
A modal type system for safe distributed
computing

Giuseppe Primiero

FWO - Flemish Research Foundation
Centre for Logic and Philosophy of Science, Ghent University

Giuseppe.Primiero@Ugent.be
http://www.philosophy.ugent.be/giuseppeprimiero/

PCC12, Copenhagen, 17th August 2012

Outline

1 Background

2 Contextual Types with Multi-Modalities

3 The Operational Semantics

4 Conclusions

G. Primiero (Ghent University) Modal Type Theory PCC12 2 / 31

1 Background

2 Contextual Types with Multi-Modalities

3 The Operational Semantics

4 Conclusions
G. Primiero (Ghent University) Modal Type Theory PCC12 3 / 31

Logical Approaches to Distributed Programming

There is a great variety of systems that approach the issue of
distributed programming in view of resource accessibility, safety,
security, etc.

The idea of using Curry-Howard based Semantics to this
purpose is natural . . .

. . . and it has been very recently combined with the extension of
the modal apparatus to gain more control on the notion of
resources, their location and accessibility.

G. Primiero (Ghent University) Modal Type Theory PCC12 3 / 31

Logical Approaches to Distributed Programming

There is a great variety of systems that approach the issue of
distributed programming in view of resource accessibility, safety,
security, etc.

The idea of using Curry-Howard based Semantics to this
purpose is natural . . .

. . . and it has been very recently combined with the extension of
the modal apparatus to gain more control on the notion of
resources, their location and accessibility.

G. Primiero (Ghent University) Modal Type Theory PCC12 3 / 31

Logical Approaches to Distributed Programming

There is a great variety of systems that approach the issue of
distributed programming in view of resource accessibility, safety,
security, etc.

The idea of using Curry-Howard based Semantics to this
purpose is natural . . .

. . . and it has been very recently combined with the extension of
the modal apparatus to gain more control on the notion of
resources, their location and accessibility.

G. Primiero (Ghent University) Modal Type Theory PCC12 3 / 31

Some relevant works
A typed λ-calculus with stationary situations and flowing
informations:

I [Borghuis and Feijs, 2000]: focus on the representation of the order
of commands and recover of data from locations.

Type Theories for (safe) distributed and staged computing:
I [Davies and Pfenning, 2001], [Jia and Walker, 2004],

[Moody, 2003]: represent heterogeneity w.r.t. properties, resources,
devices, software, services.

Modal logics for local resources:
I [Park, 2006]: distinction between transmission of safe values and

safe code.

ILP with 2 for certified mobile computing:
I [Bonelli and Feller, 2009]: code and certificate development;

corresponds to a variant of the intensional λ-calculus introduced in
[Artemov and Bonelli, 2007]: operational interpretation for remote
calls.

G. Primiero (Ghent University) Modal Type Theory PCC12 4 / 31

Some relevant works
A typed λ-calculus with stationary situations and flowing
informations:

I [Borghuis and Feijs, 2000]: focus on the representation of the order
of commands and recover of data from locations.

Type Theories for (safe) distributed and staged computing:
I [Davies and Pfenning, 2001], [Jia and Walker, 2004],

[Moody, 2003]: represent heterogeneity w.r.t. properties, resources,
devices, software, services.

Modal logics for local resources:
I [Park, 2006]: distinction between transmission of safe values and

safe code.

ILP with 2 for certified mobile computing:
I [Bonelli and Feller, 2009]: code and certificate development;

corresponds to a variant of the intensional λ-calculus introduced in
[Artemov and Bonelli, 2007]: operational interpretation for remote
calls.

G. Primiero (Ghent University) Modal Type Theory PCC12 4 / 31

Some relevant works
A typed λ-calculus with stationary situations and flowing
informations:

I [Borghuis and Feijs, 2000]: focus on the representation of the order
of commands and recover of data from locations.

Type Theories for (safe) distributed and staged computing:
I [Davies and Pfenning, 2001], [Jia and Walker, 2004],

[Moody, 2003]: represent heterogeneity w.r.t. properties, resources,
devices, software, services.

Modal logics for local resources:
I [Park, 2006]: distinction between transmission of safe values and

safe code.

ILP with 2 for certified mobile computing:
I [Bonelli and Feller, 2009]: code and certificate development;

corresponds to a variant of the intensional λ-calculus introduced in
[Artemov and Bonelli, 2007]: operational interpretation for remote
calls.

G. Primiero (Ghent University) Modal Type Theory PCC12 4 / 31

Some relevant works
A typed λ-calculus with stationary situations and flowing
informations:

I [Borghuis and Feijs, 2000]: focus on the representation of the order
of commands and recover of data from locations.

Type Theories for (safe) distributed and staged computing:
I [Davies and Pfenning, 2001], [Jia and Walker, 2004],

[Moody, 2003]: represent heterogeneity w.r.t. properties, resources,
devices, software, services.

Modal logics for local resources:
I [Park, 2006]: distinction between transmission of safe values and

safe code.

ILP with 2 for certified mobile computing:
I [Bonelli and Feller, 2009]: code and certificate development;

corresponds to a variant of the intensional λ-calculus introduced in
[Artemov and Bonelli, 2007]: operational interpretation for remote
calls.

G. Primiero (Ghent University) Modal Type Theory PCC12 4 / 31

This contribution: meaning of expressions

We introduce a polymorphic typed system with multi-modal operators
that distinguishes between safe values and safe code (extended from
[Primiero, 2012]):

I ai :A says that program a is executed at address i for specification
A, producing a safe value;

I xi :A says that code for specification A is validly executable at (and
bounded to) address i , producing mobile code;

I 2i (A true): “A is valid at every address accessible from i”;

I 3i (A true): “A is executable from address i”;

I ◦Γ ` ◦(A true): contexts describe networks in which code is
executed; their internal structure refers to ordered composition of
commands.

G. Primiero (Ghent University) Modal Type Theory PCC12 5 / 31

This contribution: meaning of expressions

We introduce a polymorphic typed system with multi-modal operators
that distinguishes between safe values and safe code (extended from
[Primiero, 2012]):

I ai :A says that program a is executed at address i for specification
A, producing a safe value;

I xi :A says that code for specification A is validly executable at (and
bounded to) address i , producing mobile code;

I 2i (A true): “A is valid at every address accessible from i”;

I 3i (A true): “A is executable from address i”;

I ◦Γ ` ◦(A true): contexts describe networks in which code is
executed; their internal structure refers to ordered composition of
commands.

G. Primiero (Ghent University) Modal Type Theory PCC12 5 / 31

This contribution: meaning of expressions

We introduce a polymorphic typed system with multi-modal operators
that distinguishes between safe values and safe code (extended from
[Primiero, 2012]):

I ai :A says that program a is executed at address i for specification
A, producing a safe value;

I xi :A says that code for specification A is validly executable at (and
bounded to) address i , producing mobile code;

I 2i (A true): “A is valid at every address accessible from i”;

I 3i (A true): “A is executable from address i”;

I ◦Γ ` ◦(A true): contexts describe networks in which code is
executed; their internal structure refers to ordered composition of
commands.

G. Primiero (Ghent University) Modal Type Theory PCC12 5 / 31

This contribution: meaning of expressions

We introduce a polymorphic typed system with multi-modal operators
that distinguishes between safe values and safe code (extended from
[Primiero, 2012]):

I ai :A says that program a is executed at address i for specification
A, producing a safe value;

I xi :A says that code for specification A is validly executable at (and
bounded to) address i , producing mobile code;

I 2i (A true): “A is valid at every address accessible from i”;

I 3i (A true): “A is executable from address i”;

I ◦Γ ` ◦(A true): contexts describe networks in which code is
executed; their internal structure refers to ordered composition of
commands.

G. Primiero (Ghent University) Modal Type Theory PCC12 5 / 31

This contribution: meaning of expressions

We introduce a polymorphic typed system with multi-modal operators
that distinguishes between safe values and safe code (extended from
[Primiero, 2012]):

I ai :A says that program a is executed at address i for specification
A, producing a safe value;

I xi :A says that code for specification A is validly executable at (and
bounded to) address i , producing mobile code;

I 2i (A true): “A is valid at every address accessible from i”;

I 3i (A true): “A is executable from address i”;

I ◦Γ ` ◦(A true): contexts describe networks in which code is
executed; their internal structure refers to ordered composition of
commands.

G. Primiero (Ghent University) Modal Type Theory PCC12 5 / 31

This contribution: meaning of expressions

We introduce a polymorphic typed system with multi-modal operators
that distinguishes between safe values and safe code (extended from
[Primiero, 2012]):

I ai :A says that program a is executed at address i for specification
A, producing a safe value;

I xi :A says that code for specification A is validly executable at (and
bounded to) address i , producing mobile code;

I 2i (A true): “A is valid at every address accessible from i”;

I 3i (A true): “A is executable from address i”;

I ◦Γ ` ◦(A true): contexts describe networks in which code is
executed; their internal structure refers to ordered composition of
commands.

G. Primiero (Ghent University) Modal Type Theory PCC12 5 / 31

Some Features

Language in an operational semantics with underlying
Curry-Howard isomorphism:

I Categorical fragment used to interpret operations with safe values
I Functional fragment used to interpret distributed computations with

safe code

Modification of the standard interpretation of propositional
modalities;

Modalities are used to reason on the contexts/locations that are
safe to the evaluation of the λ-terms.

G. Primiero (Ghent University) Modal Type Theory PCC12 6 / 31

This Contribution: sum up

The polymorphism and the resulting modal type system are used
therefore to explore reasoning about distributed computing, obtaining
Code Mobility Rules from corresponding properties of the modal
operators. Significant contributions of this work are:

1 the strong assumption on the polymorphic nature of codes and
values, understood as locally and globally valid processes;

2 an alternative formulation and interpretation of (multi-)modalities
for safe distributed computing;

3 the underlying operational semantics for the interpretation of
distributed programs.

G. Primiero (Ghent University) Modal Type Theory PCC12 7 / 31

1 Background

2 Contextual Types with Multi-Modalities

3 The Operational Semantics

4 Conclusions
G. Primiero (Ghent University) Modal Type Theory PCC12 8 / 31

Language
Definition (Kinds)
The set K =: {type,typeinf} contains

the kind type of all specifications valid by everywhere
executable programs, defined by term constructors C;
the kind typeinf of specifications valid by locally executable
codes, defined by variable constructors V.

Definition (Terms)

The set of terms T = {C,V} is given by:

constructors C := {ai ; (ai ,bj); ai (bj);λ(ai (bj));<ai ,bj >};
variables V := {xi ; (xi (bj)); (xi (bj))(ai)}.

Judgements are generalised to their contextual form:

Γi := ·, xi :Ai ,∆i
∆i := ·,ai :Ai

G. Primiero (Ghent University) Modal Type Theory PCC12 8 / 31

Language
Definition (Kinds)
The set K =: {type,typeinf} contains

the kind type of all specifications valid by everywhere
executable programs, defined by term constructors C;
the kind typeinf of specifications valid by locally executable
codes, defined by variable constructors V.

Definition (Terms)

The set of terms T = {C,V} is given by:

constructors C := {ai ; (ai ,bj); ai (bj);λ(ai (bj));<ai ,bj >};
variables V := {xi ; (xi (bj)); (xi (bj))(ai)}.

Judgements are generalised to their contextual form:

Γi := ·, xi :Ai ,∆i
∆i := ·,ai :Ai

G. Primiero (Ghent University) Modal Type Theory PCC12 8 / 31

Language
Definition (Kinds)
The set K =: {type,typeinf} contains

the kind type of all specifications valid by everywhere
executable programs, defined by term constructors C;
the kind typeinf of specifications valid by locally executable
codes, defined by variable constructors V.

Definition (Terms)

The set of terms T = {C,V} is given by:

constructors C := {ai ; (ai ,bj); ai (bj);λ(ai (bj));<ai ,bj >};
variables V := {xi ; (xi (bj)); (xi (bj))(ai)}.

Judgements are generalised to their contextual form:

Γi := ·, xi :Ai ,∆i
∆i := ·,ai :Ai

G. Primiero (Ghent University) Modal Type Theory PCC12 8 / 31

Interpreting safe values
Definition (Introduction Rules for type)
The rules for signed expressions in the kind type are (Eliminations
and Equality are omitted):

ai :A
Type Formation

A type

ai :A bj :B
I∧

(ai ,bj) :A ∧ B

ai :A
LeftI

l(ai) :A ∨ B

b :B
RightI

r(b) :A ∨ B

ai :A A type ` bj :B
I →

ai (bj) :A→ B

a1 :A, . . . ,an :A ai :A ` bj :B λ((ai (bj))A,B)
I∀

(∀ai :A)B type

a1 :A, . . . ,an :A ai :A ` bj :B (< ai ,bj >,A,B)
I∃

(∃ai :A)B type
G. Primiero (Ghent University) Modal Type Theory PCC12 9 / 31

Interpreting safe code

Definition (Rules for typeinf)
The rules for signed expressions in the kind typeinf are:

Local Validity Rule
Γi , xj :A,∆i ` A typeinf

A typeinf xi :A ` bj :B
Functional abstraction

((xi)bj) :A ⊃ B

A typeinf xi :A ` bj :B ai :A
β − conversion

(xi (bj))(ai) = bj [a/x]i :B type[a/x]i

((xi−1(bj))A,B) (bj)[x/ai−1 := ai]
α− conversion

(ai (bj)) :A→ B

G. Primiero (Ghent University) Modal Type Theory PCC12 10 / 31

Structural Rules

Lemma
Structural Rules for

Weakening,
Contraction
and Exchange

are admissible for type and (restrictedly for) typeinf expressions.

G. Primiero (Ghent University) Modal Type Theory PCC12 11 / 31

Truth Predicates

Definition (Semantic Judgements)

The sorting K induces truth definitions as follows:

∆i ; · ` ai :A
GlobalTruth

A true

∆i ; Γj ` xj :A
LocalTruth

∆i ; Γj ` A true∗

where ∆ contains only valid assumptions of the form B type and Γ
contains at least one true assumption of the form B typeinf ,
appropriately addressed at i .

G. Primiero (Ghent University) Modal Type Theory PCC12 12 / 31

The Modal Extension

We now induce modalities for expressions from the constructors for
kinds, according to the following intuitive explanations:

2(A true):
I Program for A is everywhere satisfied;
I A true holds under any extension of globally valid conditions ∅,∆.

3(A true):
I Program for A can be executed somewhere (where correctly

accessed);
I A true holds under some context extension ∆, Γ.

G. Primiero (Ghent University) Modal Type Theory PCC12 13 / 31

The Modal Extension

We now induce modalities for expressions from the constructors for
kinds, according to the following intuitive explanations:

2(A true):
I Program for A is everywhere satisfied;
I A true holds under any extension of globally valid conditions ∅,∆.

3(A true):
I Program for A can be executed somewhere (where correctly

accessed);
I A true holds under some context extension ∆, Γ.

G. Primiero (Ghent University) Modal Type Theory PCC12 13 / 31

The Modal Extension

We now induce modalities for expressions from the constructors for
kinds, according to the following intuitive explanations:

2(A true):
I Program for A is everywhere satisfied;
I A true holds under any extension of globally valid conditions ∅,∆.

3(A true):
I Program for A can be executed somewhere (where correctly

accessed);
I A true holds under some context extension ∆, Γ.

G. Primiero (Ghent University) Modal Type Theory PCC12 13 / 31

Introduction and Elimination for 2

Definition (Rules for 2GΣ)
Γi ; xj :A ` A true∗ 2i Γ, [xj/aj] :A ` A true

I2
2i∪j Σ ` 2i∪j (A true)

2i Γ,aj :A ` 2i∪j (A true) 2i∪j (A true),2k ∆ ` 2∪(i,j,k)(B true)
E2

Γi ,aj :A,∆k ` B true

I-2: if a program for A uses only safe values originating at i , j ,
then it can be executed everywhere in network G = {i , j} (induces
an operational interpretation as Remote Procedure Call);
E-2: sends value A from i , j to G, where it can be used to
evaluate B at any further accessible address k .

G. Primiero (Ghent University) Modal Type Theory PCC12 14 / 31

Introduction and Elimination for 2

Definition (Rules for 2GΣ)
Γi ; xj :A ` A true∗ 2i Γ, [xj/aj] :A ` A true

I2
2i∪j Σ ` 2i∪j (A true)

2i Γ,aj :A ` 2i∪j (A true) 2i∪j (A true),2k ∆ ` 2∪(i,j,k)(B true)
E2

Γi ,aj :A,∆k ` B true

I-2: if a program for A uses only safe values originating at i , j ,
then it can be executed everywhere in network G = {i , j} (induces
an operational interpretation as Remote Procedure Call);
E-2: sends value A from i , j to G, where it can be used to
evaluate B at any further accessible address k .

G. Primiero (Ghent University) Modal Type Theory PCC12 14 / 31

Introduction and Elimination for 3

Definition (Rules for 3GΣ)
Γi ; xj :A ` B true∗

I3
3i∩j Σ ` 3i∩j (B true)

2i Γ;3j ∆ ` 3i∩j (A true) 3j ∆; xk :A ` 3j∩k (B true)
E3

Γi ; ∆j ` B true∗

I-3: if value B requires safe code executable at i and j , then
resources at the intersection of i , j are needed for any execution;
it constructs a return value for a RPC;
E-3: from 3i,j (A true) infer its variable constructor, then deriving
local validity of B without the additional location of A.

G. Primiero (Ghent University) Modal Type Theory PCC12 15 / 31

Introduction and Elimination for 3

Definition (Rules for 3GΣ)
Γi ; xj :A ` B true∗

I3
3i∩j Σ ` 3i∩j (B true)

2i Γ;3j ∆ ` 3i∩j (A true) 3j ∆; xk :A ` 3j∩k (B true)
E3

Γi ; ∆j ` B true∗

I-3: if value B requires safe code executable at i and j , then
resources at the intersection of i , j are needed for any execution;
it constructs a return value for a RPC;
E-3: from 3i,j (A true) infer its variable constructor, then deriving
local validity of B without the additional location of A.

G. Primiero (Ghent University) Modal Type Theory PCC12 15 / 31

Interaction among Modalities: Code Mobility Rules

Definition (Broadcast)
Broadcast is used to send to a specific additional address a safe
value in the network G = {i , j}.

2i Γ,aj :A ` 2i∪j (B true) xj :A ` A true∗

2i Γ,3j (A true) ` 3i∩j (B true)
(Broadcast)

Definition (Rules)
Global Access is the reverse function that calls from a specific
address within network G safe code that becomes executable at any
address.

2i Γ; xj :A ` 3i∩j (B true) aj :A ` A true
2i Γ,aj :A ` 2i∪j (B true)

(Global Access)

G. Primiero (Ghent University) Modal Type Theory PCC12 16 / 31

Interaction among Modalities: Code Mobility Rules

Definition (Broadcast)
Broadcast is used to send to a specific additional address a safe
value in the network G = {i , j}.

2i Γ,aj :A ` 2i∪j (B true) xj :A ` A true∗

2i Γ,3j (A true) ` 3i∩j (B true)
(Broadcast)

Definition (Rules)
Global Access is the reverse function that calls from a specific
address within network G safe code that becomes executable at any
address.

2i Γ; xj :A ` 3i∩j (B true) aj :A ` A true
2i Γ,aj :A ` 2i∪j (B true)

(Global Access)

G. Primiero (Ghent University) Modal Type Theory PCC12 16 / 31

Interaction among Modalities: Some Properties

Definition (Admissible Rules)
Transmission (downward transitivity): if a process B′ at k uses code B
at j , and B uses code A at i , then B at k uses A at i (for i < j < k ∈ G)

xi :A ` A true∗ 3j (B true)[3i (A true)] 3k (B′ true)[3j (B true)]
Transmission

3i (A true) ` 3k (B′ true)

G. Primiero (Ghent University) Modal Type Theory PCC12 17 / 31

Interaction among Modalities: Properties (cnt’d)

Definition
Upper Inclusion: if value for A is valid at k , then it can be accessed
from any location i , j < k within that network

2i∪j Σ ` 2k (A true) 2i∪j Σ; ak :A ` 2∪(i,j,k)(A true)
Upper Inclusion

2∪(i,j,k)Σ ` 2i∪j (A true)

Definition (Admissible Rules)
Lower Inclusion: if value for A is valid at i , j , then it can be sent to any
location k > i , j within that network;

2i Γ,2j ∆ ` 2i∪j (A true) 2i∪j Σ ` 2k (A true)
Lower Inclusion

2∪(i,j,k)Σ ` 2k (A true)

G. Primiero (Ghent University) Modal Type Theory PCC12 18 / 31

Interaction among Modalities: Properties (cnt’d)

Definition (Admissible Rules)
2i Γ,2j ∆ ` 2k (A true)

Ascending Iteration
2∪(i,j,k)Σ ` 2k (2i∪j (A true))

2i Γ,2j ∆ ` 2k (A true)
Descending Iteration

2∪(i,j,k)Σ ` 2i∪j (2k (A true))

By Ascending Iteration, one can access at k a value for A
executed at i , j whenever a program for A can be executed at k
using values at i , j ;
by Descending Iteration, one can access at k a value for A
executed at i , j , whenever a program for A is executable at k with
values at i , j

G. Primiero (Ghent University) Modal Type Theory PCC12 19 / 31

1 Background

2 Contextual Types with Multi-Modalities

3 The Operational Semantics

4 Conclusions
G. Primiero (Ghent University) Modal Type Theory PCC12 20 / 31

Language

Definition (Syntax)
The syntax is defined by the following alphabet:

Types := {α | α× β | α + β | α→ β | α ⊃ β}
Terms := {xi | ai , for i ∈ Indices}
Indices := {1, . . . ,n}
Functions := {exec(α) | runi (α) | runi∪j (α · β) | runi∩j (α · β) |
synchroj (β(exec(α)))}, where · = {+,×}
Contexts := {Γi | ◦i Γ}, where ◦ = {2,3}
Remote Operations := {GLOB(2i∪j Γ, α) | BROAD(3i∩j Γ, α)}
Portable Code := {RET (Γi∪j , α) | SEND(Γi∩j , α)}

G. Primiero (Ghent University) Modal Type Theory PCC12 20 / 31

Model
Syntactic expressions are then evaluated in a model defined by
states of the machine.

Definition (Operational Model)
The set States := {S,S′, . . . } contains states of the machine. A state

S := (C, t .i :α) | C ∈ Contexts; t ∈ Terms; i ∈ Indices;α ∈ Types

is an occurrence of an indexed typed term in context. An operational model
of the procedural semantics for the machine is a model where each S is
evaluated by transition to some S′. An indexed transition system, called a
Network

Network := (S, 7→, I)

is a triple with S ⊆ States, I ⊆ Indices and 7→ a ternary relation over
indexed states (S × I × S). If S,S′ ∈ S and i, j ∈ I, then 7→ (S, i, j,S′) is
written as Si 7→ S′j . This means that there is a transition 7→ from state S valid
at index i to state S′ valid at index j defined according to the machine typing
rules.

G. Primiero (Ghent University) Modal Type Theory PCC12 21 / 31

Operational Semantics (II)

Definition (Network State)
S 7→ S′

run (Γi , xi :α) 7→ (3i Γ, runi (α))

exec (Γi , ai :α) 7→ (2i Γ, exec(α))

corun (Γi , runi (α) ` bj :β) 7→ (2i Γ, runi∩j (α(β))

coexec (Γi , exec(α) ` bj :β) 7→ (2i Γ, runi∪j (α(β))

synchro (2i Γ, runi∪j (α(β)) 7→ (2i Γ, synchroj (β(exec(α))))

product (Γi , exec(α), exec(β)) 7→ (2i Γ, runi∩j (α× β))

extraction1 (2i Γ, runi∩j (α× β)) 7→ (2i Γ, exec(α))

extraction2 (2i Γ, runi∩j (α× β)) 7→ (2i Γ, exec(β))

tagunion (Γi , exec(α)) 7→ (2i Γ, runi∪j (α + β))

patternmatch1 (2i Γ, runi∪j (α + β) ` ck :γ) 7→ (2i Γ, runi∩k (α(γ)))

patternmatch2 (2i Γ, runi∪j (α + β) ` ck :γ) 7→ (2i Γ, runj∩k (β(γ)))

21 (2i Γ, exec(α)) 7→ (GLOB(2i∪j Γ, α))

22 (2i∪j Γ, α) 7→ (RET (Γi∪j , α))

31 (3i Γ, runj (α)) 7→ (BROAD(3i∩j Γ, α))

32 (3i∩j Γ, α) 7→ (SEND(Γi∩j , α))

G. Primiero (Ghent University) Modal Type Theory PCC12 22 / 31

Rewriting Rules I

Global
∆i ,ai :α ` exec(α)

Local
Γi , xi :α; ∆i ` runi (α)

ai :α bj :β
I×

runi∩j (α× β)

runi∩j (α× β)
E × (l)

exec(α)

ai :α
I + (1)

runi (α + β)

bj :β
I + (2)

runj (α + β)

G. Primiero (Ghent University) Modal Type Theory PCC12 23 / 31

Rewriting Rules II
runi∪j (α + β) runi (α) ` ck :γ runj (β) ` ck :γ

E+
runi∩k ;j∩k (γ)

xi :α runi (α) ` bj :β
I ⊃

runi∩j (α ⊃ β)

ai :α exec(α) ` bj :β
I →

runi∪j (α→ β)

runi∩j (α ⊃ β) ai :α
Synchro

synchroj (β(exec(α)))

Γi , xj :α ` runj (α) 2i Γ, xj (aj) : α ` exec(α)
RPC1

GLOB(2i∪j Γ, α)

Γi , xj :α ` runj (α) 3i Γ ` runj (α)
RPC2

BROAD(3i∩j Γ, α)

G. Primiero (Ghent University) Modal Type Theory PCC12 24 / 31

Rewriting Rules III

2i Γ,aj :α ` exec(α) GLOB(2i∪j Γ, α)
PORT1

RET (Γi∪j , α)

2i Γ, xj :α ` runi∩j (α) BROAD(3i∩j Γ, α)
PORT2

SEND(Γi∩j , α)

G. Primiero (Ghent University) Modal Type Theory PCC12 25 / 31

Safety

Theorem (Progress)

If S := (Γ, t .i :α), then either S 7→ S′ or exec(α) is the output value.

Theorem (Preservation)

If S := (Γ, t .i :α) and S 7→ S′, then S′ := (Γ, t ′ :α).

Theorem (Type Safety)

Safety is satisfied by transformations (according to the table in
Definition 17) or by terminating expression (exec(α)):

1 If S := (t .i :α), and S 7→ S′, then S′ := (t .i :α);
2 If S := (t .i :α), then either exec(α) is the output value or there is
α′ for S′ := (t .i :α′) s.t. S 7→ S′.

G. Primiero (Ghent University) Modal Type Theory PCC12 26 / 31

1 Background

2 Contextual Types with Multi-Modalities

3 The Operational Semantics

4 Conclusions
G. Primiero (Ghent University) Modal Type Theory PCC12 27 / 31

Results

Local soundness and completeness generalized from the
expansion/reduction in the mono-modal case from
[Primiero, 2012];
Substitution on terms and truth predicates;
Theorems for Strong Normalization and Confluence via the
Operational Semantics;
Theorems for the equivalence of 2i∪j to a CK-operator and 3i∩j
to a DK-operator.

G. Primiero (Ghent University) Modal Type Theory PCC12 27 / 31

Conclusions

We have introduced a Computational Interpretation for a
Multimodal Type-Theory with indexed and ordered Contexts;

It treats modalities in a structurally different way than other modal
type theories;

It has an operational interpretation via a Procedural Semantics;

It can be interpreted for Trusted Communications
([Primiero and Taddeo, 2012]).

Further Work: working paper on a notion of Dependent Evidence
in ILP and extensions to Semantics for Error States in Distributed
Setting.

G. Primiero (Ghent University) Modal Type Theory PCC12 28 / 31

References I

Artemov, S. and Bonelli, E. (2007).
The intensional lambda calculus.
In Proceedings of the international symposium on Logical
Foundations of Computer Science, LFCS ’07, pages 12–25,
Berlin, Heidelberg. Springer-Verlag.

Bonelli, E. and Feller, F. (2009).
The logic of proofs as a foundation for certifying mobile
computation.
In Artëmov, S. N. and Nerode, A., editors, LFCS, volume 5407 of
Lecture Notes in Computer Science, pages 76–91. Springer.

Borghuis, T. and Feijs, L. (2000).
A constructive logic for services and information flow in computer
networks.
The Computer Journal, 43(4):274–289.

G. Primiero (Ghent University) Modal Type Theory PCC12 29 / 31

References II

Davies, R. and Pfenning, F. (2001).
A modal analysis of staged computation.
Journal of the ACM, 48(3):555–604.

Jia, L. and Walker, D. (2004).
Modal Proofs as Distributed Programs.
In Programming Languages and Systems, ESOP2004, volume
2986 of Lectures Notes in Computer Science. Springer Verlag.

Moody, J. (2003).
Modal logic as a basis for distributed computation.
Technical Report CMU-CS-03-194, School of Computer Science,
Carnegie-Mellon University, Pittsburgh, PA, USA.

Park, S. (2006).
A modal language for the safety of mobile values.
In In Fourth ASIAN Symposium on Programming Languages and
Systems, pages 217–233. Springer.

G. Primiero (Ghent University) Modal Type Theory PCC12 30 / 31

References III

Primiero, G. (2012).
A contextual type theory with judgemental modalities for
reasoning from open assumptions.
Logique & Analyse, 220.

Primiero, G. and Taddeo, M. (2012).
A modal type theory for formalizing trusted communications.
Journal of Applied Logic, 10:92–114.

G. Primiero (Ghent University) Modal Type Theory PCC12 31 / 31

	Background
	Contextual Types with Multi-Modalities
	The Operational Semantics
	Conclusions

