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Abduction?

Searching for Explanations
Backwards reasoning: from the phenomena to be explained to
possible explanations.

⇒ Abductive inferences

A ⊃ B, B ` A (Affirming the Consequent)

Example
A physician in search of the right diagnosis for a patient’s
symptoms,
a technician trying to find out why a machine broke down,
a scientist trying to find an explanation for an empirical
phenomenon contradicting some predictions derived from an
accepted theory,...

H. Lycke (Ghent University) The adaptive logics approach to abductive reasoning MBR’09, Campinas 4 / 42



Abduction?

Searching for Explanations
Backwards reasoning: from the phenomena to be explained to
possible explanations.

⇒ Abductive inferences

A ⊃ B, B ` A (Affirming the Consequent)

Example
A physician in search of the right diagnosis for a patient’s
symptoms,
a technician trying to find out why a machine broke down,
a scientist trying to find an explanation for an empirical
phenomenon contradicting some predictions derived from an
accepted theory,...

H. Lycke (Ghent University) The adaptive logics approach to abductive reasoning MBR’09, Campinas 4 / 42



Abduction?

Searching for Explanations
Backwards reasoning: from the phenomena to be explained to
possible explanations.

⇒ Abductive inferences

A ⊃ B, B ` A (Affirming the Consequent)

Example
A physician in search of the right diagnosis for a patient’s
symptoms,
a technician trying to find out why a machine broke down,
a scientist trying to find an explanation for an empirical
phenomenon contradicting some predictions derived from an
accepted theory,...

H. Lycke (Ghent University) The adaptive logics approach to abductive reasoning MBR’09, Campinas 4 / 42



Outline
1 Searching for Explanations

Abduction?
Logic–Based Approaches to Abduction
Aim of this Talk

2 The Deductive Frame
Abduction vs Deduction
A Modal Frame
Representing Abductive Reasoning Contexts

3 On Defeasible Inference

4 Enter Adaptive Logics
Multiple Abduction Processes
General Characterization
Proof Theory
Examples

5 Conclusion

H. Lycke (Ghent University) The adaptive logics approach to abductive reasoning MBR’09, Campinas 5 / 42



Logic–Based Approaches to Abduction

Affirming the Consequent (AC) is not deductively valid !!!

Backwards Deduction plus Additional Conditions
A number of conditions is specified that enable one to decide whether
or not a particular abductive inference is sound.

Example
Given the background theory Γ, A is an explanation for B iff

Γ ∪ {A} ` B
Γ 0 ¬A
Γ 0 B; A 0 B
...
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Logic–Based Approaches to Abduction

Affirming the Consequent (AC) is not deductively valid !!!

Backwards Deduction plus Additional Conditions
A number of conditions is specified that enable one to decide whether
or not a particular abductive inference is sound.

6= a realistic explication of abductive reasoning

FOR Focus is on abductive consequence, not on abductive
reasoning
⇒ Search procedures instead of a proof theory

e.g. Tableau methods (Aliseda–Llera 2006,
Mayer&Pirri 1993)
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Logic–Based Approaches to Abduction

The Adaptive Logics Programme
The inference rule AC is modeled as a defeasible inference rule (a
default rule).

⇒ Abductive consequences are accepted only in case and for as
long as certain conditions are satisfied.
⇒ Only the unproblematic applications of AC are retained.

⇒ Abductive reasoning steps are combined with deductive
reasoning steps.

Advantages

(Some of) the conditions of BD can be incorporated.
A nice proof theory for abductive reasoning is provided.

⇒ The adaptive logics approach provides a more realistic
explication of the application of abductive inferences in human
reasoning!
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Aim of this Talk

The Overall Aim
To present a general approach towards the explication of abductive
reasoning based on the Adaptive Logics Programme.

Three Steps
The deductive frame
= To spell out the relation between abduction and deduction.

On defeasible inference
= To characterize the abductive inference rule in general.

Enter adaptive logics
= To characterize some adaptive logics for abductive reasoning.
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Abduction vs Deduction

Intertwinement
Abductive reasoning validates some arguments that are not
deductively valid.
IN CASU Applications of Affirming the Consequent (AC).

Abductive reasoning is constrained by deductive reasoning.
FOR Abductive consequences of a premise set might have to be

withdrawn in view of its deductive consequences.

⇒ Abductive inference steps are applied against a
deductive background!
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A Modal Frame

In most logic–based approaches, deductive reasoning is
captured by means of classical logic.
e.g. Aliseda–Llera 2006, Meheus&Batens 2006,...

I will opt for the modal logic RBK!

Language Schema of RBK

language letters logical symbols set of formulas
L S ¬,∧,∨,⊃ W
LM S ¬,∧,∨,⊃,�n,�e,♦n,♦e WM

�n expresses nomological necessity.

�e expresses empirical necessity.
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A Modal Frame

In most logic–based approaches, deductive reasoning is
captured by means of classical logic.
e.g. Aliseda–Llera 2006, Meheus&Batens 2006,...

I will opt for the modal logic RBK!

Proof Theory of RBK
= the axiom system of CL, extended by

AM1n �n(A ⊃ B) ⊃ (�nA ⊃ �nB) AM1e �e(A ⊃ B) ⊃ (�eA ⊃ �eB)
AM2n �nA ⊃ A AM2e �eA ⊃ A
NECn From ` A to ` �nA NECe From ` A to ` �eA
AM3 �nA ⊃ �n�nA
AM4 �nA ⊃ �eA

♦nA =df ¬�n¬A
♦eA =df ¬�e¬A
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Representing Abductive Reasoning Contexts

Abductive Reasoning Contexts
Situations in which people search for possible explanations for some
puzzling (empirical) phenomena.

As RBK is a modal logic, it is able to capture some intensional
elements of abductive reasoning contexts.

Premise sets are taken to express abductive reasoning contexts:

I WN = {�nA | A ∈ W} Nomological Facts
I WE = {�eA | A ∈ S ∪ S¬} Empirical Facts

= The background knowledge
⇒ Necessities express contextual certainty!

I WP = {A | A ∈ S ∪ S¬} Puzzling Facts

= The explananda
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On Defeasible Inference

AC in a Modal Environment
The applications of AC that qualify for conditional acceptance are
limited to those satisfying the following schema:

ACm �n(A ⊃ B), B, ∆ ` A

H. Lycke (Ghent University) The adaptive logics approach to abductive reasoning MBR’09, Campinas 18 / 42



On Defeasible Inference
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The applications of AC that qualify for conditional acceptance are
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ACm �n(A ⊃ B), B, ∆ ` A

A can only be considered an explanation for B in case there is a
statement expressing the nomological dependency of B upon A.

⇒ Relation with Hempel’s account of explanation.
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AC in a Modal Environment
The applications of AC that qualify for conditional acceptance are
limited to those satisfying the following schema:

ACm �n(A ⊃ B), B, ∆ ` A

A can only be considered an explanation for B in case there is a
statement expressing the nomological dependency of B upon A.

⇒ Relation with Hempel’s account of explanation.

The explanandum B may not be part of the background
knowledge!

OTHERWISE It wouldn’t be in need of an explanation.

Certain additional conditions have to be fulfilled before ACm may
be applied.
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On Defeasible Inference

Additional Conditions?
Some are equal to those stated by the backwards
deduction–approaches to abduction.

Some can only be presumed in a defeasible way!

⇒ The formulas expressing those conditions are obtained by
means of defeasible inference rules, such as

(NNN) ` ¬�n(A ⊃ B)
(NEN) ` ¬�eA

⇒ These defeasible inference rules are prior to ACm.

⇒ Abduction processes are layered processes!

⇒ The adaptive logics needed are prioritized adaptive
logics.
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Multiple Abduction Processes

Practical Abduction
In case of multiple possible explanations, only the disjunction of all
possible explanations is derivable.
⇒ The logic AbLp

Theoretical Abduction
In case of multiple possible explanations, all possible explanations
are derivable.
⇒ The logic AbLt

Prioritized Abduction
In case of multiple possible explanations, only the most plausible
explanations are derivable.
⇒ The logic AbLpt
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Multiple Abduction Processes

Earlier Attempts

J. Meheus et al. Ampliative Adaptive logics and the foundation of
logic-based approaches to abduction. In: L. Magnani, N. Nersessian
and C. Pizzi. Logical and Computational Aspects of Model-Based
Reasoning, Kluwer, Dordrecht, 2002, pp. 39–71.

BUT Some extra–logical features are incorporated.

⇒ No formal logic is provided.

J. Meheus and D. Batens. A formal logic for abductive reasoning. Logic
Journal of the IGPL, vol. 14, 2006, pp. 221–236.

BUT Only abductive inferences at the predicate level.
BUT Only practical abduction could be characterized.

⇒ Abductive reasoning is captured in a limited way.
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General Characterization

Prioritized Adaptive Logics

1. A Lower Limit Logic (LLL)
The LLL determines the inference rules that can be applied unrestrictedly.

2. A Set of Abnormalities (Ω = Ω0 > Ω1 > ... > Ωn)
Elements of Ω are interpreted as false as much as possible
The result: some conditionally derived consequences

I
A ∨ B∈Ω

A
, unless B cannot be interpreted as false.

Prioritized: Ω is a structurally ordered set of sets.

I Consequences obtained by falsifying abnormalities of a certain
priority may necessitate the withdrawal of consequences obtained by
falsifying abnormalities of a lower priority.

3. An Adaptive Strategy
The adaptive strategy determines which of the conditionally derived
formulas have to be withdrawn.
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General Characterization: Practical Abduction

The Adaptive Logic AbLp

1. Lower Limit Logic (LLL)

2. Set of Abnormalities Ω = Ωbk > Ωp

Ωbk =
Ωp =

3. Adaptive Strategy
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General Characterization: Theoretical Abduction

The Adaptive Logic AbLt

1. Lower Limit Logic (LLL) = the logic RBK

2. Set of Abnormalities Ω = Ωbk > Ωt

Ωbk = {�xA | x ∈ {n, e} and A ∈ W}
Ωt =

3. Adaptive Strategy = Reliability
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General Characterization: Prioritized Abduction

How to Represent Priorities?
By integrating the knowledge of priorities in the background
knowledge.

⇒ If �n(A ⊃ B) then �n♦e...♦e(A ∧ B) expresses that

A is a possible explanation of B, and
the lesser ♦e’s, the more plausible A is as an explanation of
B.

How to Make Use of Priorities?
There are multiple possibilities!

HERE in a straightforward way.
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General Characterization: Prioritized Abduction

The Adaptive Logic AbLpt

1. Lower Limit Logic (LLL) = the logic RBK
2. Set of Abnormalities Ω = Ωbk > Ωpt1 > Ωpp1 > Ωpt2 > Ωpp2 > ... > Ωt

Ωbk and Ωt as for theoretical abduction.

Ωpti =

Ωppi =

3. Adaptive Strategy = Reliability
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Proof Theory (1)

General Features
An AbLx–proof is a succession of stages, each consisting of a
sequence of lines.

I Adding a line to a proof is to move on to a next stage.

Each line of a proof consists of 4 elements:
I a line number,
I a formula,
I a justification, and
I an adaptive condition (= a set of abnormalities)

Deduction Rules
I As all AbLx are based on the same LLL, the deduction rules are

the same for all of them.

Marking Criterium
I As all AbLx are based on the same adaptive strategy, the marking

criterium is the same for all of them.
I Dynamic proofs
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Proof Theory (2)

Dab–Formulas
Dabx(∆) =

∨
(∆), with ∆ ⊂ Ωx

Deduction Rules
PREM If A ∈ Γ: . . . . . .

A ∅

RU If A1, . . . , An `RBK B: A1 ∆1
...

...
An ∆n

B ∆1 ∪ . . . ∪∆n

RC If A1, . . . , An `RBK B ∨ Dabx(Θ) A1 ∆1
...

...
An ∆n

B ∆1 ∪ . . . ∪∆n ∪ Θ
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(∆), with ∆ ⊂ Ωx

Deduction Rules
PREM If A ∈ Γ: . . . . . .

A ∅

RU If A1, . . . , An `RBK B: A1 ∆1
...

...
An ∆n

B ∆1 ∪ . . . ∪∆n

RC If A1, . . . , An `RBK B ∨ Dabx(Θ) A1 ∆1
...

...
An ∆n

B ∆1 ∪ . . . ∪∆n ∪ Θ
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Proof Theory (3)

Minimal Dabx–consequences
Dabx(∆) is a minimal Dabx–consequence of Γ at stage s of a proof,
iff (1) it occurs on an unmarked line at stage s, (2) all members of its
adaptive condition belong to a Ωx ′ such that Ωx ′ > Ωx , and (3) there
is no ∆′ ⊂ ∆ for which the same applies.

The Set of Unreliable Formulas of a Certain Priority
Ux

s (Γ) = ∆1 ∪∆2 ∪ ... for Dabx(∆1), Dabx(∆2),... the minimal
Dabx–consequences of Γ at stage s of the proof.

Marking Definition
Line i is marked at stage s of the proof iff, where ∆ is its condition,
∆ ∩ Ux

s (Γ) 6= ∅.

Marking Proceeds Stepwise
First for the highest priority level, and afterwards for the lower ones.
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Proof Theory (4)

Derivability
A is derived from Γ at stage s of a proof iff A is the second element of
an unmarked line at stage s.

Final Derivability
A is finally derived from Γ on a line i of a proof at stage s iff (i) A
is the second element of line i , (ii) line i is not marked at stage s,
and (iii) every extension of the proof in which line i is marked
may be further extended in such a way that line i is unmarked.

Γ `AbLx A iff A is finally derived on a line of a proof from Γ.
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Example: Practical Abduction

Definition
〈A, B〉 =df �n(A ⊃ B) ∧ B ∧ ¬�eB ∧ ¬A

Example

1 �n(p ⊃ q) –;PREM ∅
2 �n(r ⊃ q) –;PREM ∅
3 q –;PREM ∅
4 ¬�eq –;RC {�eq}
5 p 1, 3, 4;RC {�eq, 〈p, q〉} XX
6 r 2, 3, 4;RC {�eq, 〈r , q〉} XX
7 〈p, q〉 ∨ 〈r ∧ ¬p, q〉 1,2,3,4;RU {�eq}
8 〈r , q〉 ∨ 〈p ∧ ¬r , q〉 1,2,3,4;RU {�eq}
9 p ∨ r 1,2,3,4;RC {�eq, 〈p ∨ r , q〉}

Set of Unreliable Formulas

Ubk
3 (Γ) = {�n(p ⊃ q), �n(r ⊃ q)}

Up
3 (Γ) = ∅
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Example: Theoretical Abduction

Definition
〈A1 ∧ ... ∧ An, B〉 =df �n((A1 ∧ ... ∧ An) ⊃ B) ∧ B ∧ ¬�eB ∧ ¬A ∧ ¬[An

1 ⊃ B]

Example

1 �n(p ⊃ q) –;PREM ∅
2 �n(r ⊃ q) –;PREM ∅
3 q –;PREM ∅
4 p 1, 3;RC {�eq, �nq, 〈p, q〉} X
5 r 2, 3;RC {�eq, �nq, 〈r , q〉} X
6 〈p, q〉 ∨ 〈r ∧ ¬p, q〉 1,2,3;RC {�eq, �nq, �n(r ⊃ q), �n(¬p ⊃ q)} X
7 〈r , q〉 ∨ 〈p ∧ ¬r , q〉 1,2,3;RC {�eq, �nq, �n(p ⊃ q), �n(¬r ⊃ q)} X

Set of Unreliable Formulas

Ubk
3 (Γ) = {�n(p ⊃ q), �n(r ⊃ q)}

U t
3(Γ) = ∅
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Example: Prioritized Abduction

Definition
〈A, B〉t ∈ Ωt , 〈A, B〉pti ∈ Ωpti and 〈A, B〉ppi ∈ Ωppi

Example

1 �n(p ⊃ q) –;PREM ∅
2 �n♦e(p ∧ q) –;PREM ∅
3 �n(r ⊃ q) –;PREM ∅
4 �n♦e♦e(r ∧ q) –;PREM ∅
5 q –;PREM ∅
6 p 1, 2, 5;RC {�eq, �nq, 〈p, q〉pt1}
7 r 3, 4, 5;RC {�eq, �nq, 〈r , q〉pt2} X
8 〈p, q〉pt1 ∨ 〈r ∧ ¬p, q〉pp2 1,2,3,4,5;RC {�eq, �nq}
9 〈r , q〉pt2 ∨ 〈p ∧ ¬r , q〉pp1 1,2,3,4,5;RC {�eq, �nq}
10 〈r ∧ ¬p, q〉pp2 8;RC {�eq, �nq, 〈p, q〉pt1}
11 〈r , q〉pt2 9;RC {�eq, �nq, 〈p ∧ ¬r , q〉pp1}

Set of Unreliable Formulas

Ubk
5 (Γ) = {�n(p ⊃ q), �n(r ⊃ q)}
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Example
1 �n(p ⊃ q) –;PREM ∅
2 �n♦e(p ∧ q) –;PREM ∅
3 �n(r ⊃ q) –;PREM ∅
4 �n♦e♦e(r ∧ q) –;PREM ∅
5 q –;PREM ∅
6 p 1, 2, 5;RC {�eq, �nq, 〈p, q〉pt1}
7 r 3, 4, 5;RC {�eq, �nq, 〈r , q〉pt2}

X

8 〈p, q〉pt1 ∨ 〈r ∧ ¬p, q〉pp2 1,2,3,4,5;RC {�eq, �nq}
9 〈r , q〉pt2 ∨ 〈p ∧ ¬r , q〉pp1 1,2,3,4,5;RC {�eq, �nq}
10 〈r ∧ ¬p, q〉pp2 8;RC {�eq, �nq, 〈p, q〉pt1}
11 〈r , q〉pt2 9;RC {�eq, �nq, 〈p ∧ ¬r , q〉pp1}

Set of Unreliable Formulas
Ubk

11 (Γ) = {�n(p ⊃ q), �n(r ⊃ q)}
Upt2

11 (Γ) = {〈r , q〉pt2} Upp2
11 (Γ) = {〈r ∧ ¬p, q〉pp2}
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Further Research

Finetuning of
the adaptive logics for prioritized abduction.

Development of
adaptive logics for abduction based on inconsistent background
knowledge, and of
adaptive logics that combine abduction with induction.
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