Handling GROLOG 44 / 45

References IV

Woods, H. (2004).
The Death of Argument: Fallacies in Agent-based Reasoning.
luwer Academic Publishers.

G. Primiero (Ghent University) Error Handling GROLOG 45 / 45

	Type System (in a nutshell)
	Making and Eliminating Errors in 3 Steps
	Conclusions

