
A multi-modal type theory for representing
data accessibility in a network

Giuseppe Primiero

FWO - Flemish Research Foundation
Centre for Logic and Philosophy of Science, Ghent University

IEG - Oxford University

Giuseppe.Primiero@Ugent.be
http://www.philosophy.ugent.be/giuseppeprimiero/

Proof Systems for Program Logics Workshop
10th, July, 2010 - Edinburgh – UK

Outline

1 Conceptual Background

2 A modal contextual type theory with judgemental modalities

3 The Operational Semantics

4 Conclusions

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 2 / 31

1 Conceptual Background

2 A modal contextual type theory with judgemental modalities

3 The Operational Semantics

4 Conclusions
G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 3 / 31

From Constructive Modalities to Modal Type Theories

Semantic modelization
I [Simpson(1994)];
I [Bierman and de Paiva(2000)],[Alechina, Mendler, de Paiva(2001)];
I Lambda5 and Ml5 implemented in [Murphy(2008)] and

[Murphy, Crary, and Harper(2008)] for Grid Computing;

Constructive modalities and modal type theories:
I [Pfenning and Davies(2001)];
I [Nanevski, Pfenning, and Pientka(2008)];
I Reason about distributed and staged computation: [Moody(2003)],

[Davies and Pfenning(2001)], [Jia and Walker(2004)].

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 3 / 31

From Constructive Modalities to Modal Type Theories

Semantic modelization
I [Simpson(1994)];
I [Bierman and de Paiva(2000)],[Alechina, Mendler, de Paiva(2001)];
I Lambda5 and Ml5 implemented in [Murphy(2008)] and

[Murphy, Crary, and Harper(2008)] for Grid Computing;

Constructive modalities and modal type theories:
I [Pfenning and Davies(2001)];
I [Nanevski, Pfenning, and Pientka(2008)];
I Reason about distributed and staged computation: [Moody(2003)],

[Davies and Pfenning(2001)], [Jia and Walker(2004)].

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 3 / 31

Resources and Locations via Types

Type Theories for safe distributed computing
I [Davies and Pfenning(2001)], [Jia and Walker(2004)]
I Ability to represent heterogeneity w.r.t. properties, resources,

devices, software, services;
I Locally sound and complete modalities;
I Type theoretical formulations / Natural Deduction / Sequent Calculi.

A typed λ-calculus with stationary situations and flowing
informations

I [Borghuis, Feijs(2000)]
I Interesting take on the representation of the order of commands;
I Inspiring for the focus on recover of data from locations.

A modal logic for local resources
I [Park(2006)]
I Problem of distinguishing between transmission of safe values and

safe code.

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 4 / 31

Resources and Locations via Types

Type Theories for safe distributed computing
I [Davies and Pfenning(2001)], [Jia and Walker(2004)]
I Ability to represent heterogeneity w.r.t. properties, resources,

devices, software, services;
I Locally sound and complete modalities;
I Type theoretical formulations / Natural Deduction / Sequent Calculi.

A typed λ-calculus with stationary situations and flowing
informations

I [Borghuis, Feijs(2000)]
I Interesting take on the representation of the order of commands;
I Inspiring for the focus on recover of data from locations.

A modal logic for local resources
I [Park(2006)]
I Problem of distinguishing between transmission of safe values and

safe code.

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 4 / 31

Resources and Locations via Types

Type Theories for safe distributed computing
I [Davies and Pfenning(2001)], [Jia and Walker(2004)]
I Ability to represent heterogeneity w.r.t. properties, resources,

devices, software, services;
I Locally sound and complete modalities;
I Type theoretical formulations / Natural Deduction / Sequent Calculi.

A typed λ-calculus with stationary situations and flowing
informations

I [Borghuis, Feijs(2000)]
I Interesting take on the representation of the order of commands;
I Inspiring for the focus on recover of data from locations.

A modal logic for local resources
I [Park(2006)]
I Problem of distinguishing between transmission of safe values and

safe code.

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 4 / 31

This contribution: Type Theory with judgmental
modalities

A type theory including modal operators with judgmental scope;
I “command execution for A is valid at every address” – 2(A true);
I “command execution for A is valid at a given address” – 3(A true).

Modalities generated by polymorphism of constructions to
express overall executability or broadcasting of location-bounded
code;

Indexed multimodalities to localize data and express interaction
of commands;

Contexts describe resources of networks in which code is
executed; order of assumptions is used to mimick the
composition of commands.

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 5 / 31

This contribution: Type Theory with judgmental
modalities

A type theory including modal operators with judgmental scope;
I “command execution for A is valid at every address” – 2(A true);
I “command execution for A is valid at a given address” – 3(A true).

Modalities generated by polymorphism of constructions to
express overall executability or broadcasting of location-bounded
code;

Indexed multimodalities to localize data and express interaction
of commands;

Contexts describe resources of networks in which code is
executed; order of assumptions is used to mimick the
composition of commands.

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 5 / 31

This contribution: Type Theory with judgmental
modalities

A type theory including modal operators with judgmental scope;
I “command execution for A is valid at every address” – 2(A true);
I “command execution for A is valid at a given address” – 3(A true).

Modalities generated by polymorphism of constructions to
express overall executability or broadcasting of location-bounded
code;

Indexed multimodalities to localize data and express interaction
of commands;

Contexts describe resources of networks in which code is
executed; order of assumptions is used to mimick the
composition of commands.

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 5 / 31

This contribution: Type Theory with judgmental
modalities

A type theory including modal operators with judgmental scope;
I “command execution for A is valid at every address” – 2(A true);
I “command execution for A is valid at a given address” – 3(A true).

Modalities generated by polymorphism of constructions to
express overall executability or broadcasting of location-bounded
code;

Indexed multimodalities to localize data and express interaction
of commands;

Contexts describe resources of networks in which code is
executed; order of assumptions is used to mimick the
composition of commands.

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 5 / 31

1 Conceptual Background

2 A modal contextual type theory with judgemental modalities

3 The Operational Semantics

4 Conclusions
G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 6 / 31

Structure of the language
polymorphic language: K : {type, typeinf}

I type: computations with complete instructional informations;
I typeinf : computational instructions admissible to execute a

command.

Type
I type-constructors composed by listing, application, abstraction and

pairing for ∧,∨,→, ∀, ∃;
I → as a λ-term presented together with one of its α-terms;
I ai :A induces 2i (A true):
I computations that can be safely run everywhere;
I 2i (A true) induces 2j (A true) for all i, j ;

Typeinf
I Admissibility defined from ¬(A→ ⊥) to x :A;
I ⊃ is composition by abstraction (admissible command at address);
I xi :A induces 3i (A true):
I address-bounded computations;
I the given location needs to be called upon to produce safely a

value;

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 6 / 31

Structure of the language
polymorphic language: K : {type, typeinf}

I type: computations with complete instructional informations;
I typeinf : computational instructions admissible to execute a

command.

Type
I type-constructors composed by listing, application, abstraction and

pairing for ∧,∨,→, ∀, ∃;
I → as a λ-term presented together with one of its α-terms;
I ai :A induces 2i (A true):
I computations that can be safely run everywhere;
I 2i (A true) induces 2j (A true) for all i, j ;

Typeinf
I Admissibility defined from ¬(A→ ⊥) to x :A;
I ⊃ is composition by abstraction (admissible command at address);
I xi :A induces 3i (A true):
I address-bounded computations;
I the given location needs to be called upon to produce safely a

value;

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 6 / 31

Structure of the language
polymorphic language: K : {type, typeinf}

I type: computations with complete instructional informations;
I typeinf : computational instructions admissible to execute a

command.

Type
I type-constructors composed by listing, application, abstraction and

pairing for ∧,∨,→, ∀, ∃;
I → as a λ-term presented together with one of its α-terms;
I ai :A induces 2i (A true):
I computations that can be safely run everywhere;
I 2i (A true) induces 2j (A true) for all i, j ;

Typeinf
I Admissibility defined from ¬(A→ ⊥) to x :A;
I ⊃ is composition by abstraction (admissible command at address);
I xi :A induces 3i (A true):
I address-bounded computations;
I the given location needs to be called upon to produce safely a

value;

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 6 / 31

Language (1)

Definition (The set of terms)

The set T of terms is given by:

T :=
{ ai ; (ai ,bj); ai (bj);λ(ai (bj));<ai ,bj >; (Constructors for terms);

xi ; (xi (bj)); (xi (bj))(ai), (Variables for terms).

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 7 / 31

Interpreting complete code (1)

Definition (Rules for type)
The rules for signed expressions in the kind type are:

ai :A
Type Formation

A type

ai :A bj :B
I∧

(ai ,bj) :A ∧ B

ai :A
LeftI

l(ai) :A ∨ B true

ai :A A true ` bj :B
I →

ai (bj) :A→ B

a1 :A, . . . ,an :A A true ` bj :B λ((ai (bj))A,B)
I∀

(∀ai :A)B type

a1 :A, . . . ,an :A ai :A ` bj :B (< ai ,bj >,A,B)
I∃

(∃ai :A)B type

ai :A
I⊥

¬A→ ⊥

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 8 / 31

Interpreting complete code (2)

Definition (Structural Rules)
Premise Rule

Γ,ai :A,∆ ` A true.

Γ ` B type Γ ` A type
Weakening

Γ,ai :A ` B type.

Γ, | ai :A,bj :B ` C type Γ ` bj :B
Contraction

Γ,ai :A ` C type.

Γ,ai :A,bj :B ` C type
Exchange

Γ,bj :B,ai :A,` C type

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 9 / 31

Interpreting executable code (1)

Definition (Rules for typeinf)
The rules for signed expressions in the kind typeinf are:

¬(A→ ⊥) type xi :A
Typeinf Formation

A typeinf

A typeinf bj :B[xi :A]
Functional abstraction

((xi)bj) :A ⊃ B true

A typeinf bj :B[xi :A] ai :A
β − conversion

(x(bj))(ai) = b[a/x] :B type[a/x]

λ((a1−i (bj))A,B) (bj)[ai := a]
α− conversion

(ai (bj)) :A→ B

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 10 / 31

Interpreting executable code (2)

Definition (Structural Rules for typeinf)
Hypothesis Rule

Γ, xi :A,∆ ` A true∗

Γ ` B typeinf xi :A ` A typeinf
Weakening

Γ | xi :A ` B typeinf .

Γ | xi :A, yj :B ` C typeinf Γ ` yj :B
Contraction

Γ | xi :A ` C typeinf

Γ | xi :A | yj :B ` C typeinf
Exchange

Γ | yj :B | xi :A,` C typeinf

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 11 / 31

Language (2)

Definition (Modal Judgements)

The set of modal judgementsM for any i ∈ G is defined by the
following modal formation rules:

ai :A
2− Formation

2i (A true)

xi :A
3− Formation

3i (A true)

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 12 / 31

Generalized Contextual Format
Definition (Signed and Modal Contexts)

1 Γi is a context signed for i iff Γi = {xi :A, . . . , xi :N}, all with
distinct subjects {A, . . . ,N} ∈ typeinf ;

2 2i (A true) is a modal premise generated from [xi/ai] :A with
xi ,ai ∈ T , and A type;

3 3i (A true) is a modal assumption generated from xi :A with
xi ∈ T and A typeinf ;

4 For any context Γi , 2i Γ is given by
⋃
{2i (A true) | for all A ∈ Γ};

5 For any context Γi , 3i Γ is given by
⋃
{◦i (A true) | ◦ = {2,3} and

3i (A true) for at least one A ∈ Γ}.

Terms in 2i Γ refer to commands that can be broadcasted from
original address i to any other address in the Network for
execution;

Terms in 3i Γ refer to commands that need to be executed
explicitely at the originating address i .

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 13 / 31

Generalized Contextual Format
Definition (Signed and Modal Contexts)

1 Γi is a context signed for i iff Γi = {xi :A, . . . , xi :N}, all with
distinct subjects {A, . . . ,N} ∈ typeinf ;

2 2i (A true) is a modal premise generated from [xi/ai] :A with
xi ,ai ∈ T , and A type;

3 3i (A true) is a modal assumption generated from xi :A with
xi ∈ T and A typeinf ;

4 For any context Γi , 2i Γ is given by
⋃
{2i (A true) | for all A ∈ Γ};

5 For any context Γi , 3i Γ is given by
⋃
{◦i (A true) | ◦ = {2,3} and

3i (A true) for at least one A ∈ Γ}.

Terms in 2i Γ refer to commands that can be broadcasted from
original address i to any other address in the Network for
execution;

Terms in 3i Γ refer to commands that need to be executed
explicitely at the originating address i .

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 13 / 31

Derivability from Modal Contexts

Definition (Modal Judgements from multi-signed contexts)

2k (A true) iff for all Γj ∈ Context , ∅ | 2j Γ ` 2k (A true), where
j =

⋃
{1, . . . , k − 1} ∈ G;

3k (A true) iff for some Γi ,∆j ∈ Context , 2i Γ | 3j ∆ ` 3k (A true),
where j =

⋃
{1, . . . , k − 1} ∈ G;

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 14 / 31

Introduction and Elimination for 2

Definition (Rules for 2GΣ)
Γi | xj :A ` A true∗ 2i Γ, [xj/aj] :A ` A true

I2
2GΣ ` 2G(A true)

2i Γ | aj :A ` 2i,j (A true) 2G(A true) | 2k ∆ ` 2G(B true)
E2

Γi | aj :A,∆k ` B true

If executing A requires code at j which can be broadcasted
elsewhere within network Σ, then program A can be executed
everywhere in Σ.
Elimination sends expression (A true) from i , j to k where B can
be evaluated.

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 15 / 31

Introduction and Elimination for 3

Definition (Rules for 3GΣ)
Γi | xj :A ` B true∗

I3
3GΣ ` 3i,j (B true)

2i Γ | 3j ∆ ` 3i,j (A true) 3j ∆, xk :A ` 3j,k (B true)
E3

Γi | ∆j ` B true∗

If executing B requires code bounded at i , j , then those adresses
are required within network Σ;
Introduction constructs a return value for B executed at i , j ;
Elimination is the semantic counterpart of extracting code at
sources.

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 16 / 31

Code Mobility Rules

Definition (Broadcast)
Broadcacst is used to send to a specific address an exec command
that can be executed everywhere in the network Σ.

2i Γ,aj :A ` 2i,j (B true) xj :A ` A true∗

2i Γ,3j (A true) ` 3i∩j (B true)
(Broadcast)

Definition (Global Access)
Global Access is the reverse function that calls from a specific
address within network Σ a command that becomes executable at
any address.

Γi , xj :A ` B true∗ aj :A ` A true
2i Γ,aj :A ` 2i∪j (B true)

(Global Access)

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 17 / 31

Code Mobility Rules

Definition (Broadcast)
Broadcacst is used to send to a specific address an exec command
that can be executed everywhere in the network Σ.

2i Γ,aj :A ` 2i,j (B true) xj :A ` A true∗

2i Γ,3j (A true) ` 3i∩j (B true)
(Broadcast)

Definition (Global Access)
Global Access is the reverse function that calls from a specific
address within network Σ a command that becomes executable at
any address.

Γi , xj :A ` B true∗ aj :A ` A true
2i Γ,aj :A ` 2i∪j (B true)

(Global Access)

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 17 / 31

Properties

Definition (Admissible Rules)
xi :A ` A true∗

Reflexivity
Γ, xi :A,∆ ` 3i (A true)

xi :A ` A true∗ 3j (B true)[3i (A true)] 3k (B true)[3j (B true)]
Transmission

3i (A true) ` 3k (B true)

2i Γ, aj :A ` 2k (B true) xj :A ` A true∗
Common Seriality

2i Γ,3j (A true) ` 3k (B true)

2i Γ ` A true 3j (A true)[xi :A]
Convergence

2i Γ, xi :A ` 3j (A true)

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 18 / 31

Properties (cnt’d)

Definition (Admissible Rules)
2GΣ ` 2k (A true) 2i,j Σ | ak :A ` 2G(A true)

Upper Inclusion
2GΣ ` 2i,j (A true)

2i Γ | 2j ∆ ` 2i,j (A true) 2i,j Σ ` 2k (A true)
Lower Inclusion

2GΣ ` 2k (A true)

2i Γ ` 2i (A true)
Equivalence

2i Γ | 2j ∆ ` 2i,j (A true)

2i Γ | 2j ∆ ` 2k (A true)
Union

2GΣ ` 2i,j,k (A true)

2i Γ | 2j ∆ ` 2k (A true)
Ascending Iteration

2GΣ ` 2k (2i,j (A true))

2i Γ | 2j ∆ ` 2k (A true)
Descending Iteration

2GΣ ` 2i,j (2k (A true))

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 19 / 31

Properties (cnt’d)

Local soundness and completeness generalized from the
expansion/reduction in the monomodal case from
[Primiero(2010)];

Substitution on terms and truth predicates:
1 If Γi , xj :A,∆k ` B true∗ and Γi ,∆k ` aj :A, then

Γi ,∆k ` [x/a]i,k B true.
2 If 2i Γ,3j (A true),2k ∆ ` 3∩(i,j,k)(B true) and

2i Γ,2j ∆ ` 2∪(i,j)(A true), then 2i Γ,2j ∆ ` 2∪(i,j)(B true).

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 20 / 31

1 Conceptual Background

2 A modal contextual type theory with judgemental modalities

3 The Operational Semantics

4 Conclusions
G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 21 / 31

Syntax

Definition (Syntax of the Programming Language)

Types :=
α; τ1 ∧ τ2; τ1 ∨ τ2; τ1 → τ2; τ1 ⊃ τ2;¬τ → ⊥;2τ,3τ
Terms :=
xi | ai constants, variables
(ai ,bj) pairs
exec(α) | runi (α) | synchroj (runi (α)) functions
GLOB(2Γ, αi∪j) | BROAD(3Γ, αi∩j) remote
RET (Γ, αi∪j) | SEN(Γ, αi∩j) portable
Contexts := Γi ,2i Γ;3i Γ.

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 21 / 31

Syntax (2)

Definition (Typing Rules)
global

Γ, ai :α,∆ ` exec(α).
local

Γ, xi :α,∆ ` runi (α).

ai :α bj :β
I∧

runi∪j (α× β)

(ai , bj) :α× β
E ∧ (1)

exec(α)

ai :α exec(α) ` bj :β
I →

runi∪j (α→ β)

xi :α runi (α) ` bj :β
I ⊃

runi∩j (α ⊃ β)

xi :α ` runi (α) xi (bj) :α ⊃ β
synchro

synchro(bj (runi (α)))

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 22 / 31

Syntax (3)

Definition
Γi , xj :α ` runi (α) 2Γ, xj (aj) : α ` exec(α)

RPC1
GLOB(2Γ, αi∪j)

Γi , xj :α ` runi (α) 3i,j Σ ` runi,j (α)
RPC2

BROAD(3Σ, αi∩j)

2i Γ, aj :α ` runi∪j (α) GLOB(2Γ, αi∪j)
PORT1

RET (Γ, αi∪j)

2i Γ,3j ∆ ` runi∩j (α) BROAD(3Σ, αi∩j)
PORT2

SEND(Γ, αi∩j)

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 23 / 31

Operational Semantics

Definition (Operational Model)

Networks N := (I,L)
Process Environments L := (l .i 7→ e) | i ∈ I, i ∈ T
Terms T :=| synchro(.(.)) | runi (α) | exec(α) | GLOB(.) | BROAD(.) |
Contexts C := Γ | ◦Γ | (Γ,e) |

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 24 / 31

Operational Semantics (II)

(L) 7→ (L′)
run [Γ]xi 7→ [3Γ]runi (α)
exec [Γ]ai 7→ [2Γ]exec(α)
→ [Γ]exec(α) ` bj 7→ [2Γ]synchro(bj (exec(α))
⊃ [Γ]runi (α) ` bj 7→ [3Γ]synchro(bj (runi (α))
∧ [Γ]runi (α), runj (β) 7→ [2Γ]exec(α, β)
21 [Γ] ` runi (α) 7→ GLOB[2Γ, α]
22 [2i Γ]exec(α) 7→ RET [Γ, αi∪j]
31 [Γ] ` runi (α) 7→ BROAD[3Γ, αi∩j]
32 [3Γ] ` runi,j (α) 7→ SEND[Γ, αi∩j]

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 25 / 31

Evaluation

Evaluation of syntactic transformation requires all closed
expressions (exec(α) and [2Γ]α);
Occurrences of runi and 3i require a side condition on
preservation of indices;
Evaluation on contexts proceeds on the ordering induced by
i < j ;
A transition L 7→ L′ consists of

I decomposing L into an evaluation context (if present) and an
instruction;

I evaluation of the context and execution of the instruction;
I replacement of intruction execution in one of the rules to obtain L′.

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 26 / 31

Safety

Theorem (Type Safety)
1 If e :α for L := (l .i 7→ e), and L 7→ L′, then e′ :α for
L′ := (l .i 7→ e′);

2 If e :α for L := (l .i 7→ e), then either exec(α) is the output value
or there is e′ for L′ := (l .i 7→ e′) s.t. L 7→ L′.

Theorem (Preservation)
If [Γ]e :α for L := (l .i 7→ e), and L 7→ L′, then there is [2Γ]e′ :α for
L′ := (l .i 7→ e′)

Theorem (Progress)
If [2Γ]e :α for L := (l .i 7→ e), then either L 7→ L′ or exec(α) is the
output value.

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 27 / 31

1 Conceptual Background

2 A modal contextual type theory with judgemental modalities

3 The Operational Semantics

4 Conclusions
G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 28 / 31

Conclusions

A Computational Interpretation for a Multimodal Type-Theory
with indexed and ordered Contexts;

Corresponding Epistemic Interpretation for Trusted
Communications;

Models:
I Weakening of the poset {1, 0} that satisfies inhabitness and

intensional identity;
F A = [a,→] = {1} if x →a = 1 and A : type = 1
F A = [a,→] = ∅ if x →a = undefined and A : typeinf = 1
F A = [a,→] = {0} if x →a = 0 and A : type = 0

I typeinf admits undefinability, preserves only symmetricity;
inhabitness is not guaranteed (‘super-modest types’);

I Semantics of cKT2,3 obtained by a composed set of
(non-standard) Kripke modelsM(Lver∪Linf).

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 28 / 31

References

N. Alechina, M. Mendler, V. de Paiva, and E. Ritter.
Categorical and Kripke Semantics for Constructive S4 Modal
Logic.
In Proceedings of the 15th International Workshop on Computer
Science Logic, volume 2142 of Lecture Notes In Computer
Science, pages 292 – 307, 2001.

G.M. Bierman and V. de Paiva.
On an intuitionistic modal logic.
Studia Logica, (65):383–416, 2000.

T. Borghuis and L.M.G. Feijs.
A constructive logic for services and information flow in computer
networks.
The Computer Journal, pp.274–289, vol.43, n.4, 2000.

R. Davies and F. Pfenning.
A modal analysis of staged computation.
Journal of the ACM, 48(3):555–604, 2001.

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 29 / 31

References
L. Jia and D. Walker.
Modal Proofs as Distributed Programs.
In Programming Languages and Systems, ESOP2004, volume
2986 of Lectures Notes in Computer Science. Springer Verlag,
2004.

J. Moody.
Modal logic as a basis for distributed computation.
Technical Report CMU-CS-03-194, School of Computer Science,
Carnegie-Mellon University, Pittsburgh, PA, USA, 2003.

T. Murphy.
Modal Types for Mobile Code.
PhD thesis, School of Computer Science, Carnegie Mellon
University, 2008.
CMU-CS-08-126.

T. Murphy, K. Crary, and R. Harper.
Type-Safe Distributed Programming with ML5, volume 4912 of
Lectures Notes in Computer Science, pages 108–123.
Springer Verlag, 2008.

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 30 / 31

References
A. Nanevski, F. Pfenning, and B. Pientka.
Contextual modal type theory.
ACM Transactions on Computational Logic, 9(3):1–48, 2008.

F. Pfenning and R. Davies.
A judgemental reconstruction of modal logic.
Mathematical Structures in Computer Science, 11:511–540,
2001.

S. Park.
A modal language for the safety of mobile values.
In Fourth ASIAN Symposium on Programming Languages and
Systems, 2006, pp.217–233, Springer.

G. Primiero.
Constructive contextual modal judgments for reasoning from
open assumptions.
In Proceedings of the Computability in Europe Conference, 2010.

A.K. Simpson.
The Proof Theory and Semantics of Intuitionistic Modal Logic.
PhD thesis, University of Edinburgh. College of Science and
Engineering. School of Informatics, 1994.

G. Primiero (Ghent University) Multi-Modal Type Theory PSPL2010 31 / 31

	Conceptual Background
	A modal contextual type theory with judgemental modalities
	The Operational Semantics
	Conclusions

