Formalizing Trusted Communications

Giuseppe Primiero & Mariarosaria Taddeo

FWO - Centre for Logic and Philosophy of Science, Ghent University University of Hertfordshire

mariarosaria.taddeo@philosophyofinformation.net

May, 2010 - Second International Workshop on the Philosophy of Information – Ankara

Outline

- 1 Trust
- Testimony
- 3 From conceptual to formal analysis
- 4 Type theory for multiagent epistemic processes
- 5 Multi-modalities for collective knowledge
- 6 Properties of trusted communication and knowledge
- 7 Conclusions

Testimony From conceptual to formal analysis Type theory for multiagent epistemic processes Multi-modalities for collective knowledge Properties of trusted communication and knowledge Conclusions

1 Trust

- 2) Testimony
- From conceptual to formal analysis
- Type theory for multiagent epistemic processes
- 5 Multi-modalities for collective knowledge
- 6) Properties of trusted communication and knowledge

7 Conclusions

Testimony From conceptual to formal analysis Type theory for multiagent epistemic processes Multi-modalities for collective knowledge Properties of trusted communication and knowledge Conclusions

Trust as a second-order property

• The occurrences of trust are related to, and affect, pre-existing relations, like purchase, negotiation and communication;

A trusts B to sell good wine.

• There is a first-order relation, purchasing, which ranges over the two agents, and there is the second-order property of trust, which ranges over the first-order relation and affects the way it occurs.

Testimony From conceptual to formal analysis Type theory for multiagent epistemic processes Multi-modalities for collective knowledge Properties of trusted communication and knowledge Conclusions

Efffects of trust on the system

 Trust affects the interaction between the trustor and the trustee by minimising the trustor's effort and commitment for the achievement of a given goal.

Testimony From conceptual to formal analysis Type theory for multiagent epistemic processes Multi-modalities for collective knowledge Properties of trusted communication and knowledge Conclusions

Efffects of trust on the system

 Trust affects the interaction between the trustor and the trustee by minimising the trustor's effort and commitment for the achievement of a given goal.

It does so in two ways:

- the trustor can avoid performing the necessary action to achieve her goal herself, because she can count on the trustee to do it.
- the trustor does not supervise the trustee's performance.

1) Trust

2 Testimony

- From conceptual to formal analysis
- Type theory for multiagent epistemic processes
- 5) Multi-modalities for collective knowledge
- 6) Properties of trusted communication and knowledge

7 Conclusions

Testimony: the case of trusted communication (I)

 Testimony is understood as the assertion of a declarative sentence carrying the belief of a sender to a receiver, who then accepts it as true, without checking its truthfulness.

Testimony: the case of trusted communication (I)

 Testimony is understood as the assertion of a declarative sentence carrying the belief of a sender to a receiver, who then accepts it as true, without checking its truthfulness.

Ex.: The spy <u>who does not understand</u> the message she is carrying.

- In this case, S does not hold a belief about p, still R accepts p and might also know that p on the basis of S' assertion.
- Testimony does not necessarily require beliefs.
- What is the nature of the message transmitted through testimony?

Testimony: the case of trusted communication (II)

• What are the minimal requirements that the message (M) must satisfy in order for testimony to occur?

Testimony: the case of trusted communication (II)

- What are the minimal requirements that the message (M) must satisfy in order for testimony to occur?
- M must be meaningful and truthful*.

Meaningful: M must be understandable by the intended receiver.

Truthful*: if M is false then testimony becomes false testimony, i.e. not a genuine form of testimony at all. M is not proved to be true, but it is at least assumed to be true.

Testimony: the case of trusted communication (II)

- What are the minimal requirements that the message (M) must satisfy in order for testimony to occur?
- M must be meaningful and truthful*.

Meaningful: M must be understandable by the intended receiver.

Truthful*: if M is false then testimony becomes false testimony, i.e. not a genuine form of testimony at all. M is not proved to be true, but it is at least assumed to be true.

- M is an instance of functional information.
- An instance of functional information is a instance of meaningful contents to which truth is ascribed, but which can still be falsified (mis-information).

Testimony the case of trusted communication (III)

- Testimony involves the communication of (functional) information from S to R.
- The communication from S to R is a first-order relation.

Testimony the case of trusted communication (III)

- Testimony involves the communication of (functional) information from S to R.
- The communication from S to R is a first-order relation.
- Testimony is also characterised by:
 - the delegation by R to S. R delegates to S the task of communicating *p*,
 - the absence of supervision. R does not supervise S' performances.
- These aspects are peculiar to the occurrence of trust and can be explained if one considers trust as a property qualifying the communication occurring between R and S.

Testimony: from the weak to the strong epistemic status

- An epistemic agent who holds some information as true on the basis of her trust in the sender is in a weak epistemic status.
- Such information can be upgraded to knowledge if and only if the agent is able to connect the transmitted information to the conceptual network of interrelations to which it belongs.
- Floridi's Network Theory of Account (NTA) show how such a network allows the epistemic agent to achieve knowledge on the basis of the communicated information.

1) Trust

2) Testimony

From conceptual to formal analysis

- Type theory for multiagent epistemic processes
- 5) Multi-modalities for collective knowledge
- 6) Properties of trusted communication and knowledge

Conclusions

Trust as Dependency

- In our formal system the relation between the sender and the receiver of the message is presented as a dependency relation,
 i.e. the receiver of the message is dependent on the sender in order to acquire new epistemic content.
- The dependency determines a hierarchy among the agents, for this reason the agents are ordered so that the sender of the message always occupies a higher place in the hierarchy than the receiver.

Trust as Dependency

- In our formal system the relation between the sender and the receiver of the message is presented as a dependency relation,
 i.e. the receiver of the message is dependent on the sender in order to acquire new epistemic content.
- The dependency determines a hierarchy among the agents, for this reason the agents are ordered so that the sender of the message always occupies a higher place in the hierarchy than the receiver.
- The communications among the agents are trust-qualified relations. In the formal model the occurrence of trust is represented by having the receiver accepting as true the communicated message even though she has not a (direct) proof for it.

Distributed Knowledge

- The receiver of the message is in a weak epistemic status by holding a communicated content as true but not verified.
- We express this aspect of the analysis in our formal model by representing the epistemic content held by the receiver as a hypothesis (*h*), i.e. an epistemic content that might potentially be true but has not been verified yet.
- S and R together instantiate an epistemic system in which is present distributed knowledge (DK).

Common Knowledge

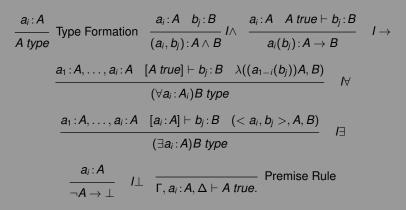
- An agent is said to have a strong epistemic status regarding *h* when she can account for such content without relying on any other agent in the system.
- In the formal model an agent has a strong epistemic status with respect to *h* when she can provide a proof for it without relying on any other agent in the system.
- The verification is represented in the formal model by the reduction of *h* to a proof of it by β -reduction. The proof is objective, i.e. it can be accessed from any agent's epistemic state holding *h*.
- As iteration of distinct agents' epistemic contents can be inferred (*i* knows that *A* and that *j* knows that *i*...), this represents the basis to formulate common knowledge (CK).

1) Trust

- 2) Testimony
- 3 From conceptual to formal analysis
- 4 Type theory for multiagent epistemic processes
- 5 Multi-modalities for collective knowledge
- 6) Properties of trusted communication and knowledge

7 Conclusions

Polymorphism and its semantics


- Terms in formulae: indexed term constructors $a_i, b_j, ...$ and variable constructors $x_i, y_j, ...,$
- Types in formulae: $\mathcal{K} := \{(A, B, \dots, type); (A, B, \dots, type_{inf})\}$
- Indices: *i*, *j* ∈ *G* range over an enumerable set *G* of distinct sources;
- Basic Formulae:

 $a_i: A \ type - verification \ for \ A \ by \ i \Rightarrow A \ true$ $x_i: A \ type_{inf} - consistently \ admissible \ claim \ of \ A \ by \ i \Rightarrow A \ true^*$ (hypothetically)

Contexts

- context: Γ is a finite sequence of assumptions {x_i: A,..., x_n: N} (distinct subjects), with each assumption depending on forecoming ones;
- erivability from context: {x_i: A, ..., x_n: N} ⊢ J holds provided x_i/[a_i]: A;
- extended context: $\Delta = \{\Gamma, x_{n+1} : N+1\}$ is equivalent to $\Delta = \{x_i : A, \dots, x_{n+1} : N+1\}$. (for a fresh declaration $x_{n+1} : N+1$ independent of the order in Γ , $\Gamma \mid x_{n+1} : N+1$ is equivalent to Γ, Δ).

Rules for \vdash *type*: \mathcal{K}

Standard elimination Rules and Weakening, Contraction and Exchange are validated.

Rules for
$$\vdash$$
 *type*_{inf} : \mathcal{K}

$$\frac{\neg(A \rightarrow \bot) type}{A type_{inf}} Type_{inf} \text{ Formation } \frac{A type_{inf} x_i : A \vdash b_j : B}{((x_i)b_j) : A \supset B type} \text{ Functional abstraction}$$

$$\frac{A type_{inf} x_i : A \vdash b_j : B a_i : A}{(x(b_j))(a_i) = b[a/x] : B type[a/x]} \beta - conversion$$

$$\frac{A((a_{1-i}(b_j))A, B) (b_j)[a_i := a]}{(a_i(b_j)) : A \rightarrow B type} \alpha - conversion$$

$$\frac{A((a_{1-i}(b_j))A, B) (b_j)[a_i := a]}{(a_i(b_j)) : A \rightarrow B type} \alpha - conversion$$

$$\frac{F \vdash B type_{inf} x_i : A \vdash A type_{inf}}{F \mid x_i : A \vdash B type_{inf}} \text{ Weakening}$$

$$\frac{F \mid x_i : A, y_j : B \vdash C type_{inf}}{F \mid x_i : A \vdash B type_{inf}} \text{ Contraction}$$

1) Trust

- 2) Testimony
- 3 From conceptual to formal analysis
- Type theory for multiagent epistemic processes
- 5 Multi-modalities for collective knowledge
- 6) Properties of trusted communication and knowledge

7 Conclusions

Introducing Modalities via Structural Properties

Categorical Derivability equals Necessity:

if any Δ extending a context Γ makes *A true*, it means $\Gamma \vdash a: A$ holds and eventually $\Gamma = \emptyset$;

$$\frac{a_i:A}{\Box_i(A \ true)} \Box - Formation$$

Introducing Modalities via Structural Properties

• Categorical Derivability equals Necessity:

if any Δ extending a context Γ makes *A true*, it means $\Gamma \vdash a:A$ holds and eventually $\Gamma = \emptyset$;

$$\frac{a_i:A}{\Box_i(A \ true)} \Box - Formation$$

• Dependent Derivability equals Possibility:

if *A* true is valid under some non-empty Γ containing type_{inf} expressions, only some Δ will keep *A* true valid;

$$\frac{x_i:A}{\diamond_i(A \ true)} \diamond - \text{Formation}$$

Generalizing Modalities to Contexts

- Γ_i is a context signed for *i* iff for any declaration in Γ the signature is *i*;
- 2 □_i(A true) generated by □-Formation from x_i[/a_i]: A is the declaration that A is valid for any extension of context Γ_i;
- ③ $\diamond_i(A \text{ true})$ generated by \diamond -Formation from $x_i: A$ is the declaration that A is an admissible assumption for some extension of context Γ_i;
- ④ Γ_i, □_iΓ is given by \bigcup {□_i(A true) | for all A ∈ Γ};
- ◊_iΓ is given by ∪{∘_i(A true) | ∘ = {□, ◊} and ◊_i(A true) for at least one A ∈ Γ}.

Extension of Signed and Modal Contexts

• $\Sigma_{i,j}$ is a context extension

 $\circ_i \Gamma \mid \circ_j \Delta = \{ \circ_i (A \text{ true}), \dots, \circ_i (N \text{ true}), \circ_j (O \text{ true}) \}$

- e_iΓ | $\circ_j \Delta$ is admissible if, for any judgement *J* ∈ Δ such that *J* = *A* type_{inf}, Γ ⊭ (*A* → ⊥);
- ③ $\Diamond_{\mathcal{G}}$ Σ ⊢ *J* is obtained by □_{*i*}Γ | \Diamond_{j} Δ ⊢ *J*;
- $\square_{\mathcal{G}}\Sigma \vdash J$ is obtained by $\square_{i}\Gamma \mid \square_{i}\Delta \vdash J$.

Modal Judgements from multi-signed contexts

• Deriving Necessity Judgements from Multi-Contexts $\Box_k(A \text{ true}) \text{ iff for all } \Gamma_j \in Context, \emptyset \mid \Box_j \Gamma \vdash \Box_k(A \text{ true}), \text{ where } j = \bigcup \{1, \ldots, k-1\} \in \mathcal{G};$

Modal Judgements from multi-signed contexts

- Deriving Necessity Judgements from Multi-Contexts $\Box_k(A \text{ true}) \text{ iff for all } \Gamma_j \in Context, \emptyset \mid \Box_j \Gamma \vdash \Box_k(A \text{ true}), \text{ where } j = \bigcup \{1, \dots, k-1\} \in \mathcal{G};$
- Deriving Possibility Judgements from Multi-Contexts $\diamond_k(A \text{ true})$ iff for some $\Gamma_i, \Delta_j \in Context, \Box_i \Gamma | \diamond_j \Delta \vdash \diamond_k(A \text{ true}),$ where $j = \bigcup \{1, \dots, k-1\} \in \mathcal{G};$

1) Trust

- 2) Testimony
- 3 From conceptual to formal analysis
- Type theory for multiagent epistemic processes
- 5 Multi-modalities for collective knowledge
- 6 Properties of trusted communication and knowledge

Conclusions

Properties of Trusted Information

Definition (Trusted Communication)

We say that $TC = \langle \diamond_i, \diamond_j, J, J' \rangle$ such that $i < j \in \mathcal{G}$ and J = (A true), J' = (B true), is a Trusted Communication if there are judgements $\diamond_j(B true), \diamond_i(A true)$ that form a communication chain and $\diamond_j(B true)[\diamond_i(A true)]$ and $x_i : A \vdash \diamond_i(A true)$.

Properties of Trusted Information (II)

$$\frac{x_i: A \vdash A true^*}{\Gamma, x_i: A, \Delta \vdash \diamondsuit_i(A true)}$$
 Reflexivity

 $\frac{x_i: A \vdash A \ true^* \quad \diamondsuit_j(B \ true)[\diamondsuit_i(A \ true)] \quad \diamondsuit_k(B \ true)[\diamondsuit_j(B \ true)]}{\diamondsuit_i(A \ true) \vdash \diamondsuit_k(B \ true)} \ \text{Transitivity}$

Symmetry for such relation is not admitted, trust being a uni-directional relation.

Properties of Trusted Information

Definition (Sequenced admissible communication)

If $\vdash B$ true[$\Diamond_i(A \text{ true}), \ldots, \Diamond_k(N \text{ true})$] we write $\Diamond_{i,k}\Sigma \vdash \Diamond_l(B \text{ true})$ and say that (*B* true) is reachable at I ($k \leq I \in \mathcal{G}$) from $\Diamond_{i,k}\Sigma$ if there are trusted communications $TC^1 = \langle \Diamond_i, (A \text{ true}) \rangle$ up to $TC^k = \langle \Diamond_k, \Diamond_l, (B \text{ true}) \rangle$ such that at TC^k agent *I* trusts agents *k* on *N*, at TC^{k-1} agent *k* trusts agents k - 1 on N - 1 up to TC^{1-k} where agent i + 1 trusts agent *i* on *A* and $\Sigma_{i,k} \mid \Diamond_l \Delta$ is admissible.

Properties of Trusted Information

Definition (Sequenced admissible communication)

If $\vdash B$ true[$\Diamond_i(A \text{ true}), \ldots, \Diamond_k(N \text{ true})$] we write $\Diamond_{i,k}\Sigma \vdash \Diamond_l(B \text{ true})$ and say that (*B* true) is reachable at I ($k \leq I \in \mathcal{G}$) from $\Diamond_{i,k}\Sigma$ if there are trusted communications $TC^1 = \langle \Diamond_i, (A \text{ true}) \rangle$ up to $TC^k = \langle \Diamond_k, \Diamond_l, (B \text{ true}) \rangle$ such that at TC^k agent *I* trusts agents *k* on *N*, at TC^{k-1} agent *k* trusts agents k - 1 on N - 1 up to TC^{1-k} where agent i + 1 trusts agent *i* on *A* and $\Sigma_{i,k} \mid \Diamond_l \Delta$ is admissible.

A lemma holds such that derivability is expressed via an ordered admissible chain of Trusted Communications.

Bridging Properties

$$\frac{\Box_i \Gamma, a_j : A \vdash \Box_{i,j}(B \text{ true}) \quad x_j : A \vdash A \text{ true}^*}{\Box_i \Gamma, \diamond_j(A \text{ true}) \vdash \diamond_{i,j}(B \text{ true})} \diamond \text{ Import}$$

Bridging Properties

$$\frac{\Box_{i}\Gamma, a_{j}: A \vdash \Box_{i,j}(B \ true) \quad x_{j}: A \vdash A \ true^{*}}{\Box_{i}\Gamma, \diamond_{j}(A \ true) \vdash \diamond_{i,j}(B \ true)} \diamond \text{Import}$$

$$\frac{\Box_{i}\Gamma, a_{j}: A \vdash \Box_{k}(B \ true) \quad B \ true^{*}[x_{j}:A]}{\Box_{i}\Gamma, \diamond_{j}(A \ true) \vdash \diamond_{k}(B \ true)} \text{ Common Serialit}$$

Bridging Properties

 $\frac{\Box_{i}\Gamma, a_{j}: A \vdash \Box_{i,j}(B \text{ true}) \quad x_{j}: A \vdash A \text{ true}^{*}}{\Box_{i}\Gamma, \diamond_{j}(A \text{ true}) \vdash \diamond_{i,j}(B \text{ true})} \diamond \text{Import}$ $\frac{\Box_{i}\Gamma, a_{j}: A \vdash \Box_{k}(B \text{ true}) \quad B \text{ true}^{*}[x_{j}:A]}{\Box_{i}\Gamma, \diamond_{j}(A \text{ true}) \vdash \diamond_{k}(B \text{ true})} \text{ Common Seriality}$ $\frac{\Gamma_{i}, x_{j}: A \vdash B \text{ true}^{*} \quad a_{j}: A \vdash A \text{ true}}{\Box_{i}\Gamma, a_{j}: A \vdash \Box_{i,j}(B \text{ true})} \Box \text{ Import}$

Bridging Properties

$$\frac{\Box_{i}\Gamma, a_{j}: A \vdash \Box_{i,j}(B \ true) \quad x_{j}: A \vdash A \ true^{*}}{\Box_{i}\Gamma, \diamond_{j}(A \ true) \vdash \diamond_{i,j}(B \ true)} \diamond \text{Import}$$

$$\frac{\Box_{i}\Gamma, a_{j}: A \vdash \Box_{k}(B \ true) \quad B \ true^{*}[x_{j}:A]}{\Box_{i}\Gamma, \diamond_{j}(A \ true) \vdash \diamond_{k}(B \ true)} \text{ Common Seriality}$$

$$\frac{\Gamma_{i}, x_{j}: A \vdash B \ true^{*} \quad a_{j}: A \vdash A \ true}{\Box_{i}\Gamma, a_{j}: A \vdash \Box_{i,j}(B \ true)} \Box \text{ Import}$$

$$\frac{\Box_{i}\Gamma \vdash A \ true \quad x_{i}: A \vdash \diamond_{j}(A \ true)}{\Box_{i}\Gamma, x_{i}: A \vdash \diamond_{j}(A \ true)} \text{ Convergence}$$

Properties of Knowledge

$$\frac{\Box_{\mathcal{G}}\Sigma\vdash\Box_{k}(A true) \quad \Box_{i,j}\Sigma\mid a_{k}:A\vdash\Box_{\mathcal{G}}(A true)}{\Box_{\mathcal{G}}\Sigma\vdash\Box_{i,j}(A true)} Upper Inclusion$$

$$\frac{\Box_{i}\Gamma\mid\Box_{j}\Delta\vdash\Box_{i,j}(A true) \quad \Box_{i,j}\Sigma\vdash\Box_{k}(A true)}{\Box_{\mathcal{G}}\Sigma\vdash\Box_{k}(A true)} Lower Inclusion$$

Properties of Knowledge

$$\frac{\Box_{\mathcal{G}}\Sigma \vdash \Box_{k}(A \text{ true}) \quad \Box_{i,j}\Sigma \mid a_{k}:A \vdash \Box_{\mathcal{G}}(A \text{ true})}{\Box_{\mathcal{G}}\Sigma \vdash \Box_{i,j}(A \text{ true})} \text{ Upper Inclusion}$$

$$\frac{\Box_{i}\Gamma \mid \Box_{j}\Delta \vdash \Box_{i,j}(A \text{ true}) \quad \Box_{i,j}\Sigma \vdash \Box_{k}(A \text{ true})}{\Box_{\mathcal{G}}\Sigma \vdash \Box_{k}(A \text{ true})} \text{ Lower Inclusion}$$

$$\frac{\Box_{i}\Gamma \mid \Box_{j}\Delta \vdash \Box_{k}(A \text{ true})}{\Box_{\mathcal{G}}\Sigma \vdash \Box_{k}(\Box_{i,j}(A \text{ true}))} \text{ Ascending Iteration}$$

$$\frac{\Box_{i}\Gamma \mid \Box_{j}\Delta \vdash \Box_{k}(A \text{ true})}{\Box_{\mathcal{G}}\Sigma \vdash \Box_{i,j}(\Box_{k}(A \text{ true}))} \text{ Descending Iteration}$$

Distributed and Common Knowledge

Definition ($\diamond_{\mathcal{G}}$ as a distributed knowledge operator)

 $\diamond_{\mathcal{G}} \Sigma \vdash \diamond_{i,j} (A \text{ true}) \text{ iff } \Gamma_i \mid \Gamma_j \vdash A \text{ true for any } (i,j) \in \bigcap \mathcal{G}$

Distributed and Common Knowledge

Definition ($\diamond_{\mathcal{G}}$ as a distributed knowledge operator)

 $\diamond_{\mathcal{G}} \Sigma \vdash \diamond_{i,j} (A \text{ true}) \text{ iff } \Gamma_i \mid \Gamma_j \vdash A \text{ true for any } (i,j) \in \bigcap \mathcal{G}$

Theorem (Trusted Communication as a bound to CK)

Suppose that $\Sigma = \langle \circ_i, \circ_j, J \rangle$ and i < j, i.e. $|\mathcal{G}| \ge 2$. Then for all judgements $J \in \Sigma$, $\Sigma \vdash \Box J$ iff $TC^j = 0$.

Reducing the need for Trusted Communications corresponds to acquiring CK.

Distributed and Common Knowledge

Definition ($\diamond_{\mathcal{G}}$ as a distributed knowledge operator)

 $\diamond_{\mathcal{G}} \Sigma \vdash \diamond_{i,j} (A \text{ true}) \text{ iff } \Gamma_i \mid \Gamma_j \vdash A \text{ true for any } (i,j) \in \bigcap \mathcal{G}$

Theorem (Trusted Communication as a bound to CK)

Suppose that $\Sigma = \langle \circ_i, \circ_j, J \rangle$ and i < j, i.e. $|\mathcal{G}| \ge 2$. Then for all judgements $J \in \Sigma$, $\Sigma \vdash \Box J$ iff $TC^j = 0$.

Reducing the need for Trusted Communications corresponds to acquiring CK.

Definition ($\square_{\mathcal{G}}$ as a common knowledge operator)

 $\Box_{\mathcal{G}}\Sigma \vdash \Box_{i,j}(A \textit{ true}) \textit{ iff } \Gamma_i \vdash A \textit{ true for all } i \in \mathcal{G}$

Conclusions

- We have presented a formal model for epistemic processes qualified by trust;
- Considering trust as a second-order relation avoids the issue of formalizing it at the same level of the underlying epistemic relation;
- 3 Advantages of this model is the representation of multiagent interactions and the embedding in DK/CK;
- A flexible language that can be applied to distributed ordered computation;
- This analysis remains consistent is adapted to the cases of communications characterized by mistrust and distrust.

Thanks

Thanks to Hilmi Delmir & David Davenport and to you!

Primiero, Taddeo Trusted Communications