Exploring the universe of mathematics L. De Mol

Exploring the universe of mathematics.
Computation, experimentation and exploration in
computer-assisted math

Liesbeth De Mol
Centre for Logic and Philosophy of Science, Belgium
elizabeth.demol@Qugent.be

Instrumentation et théorisation, Rehseis-Spheére 1



Exploring the universe of mathematics L. De Mol

First, some publicity.....
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1. intro L. De Mol

Introduction

= Motivation: The increasing use of the computer in math seems to go hand-
in-hand with growing significance idea “experimentation” and “exploration”

in math — “computers |are] changing the way we do mathematics” (Borwein,
2008)

= Extent impact??
— Mathematics proper
— Philosophy of Mathematics

= ... and their interactions
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Approach(es) L. De Mol

(General) approach

= Bottom-up — and see where one gets

— Take computer seriously — as a medium (Kittler, 1985):

” Media are no tools. Far more than things at our disposal they
constitute the interaction of thinking and perception — mainly un-
consciously. (Carlé, 2010)

— Study mathematical practice(s) that is really guided by that practice
— Study “gory” details of (history of) computer-assisted math + no
m-in-the-sky-phil-of-math (also phil of math has a history!)
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Approach(es) L. De Mol

Taking the computer seriously....
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Approach(es) L. De Mol

Taking the computer seriously — two classical “myths”

e “Another argument that continually arises is that machines can do noth-
ing we cannot do ourselves, though it s admitted that they can do many
things faster and more accurately. The statement is true, but also false. It
1s like the statement that, regarded solely as a form of transportation, mod-
ern automobiles and aeroplanes are no different than walking. [T]hus the
change by six orders of magitude in computing have produced
many fundamentally new effects that are being simply ignored
when the statement is made that computers can only do what we

could do ourselves if we wished to take the time” (Hamming, 1965)

e “‘computers can only do what they are told to do’. True, but that
18 like saying that, insofar as mathematics s deductive, once the postulates
are given all the rest is trivial. [...]The truth is that in moderately complex
situations, such as the postulates of geometry or a complicated program for
a computer, it is not possible on a practical level to foresee all of

the consequences” (Hamming, 1965)
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Approach(es) L. De Mol

Taking the computer seriously....
Study of ‘experimental’ computer-assisted math

= Taking into account “material” and “social” changes of computer (changes
in architecture, programming techniques, etc) in a study of computer-assisted
math to detect global changes

=- Attention for four (intrinsically related) core features of CaM:
— Time-squeezing
— Space-squeezing
— Internalization (programmability)

— Mathematician-computer interactions (distribution of information and

its processing during and after experimentation)

The question is not ‘what 1s experimental math’ in the context of CaM but rather
‘What changes in (experimental) math’ in the last 60 years?

= How does the ‘experimental’ set-up change?

= How does the M-C interaction change?

= How are the mathematician’s views on (experimental) math affected?
=

etc
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Approach(es) L. De Mol

Experimental math?

The Lehmers view on experimentation and CaP (in a nut-
shell)....

= “|The first school of thought is concerned with] the improvement of high-
ways between the well-established parts of mathematics and the outposts of
the realm [favoring] the extension of existing methods of proof to more gen-
eral situations” [The second school is concerned with] “the establishment of
new outposts [...] This school favors ezxplorations as a means of discovery”
(Lehmer,1966)
= Exploration makes possible math as an experimental science (but exper-

imentation does not reduce to exploration: generation + exploration)

= “[T]he most important influence of the machines on mathematics should
lie in the opportunities that exist for applying the experimental method to
mathematics.”

= Exploration and experimentation not specific for CaM!!
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Approach(es) L. De Mol

Experimental math — Four apps in time
[ The Lehmer-ENIAC experience (+/- 1947)
IT Mandelbrot and his set (4 /- 1980)

IIT The case of the Busy Beaver (4 /- 1980, 1985)

IV Wolfram’s new kind of science (1985; 2002)
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Case I: The Lehmer-ENIAC experience
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Case I: The Lehmer-ENIAC experience L. De Mol

The ‘behemoth’ ENIAC

e ENIAC, The Electronic(!) Numerical Integrator And Computer

e Local and direct programming method: “The ENIAC was a son-of-a-bitch
to program” (Jean Bartik)

“The original “direct programming” recabling method can best be described
as analogous to the design and development of a special-purpose computer
out of ENIAC component parts for each new application” (Fritz, 1994)

e BUT, programmable + extremely fast for that time
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Case I: The Lehmer-ENIAC experience L. De Mol

The Lehmers and the first extensive number-theoretical
computation on the ENIAC (joint research with M. Bullynck)

e “I think what’s particularly interesting about the number theory problem
they ran was that this was a difficult enough problem that it attracted the
attention of some mathematictans who could say, yes, an electronic com-
puter could actually do an interesting problem in number theory”

(Alt, 2006)

e Exceptions to a special case of the converse of Fermat’s little theorem If n

divides 2™ — 2 then n is a prime
e Goal I Testing the machine
e Goal II Finding composite numbers to generate tables of primes

e Goal III Finding mistakes in Kraitchik’s table of exponents (up to p <
300, 000)

e Goal IV Exploration of prime number tables in number theory
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Case I: The Lehmer-ENIAC experience

L. De Mol

How was ENIAC used to compute composite numbers?

The ENIAC was used to determine a list of exponents e of 2 mod p, i.e., the

least value of n such that 2™ = 1 mod p with p prime
These exponents can be used to determine composite numbers of the form

2P9 — 2 through the theorem:

Theorem 1 If p and q are odd distinct primes, then 2P9 — 2 1s divisible by
pq if and only if p - 1 1s divisible by the exponent to which 2 belongs modulo
q and q - 1 1s divisible by the exponent to which 2 belongs modulo p

Compute small numbers to compute big numbers

A sieve was implemented on the ENIAC to determine primes relative to
the first 15 primes, thus making use of the ENIAC’s parallelism. The last
prime p processed, after 111 hours of computing time, was p = 4,538, 791
(Kratchik hand-made table only to 300,000!)

Eratosthenes’s Sieve:

1 0

1 0 1 0 1 0 1
1 1 0 1

1 0 1 1 O
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Case I: The Lehmer-ENIAC experience L. De Mol
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Case I: The Lehmer-ENIAC experience L. De Mol
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Case I: The Lehmer-ENIAC experience L. De Mol
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Case I: The Lehmer-ENIAC experience L. De Mol

Lehmer’s way of dealing with the machine...

e Computing from the machine’s point of view “The method used by
the ENIAC to find the exponent of 2 modulo p differs greatly from the one
used by human computer” (Lehmer, 1949)

“In contrast, the ENIAC was instructed to take an “idiot” approach”

F =20, = I, +I, if'p +1, <p
I'n +1I'y, —p otherwise
Only in the second case can I';, 41 be equal to 1. Hence this delicate ex-
ponential question in finding e(p) can be handled with only one addition,
subtraction, and discrimination at a time cost, practically independent of
p, of about 2 seconds per prime. This is less time than it takes to
copy down the value of p and in those days this was sensational.”

(Lehmer, 1974)

e Partial Internalization and heuristic program “The “next value of

p” [i.e. the next prime] presents an interesting problem to the ENIAC.
[Circumstances| prevented the introduction [of] punched cards. [...] This
means that the ENIAC should somehow compute its own values of p. To
this effect a “sieve” was set up which screened out all numbers having a
prime factor < 47. [Else there is a need for] “much outside information
lintroduced]| via punched cards [...] to be prepared by hand in advance” +

25 out of 11336 eliminated by hand
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Case I: The Lehmer-ENIAC experience L. De Mol

Lehmer’s way of dealing with the machine...

e “Lehmer’s little problems, they were always too big for it. So consequently,
you always had to be changing it or to think of something new and innova-

tive”

e External/human processing “The list of exponents furnished by ENTAC
is sufficient for the extension of the table of composite numbers n dividing
2" — 2 to 10° and beyond. However the list presented herewith extends
only from 10%® to 2 x 108. The labor of producing these composite
numbers is still considerable.”

e One long computation without ‘responsive interactions’: “/Lehmer]
had programmed the problem and run it on ENIAC, with J. Mauchly serving
as “computer operator”, during the three-day weekend of July 4, 1946. The
running time of the problem occupied almost the entire weekend,
around the clock, without a single interruption or malfunction. It
was the most stringent performance test applied up to that time,

and would be an impressive one even today.” (Alt, 1972)
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Case I: The Lehmer-ENIAC experience L. De Mol

Lehmer’s ENIAC ‘Experiments’? Problem: gap between speed
processing vs. retrieval and storage; restrictions on programmability
(no intermediary language), processing power and memory (external

storage and retrieval) and availability

= Largely discontinuous process of “experimentation” Sep-
arated phases of the experiment distributed over human and ma-

chine, with human doing most of the ‘exploration’

Instrumentation et théorisation, Rehseis-Spheére 21



Case II: Mandelbrot and his set L. De Mol

Case II: Mandelbrot and his set
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Case II: Mandelbrot and his set L. De Mol

DEC-VAX-11/780 (“star”)

Follow up of the PDP-11. Release dat: October 25, 1977; first one installed
at CERN

Speed 3.4 MhZ (106 herz); 500,000,000 instructions/second
Memory From 128kb up to 8 MB static memory! 1MB static and 4k ram
i/o devices Tektronix terminal, versatec printer

Programming VMS operating system (“starlet”), with GUI and graph-

ics support (!); support for multiple programming languages (FORTRAN,
COBOL, BASIC? PASCAL, etc)
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Case II: Mandelbrot and his set

L. De Mol

Case II: Mandelbrot and his set

Late 70s interested in the theory of rational maps of the complex plane
(knowledge of work by Fatou and Julia) — “playing around” with quadratic
Julia sets defined through iteration z — 22 + ¢, ¢,z € C

Ee={20:|zn| = 0}, 2n =22 | +¢

P.={z0:20 & E.}

Julia set for c is the boundary of E..

Fundamental dichotomy for Julia sets: connected and disconnected sets.

For certain ¢, some points z always converge to a finite stable cycle of size

n — attempt to classify Julia sets according to n (only connected sets!)

Fact: The prisoner set P, for z — 22 + ¢ is connected iff the orbit 0 — ¢ —

2 — ¢2 4+ ¢ — ... remains bounded.

1980: Exploration of the map ¢ — ¢? + ¢

The Mandelbrot set:

M = {c € C|c = ¢* — ¢® + ¢ — ...remains bounded}
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Case II: Mandelbrot and his set

L. De Mol

Case II: Mandelbrot and his set

2,
Frd 0
g g
W ooa  Fas,
%A e Y o
g " T B
2 s s
Iﬁ’:“: [y -"’ I'jr"
ol Sl
d I
LT
I
LA
£, ¥
.:"--1r r-*‘;_
e Ean bt
¥ r‘li,;.' r*'%"i'. 3
fa._i:x Kest ki utyd 15
ey L
I
IO e 3
5

Figure 1: A connected and a disconnected Julia set
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Case II: Mandelbrot and his set L. De Mol

From seeing and knowing to discovering and results (1)

Visualizations as a means to find new conjectures, ideas, etc

e M as a road map for Julia sets: Classification of Julia sets with stable finite

cycles n as smaller and smaller “sprouts” of M

e Connection between left-side of the cardioid and period-doubling bifurca-

tions

e Apparent “specks of dirt” on print-out are “real” — zoom-in reveal “is-
land whose shape is like that of M, except for a non-linear deformation.

Each island is, in turn, accompanied by sub-islands, doubtless ad infini-
tum” (Mandelbrot, 1980)

e Julia sets with ¢’s in specks of dirt + connectedness of these J-sets 4+ theory

of bifurcation: Conjecture M as a connected set (proven in 1982 — Douady
& Hubbard)
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Case II: Mandelbrot and his set L. De Mol

From seeing and knowing to discovering and results (2)

Possibility of machine error “early originals looked
awful: filled with apparent specks of dust that the
Versatic printer produced [T]his complicated matters.

But for the skilled, meticulous, and tireless observer

g
‘* : that I was, mess was not a reason to complain but a
reason to be particularly attentive”
- Increased internalization and heuristic meth-

ods

Use of encirclement method? Computation on millions

of internally stored data. You are never sure about the outcome (undec. M-set)

“By a theorem Julia and Fatou, those Julia sets are connected. Therefore the
broken-up appearances is necessarily due to the discrete variables used in com-
putation. These graphs were important to my thinking because they sufficed to
show hat the broken-up earlier early M set pictures were compatible with con-

nectedness”
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Case II: Mandelbrot and his set L. De Mol

From seeing and knowing to discovering and results (3)

Experimentation as Machine-aided, human-directed visual exploration

= “When seeking new insights, I look, look, look and play with many pictures

(One picture is never enough)”

= Made possible through advanced machine technology: Internal machine
“processing/translation” of “low-level” data to humanly practical format,

i.e., graphical picture of M to explore

= pictures as an interface Terminology and concepts directly inspired by

pictures — result of interfacing between human and machine “processing”

= “The ‘fate’ that drove me to revive the theory of iteration, first chose me
to reinvent the role of the eye in a field, mathematics, where it and
explicit computation had become anathema, about as unwelcome as they

could possibly be”

= My goal [with my 1980 paper on M| was to revive experimental mathematics

by reporting observations triggering new mathematics”

= =~ Lehmer: “Yesterday, “generality at all cost” was in the saddle. Today,

“special” problems are more readily recognized as compelling.”
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Case II: Mandelbrot and his set L. De Mol

Mandelbrot’s Experiments? Increased speed and memory; stored pro-

gramming + programming language; (clumsy) printing devices

= “Space squeezing”: “low-level” data are no longer humanly practical —
internal machine computations “represented” in a humanly digestible way

— uncertainty results

= “Time squeezing”: Many smaller “experiments” and the flow of informa-
tions during this process of “experimentation” squeezed in a “reasonable”
time-frame — increased involvement with the machine = Exploration vs
generation? (e.g. zooming-in) - ( & “real-time” manipulations of the
M-set)

= More “continuous” process of human-machine “experimentation”

= Increased interaction during the “experiment”: mixing of computation,

exploration and interpretation in a process
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Case II: Brady and Busy Beavers L. De Mol

Case 1II: Brady and Busy Beavers
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Progress of the computation jstate-trajectary) of a 3-state busy beaver
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Case 1I: Brady and Busy Beavers L. De Mol

Case III: Brady and Busy Beavers.

Machine used? “A Turing machine simulator written in a machine inde-

pendent form of BASIC is available from the author upon request”

The Busy Beaver problem Determine for any class of Turing machines TM(m, 2)
with m states and 2 symbols the maximum number of 1s 3(m) respectively the
maximum number of computation steps S(m) left on the tape by some T €
TM(m,2) that halts when started from a blank tape. First formulated and
proven recursively unsolvable by Rado, 1962.

= Early on, computer-assisted studies and proofs (!) of the Busy Beaver prob-
lem for particular m:

Some results

e S(2) =4,%(2) =2, Rddo (1962)
e S(3) =21,%(3) =6, Rddo and Lin (1965)

e S(4) = 107,3(4) = 13, Brady (1983) and Kopp (cited by Machlin and
Kopp/Stout (1990))

e S(5) =747,176,870,3>(5) =74098, Marxen and Buntrock (1990)
o S(6) =2.5x 102879%(6) > 4.6 x 101439, Terry and Shawn Ligocki (2007)
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Case 1I: Brady and Busy Beavers L. De Mol

Computing Busy Beavers (1) (Brady, 1966)

e Notation instruction: (state, number read, number printed, move left /right,
next state)

e The number n of Turing machines T' € T(m,2): n = (4m + 1)?™,m =
4,n = 6,975,757, 441

e Approach: Determine the set of halting machines by reducing the number
of “hold-outs” to O.

e Brady’s 1966 reduction to 5820 hold-out: Tree normalization and backtrack-
ing
1. Eliminate machines for which (1, 0, 1/0, L./R, halt); idem for (1, 0, 1/0,
R/L, 1)
2. Exclude the symmetrical left-right machines and retain the right-left

machines (or vice versa).

3. Generalization idea 1 (backtracking): prove that machine is in infinite
loop by showing with backtracking that halting state cannot be reached
— Generation of instructions as they are needed (e.g.: (1, 0, 1, R,2),

only 8 out of the 16 possible next instructions need to be generated .
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Case II: Brady and Busy Beavers L. De Mol

Computing Busy Beavers (2) (Brady, 1983)
Internalization and exploration — Identification of loops (through explo-
ration of hundreds of printouts) and automated detection of several types of

infinite loops — human-machine collaboration
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= Parts of the ‘proof’ and its ‘discovery’ are done by machine — proof in-between
computer and Brady (the typical unsurveyability problem)

= “[IJt must be remembered that the filtering [BBFILT] was a heuristic tech-
nique based upon experimental observation.” — tentative classification
based on the rate at which new squares are visited; “The proof techniques, em-
bodied in programs, are entirely heuristic”

= Unpredictability -+ finite time and the need of making decisions in finite
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Case 1I: Brady and Busy Beavers L. De Mol

time: “As with all the heuristics we discuss, one must make some decision as

to how long to run this technique before abandoning it.”
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Case 1I: Brady and Busy Beavers L. De Mol

Computing Busy Beavers (3)

e Not one but many programs internalized “More than 18 other pro-
grams were written, for various housekeeping purposes, simulating and dis-
playing machine behavior, exploring other reduction and filtering possibili-
ties etc. In all, at least 53 files were created and maintained for the project.
Keeping track of what resembled a large scientific experiment became

a major task in itself.” < Lehmer’s flowchart

e The problem of error “While not all of the exploratory activities are re-
producible, the runs [can] be reproduced, so that by utilizing the techniques
described in this paper the proof can be corroborated. [...] Proofs of “cor-
rectness” of the programs used are not practical. Independent verification

is the only means we currently have at our disposal.”

Instrumentation et théorisation, Rehseis-Sphére 35



Case II: Brady and Busy Beavers L. De Mol

Brady’s ‘experiments’?
Increased speed and memory; portable programming language; (clumsy) printing

devices; increased programmability

= Continuous and integrated process of human-machine “experi-
mentation”: Exploratory activities distributed between human and ma-

chine.

= Increased interaction and time-squeezing Intertwinement of human
and machine contribution. Proof within the interaction — Towards a human-

computer collaboration
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(Short) Case IV: Wolfram, Mathematica and a “new kind of science” L. De Mol

(Short) Case I'V: Wolfram, Mathematica and a “new
kind of science”
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(Short) Case IV: Wolfram, Mathematica and a “new kind of science” L. De Mol

(Short) Case IV: Wolfram, Mathematica and a “new kind
of science” (1984-1988)

e Machine used? the C language computer program;“CA: an interactive
cellular automaton simulator for the Sun Workstation and VAX”; Connec-

tion Machine computers;...

e Some technical (observational) results: four classes of behavior; con-
jecture universality rule 110 (“This paper covers a broad area, and includes
many conjectures and tentative results. It is not intended as a rigorous

mathematical treatment.” ); random number generator based on rule 30

e Complex behavior simple programs: “It is remarkable that such a
simple system [rule 30| can give rise to such complexity. But it is in keep-
ing with the observation that mathematical systems with few axioms, or
computers with few intrinsic instructions, can lead to essentially arbitrary
complexity. And it seems likely that the mathematical mechanisms at work

are also responsible for much of the randomness and chaos seen in nature.”

e Complexity in physics Undecidability and intractability in physics: “It
is the thesis of this paper that [problems of computational irreducibility]

are in fact common

= Before Mathematica: Most of the basic results on CA already found
= Start development of a general theory inspired by computer science
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(Short) Case IV: Wolfram, Mathematica and a “new kind of science” L. De Mol

(Short) Case IV: Wolfram, Mathematica and a “new kind
of science” (1988-—now)

e Mathematica (1988): "I first conceived of Mathematica because I needed

it myself”

e “[T]he visionary concept of Mathematica was to create once and for all a
single system that could handle all the various aspects of technical
computing—and beyond—in a coherent and unified way.” = Enter (again)

generality!

e 2002: the long-awaited publication of “A new kind of science”, based on
theory of cellular automata as models for physical systems. Main method:

“computer-based models and experiments”
e Connection Mathematica and “A new kind of science”?

~ Maple and “Mathematics by Experiment” (Borwein and Bailey, 2004)
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(Short) Case IV: Wolfram, Mathematica and a “new kind of science” L. De Mol

(Short) Case IV: Wolfram, Mathematica and a “new kind
of science” (1988-—now)

What 1s the significance of software like Mathematica and Maple for the develop-
ment of “experimental mathematics”? (See e.g. Sorensen, 2010: fact-gathering

vs. interactive exploration)

e ‘“interactive exploration” is not the sole domain of Maple or Mathematica

(See Cases)

= Pre-programmed internalization and centralization of different aspects of
“experimentation”: statistical tools, graphics tools, special algorithms (user-

friendliness)

= Time-squeezing No wasting time on programming the tools; “real-time”

manipulations and computations
= More continuous and integrated human-machine experiments

= Increased (faster) interaction Possibility of more “direct” interaction

with the emulated/simulated objects studied.

= Wider accessibility and integration of knowledge: development of “general”

and “integrated” theories
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Discussion L. De Mol

Discussion
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Discussion L. De Mol

Discussion

e From the “behemoth” ENTAC to Mathematica/Maple: process of changing
mathematician-machine interactions and ‘experiments induced by technical
changes: from a discontinuous process of computer-assisted experimentation

to a more continuous and integrated one

e (From a micro perspective) Change on the level of the method of experi-
mentation: not one “smaller” experiment but many “phases” and “aspects”
of experimentation integrated into one (“time squeezing” and “internaliza-
tion”)

= Affects the way an ‘experiment is set-up, the kind of experiment one can do,

how much responsibility is for the machine, the kind of local problems one has

to deal with, the methods one develops etc
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Discussion L. De Mol

Discussion: Many questions, thoughts...

= Distributed computing? The internet? Social aspects of math and comput-
ing (mailing, blogs, publishing, etc)

= A(n) (computer) experiment in math?? Mathematical (computer) ex-
periment # computation: Explicit integration of “pure” computations (“na-
ture”) with exploration, concept-formation, conjecturing, etc and heuristic
and probabilistic programming = Not reasoning with but in computer
experiment

= To what extend is the computer really changing math?” What is the

’ “explorations”?

difference between e.g. Brady’s “explorations” and Gauss
Computers demands to re-think locally (e.g.. Mandelbrot’s pecks of dirt;

heuristic programs and uncertainty, etc)
= “Progress” and the necessity of hiding the “source” (speeds-up)?

= Recent Nature paper: “The vagaries of hardware, software and natural
language will always ensure that exact reproducibility remains uncertain,
but withholding code increases the chances that efforts to reproduce results

will fail.”

= A “paradox” of mathematician-computer interactions? Growing
distances between mathematician and physical computer and time-squeezing
results in more direct and intertwined interactions that reflect upon our
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Discussion L. De Mol

thinking on “experimental math”

= The proof is in the process “In any event, whenever [the] stage [of high
baroque] is reached [in mathematics|, the only remedy seems to me to be
the rejuvenating return to the source: the reinjection of more or less
directly empirical ideas.” (Von Neumann, 1947) = reinjection of time
into mathematics as a fundamental question for computer-assisted math?
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