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What are Dependent Justifications

The notion of dependent justification is inspired by its formal
counterpart in theories of dependent types:

I A dependent type is a type expression of the form B[x ] with x a
free variable ranging over A type saying that B is a type whenever
x ∈ A;

I Σ type: type of all pairs 〈a, b〉 where a ∈ A and b ∈ B[a];
I Π type: type of all functions λx .b[x ] where b[a] ∈ B[a] for any

a ∈ A;
I Propositional functions under the props-as-types analogy
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What are Dependent Justifications (II)

A dependent type expresses the definitional relation of a term
from a term (parametrization of types);

Similarly, we can express a justification for B dependently on a
justification for A:

“t is a justification for B, whenever A is justified by s”
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What are Dependent Justifications (II)

In a natural deduction translation, this can be reconstructed as
validity under assumptions:

If t :B depends from s :A, a formula of the form ∆;` B | t where
A ∈ ∆ can be used in ND (see [Artëmov and Bonelli, 2007],
[Alt and Artemov, 2001]);

∆; · ` B | t
2I

∆; Γ ` JtKB |!t

We want to express the local dependency of a term from a term
(evidences);

We want also to preserve the global dependency of expressions
(propositions, as in the λ-calculi).
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Tasks

1 Show that a notion of Dependent Evidence mimicking Functions
can be formally accomodated in the framework of Justification
Logic for expressions of the form

“t is a justification for B, whenever A is justified by s”

2 Provide a general interpretation of functional expressions within
a ND system with

I Dependent Terms
I Dependent Expressions

3 Use the latter to prove some metatheoretical results.
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Axioms and Inference Schemes

Definition (Axioms)
Axioms of the system are:
A0. Axioms schemes of minimal logic in the the language of JL
A1. JsKA ⊃ A “verification”
A2. JsKA ⊃ J!sKJsKA “proof checker”
A3. A ⊃� s � A “assumption maker”
A4. � s � A ⊃�?s � JsKA “proof dependency maker”
A5. � s � A ⊃∼� s �∼ A “consistency of assumption”
A6. JsK(A ⊃ B) ⊃ (JtKA ⊃ Js · tKB) “application”
R1. Γ ` A ⊃ B and Γ ` A implies Γ ` B “modus ponens”
R2. If A is an axiom A0.− A6. and c is a proof constant, then ` JcKA

“necessitation”
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Meaning of Dependent Evidence

A proper functional or dependent evidence will be given by the
construction of A4. with distinct polynomials

�?s � JtK(B[A])

It reads:
“t is an evidence of B, whenever s is an evidence of

A”.

This gives a way to express in JL expressions of the form:
“Let A be a proposition with evidence s, and B a

proposition dependent on A”
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Constructing dependent evidence

A ⊃� s � A �?s � JtKB[A]
DE

(?s)t :B

Given an assumed evidence s for A, if there is an evidence
�?s � JtKB[A] of B dependent on A, then an evidence t of B holds
assuming an evidence s.
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Constructing dependent evidence (Equivalence)

A ≡ A′ ⊃� s � A ≡� s′ � A′ �?s �≡�?s′ � JtKB[A] ≡ Jt ′KB′[A′]
EQ

(?s)t :B ≡ (?s′)t ′ :B′

We get identical evidences (?s)t , (?s′)t ′ for B,B′ when equivalent
dependent evidences�?s � JtK,�?s′ � Jt ′K are formulated from
equivalent assumed evidences s, s′ respectively for A,A′.
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Rules for dependent evidence

Discharging of such dependency relation is given by Application:

�?s � t :B[A] JsKA
Function Application

JsK · JtK :B

�?s � t ≡�?s′ � t ′ :B[A] ≡ B′[A′] JsK ≡ Js′KA
EQ

JsK · JtK ≡ Js′K · Jt ′K :B ≡ B′

The first rule says that given an evidence�?s � JtKB[A] of B
dependent on A, if there is an evidence s of A, then JsK · JtK is an
evidence of B. Equality holds under equivalent dependent evidences.
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Rules for dependent evidence
To construct a functional evidence one can proceed by abstraction on
a dependent evidence (plus identity rules):

�?s � JtK :B[A]
Abstraction

(?s)t : (� s � A)B

JsKA �?s � JtKB[A]
β-rule

(?s)t(!s) = JsK · JtK :B

�?s � JtK ≡�?s � Jt ′K :B[A]
ξ-rule

(?s)t ≡ (?s)t ′ : (� s � A)B

�?s � JtK :B[A]
α-rule

(?s)t = (s′)(�?s =?s′ �)JtK : (� s � A)B

where variables in s′ are not free in s.

�?s � t :B[A]
η-rule

(?s)t(!s) ≡�?s � JtK :B[A]

where variables in s are not free variables in t .
G. Primiero (Ghent University) Dependent Evidence GC-CUNY 12 / 34



Dependency from more than one term

The basic case with two assumptions is of the from
� s2 �� s1 � JtKB[A2[A1]] which reads informally as follows: “t is
an evidence of B, provided s2 is an evidence of A2, which holds
provided s1 is an evidence of A1”.

�?s1 . . .?sn � JtKB[A1, . . . ,An]

(?s1 . . . (?sn−1(?sn)))t : (�?s1 � A1,�?s2 � A2, . . . ,�?sn � An)B

“if t is a proof for B dependent on evidences for A1, . . . ,An, then t is
an evidence for B given that sn is an evidence for An, which holds
provided sn−1 is an evidence for An−1, which holds provided . . . up to
s1 is an evidence of A1”.
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Dependency from more than one term

By repeated application we obtain the inverse operation:

(?s1(. . . (. . . , (?sn))))t : (A1, . . . ,An)B Js1KA1, Js1·, . . . , ·Jsn−1 · snKAn

JJs1K · Js2K·, . . . , ·JsnKK · JtK :B

which reads: “if t is an evidence for B given evidences for A1, . . . ,An
and provided sn is a proof of An provided sn−1 is a proof of An−1 up to
s1 is a proof of A1, then t is an evidence for B dependent on
evidences s1 applied to s2, then applied to s3 up to sn”.
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Example 1

Show that a function evidence C(y)[y : (B(x)[x :AK is given by a
function C(x , y) with arguments respectively in A and B[A].

(?c)c(?c, (a,b))C[!b :B(!a)] ?c((J!aK :A)J!bK :B)C
Abstraction

(?c)c(c, ((?a)?b))C
Application

(a · b) · c :C
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Example 2

Show that for any elements s, s′, if JsK ≡ Js′KA, then
� s � JtKB[A] ⊃� s′ � JtKB[A],

(?s)b : (� s � A)B

JsKA Js′KA A ≡ A
JsK ≡ Js′KA � s � JtKB[A]

� s � JtKB[A] ≡� s′ � JtKB[A]

(?s′)b : (� s � A)B
(?b)b : (� s � A)B ⊃ (� s′ � A)B

(?b′)(?b)b : (JsK ≡ Js′KA) ⊃ ((� s � A)B ⊃ (� s′ � A)B)

(?s)(?s′)(?b′)(?b)b : (s :A)(s′ :A)(s ≡ s′ :A) ⊃ ((� s � A)B ≡ (� s′ � A)B)
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Functions in ND

Usual translation of functional language in ND: The proof of an
implication A ⊃ B represented by a function which maps proofs
of A to proofs of B, e.g. [Pfenning, 2004];

keep them apart:
I an implication talks about a term/program for A transformed into

one for B; evaluation of terms establishes global validity (a is
evaluated and a procedure to get b holds);

I a function talks about a the dependency of terms in B from terms in
A; it expresses the validity of the former locally in view of the latter;

I the application of a function generates an assumptions which if
satisfied instantiates an implication.
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Functions in ND

1 Derivability of a term under valid assumptions (global validity)
defines Unconditional Evidence;

∆; · ` A | s UnEvid

2 Derivability of a term under true assumptions (local validity)
defines Dependent Evidence;

∆; Γ ` A || s DepEvid
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IJLnd3

Definition (Language)
The syntax is defined by the following alphabet:

Proof Terms
s := x | s · s |!s | XTRT s AS v :A IN s |?s | ASSM s AS a :A INs
Propositions
A := P | A ⊃ B | B[A] | JsKA |� s � A |� s � JtKB[A]

Truth Contexts Γ := · | Γ,a :A
Validity Contexts ∆ := · | ∆, v :A
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IJLnd3

Definition (The Logic JLnd3)
JLnd3 is defined by the following schemes:

ValVar
∆; v :A,∆′ ` A | v

∆, v :A; · ` B | s
⊃ I

∆; Γ ` A ⊃ B | λv :A.s
∆; · ` A ⊃ B | s ∆; · ` A | t

⊃ E
∆; Γ ` B | s · t

TruVar
∆; a :A; · ` A || a

∆; a :A ` B || t
Function Formation

∆; · `� s � JtKB[A]

∆; Γ `� s � JtKB[A] ∆; Γ ` JsKA |!s
Function Application

∆; Γ ` B |!(JsK · JtK)
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IJLnd3

Now modalities can be used to internalise dependencies:

Definition

∆; · ` A | s
2I

∆; Γ ` JsKA |!s
∆; · ` JrKA |!s ∆, v :A ` C | t

2E
∆; Γ ` Cv

r | XTRT s AS v :A IN t

∆; Γ ` A || s
3I

∆; Γ; · `� s � A |?s

∆; Γ `� r � A |?s ∆, a :A; · ` C || t
3E

∆; Γ; · ` Ca
r || ASSM s AS a :A IN t
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IJLnd3

Lemma (Properties)
The system satisfies

1 (Exchange) If ∆; v :A, v :B; · ` C | s then If ∆; v :B, v :A; · ` C | s
2 (Exchange) If ∆; a :A; b :B; Γ ` C || s then If

∆; b :B; a :A; Γ ` C || s
3 (Weakening) If ∆; · ` A | s then ∆,a :B ` A | s
4 (Weakening) If ∆; Γ ` A || s then ∆, v :B, Γ ` A || s
5 (Contraction) If ∆; u :A, v :A; ∆′, · ` A | s then

∆; w :A; ∆′, · ` Au,v
w | su,v

w for w fresh
6 (Contraction) If ∆; Γ,a :A,b :A ` A || s then ∆; Γ, c :A ` Aa,b

c || sa,b
c

for c fresh.
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Equality

Definition (Axiom and Inference Schemes for Identity with
Unconditional and Dependent Evidence)
It is proven that the following hold:

substitution on terms
context equivalence
reflexivity on unconditional and dependent evidence
symmetry on unconditional and dependent evidence
transitivity on unconditional and dependent evidence
equivalence on λ-terms and application for implication
equivalence on β/η redexes for 2, 3
equivalence on Introduction/Elimination Rules for 2, 3
equivalence on Functional Terms and Application
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Contractions/Expansions

Transformation of derivations by contractions and expansions on
connectives, adding appropriate operations for dependent evidence.
(Connectives behave well with intro/elimination).
Contraction for ⊃

∆; v :A; · ` B | s
⊃ I

∆; Γ ` A ⊃ B | λv :A.s ∆; · ` A | t
⊃ E

∆; Γ ` B | (λv :A.s) · t

contracts to

π
∆; Γ ` B | sa

t

∆; v :A ` B | s ∆, · ` A | t
Eqβ

∆, Γ ` sv
t ≡ (λv :A.s) · t :B

EqUnEv
∆; Γ ` B | (λv :A.s) · t

where π is a derivation according to the Term Substituiton Theorem
with Unconditional Evidence.
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Contractions/Expansions

Contraction for Function

∆; a :A ` B || t
Function Formation

∆; · `� s � JtKB[A]

∆; · ` A | s
2I

∆; Γ ` JsKA |!s
Appl

∆; Γ ` B |!(JsK · JtK)

contracts to

∆; Γ; · `� s � A |?s ∆; a :A ` B || t
3E

∆; Γ; · ` Ba
s || ASSM s AS a :A IN t

eqη
∆; Γ ` (?a :A)(a · t) ≡� s � JtK :B[A]

∆; · ` A | s
2I

∆, Γ ` JsKA |!s
Appl

∆; Γ ` B |!(JsK · JtK)
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Contractions/Expansions

Expansion for ⊃

∆; Γ ` A ⊃ B | s

expands to

∆; · ` A ⊃ B | s ∆; · ` A | v
⊃ E

∆; v :A; Γ ` B | s · v
⊃ I

∆; Γ ` A ⊃ B | λv :A.(s · v)

∆; Γ ` A ⊃ B | s v /∈ fv(t)
Eq⊃I

∆; Γ ` λv :A.(s · v) ≡ s :A ⊃ B
EqUnEvid

∆; Γ ` A ⊃ B | s
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Contractions/Expansions

Expansion for Function

∆; · `� s � JtKB[A]

expands to

∆; Γ `� s � JtKB[A] ∆; ΓJsKA |!s
Appl

∆; Γ ` B |!(JsK · JtK) ∆; v :A ` B | t
2E

∆; Γ ` Bs
JsK·JtK | XTRT s AS v :A IN t

Eqβ
∆; Γ; · ` sv

t ≡ s · t :B ∆; Γ ` A || s
EqDepEv

∆; · `� s � JtKB[A]
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Normal Forms

Definition (Predicates INF and FNF )

The normal form predicates INF and FNF are defined according to
the following schemas:

∆; · ` A | s
∆; Γ ` FNF (s)

Γ ` A || s
Γ; · ` INF (s)

∆; · ` FNF (A) ∆; a :A ` FNF (t)
∆; Γ; · ` FNF ([a/v ] · t)

Γ; · ` INF (A) ∆; a :A ` FNF (t)
∆; Γ; · ` INF (t [a :A])

G. Primiero (Ghent University) Dependent Evidence GC-CUNY 28 / 34



Rewriting Rules
Definition (Rewriting Rules for INF/FNF predicates)

The η-expansion rewriting rules for INF/FNF predicates are defined
according to the following rules:

∆; Γ ` A ⊃ B | s · t ∆; Γ ` FNF (s · t)
∆; Γ ` s →ηFNF v :A.s

∆; · ` t →ηFNF t ′

∆; Γ ` t →ηINF t ′
∆; v :A ` t →ηFNF t ′

∆; Γ,` t [a :A]→ηINF t ′[a :A]

∆; Γ ` A→ηINF A′

∆; Γ ` B[A]→ηINF B[A′]
∆; · ` A→ηFNF A′

∆; Γ ` A[B]→ηINF A′[B]

∆; · ` A | s ∆; v :A ` B | t →ηFNF B′ | t ′

∆; Γ ` Bv
t | XTRT s AS v :A IN t →ηFNF Bv

t | XTRT s AS v :A IN t ′

∆; Γ ` A || s ∆; a :A; Γ ` B | t →ηFNF B′ | t ′

∆; Γ ` Ba
t | ASSM s AS a :A IN t →ηINF Ba

t | ASSM s AS a :A IN t ′
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Normal Forms

More intermediate steps are required:

every INF/FNF reduction is either a β or a η reduction;
every INF/FNF ends in a β normal redux;
equivalence is a beta reduction.

Lemma (Normalisation)

If ∆; Γ ` FNF (t), then t is in normal form.
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Normal Forms

Lemma (Confluence)

1 →INF/FNF -normal forms are unique,
2 confluence corresponds to saying that every term reduces to a

normal formal
3 Since every term has a unique β-normal formal
4 and by reductions→ηINF/FNF preserve β-normal forms,
5 normalisation of→INF/FNF is reduced to normalisation of
→ηINF/FNF .

Lemma
By induction,→ηINF/FNF for expressions with dependent evident
requires at most a finite number of function application rule instances
to reduce to an unconditional evidence.
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Strong Normalization

Lemma (Strong Normalization)

There are no infinite sequences of reductions
∆; Γ ` t →ηINF/FNF t ′ →ηINF/FNF t ′′ . . .
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Summary

Introduced functional expressions over evidences;

Used it to define a natural deduction calculus which distinguishes
between unconditional and dependent evidence;

Extended it to extensional equivalence;

Proven that this extension is conservative w.r.t. the calculus with
simple evidence from [Artëmov and Bonelli, 2007] by showing
(Strong) Normalization.
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