Procedural Semantics for a Modal Type
System

Giuseppe Primiero

FWO - Flemish Research Foundation
Centre for Logic and Philosophy of Science, Ghent University
IEG - Oxford University

« Centrfor Logic and

it cam
i o =

& Wetenschapsiloscfie

Giuseppe.Primiero@Ugent.be
http://www.philosophy.ugent.be/giuseppeprimiero/

CLMPS, Nancy, France
July, 2011

Outline

@ Localized Curry-Howard Semantics

Q Operational Semantics for our Modal TT

© Conclusions

o =3 = E 9Dacr
G. Primiero (Ghent University) Modal Type Theory

0 Localized Curry-Howard Semantics

=} 5 = E DAy
G. Primiero (Ghent University) Modal Type Theory

Modalities for localized computations

@ Procedural Semantics with Modalities for Contextual (localized)
Computing;

@ designed from a multi-modal type system with a BHK semantics
Martin-L6f’s style with Proofs-as-Programs (at IMLA11 on
Saturday);

@ localization of processes to represent distributed computing;
@ rules for connectives intepret composition of processes;

@ modal rules interpret interaction of code at locations (mobility).

G. Primiero (Ghent University) Modal Type Theory CLMPS11 3/21

Other Extended Semantics

@ (Modal Types based) Dynamic Semantics in terms of a big-step
evaluation relation in [Murphy, 2008];

@ (Modal) Network Operational Semantics in
[Jia and Walker, 2004] and [Park, 2006];

@ (BHK-inspired) Operational Semantics of expressions encoding
proofs in LP in terms of global computation in
[Artemov and Bonelli, 2007];

G. Primiero (Ghent University) Modal Type Theory CLMPS11 4/21

Q Operational Semantics for our Modal TT

=} 5 = E DAy
G. Primiero (Ghent University) Modal Type Theory

Semantics with indexed modal types

@ a;:« expresses the existence of a program valid at location i of
type a;

@ [; - a is the sequence of computational steps valid at location i
that validate a program of type «;

@ the meaning of program « is given by explaining how steps in T;
are obtained and where they hold;

@ Use modalities in o, - « to express local/global validity of
program/processes.

G. Primiero (Ghent University) Modal Type Theory CLMPS11 5/21

Translation to an Operational Semantics

@ Provide a syntax-oriented inductively defined semantics
reflecting the original BHK proof interpretation;

@ Define the behavior of programs by transition relations among
states of the corresponding (abstract) machine;

@ Define the valid transitions as a set of inference rules to give a
composite piece of syntax in terms of the transitions of its
components;

@ Enrich the language with locations and values/code mobility
operations.

G. Primiero (Ghent University) Modal Type Theory CLMPS11 6/21

Language

Definition (Syntax of the Programming Language)
The syntax is defined by the following alphabet:
Types =a|laxflaUf|a—plaDdp
Terms T = Xx; | a
Functions := exec(«) | runi(c) | runiuj(a -) | runinj(a - B) |
synchro;(3(exec(«)))
Contexts C := A | T; | ol
Remote Operations := GLOB(O;l", o) | BROAD(<n,T, o)
Portable Code := RET (T'ju;,) | SEND(T jrj,)

G. Primiero (Ghent University) Modal Type Theory CLMPS11 7/21

Conventions

@ exec refers to the output of a running program; can take any
index;

@ runis the procedural representation of a function; occurs with a
single index when referring to a single process;

@ run takes compositions of indices when it composes processes:
U for executability at either location; N for executability at ordered
intersection;

@ synchro computes a function using exec of some value it
depends from (Call by Value): semantic equivalent for
B-reduction or function application;

@ Introduction Rules for Modalities correspond to Rules for Remote
Operations; Eliminations Rules to Rules for Portable Code.

G. Primiero (Ghent University) Modal Type Theory CLMPS11 8/21

Operational Semantics

Definition (State Machine)
A state machine S S

S:=(C,ti:a)|C € Context; t € T;i€Z,a c Types

is an occurrence of an indexed typed term in context.

G. Primiero (Ghent University) Modal Type Theory CLMPS11 9/21

Computational Rules

Definition (Typing Rules)

global local
Aj, ai:a - exec(a) [, X;:c; Aj = runi(a)

ai:a bj:p ai: o

- Ix — U
runyj(a x) runi(a U B)

ai:a exec(a)t by:p ’ Xt runi(a) = b B
%

runiuj(cc — B) runinj(a O B)

run,-mj(a D) ﬂ) aj:o

synchro

synchroj(b(exec(c)))

G. Primiero (Ghent University) Modal Type Theory CLMPS11 10/21

The Modal Extension

Definition (Modal Judgements)

The set of modal judgements M for any i € G is defined by the
following modal formation rules:
exec(a) Fi = runj(c)

O — Formation ——— & — Formation
Ok« Ol ko

G. Primiero (Ghent University) Modal Type Theory CLMPS11 11/21

Modal Rules

Definition
[, Xj:a = run; O, xi(a) : a F exec
fin 2y = €2 () iT,x(&) : (@) RPCH
GLOB(D,’U/‘F,O{)
[, Xi:a b runi(a) < F runi(a
i Xj j(@r) O j()RPC2
BROAD(Cinl, @)
O, ai:a - exec(a) GLOB(O il o
it,dj. o (@) (Qiyj)PORT1
RET (T i), @)
O, x;: o F runjq; BROAD(Cjnl, a
Xk ifini(a) (©i0-2) porrs
SEND(T jrj, o)

G. Primiero (Ghent University) Modal Type Theory CLMPS11 12/21

Operational Semantics

Definition (Operational Model)
An indexed transition system (also called Network)

Networks N := (S,—,T)

is a triple where S is a set of states, 7 is a set of indices and

— (S x Z x §) is a ternary relation of indexed transitions. If S, S’ € S
and i,j € Z, then — (S, 1,j, S') is written as S; — S;. This means that
there is a transition — from state S valid at index i to state S’ valid at
index j defined according to the state typing rules.)

CLMPS11 13/21

G. Primiero (Ghent University) Modal Type Theory

Evaluation

Rewriting rules for states transition:

S— g

(T, Xi) — (O, runi(«@))

(T, ai:a) — (O;, exec(a))

(I, exec(a) - by) — (O, runjuj(a — B))

(T4, runi(«) F by) — (O;, synchro(b;(exec(«))))

(I';, exec(a), exec(B)) — (O;F, rumj(a x)

(T, exec(a)) — (O;F, runi(a U B))

(I';, exec(a)) — (GLOB(O, T, o))

(Oil, aiyj) = (RET (i,)

(F,-, I’Uﬂ/(a)) — (BROAD(O,‘WF, Oz))

(O, i) = (SEND(T i, @)

G. Primiero (Ghent University) Modal Type Theory

CLMPS11

14/21

Semantic Validity

Definition (Semantic Expressions)

@ Evaluation defines strong typing (normalisation) by reduction to
expressions (O,I, exec(«)) and GLOB(O;T,).

@ Expressions (I';, runj(a))) and BROAD(< I,) are admissible
procedural steps but may fail to produce a safe value (when
called upon at wrong addresses).

@ This makes (only) the following expressions valid (safely
evaluated):

aj:« value 0;l, « value

G. Primiero (Ghent University) Modal Type Theory CLMPS11 15/21

Some Results

Theorem (Type Safety)
Safety is satisfied by transformations (according to the table of
rewriting rules) or by terminating expression (exec(«))

Q IfS:=(j,ti:a),and S — &', then S’ := (I}, t.i:a);

Q IfS:= (I, t.i:«a), then either exec(«) is the output value or there
arel’ t',a forS' .= (I, t.i:a/) s.t. S— S'.

Proof.

By (/i) evaluation steps preserve typing. By (ii) closed expressions
induce overall execution, hence are safe processes. O

<

G. Primiero (Ghent University) Modal Type Theory CLMPS11 16/21

Some Results

Theorem (Preservation)
IfS = (I, ti:c), then S — S for some S’ := (O, t'".i:a).

Proof.

By induction on «, o’ € Types and the structure of I'; and by the
Safety Theorem for S — S'.]

G. Primiero (Ghent University) Modal Type Theory CLMPS11 17/21

Some results

Theorem (Progress)
IfS:=(O;T,t.i:a), then either S — S’ or exec(«) is the output value.

Proof.

By induction on « € Types using the properties induced by O,l; by
Safety Theorem for S — S’ and using the Preservation Theorem as
last step. O

4

G. Primiero (Ghent University) Modal Type Theory CLMPS11 18/21

© conclusions

=} 5 = E DAy
G. Primiero (Ghent University) Modal Type Theory

Conclusions

@ A Computational Interpretation for a Multimodal Type-Theory
with indexed and ordered Contexts;

@ Operational Interpretation by a Procedural Semantics for Mobile
Code and Mobile Values;

@ Corresponding Epistemic Interpretation for Trusted
Communications with definitions of DK/CK;

G. Primiero (Ghent University) Modal Type Theory CLMPS11

19/21

References |

Artemov, S. and Bonelli, E. (2007).
The intensional lambda calculus.
In Proceedings of the international symposium on Logical
Foundations of Computer Science, LFCS '07, pages 12-25,
Berlin, Heidelberg. Springer-Verlag.

Jia, L. and Walker, D. (2004).
Modal Proofs as Distributed Programs.
In Programming Languages and Systems, ESOP2004, volume
2986 of Lectures Notes in Computer Science. Springer Verlag.

Murphy, T. (2008).
Modal Types for Mobile Code.
PhD thesis, School of Computer Science, Carnegie Mellon
University.
CMU-CS-08-126.

[m] = =
G. Primiero (Ghent University) Modal Type Theory

References Il

Park, S. (20086).
A modal language for the safety of mobile values.

In In Fourth ASIAN Symposium on Programming Languages and
Systems, pages 217-233. Springer.

o F
G. Primiero (Ghent University) Modal Type Theory

	Localized Curry-Howard Semantics
	Operational Semantics for our Modal TT
	Conclusions

