Validity in a Modal Procedural Semantics

Giuseppe Primiero

FWO - Flemish Research Foundation Centre for Logic and Philosophy of Science, Ghent University IEG - Oxford University

Giuseppe.Primiero@Ugent.be http://www.philosophy.ugent.be/giuseppeprimiero/

> ECAP, Milan, Italy 6th September, 2011

> > イロン イヨン イヨン イヨン

æ

Outline

- 2 Logical Consequence & Failure
- 3 Logical Consequence & Interaction

< □ > < □ > < □ > < □ > < □ >

Correctness in BHK ([Primiero, 2013])

- In the anti-realistic format of BHK-style semantics, logical validity is reformulated as correctness;
- Under the proofs-as-programs identity of typed systems, two readings apply:
 - semantic: "can a logical system satisfy *correctly* the typing relation for which it has been formulated?"
 - syntactic: "is it possible to formulate *correct* typing relations, so that a given validity relation is satsfied?"
- For the latter reading, the correctness relation is translated into type inhabitation for the given system;
- For dependent types, it requires formulation and access of the resources needed for a given construction.

Modalities for localized computations ([Primiero, 2011])

- Procedural Semantics with Modalities for Contextual (localized) Computing;
- designed from a multi-modal type system (BHK semantics; Proofs-as-Programs Isomorphism);
- localization of processes to represent distributed computing;
- rules for connectives intepret composition of processes;
- the behavior of programs is given by inference rules to express transition relations among states of the corresponding (abstract) machine;
- modal rules interpret interaction of code at locations (mobility).

Language

Definition (Syntax of the Programming Language)

The syntax is defined by the following alphabet:

 $Types := \alpha \mid \alpha \times \beta \mid \alpha \sqcup \beta \mid \alpha \to \beta \mid \alpha \supset \beta$

Terms $\mathcal{T} := x_i \mid a_i$

Functions := exec(α) | run_i(α) | run_{i $\cup j$}($\alpha \cdot \beta$) | run_{i $\cap j$}($\alpha \cdot \beta$) | synchro_i(β (exec(α)))

Contexts $C := \Delta_i | \Gamma_i | \circ_{i,j} \Gamma$

Remote Operations := $GLOB(\Box_{i\cup j}\Gamma, \alpha) \mid BROAD(\diamond_{i\cap j}\Gamma, \alpha)$

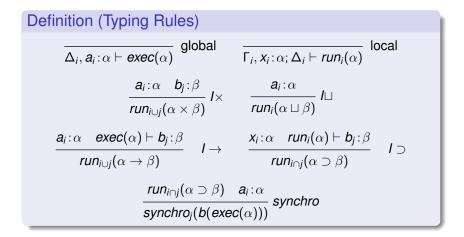
Portable Code := $RET(\Gamma_{i\cup j}, \alpha) \mid SEND(\Gamma_{i\cap j}, \alpha)$

< □ > < □ > < □ > < □ > < □ > < □ >

Two kinds of syntactic/semantic entities:

- the kind of specifications valid by globally terminating terms *a_i*;
- the kind of specifications valid by locally terminating terms x_i;

Computational Rules



ECAP7 7 / 20

(日)

Modal Rules

Definition $\frac{\Gamma_i, x_j: \alpha \vdash run_j(\alpha) \quad \Box_i \Gamma, x_j(a_j): \alpha \vdash exec(\alpha)}{RPC1}$ $GLOB(\Box_{i\cup i}\Gamma, \alpha)$ $\frac{\Gamma_{i}, x_{j}: \alpha \vdash run_{j}(\alpha) \quad \diamond_{i} \Gamma \vdash run_{j}(\alpha)}{RPC2}$ **BROAD**($\Diamond_{i \cap i} \Gamma, \alpha$) $\frac{\Box_i \Gamma, a_j : \alpha \vdash exec(\alpha) \quad GLOB(\Box_{i \cup j} \Gamma, \alpha)}{PORT1}$ $RET(\Gamma_{i\cup i}, \alpha)$ $\frac{\Box_i \Gamma, x_j : \alpha \vdash run_{i \cap j}(\alpha) \quad BROAD(\diamondsuit_{i \cap j} \Gamma, \alpha)}{PORT2}$ $SEND(\Gamma_{i\cap i}, \alpha)$

Operational Semantics

Definition (State Machine)

A state machine $\boldsymbol{\mathcal{S}} \in \boldsymbol{\mathcal{S}}$

 $S := (C, t.i: \alpha) \mid C \in Context; t \in T; i \in I; \alpha \in Types$

is an occurrence of an indexed typed term in context.

Operational Semantics

Definition (Operational Model)

An indexed transition system (also called Network)

Networks $\mathcal{N} := (\mathcal{S}, \mapsto, \mathcal{I})$

is a triple where S is a set of states, \mathcal{I} is a set of indices and $\mapsto (S \times \mathcal{I} \times S)$ is a ternary relation of indexed transitions. If $S, S' \in S$ and $i, j \in \mathcal{I}$, then $\mapsto (S, i, j, S')$ is written as $S_i \mapsto S'_i$. This means that there is a transition \mapsto from state S valid at index i to state S' valid at index j defined according to the state typing rules.

Evaluation

Rewriting rules for states transition:

	$S\mapsto S'$
run	$(\Gamma_i, \mathbf{x}_i : \alpha) \mapsto (\diamond_i \Gamma, \operatorname{run}_i(\alpha))$
exec	$(\Gamma_i, a_i : \alpha) \mapsto (\Box_i \Gamma, exec(\alpha))$
\rightarrow	$(\Gamma_i, exec(\alpha) \vdash b_j) \mapsto (\Box_i \Gamma, run_{i \cup j}(\alpha \to \beta))$
\supset	$(\Gamma_i, \operatorname{run}_i(\alpha) \vdash b_j) \mapsto (\Box_i \Gamma, \operatorname{synchro}(b_j(\operatorname{exec}(\alpha))))$
×	$(\Gamma_i, exec(\alpha), exec(\beta)) \mapsto (\Box_i \Gamma, run_{i \cup j}(\alpha \times \beta))$
	$(\Gamma_i, exec(\alpha)) \mapsto (\Box_i \Gamma, run_i(\alpha \sqcup \beta))$
□1	$(\Gamma_i, exec(\alpha)) \mapsto (GLOB(\Box_{i\cup j}\Gamma, \alpha))$
□2	$(\Box_i \Gamma, \alpha_{i \cup j}) \mapsto (RET(\Gamma_{i \cup j}, \alpha))$
◇1	$(\Gamma_i, \operatorname{run}_i(\alpha)) \mapsto (\operatorname{BROAD}(\diamond_{i \cap j} \Gamma, \alpha))$
♦2	$(\diamondsuit_i \Gamma, \alpha_{i \cap j}) \mapsto (SEND(\Gamma_{i \cap j}, \alpha))$

Semantic Validity

Definition (Semantic Expressions)

- Evaluation defines strong typing (normalisation) by reduction to expressions (□_iΓ, exec(α)) and GLOB(□_iΓ, α).
- Expressions (Γ_i, run_i(α)) and BROAD(◊_iΓ, α) are admissible procedural steps but may fail to produce a safe value (when called upon at wrong addresses).
- This makes (only) the following expressions valid (safely evaluated):

 $a_i: \alpha$ value $\Box_i \Gamma, \alpha$ value

< □ > < □ > < □ > < □ > < □ >

Failure at levels

Definition

Logical consequence is expressed as correct program execution by identifying relevant levels of information (IL) at which failure can occur:

- IL1 correctness of program execution;
- IL2 correctness of subcalls recursion;
- IL3 correctness of data dependency;
- IL4 correctness of data retrieval.

Internal Correctness

Definition

[IL1 - 2] identify the internal source of failure:

Internal information failure: "at which step of program execution (routines, calls for sub-routines) does the termination process fail?".

External Correctness

Definition

[IL3 - 4] identify the external source of failure:

External information failure: "which data relevant for the computational process have not been retrieved or miss appropriate dependency, so that the termination process fail?".

< □ > < □ > < □ > < □ > < □ >

Contextual Computing as framing Interaction

Interaction can be formulated as a property of contextual computational processes such that:

- it admits logical distinctions among data (data are not all the same);
- it formulates metadata (the when/how/where of data is relevant);
 - by formulating local conditions on network (processes occur as events);
 - by introducing originating locations (processes are user originated events);
- it restricts well-formedness and termination (not every process terminates or reduces).

< □ > < □ > < □ > < □ > < □ > < □ >

Contextual Computing as framing Interaction

Definition (Interacting processes)

We say that a process P interacts with a process P' – denoted Int(P, P') – iff at its execution, P is capable of controlling

- access to location(s) of P';
- commands (reading/writing/execution/broadcasting) of P';
- validity of P' (global/local w.r.t. its locations)

and the validity of Int(P, P') is determined at the union or at the intersection on their locations.

Contextual Computing as framing Interaction

This definition crucially reduces the notion of interaction to one of control over processes:

Definition (Interaction and Control)

We say that a language L expresses process interaction iff

- L allows to represent a function Int(P, P') for interaction among processes P, P';
- Int(P, P') for L allows treatment of program code accessibility; information priority and source security.

ECAP7

19 / 20

Conclusions

- A Computational Interpretation for a Multimodal Type-Theory with indexed and ordered Contexts for Mobile Processes;
- The corresponding notion of validity is treated in terms of localized correctness;
- This allows to treat notions of failure (taxonomy) and to structure interactive processes (data control).

References I

Primiero, G. (2011).

A multi-modal type system and its procedural semantics for safe distributed programming.

In *Intuitionistic Modal Logic and Applications Workshop* (*IMLA11*), Nancy. Manuscript.

Primiero, G. (Forthcoming (2013)).

Logical validity by modal types: Information control, failure and interaction.

Logique & Analyse.

- 4 伺 ト 4 ヨ ト 4 ヨ ト