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Central Problem

Answer the question:

What are “actual”/“all-things-
considered”/“proper”/ etc. obligations

given:

◮ a set of norms

Oa,O¬a′,Ob,O(a|c), . . .

◮ (optionally) a set of facts

a, d , . . .

◮ (optionally) a set of constraints

¬(a ∧ a′), . . .

Problem: There may be
conflicts/inconsistencies.
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◮ flat normative/knowledge/etc. base
◮ Rescher-Manor, Horty
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◮ flat normative/knowledge/etc. base
◮ Rescher-Manor, Horty

◮ conditional normative/knowledge/etc. base
◮ Input/Output logic (Makinson, Van Der Torre)

lack of proof theory
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Idea: apply
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Idea: apply

If •O

explicit obligation

then O

“actual” obligation

.

“as much as possible”.

Monadic case:

If •OA then OA.

Dyadic case:

If •O(A,B) then O(A,B).
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Adaptive logic in the standard format

1.
Lower Limit LogicLower Limit Logic

supraclassical core logic (reflexive, monotonic, transitive)

2. AbnormalitiesAbnormalities

characterized by a logical form, in our case

Ω = {•O ∧ ¬O | O is an O-formula}

3.
Strategy

e.g., minimal abnormality and reliability
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◮ a modal operator � for constraints: e.g., K-operator

◮ “explicitness” operator •
◮ where OA is well-formed, so is •OA

◮ “Ought-implies-can”: ⊢ �A ⊃ ¬O¬A

◮ classical propositional logic

◮ • is a “dummy”
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Adaptive Proofs

A line:

l

line-
number

A ∧ B l’,. . . ,l”; R ∆

9/29



Adaptive Proofs

A line:

l

line-
number

A ∧ B

formula

l’,. . . ,l”; R ∆

9/29



Adaptive Proofs

A line:

l

line-
number

A ∧ B

formula

l’,. . . ,l”; R

justification

∆

9/29



Adaptive Proofs

A line:

l

line-
number

A ∧ B

formula

l’,. . . ,l”; R

justification

∆

condition

9/29



Adaptive Proofs

A line:

l

line-
number

A ∧ B

formula

l’,. . . ,l”; R

justification

∆

condition

Conditional rule:

If A1, . . . ,An ⊢LLL B ∨ Dab (∆):

A1 ∆1
...

...
An ∆n

B ∆1 ∪ . . .∪ ∆n ∪∆

9/29



Adaptive Proofs

A line:

l

line-
number

A ∧ B

formula

l’,. . . ,l”; R

justification

∆

condition

Conditional rule:

If A1, . . . ,An ⊢LLL B ∨ Dab (∆):

A1 ∆1
...

...
An ∆n

B ∆1 ∪ . . .∪

collect
abnormalities

∆n ∪∆

9/29



Adaptive Proofs

A line:

l

line-
number

A ∧ B

formula

l’,. . . ,l”; R

justification

∆

condition

Conditional rule:

If A1, . . . ,An ⊢LLL B ∨ Dab (∆)

add new
condition

:

A1 ∆1
...

...
An ∆n

B ∆1 ∪ . . .∪

collect
abnormalities

∆n ∪∆
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1 •Oa PREM ∅
2 •Oa′ PREM ∅
3 •Oc PREM ∅
4 �¬(a ∧ a′) PREM

premise introduction

∅
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1 •Oa PREM ∅
2 •Oa′ PREM ∅
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5 Oa 1; RC

Note: •Oa ⊢LLL Oa ∨ (•Oa ∧ ¬Oa)

{•Oa ∧ ¬Oa}
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1 •Oa PREM ∅
2 •Oa′ PREM ∅
3 •Oc PREM ∅
4 �¬(a ∧ a′) PREM ∅
5 Oa 1; RC {•Oa ∧ ¬Oa}
6 O(a ∨ a′) 5; RU

unconditional rule
Recall: O is KD-modality

If A1, . . . ,An ⊢LLL B then

A1 ∆1
...

...
An ∆n

B ∆1 ∪ . . . ∪∆n

{•Oa ∧ ¬Oa}
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analogous to lines 5 and 6

{•Oa′ ∧ ¬Oa′}
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9 !a ∨ !a′

We shortcut:
!A =df •OA ∧ ¬OA

1,2,4; RU

this follows by O-aggregation and OIC

∅
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2 •Oa′ PREM ∅
3 •Oc PREM ∅
4 �¬(a ∧ a′) PREM ∅
5 Oa 1; RC {•Oa ∧ ¬Oa}
6 O(a ∨ a′) 5; RU {•Oa ∧ ¬Oa}
7 Oa′ 2; RC {•Oa′ ∧ ¬Oa′}
8 O(a ∨ a′) 7; RU {•Oa′ ∧ ¬Oa′}
9 !a ∨ !a′ 1,2,4; RU ∅

◮ One of our assumptions is false! We need a retraction
mechanism.

◮ marking of lines which are retracted

◮ determined by the minimal disjunctions of abnormalities which
are derived on the empty condition

◮ exact definition depends on the strategy
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Reliability and Minimal Abnormality
...

...
...

...
5 Oa 1; RC {•Oa ∧ ¬Oa}
6 O(a ∨ a′) 5; RU {•Oa ∧ ¬Oa}
7 Oa′ 2; RC {•Oa′ ∧ ¬Oa′}
8 O(a ∨ a′) 7; RU {•Oa′ ∧ ¬Oa′}
9 !a ∨ !a′ 1,2,4; RU ∅

◮ Reliability assumption contains a member of a minimal
disjunction of abnormalities ⇒ retract
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◮ there may additionally be a high cost for realizing an erroneous
norm (e.g., a big financial investment)

11/29



Reliability and Minimal Abnormality
...

...
...

...
X5 Oa 1; RC {•Oa ∧ ¬Oa}
6 O(a ∨ a′) 5; RU {•Oa ∧ ¬Oa}

X7 Oa′ 2; RC {•Oa′ ∧ ¬Oa′}
8 O(a ∨ a′) 7; RU {•Oa′ ∧ ¬Oa′}
9 !a ∨ !a′

{

{!a}, {!a′}
}

1,2,4; RU ∅

◮ Reliability assumption contains a member of a minimal
disjunction of abnormalities ⇒ retract

◮ application context: where conflict is likely to be a sign of
erroneous issuing of norms by the authority
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Reliability and Minimal Abnormality
...

...
...

...
X5 Oa 1; RC {•Oa ∧ ¬Oa}
6 O(a ∨ a′) 5; RU {•Oa ∧ ¬Oa}

X7 Oa′ 2; RC {•Oa′ ∧ ¬Oa′}
8 O(a ∨ a′) 7; RU {•Oa′ ∧ ¬Oa′}
9 !a ∨ !a′ 1,2,4; RU ∅

◮ Reliability assumption contains a member of a minimal
disjunction of abnormalities ⇒ retract

◮ application context: where conflict is likely to be a sign of
erroneous issuing of norms by the authority

◮ e.g., authority may have made a mistake in issuing Oa′ (that
explains the conflict)

◮ there may additionally be a high cost for realizing an erroneous
norm (e.g., a big financial investment)

◮ Minimal Abnormality
◮ minimal choice sets
◮ A is derived “safely” if for each minimal choice ϕ, A is derived

on a condition ∆ such that ϕ ∩∆ = ∅
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Counting Strategy
1 •Oa PREM ∅
2 •Ob PREM ∅
3 •Oc PREM ∅
4 •Od PREM ∅
5 �(a ⊃ (¬b ∧ ¬c ∧ ¬d)) PREM ∅
6 !a ∨ !b 1,2,5; RU ∅
7 !a ∨ !c 1,3,5; RU ∅
8 !a ∨ !d 1,4,5; RU ∅

X9 Oa 1; RC {!a}
10 Ob 2; RC {!b}
11 Oc 3; RC {!c}
12 Od 4; RC {!d}

◮ marking like for Minimal Abnormality: just now consider the
quantitatively minimal choice sets

◮ minimal choice sets (w.r.t. ⊂): {!a} and {!b, !c , !d}
◮ minimal choice sets (w.r.t. cardinality): {!a}

12/29



Duality between Maximal Consistent Subsets and the
Minimal Choice Sets

•Oa, •Ob, •Oc , •Od ,�(a ⊃ (¬b ∧ ¬c ∧ ¬d))

13/29



Duality between Maximal Consistent Subsets and the
Minimal Choice Sets

•Oa, •Ob, •Oc , •Od ,�(a ⊃ (¬b ∧ ¬c ∧ ¬d))

Maximal consistent subsets:

1. {a}

2. {b, c , d}

13/29



Duality between Maximal Consistent Subsets and the
Minimal Choice Sets

•Oa, •Ob, •Oc , •Od ,�(a ⊃ (¬b ∧ ¬c ∧ ¬d))

Maximal consistent subsets:

1. {a}

2. {b, c , d}

Maximal choice sets:

1. {!b, !c , !d}

2. {!a}

13/29



Duality between Maximal Consistent Subsets and the
Minimal Choice Sets

•Oa, •Ob, •Oc , •Od ,�(a ⊃ (¬b ∧ ¬c ∧ ¬d))

Maximal consistent subsets:

1. {a}

2. {b, c , d}

Maximal choice sets:

1. {!b, !c , !d}

2. {!a}

Where O and C are sets of propositional formulas:

◮ Let ΓO,C = {•OA | A ∈ O} ∪ {�A | A ∈ C}.

◮ We say that O′ ⊆ O is consistent w.r.t. C iff O′ ∪ C is
consistent.

◮ O′ is ≺-maximally consistent w.r.t. C iff it is consistent w.r.t.
C and there is no O′′ ≺ O′ that is consistent w.r.t. C.
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•Oa, •Ob, •Oc , •Od ,�(a ⊃ (¬b ∧ ¬c ∧ ¬d))

Maximal consistent subsets:

1. {a}

2. {b, c , d}

Maximal choice sets:

1. {!b, !c , !d}

2. {!a}

Note the following duality:

◮ for each maximal consistent subset O′ w.r.t. C there is a
maximal choice set ϕ of ΓO,C such that O′ = O \ {A |!A ∈ ϕ}

◮ and vice versa
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Definition
A ∈ O is free in O w.r.t. C iff A ∈ O′ for all ⊂-maximally
consistent subsets O′ of O w.r.t. C

E.g., b is free in O = {a,¬a, b} w.r.t. C = ∅.

.
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Theorem
ΓO,C ⊢ALm OA iff A is implied by all ⊂-maximally consistent

subsets of O.

Theorem
ΓO,C ⊢ALc OA iff A is implied by all ≺card-maximally consistent

subsets of O w.r.t. C.

Definition
A ∈ O is free in O w.r.t. C iff A ∈ O′ for all ⊂-maximally
consistent subsets O′ of O w.r.t. C.

Theorem
ΓO,C ⊢ALr OA iff A is implied by the set of free members of O
w.r.t. C.

14/29
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4 Ob 3; RU {!a}
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◮ new operator: ◦ characterized by
◮ If A ⊢CL B then ⊢ •OA ⊃ ◦OB .

1 •O(a ∧ b) PREM ∅
2 •O¬a PREM ∅
3 O(a ∧ b) 1; RC {!a}
4 Ob 3; RU {!a}
5 O¬a 2; RC {!(¬a)}
6 ◦Ob 1; RU ∅
7 Ob 6; RC {†b}
8 O(a ∨ ¬b) 1; RC {†(a ∨ ¬b)}
9 O(¬a ∨ ¬b) 2; RC {†(¬a ∨ ¬b)}
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Taking into account implicit obligations
1 •O(a ∧ b) PREM ∅
2 •O¬a PREM ∅
3 O(a ∧ b) 1; RC {!a}
4 Ob 3; RU {!a}
5 O¬a 2; RC {!(¬a)}
6 ◦Ob 1; RU ∅
7 Ob 6; RC {†b}

X8 O(a ∨ ¬b) 1; RC {†(a ∨ ¬b)}
X9 O(¬a ∨ ¬b) 2; RC {†(¬a ∨ ¬b)}
X10 O¬b 8,9; RU {†(a ∨ ¬b), †(¬a ∨ ¬b)
11 †b ∨ †(a ∨¬b)∨ †(¬a ∨¬b) 1,2; RU ∅
12 !(a ∧ b) ∨ !¬a 1,2; RU ∅
13 †a ∨ †¬a 1,2; RU ∅
14 †(a ∨ ¬b) ∨ †(¬a ∨ ¬b) 13; RU ∅

◮ †(
∨

I Ai ) =
(

◦O
∨

I Ai ∧¬O
∨

I Ai

)

∨
∨

∅6=J⊂I

(

◦O
∨

J Aj ∧¬O
∨

J Aj

)

◮ e.g.,

†(a∨¬b) = (◦O(a∨¬b)∧¬O(a∨¬b))∨(◦Oa∧¬Oa)∨(◦O¬b∧¬O¬b)
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Permissions
◮ add new connective P
◮ besides the former abnormalities add {•PA ∧ ¬PA}
◮ or the more complicated

{(
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∨

I Ai ∧ ¬P
∨
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)

∨
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(

◦P
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J Aj ∧ ¬P
∨

J Aj

)}

in
combination with

If A ⊢CL B , then • PA ⊢ ◦PA.

1 •P(a ∧ b) PREM ∅
2 •O¬a PREM ∅
3 ◦Pa 1; RU ∅
4 ◦Pb 1; RU ∅
5 ◦O¬a 2; RU ∅
6 (◦O¬a ∧ ¬O¬a) ∨ (◦Pa ∧

¬Pa)
3,5; RU ∅

7 !¬a∨(•P(a∧b)∧¬P(a∧b)) 1,2; RU ∅
8 Pb 4; RC {◦Pb ∧ ¬Pb}
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(he explicitly states lack of support for
¬a)

17/29



Excursus: Discussive Context and Rescher-Manor
Consequence Relations

◮ Discussant 1 states: a

◮ Discussant 2 states: ¬a ∨ b

◮ Question: should we derive b?

◮ Problem: Discussant 2 may not agree with/support a but
nevertheless not state ¬a (e.g., due to lack of knowledge)

◮ in our framework this can be expressed (under different
readings of O and P)

◮ Discussant 1: •Oa (she explicitly supports a)
◮ Discussant 2: •O(¬a ∨ b) (he explicitly supports ¬a ∨ b)
◮ Discussant 2: •P¬a (he explicitly states lack of support for

¬a)
◮ we get: O(¬a ∨ b) (e.g., “¬a ∨ b is supportable for all

discussants”)

17/29



Excursus: Discussive Context and Rescher-Manor
Consequence Relations

◮ Discussant 1 states: a

◮ Discussant 2 states: ¬a ∨ b

◮ Question: should we derive b?

◮ Problem: Discussant 2 may not agree with/support a but
nevertheless not state ¬a (e.g., due to lack of knowledge)

◮ in our framework this can be expressed (under different
readings of O and P)

◮ Discussant 1: •Oa (she explicitly supports a)
◮ Discussant 2: •O(¬a ∨ b) (he explicitly supports ¬a ∨ b)
◮ Discussant 2: •P¬a (he explicitly states lack of support for

¬a)
◮ we get: O(¬a ∨ b) (e.g., “¬a ∨ b is supportable for all

discussants”)
◮ but not Ob.
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Introducing Indexes

◮ instead of • [◦] we use •i [◦i ] where i ∈ I for some index set I

◮ Various interpretations possible
◮ •iOa “Authority i issues obligation a”
◮ •iOa “An authority of importance i issues an obligation”
◮ •iOa “The obligation a was issued at time point i .”

18/29



i indicates a specific authority

◮ abnormalities: Ω =
⋃

I Ωi where Ωi = {•iOA ∧ ¬A}
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i indicates a specific authority

◮ abnormalities: Ω =
⋃

I Ωi where Ωi = {•iOA ∧ ¬A}

◮ e.g.,
•1Oa,
•2Oa,
•3Oa,
•4O¬a

⊢ALc Oa
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◮ use lexicographic/reverse-lexicographic ALs
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i indicating time

◮ use lexicographic/reverse-lexicographic ALs

1 •1O(a ∧ c) PREM ∅
2 •2O¬a PREM ∅
3 •3Ob PREM ∅
4 !1(a ∧ c) ∨ !2¬a 1,2; RU ∅
5 ◦1Oa 1; RU ∅
6 ◦1Oc 1; RU ∅
7 ◦2O¬a 2; RU ∅
8 †1a ∨ †2¬a 5,7; RU ∅
9 O¬a 2; RC {!2¬a}

X10 O(a ∧ c) 1; RC {!1(a ∧ c)}
X11 Oa 5; RC {†1a}
12 Oc 6; RC {†1c}
13 Ob 3; RC {!3b}

Concerning the reverse-lexicographic order on Ω2, {!1(a ∧ c), †1a}
is the minimal choice set at this stage.
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i2 i3

i1

Oc

O¬a

Ob Ob′

Oa
◮ Suppose we have: •i1Oa, •i4O¬a, •i2Ob, •i3Ob

′,
•i5Oc ,�¬(b ∧ b′).

◮ minimal disjunctions of abnormalities:
◮ !i1a ∨ !i4¬a
◮ !i2b ∨ !i3b′

◮ choice sets: partial order on I imposes partial order on Ω2

{!i1a, !i2b} {!i1a, !i3b′}

{!i4¬a, !i2b} {!i4¬a, !i3b′}
◮ we get: Oa,O(b ∨ b′),Oc
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More complex combinations

◮ i•jOA

◮ i indicates time

◮ j indicates the degree of authority
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The dyadic case: Illustration of the main idea

Factual Input

A1

A2

A3
...

Conditional Input

•O(A1,D1)
•O(A2,D2)
•O(A3,D3)

...

Constraints

�C1

�C2

�C3
...
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Lower Limit Logic

◮ mostly as for the monadic case

◮ detachment principle:

⊢ (A ∧ O(A,B)) ⊃ OB

◮ some axioms characterizing O(A,B) such as:

⊢ O(A,B) ∧ O(A′
,B) ⊃ O(A ∨ A′

,B)
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Simple example for reliability
Γ =
{i1 ∧ i2, i3, •O(i1, a ∧ b), •O(i2,¬a ∧ b), •O(i3, c), •O(i1,¬d),�d}.

1 i1 ∧ i2 PREM ∅
2 i1 1; RU ∅
3 i3 PREM ∅
4 •O(i1, a ∧ b) PREM ∅
5 •O(i2,¬a ∧ b) PREM ∅
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67 O(i1, a ∧ b) 4;RC {!(i1, a ∧ b)}
68 O(a ∧ b) 2,4; RC {!(i1, a ∧ b)}
9 •O(i3, c) PREM ∅
10 Oc 3,9; RC {!(i3, c)}

1511 •O(i1,¬d) PREM ∅
12 O¬d 2,11; RU {!(i1,¬d)}
13 �d PREM ∅
14 ¬O¬d 13; RU ∅
15 !(i1,¬d) 1,11,14; RU ∅
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Excursus: Input/Output logics
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Naive approach to produce output

out(G,A) = Cn{B | for some A ∈ CnCL(A), (A,B) ∈ G}
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out(G,A) = Cn{B | for some A ∈ CnCL(A), (A,B) ∈ G}



















a,

c ∧ e,

f ⊃ q
...



















CnCL

a → b

c → d

e → f
...

b

d

f
...

CnCL

facts classical closure trigger + detach output

Problem: conflicting output (i.e., conflicting obligations or
conflicting with constraints) Solution: work with consistent chunks
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◮ we have representational theorems for all the 8 standard
I/O-systems with constraints

◮ hence, we provide a proof theory for I/O-logics
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Summary

Obligations
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What are the

“actual” obligations?

•OA adaptively actualize
“as much as possible”

OA

translate

◮ adaptive strategies disambiguate this

◮ more or less cautious variants

◮ monadic or dyadic variant

◮ various strengthenings and enhancements (time, degree of
authority, etc.)

◮ representational theorems for approaches ala Rescher/Manor,
Horty, and I/O-logic with constraints
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