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From Constructive Modalities to Modal Type Theories

Semantic modelization
I [Simpson(1994)];
I [Bierman and de Paiva(2000)],[Alechina, Mendler, de Paiva(2001)];
I Lambda5 and Ml5 implemented in [Murphy(2008)] and

[Murphy, Crary, and Harper(2008)] for Grid Computing;

Constructive modalities and modal type theories:
I [Pfenning and Davies(2001)];
I [Nanevski, Pfenning, and Pientka(2008)];
I Reason about distributed and staged computation: [Moody(2003)],

[Davies and Pfenning(2001)], [Jia and Walker(2004)].
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Resources and Locations via Types

Type Theories for safe distributed computing
I [Davies and Pfenning(2001)], [Jia and Walker(2004)]
I Ability to represent heterogeneity w.r.t. properties, resources,

devices, software, services;
I Locally sound and complete modalities;
I Type theoretical formulations / Natural Deduction / Sequent Calculi.

A typed λ-calculus with stationary situations and flowing
informations

I [Borghuis, Feijs(2000)]
I Interesting take on the representation of the order of commands;
I Inspiring for the focus on recover of data from locations.

A modal logic for local resources
I [Park(2006)]
I Problem of distinguishing between transmission of safe values and

safe code.
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This contribution: Type Theory with judgmental
modalities

A type theory including modal operators with judgmental scope;
I “command execution for A is valid at every address” – 2(A true);
I “command execution for A is valid at a given address” – 3(A true).

Modalities generated by polymorphism of constructions to
express overall executability or broadcasting of location-bounded
code;

Indexed multimodalities to localize data and express interaction
of commands;

Contexts describe resources of networks in which code is
executed; order of assumptions is used to mimick the
composition of commands.
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Structure of the language
polymorphic language: K : {type, typeinf}

I type: computations with complete instructional informations;
I typeinf : computational instructions admissible to execute a

command.

Type
I type-constructors composed by listing, application, abstraction and

pairing for ∧,∨,→, ∀, ∃;
I → as a λ-term presented together with one of its α-terms;
I ai :A induces 2i (A true):
I computations that can be safely run everywhere;
I 2i (A true) induces 2j (A true) for all i, j ;

Typeinf
I Admissibility defined from ¬(A→ ⊥) to x :A;
I ⊃ is composition by abstraction (admissible command at address);
I xi :A induces 3i (A true):
I address-bounded computations;
I the given location needs to be called upon to produce safely a

value;
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Language (1)

Definition (The set of terms)

The set T of terms is given by:

T :=
{ ai ; (ai ,bj ); ai (bj );λ(ai (bj ));<ai ,bj >; (Constructors for terms);

xi ; (xi (bj )); (xi (bj ))(ai ), (Variables for terms).

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 7 / 31



Interpreting complete code (1)

Definition (Rules for type)
The rules for signed expressions in the kind type are:

ai :A
Type Formation

A type

ai :A bj :B
I∧

(ai ,bj ) :A ∧ B

ai :A
LeftI

l(ai ) :A ∨ B true

ai :A A true ` bj :B
I →

ai (bj ) :A→ B

a1 :A, . . . ,an :A A true ` bj :B λ((ai (bj ))A,B)
I∀

(∀ai :A)B type

a1 :A, . . . ,an :A ai :A ` bj :B (< ai ,bj >,A,B)
I∃

(∃ai :A)B type

ai :A
I⊥

¬A→ ⊥
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Interpreting complete code (2)

Definition (Structural Rules)
Premise Rule

Γ,ai :A,∆ ` A true.

Γ ` B type Γ ` A type
Weakening

Γ,ai :A ` B type.

Γ, | ai :A,bj :B ` C type Γ ` bj :B
Contraction

Γ,ai :A ` C type.

Γ,ai :A,bj :B ` C type
Exchange

Γ,bj :B,ai :A,` C type
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Interpreting executable code (1)

Definition (Rules for typeinf )
The rules for signed expressions in the kind typeinf are:

¬(A→ ⊥) type xi :A
Typeinf Formation

A typeinf

A typeinf bj :B[xi :A]
Functional abstraction

((xi )bj ) :A ⊃ B true

A typeinf bj :B[xi :A] ai :A
β − conversion

(x(bj ))(ai ) = b[a/x ] :B type[a/x ]

λ((a1−i (bj ))A,B) (bj )[ai := a]
α− conversion

(ai (bj )) :A→ B
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Interpreting executable code (2)

Definition (Structural Rules for typeinf )
Hypothesis Rule

Γ, xi :A,∆ ` A true∗

Γ ` B typeinf xi :A ` A typeinf
Weakening

Γ | xi :A ` B typeinf .

Γ | xi :A, yj :B ` C typeinf Γ ` yj :B
Contraction

Γ | xi :A ` C typeinf

Γ | xi :A | yj :B ` C typeinf
Exchange

Γ | yj :B | xi :A,` C typeinf

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 11 / 31



Language (2)

Definition (Modal Judgements)

The set of modal judgementsM for any i ∈ G is defined by the
following modal formation rules:

ai :A
2− Formation

2i (A true)

xi :A
3− Formation

3i (A true)
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Generalized Contextual Format
Definition (Signed and Modal Contexts)

1 Γi is a context signed for i iff Γi = {xi :A, . . . , xi :N}, all with
distinct subjects {A, . . . ,N} ∈ typeinf ;

2 2i (A true) is a modal premise generated from [xi/ai ] :A with
xi ,ai ∈ T , and A type;

3 3i (A true) is a modal assumption generated from xi :A with
xi ∈ T and A typeinf ;

4 For any context Γi , 2i Γ is given by
⋃
{2i (A true) | for all A ∈ Γ};

5 For any context Γi , 3i Γ is given by
⋃
{◦i (A true) | ◦ = {2,3} and

3i (A true) for at least one A ∈ Γ}.

Terms in 2i Γ refer to commands that can be broadcasted from
original address i to any other address in the Network for
execution;

Terms in 3i Γ refer to commands that need to be executed
explicitely at the originating address i .
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Derivability from Modal Contexts

Definition (Modal Judgements from multi-signed contexts)

2k (A true) iff for all Γj ∈ Context , ∅ | 2j Γ ` 2k (A true), where
j =

⋃
{1, . . . , k − 1} ∈ G;

3k (A true) iff for some Γi ,∆j ∈ Context , 2i Γ | 3j ∆ ` 3k (A true),
where j =

⋃
{1, . . . , k − 1} ∈ G;
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Introduction and Elimination for 2

Definition (Rules for 2GΣ)
Γi | xj :A ` A true∗ 2i Γ, [xj/aj ] :A ` A true

I2
2GΣ ` 2G(A true)

2i Γ | aj :A ` 2i,j (A true) 2G(A true) | 2k ∆ ` 2G(B true)
E2

Γi | aj :A,∆k ` B true

If executing A requires code at j which can be broadcasted
elsewhere within network Σ, then program A can be executed
everywhere in Σ.
Elimination sends expression (A true) from i , j to k where B can
be evaluated.
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Introduction and Elimination for 3

Definition (Rules for 3GΣ)
Γi | xj :A ` B true∗

I3
3GΣ ` 3i,j (B true)

2i Γ | 3j ∆ ` 3i,j (A true) 3j ∆, xk :A ` 3j,k (B true)
E3

Γi | ∆j ` B true∗

If executing B requires code bounded at i , j , then those adresses
are required within network Σ;
Introduction constructs a return value for B executed at i , j ;
Elimination is the semantic counterpart of extracting code at
sources.
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Code Mobility Rules

Definition (Broadcast)
Broadcacst is used to send to a specific address an exec command
that can be executed everywhere in the network Σ.

2i Γ,aj :A ` 2i,j (B true) xj :A ` A true∗

2i Γ,3j (A true) ` 3i∩j (B true)
(Broadcast)

Definition (Global Access)
Global Access is the reverse function that calls from a specific
address within network Σ a command that becomes executable at
any address.

Γi , xj :A ` B true∗ aj :A ` A true
2i Γ,aj :A ` 2i∪j (B true)

(Global Access)
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Properties

Definition (Admissible Rules)
xi :A ` A true∗

Reflexivity
Γ, xi :A,∆ ` 3i (A true)

xi :A ` A true∗ 3j (B true)[3i (A true)] 3k (B true)[3j (B true)]
Transmission

3i (A true) ` 3k (B true)

2i Γ, aj :A ` 2k (B true) xj :A ` A true∗
Common Seriality

2i Γ,3j (A true) ` 3k (B true)

2i Γ ` A true 3j (A true)[xi :A]
Convergence

2i Γ, xi :A ` 3j (A true)
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Properties (cnt’d)

Definition (Admissible Rules)
2GΣ ` 2k (A true) 2i,j Σ | ak :A ` 2G(A true)

Upper Inclusion
2GΣ ` 2i,j (A true)

2i Γ | 2j ∆ ` 2i,j (A true) 2i,j Σ ` 2k (A true)
Lower Inclusion

2GΣ ` 2k (A true)

2i Γ ` 2i (A true)
Equivalence

2i Γ | 2j ∆ ` 2i,j (A true)

2i Γ | 2j ∆ ` 2k (A true)
Union

2GΣ ` 2i,j,k (A true)

2i Γ | 2j ∆ ` 2k (A true)
Ascending Iteration

2GΣ ` 2k (2i,j (A true))

2i Γ | 2j ∆ ` 2k (A true)
Descending Iteration

2GΣ ` 2i,j (2k (A true))
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Properties (cnt’d)

Local soundness and completeness generalized from the
expansion/reduction in the monomodal case from
[Primiero(2010)];

Substitution on terms and truth predicates:
1 If Γi , xj :A,∆k ` B true∗ and Γi ,∆k ` aj :A, then

Γi ,∆k ` [x/a]i,k B true.
2 If 2i Γ,3j (A true),2k ∆ ` 3∩(i,j,k)(B true) and

2i Γ,2j ∆ ` 2∪(i,j)(A true), then 2i Γ,2j ∆ ` 2∪(i,j)(B true).
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Syntax

Definition (Syntax of the Programming Language)

Types :=
α; τ1 ∧ τ2; τ1 ∨ τ2; τ1 → τ2; τ1 ⊃ τ2;¬τ → ⊥;2τ,3τ
Terms :=
xi | ai constants, variables
(ai ,bj ) pairs
exec(α) | runi (α) | synchroj (runi (α)) functions
GLOB(2Γ, αi∪j ) | BROAD(3Γ, αi∩j ) remote
RET (Γ, αi∪j ) | SEN(Γ, αi∩j ) portable
Contexts := Γi ,2i Γ;3i Γ.
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Syntax (2)

Definition (Typing Rules)
global

Γ, ai :α,∆ ` exec(α).
local

Γ, xi :α,∆ ` runi (α).

ai :α bj :β
I∧

runi∪j (α× β)

(ai , bj ) :α× β
E ∧ (1)

exec(α)

ai :α exec(α) ` bj :β
I →

runi∪j (α→ β)

xi :α runi (α) ` bj :β
I ⊃

runi∩j (α ⊃ β)

xi :α ` runi (α) xi (bj ) :α ⊃ β
synchro

synchro(bj (runi (α)))
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Syntax (3)

Definition
Γi , xj :α ` runi (α) 2Γ, xj (aj ) : α ` exec(α)

RPC1
GLOB(2Γ, αi∪j )

Γi , xj :α ` runi (α) 3i,j Σ ` runi,j (α)
RPC2

BROAD(3Σ, αi∩j )

2i Γ, aj :α ` runi∪j (α) GLOB(2Γ, αi∪j )
PORT1

RET (Γ, αi∪j )

2i Γ,3j ∆ ` runi∩j (α) BROAD(3Σ, αi∩j )
PORT2

SEND(Γ, αi∩j )
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Operational Semantics

Definition (Operational Model)

Networks N := (I,L)
Process Environments L := (l .i 7→ e) | i ∈ I, i ∈ T
Terms T :=| synchro(.(.)) | runi (α) | exec(α) | GLOB(.) | BROAD(.) |
Contexts C := Γ | ◦Γ | (Γ,e) |

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 24 / 31



Operational Semantics (II)

(L) 7→ (L′)
run [Γ]xi 7→ [3Γ]runi (α)
exec [Γ]ai 7→ [2Γ]exec(α)
→ [Γ]exec(α) ` bj 7→ [2Γ]synchro(bj (exec(α))
⊃ [Γ]runi (α) ` bj 7→ [3Γ]synchro(bj (runi (α))
∧ [Γ]runi (α), runj (β) 7→ [2Γ]exec(α, β)
21 [Γ] ` runi (α) 7→ GLOB[2Γ, α]
22 [2i Γ]exec(α) 7→ RET [Γ, αi∪j ]
31 [Γ] ` runi (α) 7→ BROAD[3Γ, αi∩j ]
32 [3Γ] ` runi,j (α) 7→ SEND[Γ, αi∩j ]
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Evaluation

Evaluation of syntactic transformation requires all closed
expressions (exec(α) and [2Γ]α);
Occurrences of runi and 3i require a side condition on
preservation of indices;
Evaluation on contexts proceeds on the ordering induced by
i < j ;
A transition L 7→ L′ consists of

I decomposing L into an evaluation context (if present) and an
instruction;

I evaluation of the context and execution of the instruction;
I replacement of intruction execution in one of the rules to obtain L′.
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Safety

Theorem (Type Safety)
1 If e :α for L := (l .i 7→ e), and L 7→ L′, then e′ :α for
L′ := (l .i 7→ e′);

2 If e :α for L := (l .i 7→ e), then either exec(α) is the output value
or there is e′ for L′ := (l .i 7→ e′) s.t. L 7→ L′.

Theorem (Preservation)
If [Γ]e :α for L := (l .i 7→ e), and L 7→ L′, then there is [2Γ]e′ :α for
L′ := (l .i 7→ e′)

Theorem (Progress)
If [2Γ]e :α for L := (l .i 7→ e), then either L 7→ L′ or exec(α) is the
output value.
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Conclusions

A Computational Interpretation for a Multimodal Type-Theory
with indexed and ordered Contexts;

Corresponding Epistemic Interpretation for Trusted
Communications;

Models:
I Weakening of the poset {1, 0} that satisfies inhabitness and

intensional identity;
F A = [a,→] = {1} if x →a = 1 and A : type = 1
F A = [a,→] = ∅ if x →a = undefined and A : typeinf = 1
F A = [a,→] = {0} if x →a = 0 and A : type = 0

I typeinf admits undefinability, preserves only symmetricity;
inhabitness is not guaranteed (‘super-modest types’);

I Semantics of cKT2,3 obtained by a composed set of
(non-standard) Kripke modelsM(Lver∪Linf ).
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