
Curry’s contribution to programming (1946–1950) L. De Mol, M. Bullynck and M. Carlé

Haskell before Haskell. Curry’s
contribution to programming

(1946–1950)

L. De Mol1, M. Bullynck2 and M. Carlé3

1Universiteit Gent, elizabeth.demol@ugent.be

2 Paris 8, maarten.bullynck@kuttaka.org

3 Athens, mc@aiguphonie.com

CIE2010, Ponta Delgada 1

Introduction L. De Mol, M. Bullynck and M. Carlé

Overview

• A logician and the Eniac

• On the composition of programs for automatic computing

• Curry vs. Goldstine-von Neumann

• Discussion

CIE2010, Ponta Delgada 2

A logician and the Eniac L. De Mol, M. Bullynck and M. Carlé

A logician and the Eniac

CIE2010, Ponta Delgada 3

A logician and the Eniac L. De Mol, M. Bullynck and M. Carlé

A logician and the Eniac

• Haskell B. Curry before World War II: Tour in Europe (Göttingen...); work

on combinatory logic; from 1929 onwards professor at Penn University

A guiding idea in Curry’s work “[I]t is evident that one can formalize in var-

ious ways and that some of these ways constitute a more profound analysis

than others. Although from some points of view one way of formalization

is as good as any other, yet a certain interest attaches to the problem of

simplification ” (Curry 1942)

• Haskell B. Curry during World War II: 1942–1944: work at Frankford Arse-

nal and Applied Physics Laboratories; from 1944 Ballistic Research Labora-

tories (Aberdeen Proving Ground) who had ordered the building of ENIAC

• The Ballistic Research Laboratories had “assembled a ‘Computations Com-

mittee’ to prepare for utilizing the machine after its completion”, and the

ENIAC was extensively test-run during its first months. Its members were:

* Leland B. Cunningham (an astronomer)

* Haskell B. Curry (a logician)

* Derrick H. Lehmer (a number theorist)

CIE2010, Ponta Delgada 4

A logician and the Eniac L. De Mol, M. Bullynck and M. Carlé

Curry and Wyatt’s program on the ENIAC

• In collaboration with Willa Wyatt, one of ENIAC’s female programmers,

Curry wrote up a technical report “A study of inverse interpolation of the

Eniac” (1946, declassified in 1999)

• “The problem of inverse interpolation [...] is important in the calculation

of firing tables. Suppose the trajectory calculations have given us the co-

ordinates (x, y) of the projectile as functions of t (time) and φ (angle of

departure). For the tables we want t and φ as functions of x and y; in-

deed we wish to determine φ so as to hit a target whose position (x, y) is

known, and t is needed for the fuze setting or other purposes. [...] In this

report the problem of inverse interpolation is studied with reference to the

programming on the ENIAC as a problem in its own right.”

CIE2010, Ponta Delgada 5

A logician and the Eniac L. De Mol, M. Bullynck and M. Carlé

Curry and Wyatt’s program on the ENIAC: Stages and
processes

• “In this report the problem of inverse interpolation is studied with reference

to the programming on the ENIAC as a problem in its own right.”

• “The entire computation procedure can [...] be divided into certain major

parts which are repeated over and over according to the programming. These

major parts will be called processes.”

• “Each process is broken into pieces called stages which are units in the

following sense. Each stage is a program sequence with an input and one

or more outputs. The input of each stage comes from the output of one or

more other stages of the same or different processes; the ouputs all go to the

input of some other stage or are blank [...] The stages can be programmed

as independent units, with a uniform notation as to program lines, and then

put together; and since each stage uses only a relatively small amount of

the equipment the programming can be done on sheets of paper of ordinary

size.”

CIE2010, Ponta Delgada 6

A logician and the Eniac L. De Mol, M. Bullynck and M. Carlé

CIE2010, Ponta Delgada 7

A logician and the Eniac L. De Mol, M. Bullynck and M. Carlé

CIE2010, Ponta Delgada 8

A logician and the Eniac L. De Mol, M. Bullynck and M. Carlé

CIE2010, Ponta Delgada 9

A logician and the Eniac L. De Mol, M. Bullynck and M. Carlé

Theoretical considerations in the 1946 report

• “[The] basic scheme was not designed specifically for a particular problem,

but as a basis from which modifications could be made for various such

problems.” Example: composite interpolation.

• The Eniac experience and the program of inverse interpolation triggers

Curry’s interest to develop the topic further:

– “The problem of program composition was a major consideration in

a study of inverse interpolation on the ENIAC [...]; for although that

study was made under stress and was directed primarily towards finding

at least one practical method of programming a specific problem, yet an

effort was made to construct the program by piecing together subpro-

grams in such a way that modifications could be introduced by changing

these subprograms.” (Curry, 1950)

– “In this way we can build up more and more complicated programs. An

examination has been made in this way of the programming of inverse

interpolation on functions of two variables. This problem is almost ideal

for the study of programming; because, although it is simple enough to

be examined in detail by hand methods; yet it is complex enough to

contain a variety of kinds of program compositions.” (Curry 1952)

CIE2010, Ponta Delgada 10

On the composition of programs L. De Mol, M. Bullynck and M. Carlé

The composition of programs

CIE2010, Ponta Delgada 11

On the composition of programs L. De Mol, M. Bullynck and M. Carlé

After the ENIAC experience

• Curry reads the John von Neumann - H.H. Goldstine reports

– Preliminary discussion of the logical design of an electronic computing

instrument. 1946–1947 (EDVAC report)

– Planning and coding of problems for an electronic computing instru-

ment. parts I,II and III, 1947–48.

• Building upon his readings and his ENIAC experience, Curry writes up two

technical reports for the Navy Ordnance (unclassified)

– 1949: “On the composition of programs for automatic computing”

– 1950: “A program composition technique as applied to inverse interpo-

lation”

– 1954: “The logic of program composition”, presented at 2e Colloque

International de Logique Mathématique, Paris, 25-30 août 1952 (= a

short resumé of the two preceding reports)

CIE2010, Ponta Delgada 12

On the composition of programs L. De Mol, M. Bullynck and M. Carlé

On the composition of programs for automatic computing

• The problem of composition: “In the present state of development of

automatic digital computing machinery, a principal bottleneck is the plan-

ning of the computation...The present report is an attack on this problem

from the standpoint of composition of computing schedules. By this is meant

the following. Suppose that we wish to perform a computation which is a

complex of simple processes that have already been planned. Suppose that

for each of these component processes we have a plan recorded in the form

of what is here called a program, by means of a system of symbolization

called a code. It is required to form a program for the composite computa-

tion. This problem is here attacked theoretically by using techniques similar

to those used in some phases of mathematical logic.”

• New notation and introduction of automated composition: “The

present theory develops in fact a notation for program construction than

the “flow charts” of [Goldstine and Von Neumann]. Flow charts will be

used [...] primarily as an expository device. By means of this notation a

composite program can be exhibited as a function of its components in such

a way that the actual formation of the composite program can be carried

out by a suitable machine.”

CIE2010, Ponta Delgada 13

On the composition of programs L. De Mol, M. Bullynck and M. Carlé

On the composition of programs: Definitions and assump-
tions

Program: “An assignment of n + 1 words to the first n + 1 locations will be

called a program.” X = M0M1...Mn

Two types of Words: quantities and orders. Orders can be: 1) datum number

location, 2) exit number location and 3) an operator. They can be classified

as arithmetical, transfer, control, stop orders. Of special interest is the

Mixed arithmetic order: arithmetical operation involving an order as

datum (cfr. partial substition in Goldstine-von Neumann)

“The distinction between quantities and orders is not a distinction of form [...]

The machine makes this distinction according to the situation. Making this

classification of words in advance is a difficult problem [...] [T]he first stage

in a study of programming is to impose restrictions on programs in order

that the words in all the configurations of the resulting calculation can be

uniquely classified into orders and quantities”

Regular program: a primary program or one that satisfies the table condi-

tion; typically determinate; calculation terminates

Normal Program: X = AC, A is an order program and C a quantity pro-

gram (a normal program can be obtained from a regular program through

transformations of the 1st and 2nd kind as Curry proves)

CIE2010, Ponta Delgada 14

On the composition of programs L. De Mol, M. Bullynck and M. Carlé

On the composition of programs: transformations

Given the programs X, Y, Z and numerical function T(k):

X = M0M1M2...Mp

Y = N0N1N2...Nq

Z = L0L1L2...Lr

T (k) = k′ k ≤ m, k′ ≤ n

Transformation of the first kind: reorienting the location numbers in a

program

Y=(T)(X): T(X) gives the Y such that n = m (m is range of location

numbers in X) and every Ni is derived from Mi by replacing every location

number k in every order of X by T (k)

Transformation of the second kind: reshuffling the words to match up

with the changes in location numbers.

{T}(X) = Y =

8

>

>

<

>

>

:

N0 = M0

NT (i) = Mi if T is defined for i , i > 0 (∗)

Ni = J else

CIE2010, Ponta Delgada 15

On the composition of programs L. De Mol, M. Bullynck and M. Carlé

On the composition of programs: Replacement

Replacement a program made up from two programs by putting, in certain

locations of one program, words from corresponding locations in the other

program.

Let Θ ⊂ {0, 1, 2, ..., p} (a list of integers), then the replacement Θ
Y

X = Z is:

Li =

8

>

>

<

>

>

:

Mi if i /∈ Θ, i ≤ p

Ni if i ≤ q and i ∈ φ or i > p

J if i ∈ Θ, i > q

When Θ = ∅ then X
Y

= X with spaces after

CIE2010, Ponta Delgada 16

On the composition of programs L. De Mol, M. Bullynck and M. Carlé

On the composition of programs: Substitution

Simple Substitution: “A program Z will be said to be formed by substitution

of Y for a certain output in X, when Z carries on a calculation homomor-

phic to X until the control reaches that output, then starts a calculation

homomorphic to Y using the quantities calculated by X as quantity pro-

gram”

Notation: Z = X → Y

X = AC and Y = BC are normal, m is the location number (m ∈ A) at which

Y ist to be substituted, then Z = X → Y = SY (X) = [ΘT1

[T2](Y)
](X) =

ΘT1

[T2](Y)
(T1)(X) is defined by

T1(k) =

8

>

>

<

>

>

:

k for 0 < k < m

m + |B| − 1 for k = m

k + |B| − 1 for m < k ≤ |A| + |C|

T2(k) =

8

<

:

m + k − n for n ≤ k ≤ n + |B| − 1

|A| + k − n for n + |B| < k ≤ n + |B| + |C| − 1

CIE2010, Ponta Delgada 17

On the composition of programs L. De Mol, M. Bullynck and M. Carlé

On the composition of programs: Substitution

A C ... B C

A1
... A2 C ∅

|B|
m n

|B|

A C ... B C

... B ... C ∅

m n

A C ... B C

A1 B A2 C ∅

m n

Figure 1: From top to bottom: The T1(X) transformation; the T2(Y)

transformation; and finally the substitution [ΘT1

[T2](Y)](X) that substi-

tutes Y in X at position m.

CIE2010, Ponta Delgada 18

Curry vs. Goldstine-von Neumann L. De Mol, M. Bullynck and M. Carlé

Curry vs. Goldstine-von Neumann

CIE2010, Ponta Delgada 19

Curry vs. Goldstine-von Neumann L. De Mol, M. Bullynck and M. Carlé

The Curry approach vs. Goldstine-von Neumann approach

A program composition technique as applied to inverse interpolation (1950):

Synthesis of inverse interpolation + discussion of many issues in program-

ming

“(1) Experience in logic and in mathematics shows that an insight into

principles is often best obtained by a consideration of cases too simple for

practical use [...] (2) It is quite possible that the technique of program com-

position can completely replace the elaborate methods of Goldstine and von

Neumann [...] (3) The technique of program composition can be mecha-

nized; if it should prove desirable to set up programs [...] by machinery,

presumably this may be done by analyzing them clear down to the basic

programs”

CIE2010, Ponta Delgada 20

Curry vs. Goldstine-von Neumann L. De Mol, M. Bullynck and M. Carlé

The Curry approach vs. Goldstine-von Neumann approach:
Determination of a basic instruction set (vs. EDVAC-order
set)

Assignment: If ξ is a term and λ a locatum, then {ξ : λ} is a program that

calculates the term ξ and stores it in the locatum λ

Basic arithmetic instructions:

π0(t) = +t π1(t) = −t

π2(t) = +|t| π3(t) = −|t|

Two mixed arithmetic orders, i.e., d(∗) and e(∗) where d(∗) is an order that

reads the location number of its own datum into the accumulator and e(∗)

an order that reads the location number of its own exit number into the

accumulator

A conditional and unconditional jump and a stop instruction.

Using these instructions plus assignment (assignment being a simple kind of

composition), Curry produces all simple instructions in the Goldstine-von

Neumann EDVAC vocabulary

CIE2010, Ponta Delgada 21

Curry vs. Goldstine-von Neumann L. De Mol, M. Bullynck and M. Carlé

The Curry approach vs. Goldstine-von Neumann approach:
Compiling arithmetic expressions (vs. Ad-hoc algorithms)

arithmetic programs: compiler for arithmetic procedures, a “complete theory

for the construction of an arbitrary such program. This program will not

always be the shortest one possible to attain the required result; but, at least,

it will be automatic as soon as certain decisions are made.”

Curry gives inductive definitions for forming (and thus analyzing) arithmetic

formulae

If one converts the expression (x + 1)(y + 1)(z + 1) into Curry’s notation for

the composition of programs, one gets:

{x : A} → {A + 1 : A} → {A : w} → {y : A} → {A + 1 : A} → {A : R} →

{wR : A} → {A : w} → {z : A} → {A + 1 : A} → {A : R} → {wR : A}

Curry gives similar ‘partial compilers’ for formulae in predicate logic, and for

tabulating commands

CIE2010, Ponta Delgada 22

Curry vs. Goldstine-von Neumann L. De Mol, M. Bullynck and M. Carlé

The Curry approach vs. Goldstine-von Neumann approach:
A calculus of programs (vs. automata theory?)

“When these processes [of composition] are combined with one another, there

will be evidently be equivalences among the combinations. There will thus

be a calculus of program composition. This calculus will resembles, in many

respects the ordinary calculus of logic. It can be shown, for example, that

the operation “→” is associative. But the exact nature of the calculus has

not, so far as I know, been worked out.” → Iuri Ianov’s calculus of programs

(1959)

CIE2010, Ponta Delgada 23

Discussion L. De Mol, M. Bullynck and M. Carlé

Discussion

CIE2010, Ponta Delgada 24

Discussion L. De Mol, M. Bullynck and M. Carlé

Discussion

“The objective was to create a programming technique based on a systematic

logical theory. Such a theory has the same advantages here that it has in

other fields of human endeavor. Toward that objective a beginning has been

made.” (Curry, 1950)

“This automatic proramming is anticipated by the author” (Patterson in a

review on Curry, 1957)

“Now it is an important fact that the actual construction of a program

indicated in the above symbolism is a mechanical process. It can be carried

out, at least in principle, by non-technical personnel or by a machine. The

main machine itself may also be used for that purpose.”

CIE2010, Ponta Delgada 25

