
Making Dependent Evidence Explicit in
Justification Logic

Giuseppe Primiero

FWO - Flemish Research Foundation
Centre for Logic and Philosophy of Science, Ghent University

IEG - Oxford University

Giuseppe.Primiero@Ugent.be
http://www.philosophy.ugent.be/giuseppeprimiero/

Graduate Center, City University of New York
31st May, 2011



Outline

1 Motivation

2 Intuitionistic JL with Dependency

3 Natural Deduction with Global and Local Assumptions

4 Normalization

5 Summary

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 2 / 34



1 Motivation

2 Intuitionistic JL with Dependency

3 Natural Deduction with Global and Local Assumptions

4 Normalization

5 Summary
G. Primiero (Ghent University) Dependent Evidence GC-CUNY 3 / 34



What are Dependent Justifications

The notion of dependent justification is inspired by its formal
counterpart in theories of dependent types:

I A dependent type is a type expression of the form B[x ] with x a
free variable ranging over A type saying that B is a type whenever
x ∈ A;

I Σ type: type of all pairs 〈a, b〉 where a ∈ A and b ∈ B[a];
I Π type: type of all functions λx .b[x ] where b[a] ∈ B[a] for any

a ∈ A;
I Propositional functions under the props-as-types analogy

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 3 / 34



What are Dependent Justifications

The notion of dependent justification is inspired by its formal
counterpart in theories of dependent types:

I A dependent type is a type expression of the form B[x ] with x a
free variable ranging over A type saying that B is a type whenever
x ∈ A;

I Σ type: type of all pairs 〈a, b〉 where a ∈ A and b ∈ B[a];
I Π type: type of all functions λx .b[x ] where b[a] ∈ B[a] for any

a ∈ A;
I Propositional functions under the props-as-types analogy

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 3 / 34



What are Dependent Justifications

The notion of dependent justification is inspired by its formal
counterpart in theories of dependent types:

I A dependent type is a type expression of the form B[x ] with x a
free variable ranging over A type saying that B is a type whenever
x ∈ A;

I Σ type: type of all pairs 〈a, b〉 where a ∈ A and b ∈ B[a];

I Π type: type of all functions λx .b[x ] where b[a] ∈ B[a] for any
a ∈ A;

I Propositional functions under the props-as-types analogy

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 3 / 34



What are Dependent Justifications

The notion of dependent justification is inspired by its formal
counterpart in theories of dependent types:

I A dependent type is a type expression of the form B[x ] with x a
free variable ranging over A type saying that B is a type whenever
x ∈ A;

I Σ type: type of all pairs 〈a, b〉 where a ∈ A and b ∈ B[a];
I Π type: type of all functions λx .b[x ] where b[a] ∈ B[a] for any

a ∈ A;

I Propositional functions under the props-as-types analogy

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 3 / 34



What are Dependent Justifications

The notion of dependent justification is inspired by its formal
counterpart in theories of dependent types:

I A dependent type is a type expression of the form B[x ] with x a
free variable ranging over A type saying that B is a type whenever
x ∈ A;

I Σ type: type of all pairs 〈a, b〉 where a ∈ A and b ∈ B[a];
I Π type: type of all functions λx .b[x ] where b[a] ∈ B[a] for any

a ∈ A;
I Propositional functions under the props-as-types analogy

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 3 / 34



What are Dependent Justifications (II)

A dependent type expresses the definitional relation of a term
from a term (parametrization of types);

Similarly, we can express a justification for B dependently on a
justification for A:

“t is a justification for B, whenever A is justified by s”

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 4 / 34



What are Dependent Justifications (II)

A dependent type expresses the definitional relation of a term
from a term (parametrization of types);

Similarly, we can express a justification for B dependently on a
justification for A:

“t is a justification for B, whenever A is justified by s”

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 4 / 34



What are Dependent Justifications (II)

In a natural deduction translation, this can be reconstructed as
validity under assumptions:

If t :B depends from s :A, a formula of the form ∆;` B | t where
A ∈ ∆ can be used in ND (see [Artëmov and Bonelli, 2007],
[Alt and Artemov, 2001]);

∆; · ` B | t
2I

∆; Γ ` JtKB |!t

We want to express the local dependency of a term from a term
(evidences);

We want also to preserve the global dependency of expressions
(propositions, as in the λ-calculi).

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 5 / 34



What are Dependent Justifications (II)

In a natural deduction translation, this can be reconstructed as
validity under assumptions:

If t :B depends from s :A, a formula of the form ∆;` B | t where
A ∈ ∆ can be used in ND (see [Artëmov and Bonelli, 2007],
[Alt and Artemov, 2001]);

∆; · ` B | t
2I

∆; Γ ` JtKB |!t

We want to express the local dependency of a term from a term
(evidences);

We want also to preserve the global dependency of expressions
(propositions, as in the λ-calculi).

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 5 / 34



What are Dependent Justifications (II)

In a natural deduction translation, this can be reconstructed as
validity under assumptions:

If t :B depends from s :A, a formula of the form ∆;` B | t where
A ∈ ∆ can be used in ND (see [Artëmov and Bonelli, 2007],
[Alt and Artemov, 2001]);

∆; · ` B | t
2I

∆; Γ ` JtKB |!t

We want to express the local dependency of a term from a term
(evidences);

We want also to preserve the global dependency of expressions
(propositions, as in the λ-calculi).

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 5 / 34



What are Dependent Justifications (II)

In a natural deduction translation, this can be reconstructed as
validity under assumptions:

If t :B depends from s :A, a formula of the form ∆;` B | t where
A ∈ ∆ can be used in ND (see [Artëmov and Bonelli, 2007],
[Alt and Artemov, 2001]);

∆; · ` B | t
2I

∆; Γ ` JtKB |!t

We want to express the local dependency of a term from a term
(evidences);

We want also to preserve the global dependency of expressions
(propositions, as in the λ-calculi).

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 5 / 34



Tasks

1 Show that a notion of Dependent Evidence mimicking Functions
can be formally accomodated in the framework of Justification
Logic for expressions of the form

“t is a justification for B, whenever A is justified by s”

2 Provide a general interpretation of functional expressions within
a ND system with

I Dependent Terms
I Dependent Expressions

3 Use the latter to prove some metatheoretical results.

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 6 / 34



Tasks

1 Show that a notion of Dependent Evidence mimicking Functions
can be formally accomodated in the framework of Justification
Logic for expressions of the form

“t is a justification for B, whenever A is justified by s”

2 Provide a general interpretation of functional expressions within
a ND system with

I Dependent Terms
I Dependent Expressions

3 Use the latter to prove some metatheoretical results.

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 6 / 34



Tasks

1 Show that a notion of Dependent Evidence mimicking Functions
can be formally accomodated in the framework of Justification
Logic for expressions of the form

“t is a justification for B, whenever A is justified by s”

2 Provide a general interpretation of functional expressions within
a ND system with

I Dependent Terms
I Dependent Expressions

3 Use the latter to prove some metatheoretical results.

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 6 / 34



1 Motivation

2 Intuitionistic JL with Dependency

3 Natural Deduction with Global and Local Assumptions

4 Normalization

5 Summary
G. Primiero (Ghent University) Dependent Evidence GC-CUNY 7 / 34



Axioms and Inference Schemes

Definition (Axioms)
Axioms of the system are:
A0. Axioms schemes of minimal logic in the the language of JL
A1. JsKA ⊃ A “verification”
A2. JsKA ⊃ J!sKJsKA “proof checker”
A3. A ⊃� s � A “assumption maker”
A4. � s � A ⊃�?s � JsKA “proof dependency maker”
A5. � s � A ⊃∼� s �∼ A “consistency of assumption”
A6. JsK(A ⊃ B) ⊃ (JtKA ⊃ Js · tKB) “application”
R1. Γ ` A ⊃ B and Γ ` A implies Γ ` B “modus ponens”
R2. If A is an axiom A0.− A6. and c is a proof constant, then ` JcKA

“necessitation”

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 7 / 34



Meaning of Dependent Evidence

A proper functional or dependent evidence will be given by the
construction of A4. with distinct polynomials

�?s � JtK(B[A])

It reads:
“t is an evidence of B, whenever s is an evidence of

A”.

This gives a way to express in JL expressions of the form:
“Let A be a proposition with evidence s, and B a

proposition dependent on A”

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 8 / 34



Meaning of Dependent Evidence

A proper functional or dependent evidence will be given by the
construction of A4. with distinct polynomials

�?s � JtK(B[A])

It reads:
“t is an evidence of B, whenever s is an evidence of

A”.

This gives a way to express in JL expressions of the form:
“Let A be a proposition with evidence s, and B a

proposition dependent on A”

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 8 / 34



Meaning of Dependent Evidence

A proper functional or dependent evidence will be given by the
construction of A4. with distinct polynomials

�?s � JtK(B[A])

It reads:
“t is an evidence of B, whenever s is an evidence of

A”.

This gives a way to express in JL expressions of the form:
“Let A be a proposition with evidence s, and B a

proposition dependent on A”

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 8 / 34



Constructing dependent evidence

A ⊃� s � A �?s � JtKB[A]
DE

(?s)t :B

Given an assumed evidence s for A, if there is an evidence
�?s � JtKB[A] of B dependent on A, then an evidence t of B holds
assuming an evidence s.

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 9 / 34



Constructing dependent evidence (Equivalence)

A ≡ A′ ⊃� s � A ≡� s′ � A′ �?s �≡�?s′ � JtKB[A] ≡ Jt ′KB′[A′]
EQ

(?s)t :B ≡ (?s′)t ′ :B′

We get identical evidences (?s)t , (?s′)t ′ for B,B′ when equivalent
dependent evidences�?s � JtK,�?s′ � Jt ′K are formulated from
equivalent assumed evidences s, s′ respectively for A,A′.

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 10 / 34



Rules for dependent evidence

Discharging of such dependency relation is given by Application:

�?s � t :B[A] JsKA
Function Application

JsK · JtK :B

�?s � t ≡�?s′ � t ′ :B[A] ≡ B′[A′] JsK ≡ Js′KA
EQ

JsK · JtK ≡ Js′K · Jt ′K :B ≡ B′

The first rule says that given an evidence�?s � JtKB[A] of B
dependent on A, if there is an evidence s of A, then JsK · JtK is an
evidence of B. Equality holds under equivalent dependent evidences.

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 11 / 34



Rules for dependent evidence
To construct a functional evidence one can proceed by abstraction on
a dependent evidence (plus identity rules):

�?s � JtK :B[A]
Abstraction

(?s)t : (� s � A)B

JsKA �?s � JtKB[A]
β-rule

(?s)t(!s) = JsK · JtK :B

�?s � JtK ≡�?s � Jt ′K :B[A]
ξ-rule

(?s)t ≡ (?s)t ′ : (� s � A)B

�?s � JtK :B[A]
α-rule

(?s)t = (s′)(�?s =?s′ �)JtK : (� s � A)B

where variables in s′ are not free in s.

�?s � t :B[A]
η-rule

(?s)t(!s) ≡�?s � JtK :B[A]

where variables in s are not free variables in t .
G. Primiero (Ghent University) Dependent Evidence GC-CUNY 12 / 34



Dependency from more than one term

The basic case with two assumptions is of the from
� s2 �� s1 � JtKB[A2[A1]] which reads informally as follows: “t is
an evidence of B, provided s2 is an evidence of A2, which holds
provided s1 is an evidence of A1”.

�?s1 . . .?sn � JtKB[A1, . . . ,An]

(?s1 . . . (?sn−1(?sn)))t : (�?s1 � A1,�?s2 � A2, . . . ,�?sn � An)B

“if t is a proof for B dependent on evidences for A1, . . . ,An, then t is
an evidence for B given that sn is an evidence for An, which holds
provided sn−1 is an evidence for An−1, which holds provided . . . up to
s1 is an evidence of A1”.

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 13 / 34



Dependency from more than one term

By repeated application we obtain the inverse operation:

(?s1(. . . (. . . , (?sn))))t : (A1, . . . ,An)B Js1KA1, Js1·, . . . , ·Jsn−1 · snKAn

JJs1K · Js2K·, . . . , ·JsnKK · JtK :B

which reads: “if t is an evidence for B given evidences for A1, . . . ,An
and provided sn is a proof of An provided sn−1 is a proof of An−1 up to
s1 is a proof of A1, then t is an evidence for B dependent on
evidences s1 applied to s2, then applied to s3 up to sn”.

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 14 / 34



Example 1

Show that a function evidence C(y)[y : (B(x)[x :AK is given by a
function C(x , y) with arguments respectively in A and B[A].

(?c)c(?c, (a,b))C[!b :B(!a)] ?c((J!aK :A)J!bK :B)C
Abstraction

(?c)c(c, ((?a)?b))C
Application

(a · b) · c :C

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 15 / 34



Example 2

Show that for any elements s, s′, if JsK ≡ Js′KA, then
� s � JtKB[A] ⊃� s′ � JtKB[A],

(?s)b : (� s � A)B

JsKA Js′KA A ≡ A
JsK ≡ Js′KA � s � JtKB[A]

� s � JtKB[A] ≡� s′ � JtKB[A]

(?s′)b : (� s � A)B
(?b)b : (� s � A)B ⊃ (� s′ � A)B

(?b′)(?b)b : (JsK ≡ Js′KA) ⊃ ((� s � A)B ⊃ (� s′ � A)B)

(?s)(?s′)(?b′)(?b)b : (s :A)(s′ :A)(s ≡ s′ :A) ⊃ ((� s � A)B ≡ (� s′ � A)B)

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 16 / 34



1 Motivation

2 Intuitionistic JL with Dependency

3 Natural Deduction with Global and Local Assumptions

4 Normalization

5 Summary
G. Primiero (Ghent University) Dependent Evidence GC-CUNY 17 / 34



Functions in ND

Usual translation of functional language in ND: The proof of an
implication A ⊃ B represented by a function which maps proofs
of A to proofs of B, e.g. [Pfenning, 2004];

keep them apart:
I an implication talks about a term/program for A transformed into

one for B; evaluation of terms establishes global validity (a is
evaluated and a procedure to get b holds);

I a function talks about a the dependency of terms in B from terms in
A; it expresses the validity of the former locally in view of the latter;

I the application of a function generates an assumptions which if
satisfied instantiates an implication.

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 17 / 34



Functions in ND

Usual translation of functional language in ND: The proof of an
implication A ⊃ B represented by a function which maps proofs
of A to proofs of B, e.g. [Pfenning, 2004];

keep them apart:
I an implication talks about a term/program for A transformed into

one for B; evaluation of terms establishes global validity (a is
evaluated and a procedure to get b holds);

I a function talks about a the dependency of terms in B from terms in
A; it expresses the validity of the former locally in view of the latter;

I the application of a function generates an assumptions which if
satisfied instantiates an implication.

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 17 / 34



Functions in ND

1 Derivability of a term under valid assumptions (global validity)
defines Unconditional Evidence;

∆; · ` A | s UnEvid

2 Derivability of a term under true assumptions (local validity)
defines Dependent Evidence;

∆; Γ ` A || s DepEvid

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 18 / 34



Functions in ND

1 Derivability of a term under valid assumptions (global validity)
defines Unconditional Evidence;

∆; · ` A | s UnEvid

2 Derivability of a term under true assumptions (local validity)
defines Dependent Evidence;

∆; Γ ` A || s DepEvid

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 18 / 34



IJLnd3

Definition (Language)
The syntax is defined by the following alphabet:

Proof Terms
s := x | s · s |!s | XTRT s AS v :A IN s |?s | ASSM s AS a :A INs
Propositions
A := P | A ⊃ B | B[A] | JsKA |� s � A |� s � JtKB[A]

Truth Contexts Γ := · | Γ,a :A
Validity Contexts ∆ := · | ∆, v :A

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 19 / 34



IJLnd3

Definition (The Logic JLnd3)
JLnd3 is defined by the following schemes:

ValVar
∆; v :A,∆′ ` A | v

∆, v :A; · ` B | s
⊃ I

∆; Γ ` A ⊃ B | λv :A.s
∆; · ` A ⊃ B | s ∆; · ` A | t

⊃ E
∆; Γ ` B | s · t

TruVar
∆; a :A; · ` A || a

∆; a :A ` B || t
Function Formation

∆; · `� s � JtKB[A]

∆; Γ `� s � JtKB[A] ∆; Γ ` JsKA |!s
Function Application

∆; Γ ` B |!(JsK · JtK)

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 20 / 34



IJLnd3

Now modalities can be used to internalise dependencies:

Definition

∆; · ` A | s
2I

∆; Γ ` JsKA |!s
∆; · ` JrKA |!s ∆, v :A ` C | t

2E
∆; Γ ` Cv

r | XTRT s AS v :A IN t

∆; Γ ` A || s
3I

∆; Γ; · `� s � A |?s

∆; Γ `� r � A |?s ∆, a :A; · ` C || t
3E

∆; Γ; · ` Ca
r || ASSM s AS a :A IN t

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 21 / 34



IJLnd3

Lemma (Properties)
The system satisfies

1 (Exchange) If ∆; v :A, v :B; · ` C | s then If ∆; v :B, v :A; · ` C | s
2 (Exchange) If ∆; a :A; b :B; Γ ` C || s then If

∆; b :B; a :A; Γ ` C || s
3 (Weakening) If ∆; · ` A | s then ∆,a :B ` A | s
4 (Weakening) If ∆; Γ ` A || s then ∆, v :B, Γ ` A || s
5 (Contraction) If ∆; u :A, v :A; ∆′, · ` A | s then

∆; w :A; ∆′, · ` Au,v
w | su,v

w for w fresh
6 (Contraction) If ∆; Γ,a :A,b :A ` A || s then ∆; Γ, c :A ` Aa,b

c || sa,b
c

for c fresh.

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 22 / 34



Equality

Definition (Axiom and Inference Schemes for Identity with
Unconditional and Dependent Evidence)
It is proven that the following hold:

substitution on terms
context equivalence
reflexivity on unconditional and dependent evidence
symmetry on unconditional and dependent evidence
transitivity on unconditional and dependent evidence
equivalence on λ-terms and application for implication
equivalence on β/η redexes for 2, 3
equivalence on Introduction/Elimination Rules for 2, 3
equivalence on Functional Terms and Application

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 23 / 34



Contractions/Expansions

Transformation of derivations by contractions and expansions on
connectives, adding appropriate operations for dependent evidence.
(Connectives behave well with intro/elimination).
Contraction for ⊃

∆; v :A; · ` B | s
⊃ I

∆; Γ ` A ⊃ B | λv :A.s ∆; · ` A | t
⊃ E

∆; Γ ` B | (λv :A.s) · t

contracts to

π
∆; Γ ` B | sa

t

∆; v :A ` B | s ∆, · ` A | t
Eqβ

∆, Γ ` sv
t ≡ (λv :A.s) · t :B

EqUnEv
∆; Γ ` B | (λv :A.s) · t

where π is a derivation according to the Term Substituiton Theorem
with Unconditional Evidence.

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 24 / 34



Contractions/Expansions

Contraction for Function

∆; a :A ` B || t
Function Formation

∆; · `� s � JtKB[A]

∆; · ` A | s
2I

∆; Γ ` JsKA |!s
Appl

∆; Γ ` B |!(JsK · JtK)

contracts to

∆; Γ; · `� s � A |?s ∆; a :A ` B || t
3E

∆; Γ; · ` Ba
s || ASSM s AS a :A IN t

eqη
∆; Γ ` (?a :A)(a · t) ≡� s � JtK :B[A]

∆; · ` A | s
2I

∆, Γ ` JsKA |!s
Appl

∆; Γ ` B |!(JsK · JtK)

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 25 / 34



Contractions/Expansions

Expansion for ⊃

∆; Γ ` A ⊃ B | s

expands to

∆; · ` A ⊃ B | s ∆; · ` A | v
⊃ E

∆; v :A; Γ ` B | s · v
⊃ I

∆; Γ ` A ⊃ B | λv :A.(s · v)

∆; Γ ` A ⊃ B | s v /∈ fv(t)
Eq⊃I

∆; Γ ` λv :A.(s · v) ≡ s :A ⊃ B
EqUnEvid

∆; Γ ` A ⊃ B | s

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 26 / 34



Contractions/Expansions

Expansion for Function

∆; · `� s � JtKB[A]

expands to

∆; Γ `� s � JtKB[A] ∆; ΓJsKA |!s
Appl

∆; Γ ` B |!(JsK · JtK) ∆; v :A ` B | t
2E

∆; Γ ` Bs
JsK·JtK | XTRT s AS v :A IN t

Eqβ
∆; Γ; · ` sv

t ≡ s · t :B ∆; Γ ` A || s
EqDepEv

∆; · `� s � JtKB[A]

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 27 / 34



1 Motivation

2 Intuitionistic JL with Dependency

3 Natural Deduction with Global and Local Assumptions

4 Normalization

5 Summary
G. Primiero (Ghent University) Dependent Evidence GC-CUNY 28 / 34



Normal Forms

Definition (Predicates INF and FNF )

The normal form predicates INF and FNF are defined according to
the following schemas:

∆; · ` A | s
∆; Γ ` FNF (s)

Γ ` A || s
Γ; · ` INF (s)

∆; · ` FNF (A) ∆; a :A ` FNF (t)
∆; Γ; · ` FNF ([a/v ] · t)

Γ; · ` INF (A) ∆; a :A ` FNF (t)
∆; Γ; · ` INF (t [a :A])

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 28 / 34



Rewriting Rules
Definition (Rewriting Rules for INF/FNF predicates)

The η-expansion rewriting rules for INF/FNF predicates are defined
according to the following rules:

∆; Γ ` A ⊃ B | s · t ∆; Γ ` FNF (s · t)
∆; Γ ` s →ηFNF v :A.s

∆; · ` t →ηFNF t ′

∆; Γ ` t →ηINF t ′
∆; v :A ` t →ηFNF t ′

∆; Γ,` t [a :A]→ηINF t ′[a :A]

∆; Γ ` A→ηINF A′

∆; Γ ` B[A]→ηINF B[A′]
∆; · ` A→ηFNF A′

∆; Γ ` A[B]→ηINF A′[B]

∆; · ` A | s ∆; v :A ` B | t →ηFNF B′ | t ′

∆; Γ ` Bv
t | XTRT s AS v :A IN t →ηFNF Bv

t | XTRT s AS v :A IN t ′

∆; Γ ` A || s ∆; a :A; Γ ` B | t →ηFNF B′ | t ′

∆; Γ ` Ba
t | ASSM s AS a :A IN t →ηINF Ba

t | ASSM s AS a :A IN t ′
G. Primiero (Ghent University) Dependent Evidence GC-CUNY 29 / 34



Normal Forms

More intermediate steps are required:

every INF/FNF reduction is either a β or a η reduction;
every INF/FNF ends in a β normal redux;
equivalence is a beta reduction.

Lemma (Normalisation)

If ∆; Γ ` FNF (t), then t is in normal form.

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 30 / 34



Normal Forms

Lemma (Confluence)

1 →INF/FNF -normal forms are unique,
2 confluence corresponds to saying that every term reduces to a

normal formal
3 Since every term has a unique β-normal formal
4 and by reductions→ηINF/FNF preserve β-normal forms,
5 normalisation of→INF/FNF is reduced to normalisation of
→ηINF/FNF .

Lemma
By induction,→ηINF/FNF for expressions with dependent evident
requires at most a finite number of function application rule instances
to reduce to an unconditional evidence.

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 31 / 34



Normal Forms

Lemma (Confluence)

1 →INF/FNF -normal forms are unique,
2 confluence corresponds to saying that every term reduces to a

normal formal
3 Since every term has a unique β-normal formal
4 and by reductions→ηINF/FNF preserve β-normal forms,
5 normalisation of→INF/FNF is reduced to normalisation of
→ηINF/FNF .

Lemma
By induction,→ηINF/FNF for expressions with dependent evident
requires at most a finite number of function application rule instances
to reduce to an unconditional evidence.

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 31 / 34



Strong Normalization

Lemma (Strong Normalization)

There are no infinite sequences of reductions
∆; Γ ` t →ηINF/FNF t ′ →ηINF/FNF t ′′ . . .

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 32 / 34



1 Motivation

2 Intuitionistic JL with Dependency

3 Natural Deduction with Global and Local Assumptions

4 Normalization

5 Summary
G. Primiero (Ghent University) Dependent Evidence GC-CUNY 33 / 34



Summary

Introduced functional expressions over evidences;

Used it to define a natural deduction calculus which distinguishes
between unconditional and dependent evidence;

Extended it to extensional equivalence;

Proven that this extension is conservative w.r.t. the calculus with
simple evidence from [Artëmov and Bonelli, 2007] by showing
(Strong) Normalization.

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 33 / 34



References I

Alt, J. and Artemov, S. (2001).
Reflective λ-calculus.
In Kahle, R., Schroeder-Heister, P., and Stärk, R. F., editors,
Proof Theory in Computer Science, volume 2183 of Lecture
Notes in Computer Science, pages 22–37. Springer.

Artëmov, S. N. and Bonelli, E. (2007).
The intensional lambda calculus.
In Artëmov, S. N. and Nerode, A., editors, LFCS, volume 4514 of
Lecture Notes in Computer Science, pages 12–25. Springer.

Pfenning, F. (2004).
Automated theorem proving.
Technical report, Carnegie Mellon.
Handouts for Course on Automated Theorem Proving.

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 34 / 34


	Motivation
	Intuitionistic JL with Dependency
	Natural Deduction with Global and Local Assumptions
	Normalization
	Summary

