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Modalities for localized computations

@ Procedural Semantics with Modalities for Contextual (localized)
Computing;

@ designed from a multi-modal type system with a BHK semantics
Martin-L6f’s style with Proofs-as-Programs (at IMLA11 on
Saturday);

@ localization of processes to represent distributed computing;
@ rules for connectives intepret composition of processes;

@ modal rules interpret interaction of code at locations (mobility).
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Other Extended Semantics

@ (Modal Types based) Dynamic Semantics in terms of a big-step
evaluation relation in [Murphy, 2008];

@ (Modal) Network Operational Semantics in
[Jia and Walker, 2004] and [Park, 2006];

@ (BHK-inspired) Operational Semantics of expressions encoding
proofs in LP in terms of global computation in
[Artemov and Bonelli, 2007];
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Semantics with indexed modal types

@ a;:« expresses the existence of a program valid at location i of
type a;

@ [; - a is the sequence of computational steps valid at location i
that validate a program of type «;

@ the meaning of program « is given by explaining how steps in T;
are obtained and where they hold;

@ Use modalities in o, - « to express local/global validity of
program/processes.

G. Primiero (Ghent University) Modal Type Theory CLMPS11 5/21



Translation to an Operational Semantics

@ Provide a syntax-oriented inductively defined semantics
reflecting the original BHK proof interpretation;

@ Define the behavior of programs by transition relations among
states of the corresponding (abstract) machine;

@ Define the valid transitions as a set of inference rules to give a
composite piece of syntax in terms of the transitions of its
components;

@ Enrich the language with locations and values/code mobility
operations.
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Language

Definition (Syntax of the Programming Language)
The syntax is defined by the following alphabet:
Types =a|laxflaUf|a—plaDdp
Terms T = Xx; | a
Functions := exec(«) | runi(c) | runiuj(a - ) | runinj(a - B) |
synchro;(3(exec(«)))
Contexts C := A | T; | ol
Remote Operations := GLOB(O;l", o) | BROAD(<n,T, o)
Portable Code := RET (T'ju;, ) | SEND(T jrj, )
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Conventions

@ exec refers to the output of a running program; can take any
index;

@ runis the procedural representation of a function; occurs with a
single index when referring to a single process;

@ run takes compositions of indices when it composes processes:
U for executability at either location; N for executability at ordered
intersection;

@ synchro computes a function using exec of some value it
depends from (Call by Value): semantic equivalent for
B-reduction or function application;

@ Introduction Rules for Modalities correspond to Rules for Remote
Operations; Eliminations Rules to Rules for Portable Code.
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Operational Semantics

Definition (State Machine)
A state machine S S

S:=(C,ti:a)|C € Context; t € T;i€Z,a c Types

is an occurrence of an indexed typed term in context.
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Computational Rules

Definition (Typing Rules)

global local
Aj, ai:a - exec(a) [, X;:c; Aj = runi(a)

ai:a bj:p ai: o

- Ix — U
runyj(a x ) runi(a U B)

ai:a exec(a)t by:p ’ Xt runi(a) = b B
%

runiuj(cc — B) runinj(a O B)

run,-mj(a D) ﬂ) aj:o

synchro

synchroj(b(exec(c)))
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The Modal Extension

Definition (Modal Judgements)

The set of modal judgements M for any i € G is defined by the
following modal formation rules:
exec(a) Fi = runj(c)

O — Formation ——— & — Formation
Ok« Ol ko
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Modal Rules

Definition
[, Xj:a = run; O, xi(a) : a F exec
fin 2y = €2 () iT,x(&) : (@) RPCH
GLOB(D,’U/‘F,O{)
[, Xi:a b runi(a) < F runi(a
i Xj j(@r) O j( )RPC2
BROAD(Cinl, @)
O, ai:a - exec(a) GLOB(O il o
it,dj. o (@) (Qiyj )PORT1
RET (T i), @)
O, x;: o F runjq; BROAD(Cjnl, a
Xk ifini(a) (©i0-2) porrs
SEND(T jrj, o)
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Operational Semantics

Definition (Operational Model)
An indexed transition system (also called Network)

Networks N := (S,—,T)

is a triple where S is a set of states, 7 is a set of indices and

— (S x Z x §) is a ternary relation of indexed transitions. If S, S’ € S
and i,j € Z, then — (S, 1,j, S') is written as S; — S;. This means that
there is a transition — from state S valid at index i to state S’ valid at
index j defined according to the state typing rules. )
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Evaluation

Rewriting rules for states transition:

S— g

(T, Xi ) — (O, runi(«@))

(T, ai:a) — (O;, exec(a))

(I, exec(a) - by) — (O, runjuj(a — B))

(T4, runi(«) F by) — (O;, synchro(b;(exec(«))))

(I';, exec(a), exec(B)) — (O;F, rumj(a x )

(T, exec(a)) — (O;F, runi(a U B))

(I';, exec(a)) — (GLOB(O, T, o))

(Oil, aiyj) = (RET (i, )

(F,-, I’Uﬂ/(a)) — (BROAD(O,‘WF, Oz))

(O, i) = (SEND(T i, @)
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Semantic Validity

Definition (Semantic Expressions)

@ Evaluation defines strong typing (normalisation) by reduction to
expressions (O,I, exec(«)) and GLOB(O;T, ).

@ Expressions (I';, runj(a))) and BROAD(< I, ) are admissible
procedural steps but may fail to produce a safe value (when
called upon at wrong addresses).

@ This makes (only) the following expressions valid (safely
evaluated):

aj:« value 0;l, « value
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Some Results

Theorem (Type Safety)
Safety is satisfied by transformations (according to the table of
rewriting rules) or by terminating expression (exec(«))

Q IfS:=(j,ti:a),and S — &', then S’ := (I}, t.i:a);

Q IfS:= (I, t.i:«a), then either exec(«) is the output value or there
arel’ t',a forS' .= (I, t.i:a/) s.t. S— S'.

Proof.

By (/i) evaluation steps preserve typing. By (ii) closed expressions
induce overall execution, hence are safe processes. O

<
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Some Results

Theorem (Preservation)
IfS = (I, ti:c), then S — S for some S’ := (O, t'".i:a).

Proof.

By induction on «, o’ € Types and the structure of I'; and by the
Safety Theorem for S — S'. ]
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Some results

Theorem (Progress)
IfS:=(O;T,t.i:a), then either S — S’ or exec(«) is the output value.

Proof.

By induction on « € Types using the properties induced by O,l; by
Safety Theorem for S — S’ and using the Preservation Theorem as
last step. O

4
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Conclusions

@ A Computational Interpretation for a Multimodal Type-Theory
with indexed and ordered Contexts;

@ Operational Interpretation by a Procedural Semantics for Mobile
Code and Mobile Values;

@ Corresponding Epistemic Interpretation for Trusted
Communications with definitions of DK/CK;
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