

The Use of Defaults in Commonsense Reasoning. How Abnormality Markers Point Out the Bad Guys.

Hans Lycke

Centre for Logic and Philosophy of Science Ghent University Hans.Lycke@Ugent.be http://logica.ugent.be/hans

VAF IV January 20–22 2010, Leuven

イロン イヨン イヨン イヨン

Outline

Defaults, Commonsense Reasoning, and AI

2 The Adaptive Logics Approach

- Characterizing Default Rules
- Characterizing Default Inference
- Example

Default Rules

Rules of the form "Typically A's are B's"

EXAMPLE: Typically birds fly.

Default Rules

Rules of the form "Typically A's are B's"

EXAMPLE: Typically birds fly.

Default rules are not universally valid, but allow for some exceptions.

EXAMPLE: Penguins are non-flying birds.

Default Rules Rules of the form "Typically A's are B's" EXAMPLE: Typically birds fly.

• Default rules are not universally valid, but allow for some exceptions.

EXAMPLE: Penguins are non-flying birds.

• Default rules are frequently used in commonsense reasoning.

Default Rules Rules of the form "Typically A's are B's" EXAMPLE: Typically birds fly.

- Default rules are not universally valid, but allow for some exceptions.
 EXAMPLE: Penguins are non-flying birds.
- Default rules are frequently used in commonsense reasoning.
 - In a defeasible way!
 - \Rightarrow Obtained consequences may be withdrawn later on.

Default Rules Rules of the form "Typically A's are B's"

EXAMPLE: Typically birds fly.

• Default rules are not universally valid, but allow for some exceptions.

EXAMPLE: Penguins are non-flying birds.

- Default rules are frequently used in commonsense reasoning.
 - In a defeasible way!
 - \Rightarrow Obtained consequences may be withdrawn later on.
 - Nature's way to lessen the cognitive load on people's minds.
 - ⇒ Plausible consequences are drawn more swiftly, disregarding all possible exceptions.

Default Rules in Al

Default Rules in Al

In AI, default rules are characterized as defeasible inference rules.

 \Rightarrow When necessary, the consequences obtained by means of these inferences rules are withdrawn.

Default Rules in Al

- $\Rightarrow~$ When necessary, the consequences obtained by means of these inferences rules are withdrawn.
 - in case new information is acquired that contradicts these consequences.
 - = external non-monotonicity

Default Rules in Al

- $\Rightarrow~$ When necessary, the consequences obtained by means of these inferences rules are withdrawn.
 - in case new information is acquired that contradicts these consequences.
 - = external non-monotonicity
 - in case of conflict between different default rules.
 - = internal non-monotonicity

Default Rules in Al

- $\Rightarrow~$ When necessary, the consequences obtained by means of these inferences rules are withdrawn.
 - in case new information is acquired that contradicts these consequences.
 - external non-monotonicity
 - in case of conflict between different default rules.
 - = internal non-monotonicity

Resolving Conflicts Between Defaults

In general, conflicts are resolved by relying on two requirements:

Resolving Conflicts Between Defaults

In general, conflicts are resolved by relying on two requirements:

- specificity
 - = more specific defaults are preferred over less specific ones.

Resolving Conflicts Between Defaults

In general, conflicts are resolved by relying on two requirements:

- specificity
 - = more specific defaults are preferred over less specific ones.
- inheritance
 - members belonging to a particular class should inherit as much characteristics as possible from the overarching classes.

Resolving Conflicts in AI

Specificity and inheritance are formally implemented by

- rewriting the default base,
- generating priorities among defaults, or
- imposing restrictions on the domain of applications.

Resolving Conflicts in AI

Specificity and inheritance are formally implemented by

- rewriting the default base,
- generating priorities among defaults, or
- imposing restrictions on the domain of applications.

HOWEVER: This is done by means of

- extra–logical computations, or
- an extremely complicated preference ordering on worlds.

Resolving Conflicts in AI

Specificity and inheritance are formally implemented by

- rewriting the default base,
- generating priorities among defaults, or
- imposing restrictions on the domain of applications.

HOWEVER: This is done by means of

- extra-logical computations, or
- an extremely complicated preference ordering on worlds.
- PROBLEM: No human is ever going to do this kind of reasoning!

Resolving Conflicts in AI

Specificity and inheritance are formally implemented by

- rewriting the default base,
- generating priorities among defaults, or
- imposing restrictions on the domain of applications.

HOWEVER: This is done by means of

- extra–logical computations, or
- an extremely complicated preference ordering on worlds.
- PROBLEM: No human is ever going to do this kind of reasoning!
- AIM: To propose an approach to default reasoning that is grounded syntactically, and as such, comes closer to actual human reasoning.
 - by relying on the Adaptive Logics Programme.

The Adaptive Logics **D**^r and **D**^{ram}

The Adaptive Logics **D**^r and **D**^{ram}

As all adaptive logics (AL), \mathbf{D}^{r} and \mathbf{D}^{ram} are characterized by means of

a lower limit logic (LLL)

The Adaptive Logics \mathbf{D}^{r} and \mathbf{D}^{ram}

- a lower limit logic (LLL)
 - Lays down the stable, non-defeasible inference rules
 - $\Rightarrow Cn_{LLL}(\Gamma) \subseteq Cn_{AL}(\Gamma)$

The Adaptive Logics \mathbf{D}^{r} and \mathbf{D}^{ram}

- a lower limit logic (LLL)
 - Lays down the stable, non–defeasible inference rules
 - \Rightarrow $Cn_{LLL}(\Gamma) \subseteq Cn_{AL}(\Gamma)$
 - ▶ the LLL of D^r and D^{ram} is the logic CL_{\forall}

The Adaptive Logics \mathbf{D}^{r} and \mathbf{D}^{ram}

- a lower limit logic (LLL)
 - Lays down the stable, non–defeasible inference rules
 - \Rightarrow $Cn_{LLL}(\Gamma) \subseteq Cn_{AL}(\Gamma)$
 - the LLL of D^r and D^{ram} is the logic $CL_{\overline{\forall}}$
- a set of abnormalities Ω

The Adaptive Logics **D**^r and **D**^{ram}

As all adaptive logics (AL), \mathbf{D}^{r} and \mathbf{D}^{ram} are characterized by means of

- a lower limit logic (LLL)
 - Lays down the stable, non-defeasible inference rules
 - \Rightarrow $Cn_{LLL}(\Gamma) \subseteq Cn_{AL}(\Gamma)$
 - the LLL of D^r and D^{ram} is the logic $CL_{\overline{\forall}}$
- a set of abnormalities Ω
 - Defines the defeasible inference steps

 $\Rightarrow \quad \frac{A \lor B^{\in \Omega}}{A}, \text{ unless } B \text{ cannot be interpreted as false.}$

The Adaptive Logics **D**^r and **D**^{ram}

As all adaptive logics (AL), \mathbf{D}^{r} and \mathbf{D}^{ram} are characterized by means of

- a lower limit logic (LLL)
 - Lays down the stable, non-defeasible inference rules
 - \Rightarrow $Cn_{LLL}(\Gamma) \subseteq Cn_{AL}(\Gamma)$
 - If the LLL of \mathbf{D}^{r} and $\mathbf{D}^{\mathsf{ram}}$ is the logic $\mathbf{CL}_{\overline{\forall}}$
- a set of abnormalities Ω
 - Defines the defeasible inference steps

 $\Rightarrow \quad \frac{A \lor B^{\in \Omega}}{A}, \text{ unless } B \text{ cannot be interpreted as false.}$

an adaptive strategy

Regulates the withdrawal of defeasibly derived consequences

Outline

Defaults, Commonsense Reasoning, and Al

The Adaptive Logics Approach Characterizing Default Rules

- Characterizing Default Inference
- Example

Langua	Language Schema					
	language	letters	logical symbols	set of wffs		
	\mathcal{L}	S	$\neg, \land, \lor, \supset, \equiv, \exists, \forall, =$	\mathcal{W}		
	$\mathcal{L}_{\overline{orall}}$	S	$\neg, \land, \lor, \supset, \equiv, \exists, \forall, = \\ \neg, \land, \lor, \supset, \equiv, \exists, \forall, \overline{\forall}, =$	$\mathcal{W}_{\overline{orall}}$		

Language Schema

language	letters	logical symbols	set of wffs	
\mathcal{L}	S	$\neg, \land, \lor, \supset, \equiv, \exists, \forall, =$	\mathcal{W}	
$\mathcal{L}_{\overline{orall}}$	S	$\neg, \land, \lor, \supset, \equiv, \exists, \forall, = \\ \neg, \land, \lor, \supset, \equiv, \exists, \forall, \overline{\forall}, =$	$\mathcal{W}_{\overline{\forall}}$	

The Universal Quantifier $\overline{\forall}$

Both gluts and gaps are allowed with respect to $\overline{\forall}$.

Language Schema

language	letters	logical symbols	set of wffs
\mathcal{L}	S	$\neg, \land, \lor, \supset, \equiv, \exists, \forall, =$	\mathcal{W}
$\mathcal{L}_{\overline{orall}}$	S	$\neg, \land, \lor, \supset, \equiv, \exists, \forall, = \neg, \land, \lor, \supset, \equiv, \exists, \forall, \overline{\forall}, =$	$ \mathcal{W}_{\overline{\forall}}$

The Universal Quantifier $\overline{\forall}$

Both gluts and gaps are allowed with respect to $\overline{\forall}$.

- $\Rightarrow~$ There are no axioms or inference rules characterizing $\overline{\forall}.$
 - $\Rightarrow \quad \text{The proof theory of } \textbf{CL}_{\overline{\forall}} \ = \ \text{the proof theory of } \textbf{CL}!$

Language Schema

language	letters	logical symbols	set of wffs	
\mathcal{L}	S	$\neg, \land, \lor, \supset, \equiv, \exists, \forall, =$	\mathcal{W}	
$\mathcal{L}_{\overline{orall}}$	S	$ \neg, \land, \lor, \supset, \equiv, \exists, \forall, \overline{\forall}, =$	$\mathcal{W}_{\overline{\forall}}$	

The Universal Quantifier $\overline{\forall}$

Both gluts and gaps are allowed with respect to $\overline{\forall}$.

- $\Rightarrow~$ There are no axioms or inference rules characterizing $\overline{\forall}.$
 - $\Rightarrow \quad \text{The proof theory of } \mathbf{CL}_{\overline{\forall}} \ = \ \text{the proof theory of } \mathbf{CL}!$
- \Rightarrow No consequences can be drawn from formulas of the form $(\overline{\forall}_{\alpha})A_{\alpha}$.

Language Schema

language	letters	logical symbols	set of wffs
\mathcal{L}	S	$\neg, \land, \lor, \supset, \equiv, \exists, \forall, =$	\mathcal{W}
$\mathcal{L}_{\overline{orall}}$	S	$\neg, \land, \lor, \supset, \equiv, \exists, \forall, = \neg, \land, \lor, \supset, \equiv, \exists, \forall, \overline{\forall}, =$	$\mathcal{W}_{\overline{\forall}}$

The Universal Quantifier $\overline{\forall}$

Both gluts and gaps are allowed with respect to $\overline{\forall}$.

- $\Rightarrow~$ There are no axioms or inference rules characterizing $\overline{\forall}.$
 - $\Rightarrow \quad \text{The proof theory of } \mathbf{CL}_{\overline{\vee}} \ = \ \text{the proof theory of } \mathbf{CL}!$
- \Rightarrow No consequences can be drawn from formulas of the form $(\overline{\forall}_{\alpha})A_{\alpha}$.

Default Rules

Default rules are defined as formulas of the form $(\overline{\forall}_{\alpha})(A_{\alpha} \supset B_{\alpha})$, with $A_{\alpha}, B_{\alpha} \in \mathcal{L}$.

Outline

Defaults, Commonsense Reasoning, and Al

The Adaptive Logics Approach Characterizing Default Rules

- Characterizing Default Inference
- Example

3 Conclusion

Characterizing Default Inference: the Logic Dr

Defining the **D**^r–Consequence Relation (1)

 $\Gamma \vdash_{\mathbf{D}^{r}} A \text{ iff } \Gamma \vdash_{\mathbf{CL}_{\overline{\forall}}} A \lor Dab(\Delta) \text{ and } ...$

Characterizing Default Inference: the Logic Dr

Defining the **D**^r–Consequence Relation (1)

 $\Gamma \vdash_{\mathbf{D}^{r}} A \text{ iff } \Gamma \vdash_{\mathbf{CL}_{\overline{\vee}}} A \lor Dab(\Delta) \text{ and } ...$

• $Dab(\Delta) = \bigvee (\Delta)$, with $\Delta \subset \Omega$

Characterizing Default Inference: the Logic Dr

Defining the **D**^r–Consequence Relation (1)

 $\Gamma \vdash_{\mathbf{D}^r} A \text{ iff } \Gamma \vdash_{\mathbf{CL}_{\overline{\vee}}} A \lor Dab(\Delta) \text{ and } ...$

• $Dab(\Delta) = \bigvee (\Delta)$, with $\Delta \subset \Omega$

• If
$$\Delta = \emptyset$$
, then $A \in Cn_{D^r}(\Gamma)$.

$$\Rightarrow \ \textit{Cn}_{\textup{CL}_{\overline{\forall}}}(\Gamma) \subseteq \textit{Cn}_{\textup{D}^{r}}(\Gamma)$$

Defining the **D**^r–Consequence Relation (1)

 $\Gamma \vdash_{\mathbf{D}^r} A \text{ iff } \Gamma \vdash_{\mathbf{CL}_{\overline{\vee}}} A \lor Dab(\Delta) \text{ and } ...$

• $Dab(\Delta) = \bigvee (\Delta)$, with $\Delta \subset \Omega$

• If
$$\Delta = \emptyset$$
, then $A \in Cn_{D^r}(\Gamma)$.

 $\Rightarrow \ \textit{Cn}_{\textbf{CL}_{\overline{\forall}}}(\Gamma) \subseteq \textit{Cn}_{\textbf{D}^{r}}(\Gamma)$

• If $\Delta \neq \emptyset$, then A is a defeasible/conditional consequence of Γ .

< 🗇 > < 🖻 > <

Defining the **D**^r–Consequence Relation (1)

 $\Gamma \vdash_{\mathbf{D}^{r}} A \text{ iff } \Gamma \vdash_{\mathbf{CL}_{\overline{\vee}}} A \lor Dab(\Delta) \text{ and } ...$

• $Dab(\Delta) = \bigvee (\Delta)$, with $\Delta \subset \Omega$

• If
$$\Delta = \emptyset$$
, then $A \in Cn_{D^r}(\Gamma)$.
 $\Rightarrow Cn_{CL_{\forall}}(\Gamma) \subseteq Cn_{D^r}(\Gamma)$

• If $\Delta \neq \emptyset$, then A is a defeasible/conditional consequence of Γ .

•
$$\Omega = \{ (\overline{\forall}_{\alpha}) (A_{\alpha} \supset B_{\alpha}) \land A_{\beta/\alpha} \land \neg B_{\beta/\alpha} \mid A_{\alpha}, B_{\alpha} \in \mathcal{L}, \beta \in \mathcal{C} \}$$

Defining the **D**^r–Consequence Relation (1)

 $\Gamma \vdash_{\mathbf{D}^{r}} A \text{ iff } \Gamma \vdash_{\mathbf{CL}_{\overline{\vee}}} A \lor Dab(\Delta) \text{ and } ...$

• $Dab(\Delta) = \bigvee (\Delta)$, with $\Delta \subset \Omega$

► If
$$\Delta = \emptyset$$
, then $A \in Cn_{D^r}(\Gamma)$.
 $\Rightarrow Cn_{CL_{\forall}}(\Gamma) \subseteq Cn_{D^r}(\Gamma)$

• If $\Delta \neq \emptyset$, then A is a defeasible/conditional consequence of Γ .

•
$$\Omega = \{(\overline{\forall}_{\alpha})(A_{\alpha} \supset B_{\alpha}) \land A_{\beta/\alpha} \land \neg B_{\beta/\alpha} \mid A_{\alpha}, B_{\alpha} \in \mathcal{L}, \beta \in \mathcal{C}\}$$

EXAMPLE: $\Gamma = \{ (\overline{\forall}_{\alpha}) (B_{\alpha} \supset F_{\alpha}), B_t, \neg F_t \}$

・ 同 ト ・ ヨ ト ・ ヨ

Defining the **D**^r–Consequence Relation (1)

 $\Gamma \vdash_{\mathbf{D}^{r}} A \text{ iff } \Gamma \vdash_{\mathbf{CL}_{\overline{\vee}}} A \lor Dab(\Delta) \text{ and } ...$

• $Dab(\Delta) = \bigvee (\Delta)$, with $\Delta \subset \Omega$

► If
$$\Delta = \emptyset$$
, then $A \in Cn_{D^r}(\Gamma)$.
⇒ $Cn_{CL_{\neg}}(\Gamma) \subseteq Cn_{D^r}(\Gamma)$

• If $\Delta \neq \emptyset$, then A is a defeasible/conditional consequence of Γ .

•
$$\Omega = \{ (\overline{\forall}_{\alpha}) (A_{\alpha} \supset B_{\alpha}) \land A_{\beta/\alpha} \land \neg B_{\beta/\alpha} \mid A_{\alpha}, B_{\alpha} \in \mathcal{L}, \beta \in \mathcal{C} \}$$

EXAMPLE:
$$\Gamma = \{ (\overline{\forall}_{\alpha}) (B_{\alpha} \supset F_{\alpha}), B_t, \neg F_t \}$$

 $\Rightarrow \Gamma \vdash_{\mathsf{CL}_{\overline{\forall}}} F_t \lor ((\overline{\forall}_{\alpha}) (B_{\alpha} \supset F_{\alpha}) \land B_t \land \neg F_t)$

A (1) > (1) > (1)

Defining the **D**^r–Consequence Relation (1)

 $\Gamma \vdash_{\mathbf{D}^r} A \text{ iff } \Gamma \vdash_{\mathbf{CL}_{\overline{\vee}}} A \lor Dab(\Delta) \text{ and } ...$

• $Dab(\Delta) = \bigvee (\Delta)$, with $\Delta \subset \Omega$

► If
$$\Delta = \emptyset$$
, then $A \in Cn_{D^r}(\Gamma)$.
⇒ $Cn_{CL_{\neg}}(\Gamma) \subseteq Cn_{D^r}(\Gamma)$

• If $\Delta \neq \emptyset$, then A is a defeasible/conditional consequence of Γ .

•
$$\Omega = \{ (\overline{\forall}_{\alpha}) (A_{\alpha} \supset B_{\alpha}) \land A_{\beta/\alpha} \land \neg B_{\beta/\alpha} \mid A_{\alpha}, B_{\alpha} \in \mathcal{L}, \beta \in \mathcal{C} \}$$

EXAMPLE:
$$\Gamma = \{ (\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}), B_{t}, \neg F_{t} \}$$

 $\Rightarrow \Gamma \vdash_{\mathsf{CL}_{\overline{\forall}}} F_{t} \lor ((\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}) \land B_{t} \land \neg F_{t})$
 $\Rightarrow F_{t} \text{ is a defeasible consequence of } \Gamma.$

A (1) > (1) > (1)

Defining the **D**^r–Consequence Relation (1)

 $\Gamma \vdash_{\mathbf{D}^{r}} A \text{ iff } \Gamma \vdash_{\mathbf{CL}_{\forall}} A \lor Dab(\Delta) \text{ and } ...$

• $Dab(\Delta) = \bigvee (\Delta)$, with $\Delta \subset \Omega$

► If
$$\Delta = \emptyset$$
, then $A \in Cn_{D^r}(\Gamma)$.
⇒ $Cn_{CL_{\neg}}(\Gamma) \subseteq Cn_{D^r}(\Gamma)$

• If $\Delta \neq \emptyset$, then A is a defeasible/conditional consequence of Γ .

•
$$\Omega = \{ (\overline{\forall}_{\alpha}) (A_{\alpha} \supset B_{\alpha}) \land A_{\beta/\alpha} \land \neg B_{\beta/\alpha} \mid A_{\alpha}, B_{\alpha} \in \mathcal{L}, \beta \in \mathcal{C} \}$$

EXAMPLE:
$$\Gamma = \{ (\overline{\forall}_{\alpha}) (B_{\alpha} \supset F_{\alpha}), B_t, \neg F_t \}$$

- $\Rightarrow \quad \Gamma \vdash_{\mathbf{CL}_{\overline{\forall}}} F_t \lor ((\overline{\forall}_\alpha)(B_\alpha \supset F_\alpha) \land B_t \land \neg F_t)$
- \Rightarrow F_t is a defeasible consequence of Γ .

BUT: Is F_t a final consequence of Γ ?

Definition

 $Dab(\Delta)$ is a minimal Dab-consequence of Γ iff $\Gamma \vdash_{\mathbf{CL}_{\overline{\forall}}} Dab(\Delta)$ and there is no $\Delta' \subset \Delta$ such that also $\Gamma \vdash_{\mathbf{CL}_{\overline{\forall}}} Dab(\Delta')$.

Definition

 $Dab(\Delta)$ is a minimal Dab-consequence of Γ iff $\Gamma \vdash_{CL_{\nabla}} Dab(\Delta)$ and there is no $\Delta' \subset \Delta$ such that also $\Gamma \vdash_{CL_{\nabla}} Dab(\Delta')$.

Defining the **D**^r–Consequence Relation (2)

 $\Gamma \vdash_{\mathbf{D}^{r}} A$ iff $\Gamma \vdash_{\mathbf{CL}_{\nabla}} A \lor Dab(\Delta)$ and there is no finite Θ such that $Dab(\Theta)$ is a minimal Dab-consequence of Γ and $\Theta \cap \Delta \neq \emptyset$.

Definition

 $Dab(\Delta)$ is a minimal Dab-consequence of Γ iff $\Gamma \vdash_{CL_{\nabla}} Dab(\Delta)$ and there is no $\Delta' \subset \Delta$ such that also $\Gamma \vdash_{CL_{\nabla}} Dab(\Delta')$.

Defining the **D**^r–Consequence Relation (2)

 $\Gamma \vdash_{\mathbf{D}^{r}} A$ iff $\Gamma \vdash_{\mathbf{CL}_{\nabla}} A \lor Dab(\Delta)$ and there is no finite Θ such that $Dab(\Theta)$ is a minimal Dab-consequence of Γ and $\Theta \cap \Delta \neq \emptyset$.

• The condition on defeasible derivation laid down by the reliability strategy!

Definition

 $Dab(\Delta)$ is a minimal Dab-consequence of Γ iff $\Gamma \vdash_{CL_{\overline{\nabla}}} Dab(\Delta)$ and there is no $\Delta' \subset \Delta$ such that also $\Gamma \vdash_{CL_{\overline{\nabla}}} Dab(\Delta')$.

Defining the **D**^r–Consequence Relation (2)

 $\[Gamma \vdash_{\mathbf{D}^r} A \]$ iff $\[Gamma \vdash_{\mathbf{CL}_{\nabla}} A \lor Dab(\Delta)\]$ and there is no finite Θ such that $Dab(\Theta)$ is a minimal Dab-consequence of $\[Gamma \]$ and $\Theta \cap \Delta \neq \emptyset$.

 The condition on defeasible derivation laid down by the reliability strategy!

EXAMPLE: $\Gamma = \{ (\overline{\forall}_{\alpha}) (B_{\alpha} \supset F_{\alpha}), B_t, \neg F_t \}$

A (B) > A (B) > A (B)

Definition

 $Dab(\Delta)$ is a minimal Dab-consequence of Γ iff $\Gamma \vdash_{\mathsf{CL}_{\overline{\forall}}} Dab(\Delta)$ and there is no $\Delta' \subset \Delta$ such that also $\Gamma \vdash_{\mathsf{CL}_{\overline{\forall}}} Dab(\Delta')$.

Defining the **D**^r–Consequence Relation (2)

 $\[Gamma \vdash_{\mathbf{D}^r} A \]$ iff $\[Gamma \vdash_{\mathbf{CL}_{\nabla}} A \lor Dab(\Delta)\]$ and there is no finite Θ such that $Dab(\Theta)$ is a minimal Dab-consequence of $\[Gamma \]$ and $\Theta \cap \Delta \neq \emptyset$.

 The condition on defeasible derivation laid down by the reliability strategy!

XAMPLE:
$$\Gamma = \{ (\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}), B_{t}, \neg F_{t} \}$$

 $\Rightarrow \quad \Gamma \vdash_{\mathbf{CL}_{\overline{\forall}}} F_{t} \lor ((\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}) \land B_{t} \land \neg F_{t}), \text{ and}$
 $\quad (\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}) \land B_{t} \land \neg F_{t} \text{ is a minimal}$
 Dab -consequence of Γ .

E

A (B) > A (B) > A (B)

Definition

 $Dab(\Delta)$ is a minimal Dab-consequence of Γ iff $\Gamma \vdash_{\mathsf{CL}_{\overline{\forall}}} Dab(\Delta)$ and there is no $\Delta' \subset \Delta$ such that also $\Gamma \vdash_{\mathsf{CL}_{\overline{\forall}}} Dab(\Delta')$.

Defining the **D**^r–Consequence Relation (2)

 $\[Gamma \vdash_{\mathbf{D}^r} A \]$ iff $\[Gamma \vdash_{\mathbf{CL}_{\nabla}} A \lor Dab(\Delta)\]$ and there is no finite Θ such that $Dab(\Theta)$ is a minimal Dab-consequence of $\[Gamma \]$ and $\Theta \cap \Delta \neq \emptyset$.

 The condition on defeasible derivation laid down by the reliability strategy!

EXAMPLE:
$$\Gamma = \{ (\overline{\forall}_{\alpha}) (B_{\alpha} \supset F_{\alpha}), B_t, \neg F_t \}$$

$$\Rightarrow \quad \bullet \quad \Gamma \vdash_{\mathsf{CL}_{\overline{\forall}}} F_t \lor ((\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}) \land B_t \land \neg F_t), \text{ and}$$

 (∀_α)(B_α ⊃ F_α) ∧ B_t ∧ ¬F_t is a minimal Dab–consequence of Γ.

 $\Rightarrow F_t \text{ is a defeasible, but not a final consequence of } \Gamma.$

Too many default consequences are withdrawn!

Too many default consequences are withdrawn!

EXAMPLE:
$$\Gamma = \{ (\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}), (\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}), (\overline{\forall}_{\alpha})(P_{\alpha} \supset \neg F_{\alpha})$$

 $P_{t} \}$

Too many default consequences are withdrawn!

EXAMPLE:
$$\Gamma = \{ (\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}), (\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}), (\overline{\forall}_{\alpha})(P_{\alpha} \supset \neg F_{\alpha}) \\ P_{t} \}$$

$$\Rightarrow \quad \Gamma \vdash_{\mathsf{CL}_{\overline{\forall}}} B_{t} \lor ((\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}) \land P_{t} \land \neg B_{t}) \\ \quad \bullet \quad \Gamma \vdash_{\mathsf{CL}_{\overline{\forall}}} F_{t} \lor ((\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}) \land P_{t} \land \neg B_{t}) \\ \quad \lor ((\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}) \land B_{t} \land \neg F_{t}) \\ \quad \bullet \quad \Gamma \vdash_{\mathsf{CL}_{\overline{\forall}}} \neg F_{t} \lor ((\overline{\forall}_{\alpha})(P_{\alpha} \supset \neg F_{\alpha}) \land P_{t} \land \neg \neg F_{t})$$

Too many default consequences are withdrawn!

EXAMPLE:
$$\Gamma = \{ (\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}), (\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}), (\overline{\forall}_{\alpha})(P_{\alpha} \supset \neg F_{\alpha})$$

 $P_{t} \}$

Too many default consequences are withdrawn!

=

EXAMPLE:
$$\Gamma = \{ (\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}), (\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}), (\overline{\forall}_{\alpha})(P_{\alpha} \supset \neg F_{\alpha})$$

 $P_{t} \}$

$$\Rightarrow \quad \Gamma \vdash_{\mathbf{CL}_{\overline{\forall}}} B_t \lor ((\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}) \land P_t \land \neg B_t) \\ \bullet \quad \Gamma \vdash_{\mathbf{CL}_{\overline{\forall}}} F_t \lor ((\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}) \land P_t \land \neg B_t) \\ \lor ((\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}) \land B_t \land \neg F_t) \\ \bullet \quad \Gamma \vdash_{\mathbf{CL}_{\overline{\forall}}} \neg F_t \lor ((\overline{\forall}_{\alpha})(P_{\alpha} \supset \neg F_{\alpha}) \land P_t \land \neg \neg F_t)$$

$$\Rightarrow \quad \bullet \quad ((\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}) \land P_{t} \land \neg B_{t}) \lor \\ ((\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}) \land B_{t} \land \neg F_{t}) \lor \\ ((\overline{\forall}_{\alpha})(P_{\alpha} \supset \neg F_{\alpha}) \land P_{t} \land \neg \neg F_{t}) \\ \text{is a minimal } Dab-\text{consequence of } \Gamma.$$

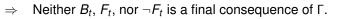
Too many default consequences are withdrawn!

EXAMPLE:
$$\Gamma = \{ (\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}), (\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}), (\overline{\forall}_{\alpha})(P_{\alpha} \supset \neg F_{\alpha})$$

 $P_{t} \}$

$$\Rightarrow \quad \Gamma \vdash_{\mathbf{CL}_{\overline{\forall}}} B_t \lor ((\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}) \land P_t \land \neg B_t) \\ \bullet \quad \Gamma \vdash_{\mathbf{CL}_{\overline{\forall}}} F_t \lor ((\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}) \land P_t \land \neg B_t) \\ \lor ((\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}) \land B_t \land \neg F_t) \\ \bullet \quad \Gamma \vdash_{\mathbf{CL}_{\overline{\forall}}} \neg F_t \lor ((\overline{\forall}_{\alpha})(P_{\alpha} \supset \neg F_{\alpha}) \land P_t \land \neg \neg F_t)$$

$$\Rightarrow \quad \bullet \quad ((\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}) \land P_{t} \land \neg B_{t}) \lor \\ ((\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}) \land B_{t} \land \neg F_{t}) \lor \\ ((\overline{\forall}_{\alpha})(P_{\alpha} \supset \neg F_{\alpha}) \land P_{t} \land \neg \neg F_{t}) \\ \text{is a minimal } Dab\text{-consequence of } \Gamma$$



Abnormality Markers

Formulas that represent the information about specificity and inheritance that is derivable from the premise set.

Abnormality Markers

Formulas that represent the information about specificity and inheritance that is derivable from the premise set.

⇒ They point out which of the abnormalities in a *Dab*-consequence are to be blamed for the conflict at hand!

Abnormality Markers

Formulas that represent the information about specificity and inheritance that is derivable from the premise set.

⇒ They point out which of the abnormalities in a *Dab*-consequence are to be blamed for the conflict at hand!

Preliminary Remark

Default rules are limited to formulas of the form $(\overline{\forall}_{\alpha})(A_{\alpha} \supset B_{\alpha})$, with $A_{\alpha}, B_{\alpha} \in \mathcal{A}$ (= the set of atomic formulas and negations of atomic formulas).

Abnormality Markers

Formulas that represent the information about specificity and inheritance that is derivable from the premise set.

⇒ They point out which of the abnormalities in a *Dab*-consequence are to be blamed for the conflict at hand!

Some Shorthand Notations

•
$$[A_{\alpha}^{1},...,A_{\alpha}^{n} \mid B_{\alpha}] =_{df} (X_{\alpha})(A_{\alpha}^{1} \supset A_{\alpha}^{2}) \land (X_{\alpha})(A_{\alpha}^{2} \supset A_{\alpha}^{3}) \land ... \land (X_{\alpha})(A_{\alpha}^{n} \supset B_{\alpha}), \text{ with } X \in \{\forall,\overline{\forall}\}.$$

Abnormality Markers

Formulas that represent the information about specificity and inheritance that is derivable from the premise set.

⇒ They point out which of the abnormalities in a *Dab*-consequence are to be blamed for the conflict at hand!

Some Shorthand Notations

•
$$[A_{\alpha}^{1},...,A_{\alpha}^{n} \mid B_{\alpha}] =_{df} (X_{\alpha})(A_{\alpha}^{1} \supset A_{\alpha}^{2}) \land (X_{\alpha})(A_{\alpha}^{2} \supset A_{\alpha}^{3}) \land ... \land (X_{\alpha})(A_{\alpha}^{n} \supset B_{\alpha}), \text{ with } X \in \{\forall,\overline{\forall}\}.$$

• $neg(A) =_{df}$ the complement of A.

Abnormality Markers

Formulas that represent the information about specificity and inheritance that is derivable from the premise set.

⇒ They point out which of the abnormalities in a *Dab*-consequence are to be blamed for the conflict at hand!

Some Shorthand Notations

•
$$[A^1_{\alpha},...,A^n_{\alpha} \mid B_{\alpha}] =_{df} (X_{\alpha})(A^1_{\alpha} \supset A^2_{\alpha}) \land (X_{\alpha})(A^2_{\alpha} \supset A^3_{\alpha}) \land ... \land (X_{\alpha})(A^n_{\alpha} \supset B_{\alpha}), \text{ with } X \in \{\forall,\overline{\forall}\}.$$

• $neg(A) =_{df}$ the complement of A.

Abnormality Markers

Formulas that represent the information about specificity and inheritance that is derivable from the premise set.

⇒ They point out which of the abnormalities in a *Dab*-consequence are to be blamed for the conflict at hand!

Some Shorthand Notations

•
$$[A_{\alpha}^{1},...,A_{\alpha}^{n} \mid B_{\alpha}] =_{df} (X_{\alpha})(A_{\alpha}^{1} \supset A_{\alpha}^{2}) \land (X_{\alpha})(A_{\alpha}^{2} \supset A_{\alpha}^{3}) \land ... \land (X_{\alpha})(A_{\alpha}^{n} \supset B_{\alpha}), \text{ with } X \in \{\forall,\overline{\forall}\}.$$

• $neg(A) =_{df}$ the complement of A.

•
$$\mathcal{M}_i = \{ [A^1_{\alpha}, ..., A^n_{\alpha} \mid C_{\alpha}] \land [B^1_{\alpha}, ..., B^m_{\alpha} \mid neg(C_{\alpha})] \land A^1_{\beta} \land B^1_{\beta} \land \neg (A^n_{\beta} \land B^m_{\beta}) \mid A^n_{\alpha} \notin \{B^1_{\alpha}, ..., B^m_{\alpha}\}, \text{ and } B^m_{\alpha} \notin \{A^1_{\alpha}, ..., A^n_{\alpha}\} \}$$

Abnormality Markers

Formulas that represent the information about specificity and inheritance that is derivable from the premise set.

⇒ They point out which of the abnormalities in a *Dab*-consequence are to be blamed for the conflict at hand!

Some Shorthand Notations

•
$$[A^1_{\alpha},...,A^n_{\alpha} \mid B_{\alpha}] =_{df} (X_{\alpha})(A^1_{\alpha} \supset A^2_{\alpha}) \land (X_{\alpha})(A^2_{\alpha} \supset A^3_{\alpha}) \land ... \land (X_{\alpha})(A^n_{\alpha} \supset B_{\alpha}), \text{ with } X \in \{\forall,\overline{\forall}\}.$$

• $neg(A) =_{df}$ the complement of A.

•
$$\mathcal{M}_i = \{ [A^1_\alpha, ..., A^n_\alpha \mid C_\alpha] \land [B^1_\alpha, ..., B^m_\alpha \mid neg(C_\alpha)] \land A^1_\beta \land B^1_\beta \land \neg (A^n_\beta \land B^m_\beta) \ \mid A^n_\alpha \notin \{B^1_\alpha, ..., B^m_\alpha\}, \text{ and } B^m_\alpha \notin \{A^1_\alpha, ..., A^n_\alpha\} \}$$

• $\mathcal{M}_s = \{ [A^1_\alpha, ..., A^n_\alpha \mid C_\alpha] \land [A^1_\alpha, ..., A^n_\alpha, B^1_\alpha, ..., B^m \mid neg(C_\alpha)] \land A^1_\beta \land \neg (C_\beta \land B^m_\beta) \mid \beta \in C \}$

- $\Theta^{\leq 1}$ expresses that Θ is at most a singleton.
- $Dabam(\Delta, \Theta^{\leq 1}) = \bigvee (\Delta \cup \Theta^{\leq 1})$, with $\Delta \subset \Omega$ and $\Theta^{\leq 1} \subset \mathcal{M}_i \cup \mathcal{M}_s$.

Definition

- $\Theta^{\leq 1}$ expresses that Θ is at most a singleton.
- $Dabam(\Delta, \Theta^{\leq 1}) = \bigvee (\Delta \cup \Theta^{\leq 1})$, with $\Delta \subset \Omega$ and $\Theta^{\leq 1} \subset \mathcal{M}_i \cup \mathcal{M}_s$.

Definition

 $\begin{array}{l} \textit{Dabam}(\Delta, \Theta^{\leqslant 1}) \text{ is a minimal } \textit{Dabam}\text{-}\text{consequence of } \Gamma \text{ iff } \Gamma \vdash_{\textbf{CL}_{\overline{\forall}}} \\ \textit{Dabam}(\Delta, \Theta^{\leqslant 1}) \text{ and there is no } \Delta' \subset \Delta \text{ and no } \Sigma^{\leqslant 1} \subset \mathcal{M}_i \cup \mathcal{M}_s \\ \text{such that also } \Gamma \vdash_{\textbf{CL}_{\overline{\forall}}} \textit{Dab}(\Delta', \Sigma^{\leqslant 1}). \end{array}$

Definition

- $\Theta^{\leq 1}$ expresses that Θ is at most a singleton.
- $Dabam(\Delta, \Theta^{\leq 1}) = \bigvee (\Delta \cup \Theta^{\leq 1})$, with $\Delta \subset \Omega$ and $\Theta^{\leq 1} \subset \mathcal{M}_i \cup \mathcal{M}_s$.

Definition

 $\begin{array}{l} \textit{Dabam}(\Delta, \Theta^{\leqslant 1}) \text{ is a minimal } \textit{Dabam}\text{-}\text{consequence of } \Gamma \text{ iff } \Gamma \vdash_{\textbf{CL}_{\overline{\forall}}} \\ \textit{Dabam}(\Delta, \Theta^{\leqslant 1}) \text{ and there is no } \Delta' \subset \Delta \text{ and no } \Sigma^{\leqslant 1} \subset \mathcal{M}_i \cup \mathcal{M}_s \\ \text{such that also } \Gamma \vdash_{\textbf{CL}_{\overline{\forall}}} \textit{Dab}(\Delta', \Sigma^{\leqslant 1}). \end{array}$

Defining the **D**^{ram}–Consequence Relation

 $\Gamma \vdash_{\mathbf{Dram}} A$ iff $\Gamma \vdash_{\mathbf{CL}_{\forall}} A \lor Dab(\Delta)$ and there is no finite $\Theta \subset \Omega$ and no $\Sigma^{\leq 1} \subset \mathcal{M}_i \cup \mathcal{M}_s$ such that $Dabam(\Theta, \Sigma^{\leq 1})$ is a minimal Dabam-consequence of Γ and $\Theta \cap \Delta \neq \emptyset$.

Definition

- $\Theta^{\leq 1}$ expresses that Θ is at most a singleton.
- $Dabam(\Delta, \Theta^{\leq 1}) = \bigvee (\Delta \cup \Theta^{\leq 1})$, with $\Delta \subset \Omega$ and $\Theta^{\leq 1} \subset \mathcal{M}_i \cup \mathcal{M}_s$.

Definition

 $\begin{array}{l} \textit{Dabam}(\Delta, \Theta^{\leqslant 1}) \text{ is a minimal } \textit{Dabam}\text{-}\text{consequence of } \Gamma \text{ iff } \Gamma \vdash_{\textbf{CL}_{\overline{\forall}}} \\ \textit{Dabam}(\Delta, \Theta^{\leqslant 1}) \text{ and there is no } \Delta' \subset \Delta \text{ and no } \Sigma^{\leqslant 1} \subset \mathcal{M}_i \cup \mathcal{M}_s \\ \text{such that also } \Gamma \vdash_{\textbf{CL}_{\overline{\forall}}} \textit{Dab}(\Delta', \Sigma^{\leqslant 1}). \end{array}$

Defining the **D**^{ram}–Consequence Relation

 $\Gamma \vdash_{\mathbf{D}^{ram}} A$ iff $\Gamma \vdash_{\mathbf{CL}_{\forall}} A \lor Dab(\Delta)$ and there is no finite $\Theta \subset \Omega$ and no $\Sigma^{\leq 1} \subset \mathcal{M}_i \cup \mathcal{M}_s$ such that $Dabam(\Theta, \Sigma^{\leq 1})$ is a minimal Dabam-consequence of Γ and $\Theta \cap \Delta \neq \emptyset$.

The condition on defeasible derivation laid down by the reliability strategy with abnormality markers!

Outline

Defaults, Commonsense Reasoning, and Al

2 The Adaptive Logics Approach

- Characterizing Default Rules
- Characterizing Default Inference
- Example

3 Conclusion

$\mathsf{\Gamma} = \{ (\overline{\forall}_{\alpha})(\mathcal{B}_{\alpha} \supset \mathcal{F}_{\alpha}), (\overline{\forall}_{\alpha})(\mathcal{P}_{\alpha} \supset \mathcal{B}_{\alpha}), (\overline{\forall}_{\alpha})(\mathcal{P}_{\alpha} \supset \neg \mathcal{F}_{\alpha}), \mathcal{P}_{t} \}$

$\Gamma = \{ (\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}), (\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}), (\overline{\forall}_{\alpha})(P_{\alpha} \supset \neg F_{\alpha}), P_{t} \}$

- $\Gamma \vdash_{\mathsf{CL}_{\overline{\forall}}} B_t \lor ((\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}) \land P_t \land \neg B_t)$
- $\Gamma \vdash_{\mathsf{CL}_{\overline{\forall}}} F_t \lor ((\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}) \land P_t \land \neg B_t) \lor ((\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}) \land B_t \land \neg F_t)$
- $\Gamma \vdash_{\mathbf{CL}_{\overline{\forall}}} \neg F_t \lor ((\overline{\forall}_{\alpha})(P_{\alpha} \supset \neg F_{\alpha}) \land P_t \land \neg \neg F_t)$

< 🗇 > < 🖻 > < 🖻

$\Gamma = \{ (\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}), (\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}), (\overline{\forall}_{\alpha})(P_{\alpha} \supset \neg F_{\alpha}), P_{t} \}$

•
$$\Gamma \vdash_{\mathsf{CL}_{\overline{\forall}}} B_t \lor ((\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}) \land P_t \land \neg B_t)$$

•
$$\Gamma \vdash_{\mathsf{CL}_{\overline{\forall}}} F_t \lor ((\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}) \land P_t \land \neg B_t) \lor ((\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}) \land B_t \land \neg F_t)$$

•
$$\Gamma \vdash_{\mathsf{CL}_{\overline{\forall}}} \neg F_t \lor ((\overline{\forall}_{\alpha})(P_{\alpha} \supset \neg F_{\alpha}) \land P_t \land \neg \neg F_t)$$

$\Gamma = \{ (\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}), (\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}), (\overline{\forall}_{\alpha})(P_{\alpha} \supset \neg F_{\alpha}), P_{t} \}$

•
$$\Gamma \vdash_{\mathsf{CL}_{\overline{\forall}}} B_t \lor ((\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}) \land P_t \land \neg B_t)$$

•
$$\Gamma \vdash_{\mathsf{CL}_{\overline{\forall}}} F_t \lor ((\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}) \land P_t \land \neg B_t) \lor ((\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}) \land B_t \land \neg F_t)$$

•
$$\Gamma \vdash_{\mathsf{CL}_{\overline{\forall}}} \neg F_t \lor ((\overline{\forall}_{\alpha})(P_{\alpha} \supset \neg F_{\alpha}) \land P_t \land \neg \neg F_t)$$

- \Rightarrow B_t , F_t , and $\neg F_t$ are defeasible consequences of Γ .
- $((\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}) \land B_{t} \land \neg F_{t}) \lor ([P_{\alpha} | \neg F_{\alpha}] \land [P_{\alpha}, B_{\alpha} | F_{\alpha}] \land P_{t} \land \neg (\neg F_{t} \land B_{t}))$ is a minimal *Dabam*–consequence of Γ .

$\Gamma = \{ (\overline{\forall}_{\alpha})(\mathcal{B}_{\alpha} \supset \mathcal{F}_{\alpha}), (\overline{\forall}_{\alpha})(\mathcal{P}_{\alpha} \supset \mathcal{B}_{\alpha}), (\overline{\forall}_{\alpha})(\mathcal{P}_{\alpha} \supset \neg \mathcal{F}_{\alpha}), \mathcal{P}_{t} \}$

•
$$\Gamma \vdash_{\mathsf{CL}_{\overline{\forall}}} B_t \lor ((\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}) \land P_t \land \neg B_t)$$

•
$$\Gamma \vdash_{\mathsf{CL}_{\overline{\forall}}} F_t \lor ((\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}) \land P_t \land \neg B_t) \lor ((\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}) \land B_t \land \neg F_t)$$

•
$$\Gamma \vdash_{\mathsf{CL}_{\overline{\forall}}} \neg F_t \lor ((\overline{\forall}_{\alpha})(P_{\alpha} \supset \neg F_{\alpha}) \land P_t \land \neg \neg F_t)$$

- \Rightarrow B_t , F_t , and $\neg F_t$ are defeasible consequences of Γ .
- $((\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}) \land B_{t} \land \neg F_{t}) \lor ([P_{\alpha} | \neg F_{\alpha}] \land [P_{\alpha}, B_{\alpha} | F_{\alpha}] \land P_{t} \land \neg (\neg F_{t} \land B_{t}))$ is a minimal *Dabam*–consequence of Γ .
- $\Rightarrow ((\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}) \land P_{t} \land \neg B_{t}) \lor ((\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}) \land B_{t} \land \neg F_{t}) \lor \\ ((\overline{\forall}_{\alpha})(P_{\alpha} \supset \neg F_{\alpha}) \land P_{t} \land \neg \neg F_{t}) \text{ is not a minimal } Dabam\text{-consequence of } \Gamma.$

A (10) < A (10) < A (10)</p>

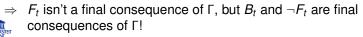
$\Gamma = \{ (\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}), (\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}), (\overline{\forall}_{\alpha})(P_{\alpha} \supset \neg F_{\alpha}), P_{t} \}$

•
$$\Gamma \vdash_{\mathsf{CL}_{\overline{\forall}}} B_t \lor ((\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}) \land P_t \land \neg B_t)$$

•
$$\Gamma \vdash_{\mathsf{CL}_{\overline{\forall}}} F_t \lor ((\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}) \land P_t \land \neg B_t) \lor ((\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}) \land B_t \land \neg F_t)$$

•
$$\Gamma \vdash_{\mathsf{CL}_{\overline{\forall}}} \neg F_t \lor ((\overline{\forall}_{\alpha})(P_{\alpha} \supset \neg F_{\alpha}) \land P_t \land \neg \neg F_t)$$

- \Rightarrow B_t , F_t , and $\neg F_t$ are defeasible consequences of Γ .
- $((\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}) \land B_{t} \land \neg F_{t}) \lor ([P_{\alpha} | \neg F_{\alpha}] \land [P_{\alpha}, B_{\alpha} | F_{\alpha}] \land P_{t} \land \neg (\neg F_{t} \land B_{t}))$ is a minimal *Dabam*–consequence of Γ .
- $\Rightarrow ((\overline{\forall}_{\alpha})(P_{\alpha} \supset B_{\alpha}) \land P_{t} \land \neg B_{t}) \lor ((\overline{\forall}_{\alpha})(B_{\alpha} \supset F_{\alpha}) \land B_{t} \land \neg F_{t}) \lor \\ ((\overline{\forall}_{\alpha})(P_{\alpha} \supset \neg F_{\alpha}) \land P_{t} \land \neg \neg F_{t}) \text{ is not a minimal } Dabam\text{-consequence of } \Gamma.$



A (1) > A (2) > A

Conclusion

To Conclude

In comparison to Al–approaches, the approach based on \mathbf{D}^{ram} comes much closer to actual human reasoning.

More Results

- There is a semantic as well as a proof theoretic characterization of the logic D^{ram}.
 - + Soundness and completeness have been proven.
- The approach can easily be extended to all default rules of the form (∀
 [¬]_α)(A_α ⊃ B_α).

Conclusion

To Conclude

In comparison to Al–approaches, the approach based on \mathbf{D}^{ram} comes much closer to actual human reasoning.

More Results

- There is a semantic as well as a proof theoretic characterization of the logic D^{ram}.
 - + Soundness and completeness have been proven.
- The approach can easily be extended to all default rules of the form (∀
 [¬]_α)(A_α ⊃ B_α).

Further Research

- To develop adaptive logics for default inference based on requirements different from specificity and inheritance.
- To compare the **D**^{ram}–consequence relation with existing consequence relations for default inference.

References

- BATENS, D. Zero logic adding up to classical logic. Logical Studies 2 (1999), 15pp.
- BATENS, D. A general characterization of adaptive logics. *Logique et Analyse* 173–175 (2001), 45–68.
- BATENS, D. A universal logic approach to adaptive logics. *Logica Universalis 1* (2007), 221–242.
- DELGRANDE, J. A preference-based approach to default reasoning: preliminary report. In *AAAI-94*, Seattle (Washington), 1994, pp. 902–908.
- DELGRANDE, J., AND SCHAUB, T. Compiling specificity into approaches to nonmonotonic reasoning. *Artificial Intelligence 90* (1997), 301–348.
- DELGRANDE, J., AND SCHAUB, T. The role of default logic in knowledge representation. In J. Minker, Ed. Logic–Based Artificial Intelligence, Kluwer, Dordrecht, 2000, pp. 107–126.
- MCCARTHY, J. Applications of circumscription to formalizing common–sense knowledge. *Artificial Intelligence 13* (1986), 27–39.
- REITER, R. On reasoning by default. In *Theoretical Issues in Natural Language Processing*, ACL, Morristown (New Jersey), 1978, pp. 210–218.
- REITER, R. A logic for default reasoning. In M. Ginsberg, Ed. *Readings in Nonmonotonic Reasoning*, Kaufmann, Los Altos (Calif.), 1987, pp. 68–93.
- REITER, R., AND CRISCUOLO, G. On interacting defaults. In M. Ginsberg, Ed. *Readings in Nonmonotonic Reasoning*, Kaufmann, Los Altos (Calif.), 1987, pp. 94–100.
- **WINTANEN, J.** On specificity in default logic. In *IJCAI*, 1995, pp. 1474–1479.
- SEK-WAH, T. AND PEARL, J. Specificity and inheritance in default reasoning. In *IJCAI*, 1995, pp. 1480–1487.