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Intro

Psychology: very large literature on practical errors, see e.g.
[Reason, 1990], [Woods, 2010], [Dekker, 2011];

Epistemology&Philosophy of Science: error detection and
resolution in paradigm definition and change (Popper, Lakatos,
Kuhn, Bayesian epistemology); see e.g. [Mayo, 1996],
[Allchin, 2001], [Mayo, 2010];

Applications: fault tolerance ([Goodenough, 1975],
[Cristian, 1982]); specification design; technological
malfunctioning; see e.g. [Turner, 2011].
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Logic

Philosophical Logic: defeasible conditions and bounded
resources for knowledge as approximations to errors; see e.g.
[Williamson, 1992]; [Williamson, 2002]; [Woods, 2004];
[Sundholm, 2012]; [Bonnay and Egre’, 2011];

What about formal logic?: PDEL; proof-theoretical approach.
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Tasks

1 formulate a full, empirically-informed characterization of error
states for informational systems; presented in [Primiero, 2013];

2 TODAY: a formal model of logical processes with error states.
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Types

Types are semantic categories of objects:
- n = 0 and S(n) are terms of the type Nat ;
- true; false are terms of type Bool ;
- values on a continuous line are terms of type Real ;
- proofs are terms of the type Prop;
- programs are terms of the type Spec;

Complex expressions are construed by functional operations:
- introduction and elimination for connectives (proof-theoretical style)
- abstraction and applications (λ-style)
- predications over sets of functions for quantifiers (Σ,Π)

validity is by type-checking (truth for Prop; termination for Spec).
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A Basic Language for the Type of Propositions

Definition (Syntax)
The basic alphabet is composed as follows:

Terms := x | a, variables and constants;
Types := α | ⊥ | α + β | α× β | α→ β
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Connectives

a :α b :β
I×

(a,b) :α× β
(a,b) :α× β

E × (l)a :α

a :α I + (1)
a :α + β

b :β
I + (2)

b :α + β

α + β a :α ` c :γ b :β ` c :γ
E+c :γ

a :α α ` b :β
I →

(x)b :α→ β

(x)b :α→ β (x/a) :α
E →

α ` b :β
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Standard ⊥

Standard rule for falsehood (a similar approach in PDEL):

∆, Γ ` m :⊥
∆; Γ ` ABORT (m) :α

1 No use of the distinction between local Γ and global resources ∆;
2 No internal structure for the error term m;
3 No available recovery from ABORT .
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Wishlist

1 Control on local/global validity;

2 Define minimal (in-)correctness conditions;

3 Analyse errors in view of the different conditions breaches;

4 Design formal strategies to identify and correct errors.
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A Premise: Errors as Limits of Validity

Errors as emergence of uncertainty;

To express uncertainty, we need to limit validity;

Our calculus will admit local validity.
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Step 1: Add Local Execution Functions

runi : execution of a term bounded to a location; call by value;

exec: global unbounded value, valid for every other term to call;
call by name;

→: to express implication from exec;

⊃: to express implication from run;

synchro: to pass a ⊃ construction to an exec value.
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Modified Syntax

Definition (Syntax)
Functions and their values are given as:

Terms := xi | ai , for i ∈ I
Types := α | ⊥ | α× β | α + β | α→ β | α ⊃ β
Locations := 1 < · · · < n
Operations := exec(α) | runi (α) | runi∪j (α · β) | runi∩j (α · β) |
synchroj (β(exec(α))), where · ∈ {+,×}
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Connectives I

Global
∆i ,ai :α ` exec(α)

ai :α ` exec(α) bj :β ` exec(β)
I×` runi∩j (α× β)

` runi∩j (α× β)
E × (l)

` exec(α)

ai :α ` exec(α)
I + (l)

` runi (α + β)

bj :β ` exec(β)
I + (r)

runj (α + β)

` runi∪j (α + β) runi (α) ` ck :γ runj (β) ` ck :γ
E+` runi∩j∩k (γ)

` runi (α) xi :α ` runj (β)
I ⊃

runi∩j (α ⊃ β)

` runi∩j (α ⊃ β) xi :α
E ⊃

xi :α ` runj (β)
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Connectives II

` exec(α) ai :α ` exec(β)
I →` runi∪j (α→ β)

` runi∪j (α→ β) ai :α
E →exec(α) ` exec(β)

` runi∩j (α ⊃ β) ai :α
Synchro

` synchroj (β(exec(α)))
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A Premise: Local means Mobile

Locally valid terms can be made mobile;

Errors occur for terms that can be fetched, accessed,
broadcasted;

Our calculus will admit mobility.

G. Primiero (Ghent University) Error Handling GROLOG 16 / 45



Step 2: Add Modal Functions for Mobility

GLOB: is a 2-Intro rule; it says that an exec value is everywhere
valid;

BROAD: is a 3-Intro rule; it says that a run term can be
transmitted to a given location;

RET : is a 2-Elim rule; it says that a GLOB value can be returned
to a specific address;

SEND: is a 3-Elim rule; it moves a run term from a place to
another.
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Modified Syntax

Definition (Syntax)
Mobility is given as:

Remote Operations := GLOB(2i∪j Γ, α) | BROAD(3i∩j Γ, α)

Portable Code := RET (Γi∪j , α) | SEND(Γi∩j , α)
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Rules for Modality (Intro & Elimination)

Γi , xj :α ` runj (α) 2i Γ, xj (aj ) : α ` exec(α)
RPC1GLOB(2i∪j Γ, α)

Γi , xj :α ` runj (α) 3i Γ ` runj (α)
RPC2BROAD(3i∩j Γ, α)

2i Γ,aj :α ` exec(α) GLOB(2i∪j Γ, α)
PORT1RET (Γi∪j , α)

2i Γ, xj :α ` runi∩j (α) BROAD(3i∩j Γ, α)
PORT2SEND(Γi∩j , α)
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A Premise: Which Errors

We consider two main kinds of errors:
I Mistakes; semantic or syntactic errors, generated by non-valid

terms at locations;

I Failures: procedural errors, generated by failing mobility
instructions.
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Step 3: Add Error Functions

Two kinds of errors:
1 fail@i (τ): the state of the system where a term of type τ induces a

failure when accessed at index i ;

2 mistake(τ): the state of the system where reference to type τ
induces an error.

Two concurrency functions:
1 access@i (t : τ \ ⊥): a command to access a term at a given

address;

2 φ(τ)WITH(Π ∪ I ∪ Γ): a command to execute a resource
φ := {run, exec} with a local term;
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Modified Syntax

Definition (Syntax)
Errors are defined/use:

H(Error Functions) := fail@i (t) | mistake(τ)

C(Concurrency Functions) := access@i (t) |
φ(τ)WITH(Π ∪ I ∪ Γ)

G. Primiero (Ghent University) Error Handling GROLOG 22 / 45



Rules for Concurrency

∆i ,ai :α ` exec(α)
@I

∆i ` access@i (a :α)

∆i ; Γi ` access@i (a :α)
@E

∆i ; Γi , xi :α ` runi (α)

∆i ; Γi ` φ(α)
WITH-I

∆i ` φ(α)WITH(t , Γ)

∆i ` φ(α)WITH(t , Γ) ∆i ; Γ ` t :α
WITH-E

∆i ; Γ, t :α ` φ(α)

G. Primiero (Ghent University) Error Handling GROLOG 23 / 45



Mistakes: semantic errors

Mistake1: a dependency from a locally invalid value

∆i ; Γi ` runi (τ → ⊥) ∆i ; xi :τ ` runi (υ)
Mistake1

Γi ; ∆i ` mistake(exec(υ)WITH(τ))

HandleMistake1: re-define dependency from local resource:

Γi ` mistake(exec(υ)WITH(τ)) Γi , tj :τ ′ ` exec(τ ′)
HandleMistake1

Γi ` synchroj (υ(exec([τ/τ ′])))
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Mistakes: syntax error

Mistake2: dependency from a locally invalid term

∆i ; Γi ` runi (t ⊃ ⊥) Γi , xi :τ ` runi (υ)
Mistake2

Γi ; ∆i ` mistake(runi (υ)WITH(ti ))

HandleMistake2: re-define dependency from required resource

Γi ` mistake(runi (υ)WITH(ti )) Γi , [ti/xj ] :τ ` runi (υ)
HandleMistake2

Γi ` runj∩i (τ ⊃ υ)
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Mistakes: syntax error

Mistake2: dependency from a locally invalid term

∆i ; Γi ` runi (t ⊃ ⊥) Γi , xi :τ ` runi (υ)
Mistake2

Γi ; ∆i ` mistake(runi (υ)WITH(ti ))

HandleMistake2: re-define dependency from required resource

Γi ` mistake(runi (υ)WITH(ti )) Γi , [ti/xj ] :τ ` runi (υ)
HandleMistake2

Γi ` runj∩i (τ ⊃ υ)

G. Primiero (Ghent University) Error Handling GROLOG 25 / 45



Failures: access wrong resources

Failure1: access wrong resources possibly at right location

2i Γ, tj :τ ` exec(υ) GLOB(2i∪j Γ, τ)
FailPort1

2i Γ,access@j (t ′ : τ ′) ` fail@i∪j (υ) (t ′ 6= t ; τ ′ 6= τ)

HandleFailure1: re-execute access to local resource

2i Γ,access@j (t ′ :τ ′) ` fail@i∪j (υ) RET (Γi∪j , τ) τ 6= τ ′
HFP1

2i Γ, [t ′j :τ ′/tj : τ ] ` exec(υ)
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Failures: access wrong locations

Failure2: access right resources at wrong locations

2i Γ; xj :τ ` runi∩j (υ) BROAD(3i∩j Γ, τ)
FailPort2

3i Γ,access@k>j (t :τ) ` fail@i∩j (υ)

HandleFailure2: re-execute access to local resource

3i Γ,access@k>j (t :τ) ` fail@i∩j (υ) SEND(Γi∩j , τ)
HFP2

3i Γ, [tk/xj ] : τ ` runi∩j (υ)
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Some interesting theorems

Local Soundness and Completeness: Error Rules and Handling
Rules behave as Introduction and Elimination Rules; by
normalization, one obtains an equivalent rule without detour;

Structural: Weakening, Contraction and Exchange for Mistake
and Failure expressions are provable;

Reductions: Equivalent or Inducible Errors can be substituted
preserving Error states; β-reductions and η-expansions hold;

Termination: either an error state or its handling is at some point
a non-further reducible expression (based on non-iteration of
errors).
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Philosophical Remarks

1 Validity is here intended as a local notion;

2 Errors originate from such a restricted understanding of validity
and from the additional use of the notion of accessibility;

3 Handling is always a procedural request to reformulate the
correct version of a given process.
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Related Work

1 Data Quality as defined by Errors elimination;

2 Definition of Distrust and Mistrust Propagation by Error
Production in information channels; with application to Expertise;

3 Future Work: Risk, Doubt, Consensus reaching strategies by
error resolution.
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Thanks

Enough to think about? Then, Thanks!

Want to see more? Semantics is waiting for you after this slide...
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A Semantics of Transitions

Satisfaction: define the operations that allow to transit to the
state of the system where that expression holds; for every
satisfiable expression of the system there is such a transition;

Validity: for every transition, there is a final state that is reached;
at such state, every valid expression holds;

Correctness: one needs to show that a satisfiable transition does
not invalidate an expression it moves from.
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Transitions

Definition (Operational Model)
An operational model of the procedural semantics for the machine is
a model where each S is evaluated by transition to some S′. An
indexed transition system, called a Network

Network := (S, 7→, I)

is a triple with S ⊆ States, I ⊆ Indices and 7→ a ternary relation
over indexed states (S × I × S). If S,S′ ∈ S and i , j ∈ I, then
7→ (S, i , j ,S′) is written as Si 7→ S′

j . This means that there is a
transition 7→ from state S valid at index i to state S′ valid at index j
defined according to the machine typing rules.
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The Domain of Correct Expressions

Definition (Standard Domain)

SD := {S | ∃S′ : (S,S′) ∈ Network & (S 7→ S′) :α}
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Moving in SD

Definition (Transitions of the Standard Domain)

The rewriting of a state S into a valid state S′ ∈ SD is established by
the following transitions:

S 7→ S′

run (Γi , xi :α) 7→ (3i Γ, runi (α))
exec (Γi , ai :α) 7→ (2i Γ, exec(α))
corun (Γi , runi (α) ` bj :β) 7→ (2i Γ, runi∩j (α(β))
coexec (Γi , exec(α) ` bj :β) 7→ (2i Γ, runi∪j (α(β))
synchro (2i Γ, runi∪j (α(β)) 7→ (2i Γ, synchroj (β(exec(α))))
product (Γi , exec(α), exec(β)) 7→ (2i Γ, runi∩j (α× β))
extraction1 (2i Γ, runi∩j (α× β)) 7→ (2i Γ, exec(α))
extraction2 (2i Γ, runi∩j (α× β)) 7→ (2i Γ, exec(β))
tagunion (Γi , exec(α)) 7→ (2i Γ, runi∪j (α+ β))
patternmatch1 (2i Γ, runi∪j (α+ β) ` ck :γ) 7→ (2i Γ, runi∩k (α(γ)))
patternmatch2 (2i Γ, runi∪j (α+ β) ` ck :γ) 7→ (2i Γ, runj∩k (β(γ)))
21 (2i Γ, exec(α)) 7→ (GLOB(2i∪j Γ, α))
22 (2i∪j Γ, α) 7→ (RET (Γi∪j , α))
31 (3i Γ, runj (α)) 7→ (BROAD(3i∩j Γ, α))
32 (3i∩j Γ, α) 7→ (SEND(Γi∩j , α))
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The Semantics of Error Expressions

Definition (Exit Network)

An indexed exit transition system called an ExitNetwork

ExitNetwork := (S, 7→e, I)

is a triple with S ⊆ States, I ⊆ Indices and 7→e a quaternary
relation over indexed states (S × I × S × E), with E the set of all
declared exit points. If S,S′ ∈ S and i , j ∈ I, then 7→ (S, i , j ,S′,e) is
written as Si 7→ Sj 7→ e. This means that there is a transition 7→ from
state S valid at index i to state S′ invalid at index j defined according
to the machine typing rules which leads to an exit point e.

G. Primiero (Ghent University) Error Handling GROLOG 36 / 45



The Semantics of Error Expressions

Definition (Failure Domain)

FD := {S | ∃S′ : (S,S′) ∈ ExitNetwork & S /∈ SD ∪ Network}

or in other words (S 7→ S′ 7→ e) :¬α.
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Moving in FD

Definition (Transitions of the Failure Domain)

The rewriting of a state S ∈ SD into an invalid state S′ ∈ FD is
established by the following transitions:

S 7→ S′

mistake1 (3i Γ, runi (τ(⊥)) ` exec(υ)) 7→ (2i Γ,mistake(exec(τ(υ))))

mistake2 (3i Γ, runi (t(⊥)) ` runi (υ)) 7→ (3i Γ,mistake(runi (τ(υ))))

failport1 (GLOB(2i∪j Γ, τ(υ))) 7→ (RET (2i∪j Γ, fail(t ′(υ))))

failport2 (BROAD(3i∩j Γ, (τ(υ)))) 7→ (SEND(2i∩k>j Γ, fail(t(υ))))
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Moving to Resolve

Definition (Resolve Transitions)

The rewriting of an invalid state S ∈ FD into a valid state S′ ∈ SD is
established by the following transitions:

S 7→res S′

resolveM1 (2i Γ,mistake(exec(τ(υ)))) 7→res (2i Γ, runi∪j (τ
′(υ))

resolveM2 (3i Γ,mistake(runi (τ(υ))) 7→res (2i Γ, runi∩j (τ
′(υ))

resolveFP1 (RET (2i∪j Γ, fail(t(υ)))) 7→res (2i Γ, exec(τ ′) ` uj :υ)

resolveFP2 (SEND(2i∩k>j Γ, fail(t(υ)))) 7→res (2i Γ, runj (τ) ` uj :υ)
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Moving to Abort

Definition (Abort Transitions)

The final abort state is a valid state S ∈ SD established by the
following transitions:

S 7→abort S′

abortM1 (GLOB(2i Γ,mistake(exec(τ(υ))))) 7→ab (Γi∪j , abort(τ(υ))

abortM2 (BROAD(3i Γ,mistake(runi (τ(υ)))) 7→ab (Γi∩j , abort(τ(υ))

abortFP1 (2i∪j Γ, fail(t(υ))) 7→ab (Γi∪j , abort(τ(υ))

abortFP2 (2i∩k>j Γ, fail(t(υ))) 7→ab (Γi∩k , abort(τ(υ)))
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Some interesting theorems
Theorem (Progress)

For every state in SD, either there is a transition or its type is the
output value. For every state in FD, either there is a resolution
transition or an abort transition and the type of the latter is the output
value.

Theorem (Preservation)

For every state in SD, its transition is type-preserving. For every state
in FD, every resolution transition is type-preserving w.r.t. another
state and every abort transition is of output value.

Theorem (Type Safety)

The ExitNetwork semantics is safe: for every state in SD, there is
either a type-preserving transition or the state provides the output
value; for every state in FD, there is either a type-preserving
transition to a resolved state or the ⊥-type provides the output value.
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