

A formal explication of the search for explanations. The adaptive logics approach to abductive reasoning.

Hans Lycke

Centre for Logic and Philosophy of Science Ghent University Hans.Lycke@Ugent.be http://logica.ugent.be/hans

MBR'09 December 17–20 2009, Campinas

(ロ) (日) (日) (日) (日)

Outline

Searching for Explanations

- Abduction?
- Logic–Based Approaches to Abduction
- Aim of this Talk
- 2 The Deductive Frame
 - Abduction vs Deduction
 - A Modal Frame
 - Representing Abductive Reasoning Contexts
- On Defeasible Inference
- Enter Adaptive Logics
 - Multiple Abduction Processes
 - General Characterization
 - Proof Theory
 - Examples

Outline

- Logic–Based Approaches to Abduction
- Aim of this Talk
- 2 The Deductive Frame
 - Abduction vs Deduction
 - A Modal Frame
 - Representing Abductive Reasoning Contexts
- On Defeasible Inference
- Enter Adaptive Logics
 - Multiple Abduction Processes
 - General Characterization
 - Proof Theory
 - Examples

Abduction?

Searching for Explanations

Backwards reasoning: from the phenomena to be explained to possible explanations.

Abduction?

Searching for Explanations

Backwards reasoning: from the phenomena to be explained to possible explanations.

 \Rightarrow Abductive inferences

 $A \supset B, B \vdash A$ (Affirming the Consequent)

Abduction?

Searching for Explanations

Backwards reasoning: from the phenomena to be explained to possible explanations.

⇒ Abductive inferences

 $A \supset B, B \vdash A$ (Affirming the Consequent)

Example

- A physician in search of the right diagnosis for a patient's symptoms,
- a technician trying to find out why a machine broke down,
- a scientist trying to find an explanation for an empirical phenomenon contradicting some predictions derived from an accepted theory,...

Outline

Searching for Explanations

- Abduction?
- Logic–Based Approaches to Abduction
- Aim of this Talk
- 2 The Deductive Frame
 - Abduction vs Deduction
 - A Modal Frame
 - Representing Abductive Reasoning Contexts
- On Defeasible Inference
- Enter Adaptive Logics
 - Multiple Abduction Processes
 - General Characterization
 - Proof Theory
 - Examples

Affirming the Consequent (AC) is not deductively valid !!!

Affirming the Consequent (AC) is not deductively valid !!!

Backwards Deduction plus Additional Conditions

A number of conditions is specified that enable one to decide whether or not a particular abductive inference is sound.

Affirming the Consequent (AC) is not deductively valid !!!

Backwards Deduction plus Additional Conditions

A number of conditions is specified that enable one to decide whether or not a particular abductive inference is sound.

Example

Given the background theory Γ , A is an explanation for B iff

- $\Gamma \cup \{A\} \vdash B$
- Г ⊬ ¬А
- Γ ⊬ B; A ⊬ B
- ...

Affirming the Consequent (AC) is not deductively valid !!!

Backwards Deduction plus Additional Conditions

A number of conditions is specified that enable one to decide whether or not a particular abductive inference is sound.

 \neq a realistic explication of abductive reasoning

Affirming the Consequent (AC) is not deductively valid !!!

Backwards Deduction plus Additional Conditions

A number of conditions is specified that enable one to decide whether or not a particular abductive inference is sound.

- \neq a realistic explication of abductive reasoning
 - FOR FOCUS is on abductive consequence, not on abductive reasoning

Affirming the Consequent (AC) is not deductively valid !!!

Backwards Deduction plus Additional Conditions

A number of conditions is specified that enable one to decide whether or not a particular abductive inference is sound.

- \neq a realistic explication of abductive reasoning
 - FOR Focus is on abductive consequence, not on abductive reasoning
 - \Rightarrow Search procedures instead of a proof theory
 - e.g. Tableau methods (Aliseda–Llera 2006, Mayer&Pirri 1993)

The Adaptive Logics Programme

The inference rule **AC** is modeled as a defeasible inference rule (a default rule).

The Adaptive Logics Programme

The inference rule **AC** is modeled as a defeasible inference rule (a default rule).

- ⇒ Abductive consequences are accepted only *in case* and *for as long as* certain conditions are satisfied.
 - \Rightarrow Only the unproblematic applications of **AC** are retained.

The Adaptive Logics Programme

The inference rule **AC** is modeled as a defeasible inference rule (a default rule).

- ⇒ Abductive consequences are accepted only *in case* and *for as long as* certain conditions are satisfied.
 - \Rightarrow Only the unproblematic applications of **AC** are retained.
- ⇒ Abductive reasoning steps are combined with deductive reasoning steps.

The Adaptive Logics Programme

The inference rule **AC** is modeled as a defeasible inference rule (a default rule).

- \Rightarrow Abductive consequences are accepted only *in case* and *for as long as* certain conditions are satisfied.
 - \Rightarrow Only the unproblematic applications of **AC** are retained.
- ⇒ Abductive reasoning steps are combined with deductive reasoning steps.

Advantages

- (Some of) the conditions of **BD** can be incorporated.
- A nice proof theory for abductive reasoning is provided.

The Adaptive Logics Programme

The inference rule **AC** is modeled as a defeasible inference rule (a default rule).

- \Rightarrow Abductive consequences are accepted only *in case* and *for as long as* certain conditions are satisfied.
 - \Rightarrow Only the unproblematic applications of **AC** are retained.
- $\Rightarrow\,$ Abductive reasoning steps are combined with deductive reasoning steps.

Advantages

- (Some of) the conditions of **BD** can be incorporated.
- A nice proof theory for abductive reasoning is provided.

⇒ The adaptive logics approach provides a more realistic explication of the application of abductive inferences in human reasoning!

Outline

1

Searching for Explanations

- Abduction?
- Logic–Based Approaches to Abduction
- Aim of this Talk
- 2 The Deductive Frame
 - Abduction vs Deduction
 - A Modal Frame
 - Representing Abductive Reasoning Contexts
- On Defeasible Inference
- Enter Adaptive Logics
 - Multiple Abduction Processes
 - General Characterization
 - Proof Theory
 - Examples

The Overall Aim

To present a general approach towards the explication of abductive reasoning based on the Adaptive Logics Programme.

The Overall Aim

To present a general approach towards the explication of abductive reasoning based on the Adaptive Logics Programme.

Three Steps

- The deductive frame
 - = To spell out the relation between abduction and deduction.

The Overall Aim

To present a general approach towards the explication of abductive reasoning based on the Adaptive Logics Programme.

Three Steps

- The deductive frame
 - = To spell out the relation between abduction and deduction.
- On defeasible inference
 - = To characterize the abductive inference rule in general.

The Overall Aim

To present a general approach towards the explication of abductive reasoning based on the Adaptive Logics Programme.

Three Steps

- The deductive frame
 - = To spell out the relation between abduction and deduction.
- On defeasible inference
 - = To characterize the abductive inference rule in general.
- Enter adaptive logics
 - = To characterize some adaptive logics for abductive reasoning.

Outline

- Abduction?
- Logic–Based Approaches to Abduction
- Aim of this Talk
- 2 The Deductive Frame
 - Abduction vs Deduction
 - A Modal Frame
 - Representing Abductive Reasoning Contexts
- On Defeasible Inference
- Enter Adaptive Logics
 - Multiple Abduction Processes
 - General Characterization
 - Proof Theory
 - Examples

Abduction vs Deduction

Intertwinement

 Abductive reasoning validates some arguments that are not deductively valid.

IN CASU Applications of Affirming the Consequent (AC).

Abduction vs Deduction

Intertwinement

 Abductive reasoning validates some arguments that are not deductively valid.

IN CASU Applications of Affirming the Consequent (AC).

- Abductive reasoning is constrained by deductive reasoning.
 - FOR Abductive consequences of a premise set might have to be withdrawn in view of its deductive consequences.

Abduction vs Deduction

Intertwinement

 Abductive reasoning validates some arguments that are not deductively valid.

IN CASU Applications of Affirming the Consequent (AC).

- Abductive reasoning is constrained by deductive reasoning.
 - FOR Abductive consequences of a premise set might have to be withdrawn in view of its deductive consequences.
 - ⇒ Abductive inference steps are applied against a deductive background!

Outline

- Abduction?
- Logic–Based Approaches to Abduction
- Aim of this Talk

2 The Deductive Frame

- Abduction vs Deduction
- A Modal Frame
- Representing Abductive Reasoning Contexts
- On Defeasible Inference
- Enter Adaptive Logics
 - Multiple Abduction Processes
 - General Characterization
 - Proof Theory
 - Examples

- In most logic–based approaches, deductive reasoning is captured by means of *classical logic*.
 - e.g. Aliseda-Llera 2006, Meheus&Batens 2006,...

- In most logic–based approaches, deductive reasoning is captured by means of *classical logic*.
 - e.g. Aliseda-Llera 2006, Meheus&Batens 2006,...
- I will opt for the modal logic RBK!

- In most logic–based approaches, deductive reasoning is captured by means of *classical logic*.
 - e.g. Aliseda-Llera 2006, Meheus&Batens 2006,...
- I will opt for the modal logic RBK!

Language Schema of RBK					
	language	letters	logical symbols	set of formulas	
	\mathcal{L}	S	$\neg, \land, \lor, \supset$	\mathcal{W}	
	$\mathcal{L}^{\mathcal{M}}$	S	$\neg, \land, \lor, \supset$ $\neg, \land, \lor, \supset, \Box_n, \Box_e, \Diamond_n, \diamond_e$	$\mathcal{W}^{\mathcal{M}}$	
• \Box_n expresses nomological necessity.					
• \Box_e expresses <i>empirical necessity</i> .					

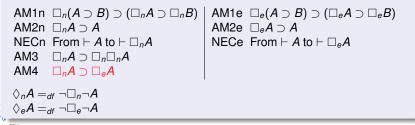
 In most logic–based approaches, deductive reasoning is captured by means of *classical logic*.

e.g. Aliseda-Llera 2006, Meheus&Batens 2006,...

I will opt for the modal logic RBK!

Proof Theory of **RBK**

= the axiom system of CL, extended by



Outline

- Abduction?
- Logic–Based Approaches to Abduction
- Aim of this Talk

2 The Deductive Frame

- Abduction vs Deduction
- A Modal Frame

Representing Abductive Reasoning Contexts

- On Defeasible Inference
- Enter Adaptive Logics
 - Multiple Abduction Processes
 - General Characterization
 - Proof Theory
 - Examples

Representing Abductive Reasoning Contexts

Abductive Reasoning Contexts

Situations in which people search for possible explanations for some puzzling (empirical) phenomena.

Representing Abductive Reasoning Contexts

Abductive Reasoning Contexts

Situations in which people search for possible explanations for some puzzling (empirical) phenomena.

• As **RBK** is a modal logic, it is able to capture some intensional elements of abductive reasoning contexts.

Representing Abductive Reasoning Contexts

Abductive Reasoning Contexts

Situations in which people search for possible explanations for some puzzling (empirical) phenomena.

- As **RBK** is a modal logic, it is able to capture some intensional elements of abductive reasoning contexts.
- Premise sets are taken to express abductive reasoning contexts:

Abductive Reasoning Contexts

Situations in which people search for possible explanations for some puzzling (empirical) phenomena.

- As **RBK** is a modal logic, it is able to capture some intensional elements of abductive reasoning contexts.
- Premise sets are taken to express abductive reasoning contexts:

$$\mathcal{W}^{\mathcal{N}} = \{ \Box_n A \mid A \in \mathcal{W} \}$$
$$\mathcal{W}^{\mathcal{E}} = \{ \Box_e A \mid A \in \mathcal{S} \cup \mathcal{S}^{\neg} \}$$

Nomological Facts Empirical Facts

Abductive Reasoning Contexts

Situations in which people search for possible explanations for some puzzling (empirical) phenomena.

- As **RBK** is a modal logic, it is able to capture some intensional elements of abductive reasoning contexts.
- Premise sets are taken to express abductive reasoning contexts:

- = The background knowledge
 - ⇒ Necessities express *contextual certainty*!

Abductive Reasoning Contexts

Situations in which people search for possible explanations for some puzzling (empirical) phenomena.

- As **RBK** is a modal logic, it is able to capture some intensional elements of abductive reasoning contexts.
- Premise sets are taken to express abductive reasoning contexts:

$$\mathcal{W}^{\mathcal{P}} = \{ A \mid A \in \mathcal{S} \cup \mathcal{S}^{\neg} \}$$
 Puzzling Facts

Abductive Reasoning Contexts

Situations in which people search for possible explanations for some puzzling (empirical) phenomena.

- As **RBK** is a modal logic, it is able to capture some intensional elements of abductive reasoning contexts.
- Premise sets are taken to express abductive reasoning contexts:

$$\begin{aligned} \mathcal{W}^{\mathcal{N}} &= \{ \Box_n A \mid A \in \mathcal{W} \} \\ \mathcal{W}^{\mathcal{E}} &= \{ \Box_e A \mid A \in \mathcal{S} \cup \mathcal{S}^{\neg} \} \end{aligned} \\ \text{Nomological Facts}$$

$$\Rightarrow$$
 Necessities express *contextual certainty*

$$\mathcal{W}^{\mathcal{P}} = \{ A \mid A \in \mathcal{S} \cup \mathcal{S}^{\neg} \}$$
 Puzzling Facts

The explananda

AC in a Modal Environment

The applications of **AC** that qualify for conditional acceptance are limited to those satisfying the following schema:

AC^m $\Box_n(A \supset B), B, \Delta \vdash A$

AC in a Modal Environment

The applications of **AC** that qualify for conditional acceptance are limited to those satisfying the following schema:

 $\mathbf{AC}^{\mathbf{m}} \quad \Box_{n}(\mathbf{A} \supset \mathbf{B}), \ \mathbf{B}, \ \Delta \vdash \mathbf{A}$

- A can only be considered an explanation for B in case there is a statement expressing the nomological dependency of B upon A.
 - \Rightarrow Relation with Hempel's account of explanation.

AC in a Modal Environment

The applications of **AC** that qualify for conditional acceptance are limited to those satisfying the following schema:

AC^m $\Box_n(A \supset B), B, \Delta \vdash A$

- A can only be considered an explanation for B in case there is a statement expressing the nomological dependency of B upon A.
 - \Rightarrow Relation with Hempel's account of explanation.
- The explanandum *B* may not be part of the background knowledge!

OTHERWISE It wouldn't be in need of an explanation.

AC in a Modal Environment

The applications of **AC** that qualify for conditional acceptance are limited to those satisfying the following schema:

AC^m $\Box_n(A \supset B), B, \Delta \vdash A$

- A can only be considered an explanation for B in case there is a statement expressing the nomological dependency of B upon A.
 - \Rightarrow Relation with Hempel's account of explanation.
- The explanandum *B* may not be part of the background knowledge!

OTHERWISE It wouldn't be in need of an explanation.

 Certain additional conditions have to be fulfilled before AC^m may be applied.

Additional Conditions?

• Some are equal to those stated by the *backwards deduction*–approaches to abduction.

Additional Conditions?

- Some are equal to those stated by the *backwards deduction*–approaches to abduction.
- Some can only be presumed in a defeasible way!

Additional Conditions?

- Some are equal to those stated by the *backwards deduction*–approaches to abduction.
- Some can only be presumed in a defeasible way!
 - ⇒ The formulas expressing those conditions are obtained by means of defeasible inference rules, such as

 $\begin{array}{ll} (\text{NNN}) & \vdash \neg \Box_n (A \supset B) \\ (\text{NEN}) & \vdash \neg \Box_e A \end{array}$

Additional Conditions?

- Some are equal to those stated by the *backwards deduction*–approaches to abduction.
- Some can only be presumed in a defeasible way!
 - ⇒ The formulas expressing those conditions are obtained by means of defeasible inference rules, such as

 $\begin{array}{ll} (\text{NNN}) & \vdash \neg \Box_n (A \supset B) \\ (\text{NEN}) & \vdash \neg \Box_e A \end{array}$

 \Rightarrow These defeasible inference rules are prior to **AC**^m.

Additional Conditions?

- Some are equal to those stated by the *backwards deduction*–approaches to abduction.
- Some can only be presumed in a defeasible way!
 - ⇒ The formulas expressing those conditions are obtained by means of defeasible inference rules, such as

 $\begin{array}{ll} (\text{NNN}) & \vdash \neg \Box_n (A \supset B) \\ (\text{NEN}) & \vdash \neg \Box_e A \end{array}$

- \Rightarrow These defeasible inference rules are prior to **AC**^m.
- ⇒ Abduction processes are layered processes!
 - ⇒ The adaptive logics needed are *prioritized adaptive logics*.

Outline

- Abduction?
- Logic–Based Approaches to Abduction
- Aim of this Talk
- 2 The Deductive Frame
 - Abduction vs Deduction
 - A Modal Frame
 - Representing Abductive Reasoning Contexts
- On Defeasible Inference
- Enter Adaptive Logics
 - Multiple Abduction Processes
 - General Characterization
 - Proof Theory
 - Examples

Practical Abduction

In case of multiple possible explanations, only the disjunction of all possible explanations is derivable.

⇒ The logic AbL^p

Practical Abduction

In case of multiple possible explanations, only the disjunction of all possible explanations is derivable.

⇒ The logic AbL^p

Theoretical Abduction

In case of multiple possible explanations, all possible explanations are derivable.

 \Rightarrow The logic **AbL**^t

Practical Abduction

In case of multiple possible explanations, only the disjunction of all possible explanations is derivable.

⇒ The logic AbL^p

Theoretical Abduction

In case of multiple possible explanations, all possible explanations are derivable.

 $\Rightarrow \ \ \text{The logic } \textbf{AbL}^t$

Prioritized Abduction

In case of multiple possible explanations, only the most plausible explanations are derivable.

⇒ The logic AbL^{pt}

Earlier Attempts

イロト イヨト イヨト イヨ

Earlier Attempts

 J. Meheus et al. Ampliative Adaptive logics and the foundation of logic-based approaches to abduction. In: L. Magnani, N. Nersessian and C. Pizzi. Logical and Computational Aspects of Model-Based Reasoning, Kluwer, Dordrecht, 2002, pp. 39–71.

BUT Some extra-logical features are incorporated.

 \Rightarrow No formal logic is provided.

Earlier Attempts

 J. Meheus et al. Ampliative Adaptive logics and the foundation of logic-based approaches to abduction. In: L. Magnani, N. Nersessian and C. Pizzi. Logical and Computational Aspects of Model-Based Reasoning, Kluwer, Dordrecht, 2002, pp. 39–71.

BUT Some extra-logical features are incorporated.

 \Rightarrow No formal logic is provided.

- J. Meheus and D. Batens. A formal logic for abductive reasoning. *Logic Journal of the IGPL*, vol. 14, 2006, pp. 221–236.
 - BUT Only abductive inferences at the predicate level.
 - BUT Only practical abduction could be characterized.
 - \Rightarrow Abductive reasoning is captured in a limited way.

Outline

- Abduction?
- Logic–Based Approaches to Abduction
- Aim of this Talk
- 2 The Deductive Frame
 - Abduction vs Deduction
 - A Modal Frame
 - Representing Abductive Reasoning Contexts
- On Defeasible Inference
- 4

Enter Adaptive Logics

- Multiple Abduction Processes
- General Characterization
- Proof Theory
- Examples

Prioritized Adaptive Logics

Prioritized Adaptive Logics

- 1. A Lower Limit Logic (LLL)
 - The LLL determines the inference rules that can be applied unrestrictedly.
- 2. A Set of Abnormalities ($\Omega = \Omega_0 > \Omega_1 > ... > \Omega_n$)
 - Elements of Ω are interpreted as false as much as possible
 The result: some conditionally derived consequences

$\frac{A \vee B^{-a}}{A}$, unless B cannot be interpreted as false

- Prioritized: Ω is a structurally ordered set of sets.
 - Consequences obtained by falsifying abnormalities of a certain priority may necessitate the withdrawal of consequences obtained by falsifying abnormalities of a lower priority.

3. An Adaptive Strategy

The adaptive strategy determines which of the conditionally derived formulas have to be withdrawn.

٩

Prioritized Adaptive Logics

- 1. A Lower Limit Logic (LLL)
 - The LLL determines the inference rules that can be applied unrestrictedly.
- 2. A Set of Abnormalities ($\Omega = \Omega_0 > \Omega_1 > ... > \Omega_n$)
 - Elements of Ω are interpreted as false as much as possible.
 The result: some conditionally derived consequences.

$\frac{A \vee B^{-A}}{A}$, unless B cannot be interpreted as false

- Prioritized: Ω is a structurally ordered set of sets.
 - Consequences obtained by falsifying abnormalities of a certain priority may necessitate the withdrawal of consequences obtained by falsifying abnormalities of a lower priority.

3. An Adaptive Strategy

The adaptive strategy determines which of the conditionally derived formulas have to be withdrawn.

٩

Image: A marked and A marked

Prioritized Adaptive Logics

- 1. A Lower Limit Logic (LLL)
 - The LLL determines the inference rules that can be applied unrestrictedly.
- 2. A Set of Abnormalities ($\Omega = \Omega_0 > \Omega_1 > ... > \Omega_n$)
 - Elements of Ω are interpreted as false as much as possible
 - The result: some conditionally derived consequences

• Prioritized: Ω is a structurally ordered set of sets.

 Consequences obtained by falsifying abnormalities of a certain priority may necessitate the withdrawal of consequences obtained by falsifying abnormalities of a lower priority.

3. An Adaptive Strategy

The adaptive strategy determines which of the conditionally derived formulas have to be withdrawn.

٩

Prioritized Adaptive Logics

- 1. A Lower Limit Logic (LLL)
 - The LLL determines the inference rules that can be applied unrestrictedly.
- 2. A Set of Abnormalities ($\Omega = \Omega_0 > \Omega_1 > ... > \Omega_n$)
 - Elements of Ω are interpreted as false as much as possible
 - The result: some conditionally derived consequences

 $A \vee B^{\in \Omega}$, unless *B* cannot be interpreted as false.

- Prioritized: Ω is a structurally ordered set of sets.
 - Consequences obtained by falsifying abnormalities of a certain priority may necessitate the withdrawal of consequences obtained by falsifying abnormalities of a lower priority.

3. An Adaptive Strategy

The adaptive strategy determines which of the conditionally derived formulas have to be withdrawn.

٩

Prioritized Adaptive Logics

- 1. A Lower Limit Logic (LLL)
 - The LLL determines the inference rules that can be applied unrestrictedly.
- 2. A Set of Abnormalities ($\Omega = \Omega_0 > \Omega_1 > ... > \Omega_n$)
 - Elements of Ω are interpreted as false as much as possible
 - The result: some conditionally derived consequences

 $A \lor B \in \Omega$, unless *B* cannot be interpreted as false.

- Prioritized: Ω is a structurally ordered set of sets.
 - Consequences obtained by falsifying abnormalities of a certain priority may necessitate the withdrawal of consequences obtained by falsifying abnormalities of a lower priority.

3. An Adaptive Strategy

The adaptive strategy determines which of the conditionally derived formulas have to be withdrawn.

Prioritized Adaptive Logics

- 1. A Lower Limit Logic (LLL)
 - The LLL determines the inference rules that can be applied unrestrictedly.
- 2. A Set of Abnormalities ($\Omega = \Omega_0 > \Omega_1 > ... > \Omega_n$)
 - Elements of Ω are interpreted as false as much as possible
 - The result: some conditionally derived consequences

 $A \lor B^{\in \Omega}$, unless *B* cannot be interpreted as false.

- Prioritized: Ω is a structurally ordered set of sets.
 - Consequences obtained by falsifying abnormalities of a certain priority may necessitate the withdrawal of consequences obtained by falsifying abnormalities of a lower priority.

3. An Adaptive Strategy

• The adaptive strategy determines which of the conditionally derived formulas have to be withdrawn.

The Adaptive Logic AbL^p

The Adaptive Logic AbL^p

- 1. Lower Limit Logic (LLL)
- 2. Set of Abnormalities $\Omega = \Omega_{bk} > \Omega_p$

•
$$\Omega_{bk} =$$

The Adaptive Logic AbL^p

- 1. Lower Limit Logic (LLL) = the logic RBK
- 2. Set of Abnormalities $\Omega = \Omega_{bk} > \Omega_p$

•
$$\Omega_{bk} =$$

• $\Omega_p =$

The Adaptive Logic AbL^p

- 1. Lower Limit Logic (LLL) = the logic RBK
- 2. Set of Abnormalities $\Omega = \Omega_{bk} > \Omega_p$
 - $\Omega_{bk} = \{ \Box_x A \mid x \in \{n, e\} \text{ and } A \in \mathcal{W} \}$

The Adaptive Logic AbL^p

1. Lower Limit Logic (LLL) = the logic **RBK**

2. Set of Abnormalities
$$\Omega = \Omega_{bk} > \Omega_{\rho}$$

•
$$\Omega_{bk} = \{ \Box_x A \mid x \in \{n, e\} \text{ and } A \in \mathcal{W} \}$$

• $\Omega_p = \{ \Box_n(A \supset B) \land B \land \neg \Box_e B \land \neg A \mid$

$$B \in S \cup S',$$

- A in Conjunctive Normal Form, and
- B is not a subformula of A

The Adaptive Logic AbL^p

1. Lower Limit Logic (LLL) = the logic RBK

2. Set of Abnormalities
$$\Omega = \Omega_{bk} > \Omega_p$$

•
$$\Omega_{bk} = \{ \Box_x A \mid x \in \{n, e\} \text{ and } A \in \mathcal{W} \}$$

• $\Omega_p = \{ \Box_n (A \supset B) \land B \land \neg \Box_e B \land \neg A \mid B \subseteq S \mid \downarrow S]$

 \triangleright B is not a subformula of A

3. Adaptive Strategy = Reliability

The Adaptive Logic AbL^t

H. Lycke (Ghent University)

The adaptive logics approach to abductive reasoning

< A

General Characterization: Theoretical Abduction

The Adaptive Logic AbL^t

- 1. Lower Limit Logic (LLL) = the logic RBK
- 2. Set of Abnormalities $\Omega = \Omega_{bk} > \Omega_t$
 - $\Omega_{bk} = \{ \Box_x A \mid x \in \{n, e\} \text{ and } A \in \mathcal{W} \}$
 - $\Omega_t =$

General Characterization: Theoretical Abduction

The Adaptive Logic AbL^t

- 1. Lower Limit Logic (LLL) = the logic RBK
- 2. Set of Abnormalities $\Omega = \Omega_{bk} > \Omega_t$
 - $\Omega_{bk} = \{ \Box_x A \mid x \in \{n, e\} \text{ and } A \in \mathcal{W} \}$
 - $\Omega_t = \{ \Box_n((A_1 \land ... \land A_n) \supset B) \land \neg [A_1^n \supset B] \land B \land \neg \Box_e B \land \neg (A_1 \land ... \land A_n) |$

$$\triangleright \quad A_1,...,A_n,B\in \mathcal{S}\cup \mathcal{S}^\neg,$$

▷ *B* is not a subformula of $A_1 \land ... \land A_n$, and

General Characterization: Theoretical Abduction

The Adaptive Logic AbL^t

1. Lower Limit Logic (LLL) = the logic **RBK**

2. Set of Abnormalities
$$\Omega = \Omega_{bk} > \Omega_t$$

• $\Omega_{bk} = \{\Box_x A \mid x \in \{n, e\} \text{ and } A \in \mathcal{W}\}$
• $\Omega_t = \{\Box_n((A_1 \land \dots \land A_n) \supset B) \land \neg [A_1^n \supset B] \land B \land \neg \Box_e B$
 $\land \neg (A_1 \land \dots \land A_n) \mid$
• $A_1, \dots, A_n, B \in S \cup S^{\neg},$
• B is not a subformula of $A_1 \land \dots \land A_n$, and
• $\neg [A_1^n \supset B] =_{df} \neg \Box_n((A_2 \land \dots \land A_n) \supset B) \land$
 $\neg \Box_n((A_1 \land A_3 \land \dots \land A_n) \supset B) \land$
 $\dots \land \neg \Box_n((A_1 \land \dots \land A_{n-1}) \supset B)$

How to Represent Priorities?

By integrating the knowledge of priorities in the background knowledge.

How to Represent Priorities?

By integrating the knowledge of priorities in the background knowledge.

 \Rightarrow If $\Box_n(A \supset B)$ then $\Box_n \Diamond_e ... \Diamond_e(A \land B)$ expresses that

How to Represent Priorities?

By integrating the knowledge of priorities in the background knowledge.

- \Rightarrow If $\Box_n(A \supset B)$ then $\Box_n \Diamond_e ... \Diamond_e(A \land B)$ expresses that
 - A is a possible explanation of B, and

How to Represent Priorities?

By integrating the knowledge of priorities in the background knowledge.

- $\Rightarrow \text{ If } \Box_n(A \supset B) \text{ then } \Box_n \Diamond_e ... \Diamond_e(A \land B) \text{ expresses that}$
 - A is a possible explanation of B, and
 - the lesser ◊_e's, the more plausible A is as an explanation of B.

How to Represent Priorities?

By integrating the knowledge of priorities in the background knowledge.

- $\Rightarrow \text{ If } \Box_n(A \supset B) \text{ then } \Box_n \Diamond_e ... \Diamond_e(A \land B) \text{ expresses that}$
 - A is a possible explanation of B, and
 - the lesser ◊_e's, the more plausible A is as an explanation of B.

How to Make Use of Priorities?

There are multiple possibilities!

HERE in a straightforward way.

The Adaptive Logic AbL^{pt}

The Adaptive Logic AbL^{pt}

- Lower Limit Logic (LLL) = the logic RBK 1.
- 2. Set of Abnormalities $\Omega = \Omega_{bk} > \Omega_{pt_1} > \Omega_{pp_1} > \Omega_{pt_2} > \Omega_{pp_2} > ... > \Omega_t$
 - Ω_{bk} and Ω_t as for theoretical abduction.

•
$$\Omega_{pt_i} =$$

Adaptive Strategy = Reliability 3.

H. Lycke (Ghent University)

MBR'09, Campinas

31/42

The Adaptive Logic AbL^{pt}

- 1. Lower Limit Logic (LLL) = the logic **RBK**
- 2. Set of Abnormalities $\Omega = \Omega_{bk} > \Omega_{\rho t_1} > \Omega_{\rho p_1} > \Omega_{\rho t_2} > \Omega_{\rho p_2} > ... > \Omega_t$
 - Ω_{bk} and Ω_t as for theoretical abduction.
 - $\Omega_{pt_i} = \{ \Box_n((A_1 \land \dots \land A_n) \supset B) \land \Box_n \Diamond_e^i((A_1 \land \dots \land A_n) \land B) \land B \land \neg \Box_e B \land \neg (A_1 \land \dots \land A_n) \land \neg [A_1^n \supset B] |$
 - ▷ For the most part as for theoretical abduction, except for

3. Adaptive Strategy = Reliability

• $\Omega_{nn_i} =$

The Adaptive Logic AbL^{pt}

- 1. Lower Limit Logic (LLL) = the logic **RBK**
- 2. Set of Abnormalities $\Omega = \Omega_{bk} > \Omega_{\rho t_1} > \Omega_{\rho p_1} > \Omega_{\rho t_2} > \Omega_{\rho p_2} > ... > \Omega_t$
 - Ω_{bk} and Ω_t as for theoretical abduction.

i times

•
$$\Omega_{pt_i} = \{ \Box_n((A_1 \land ... \land A_n) \supset B) \land \Box_n \Diamond_{e}^i((A_1 \land ... \land A_n) \land B) \land B \land \neg \Box_{e} B \land \neg (A_1 \land ... \land A_n) \land \neg [A_1^n \supset B] |$$

For the most part as for theoretical abduction, except for

$$= \Box_n \underbrace{\diamond_e} \ldots \underbrace{\diamond_e} ((A_1 \land \ldots \land A_n) \land B)$$

3. Adaptive Strategy = Reliability

 $\Omega_{nn_i} =$

The Adaptive Logic AbL^{pt}

- 1. Lower Limit Logic (LLL) = the logic **RBK**
- 2. Set of Abnormalities $\Omega = \Omega_{bk} > \Omega_{\rho t_1} > \Omega_{\rho p_1} > \Omega_{\rho t_2} > \Omega_{\rho p_2} > ... > \Omega_t$
 - Ω_{bk} and Ω_t as for theoretical abduction.

•
$$\Omega_{pt_i} = \{ \Box_n((A_1 \land \ldots \land A_n) \supset B) \land \Box_n \Diamond_e^i((A_1 \land \ldots \land A_n) \land B) \land B \land \neg \Box_e B \land \neg (A_1 \land \ldots \land A_n) \land \neg [A_1^n \supset B] |$$

▷ For the most part as for theoretical abduction, except for

$$= \Box_n \underbrace{\Diamond_e \dots \Diamond_e}_{i \text{ times}} ((A_1 \land \dots \land A_n) \land B)$$

• $\Omega_{\rho\rho_i} = \{ \Box_n((A_1 \land ... \land A_n) \supset B) \land \Box_n \Diamond_e^i((C_1 \land ... \land C_m) \land B) \land B \land \neg \Box_e B \land \neg (A_1 \land ... \land A_n) |$

▷ For the most part as for theoretical abduction, except

The Adaptive Logic AbL^{pt}

- 1. Lower Limit Logic (LLL) = the logic **RBK**
- 2. Set of Abnormalities $\Omega = \Omega_{bk} > \Omega_{\rho t_1} > \Omega_{\rho p_1} > \Omega_{\rho t_2} > \Omega_{\rho p_2} > ... > \Omega_t$
 - Ω_{bk} and Ω_t as for theoretical abduction.

•
$$\Omega_{pt_i} = \{ \Box_n((A_1 \land ... \land A_n) \supset B) \land \Box_n \Diamond_{\theta}^i((A_1 \land ... \land A_n) \land B) \land B \land \neg \Box_{\theta} B \land \neg (A_1 \land ... \land A_n) \land \neg [A_1^n \supset B] |$$

For the most part as for theoretical abduction, except for

$$\square_n \underbrace{\Diamond_e \dots \Diamond_e}_{i \text{ times}} ((A_1 \land \dots \land A_n) \land B)$$

•
$$\Omega_{pp_i} = \{ \Box_n((A_1 \land ... \land A_n) \supset B) \land \Box_n \diamondsuit_e^i((C_1 \land ... \land C_m) \land B) \land B \land \neg \Box_e B \land \neg (A_1 \land ... \land A_n) \mid$$

For the most part as for theoretical abduction, except

> that ¬[
$$A_1^n ⊃ B$$
] is absent, and

• that
$$C_1, ..., C_m \in \{A_1, ..., A_n\}$$

Outline

- Abduction?
- Logic–Based Approaches to Abduction
- Aim of this Talk
- 2 The Deductive Frame
 - Abduction vs Deduction
 - A Modal Frame
 - Representing Abductive Reasoning Contexts
- On Defeasible Inference
- 4

Enter Adaptive Logics

- Multiple Abduction Processes
- General Characterization
- Proof Theory
- Examples

- An AbL^x-proof is a succession of stages, each consisting of a sequence of lines.
 - Adding a line to a proof is to move on to a next stage.

- An AbL^x-proof is a succession of stages, each consisting of a sequence of lines.
 - Adding a line to a proof is to move on to a next stage.
- Each line of a proof consists of 4 elements:
 - a line number,
 - a formula,
 - a justification, and
 - an adaptive condition (= a set of abnormalities)

- An AbL^x-proof is a succession of stages, each consisting of a sequence of lines.
 - Adding a line to a proof is to move on to a next stage.
- Each line of a proof consists of 4 elements:
 - a line number,
 - a formula,
 - a justification, and
 - an adaptive condition (= a set of abnormalities)
- Deduction Rules
 - As all AbL^x are based on the same LLL, the deduction rules are the same for all of them.

- An AbL^x-proof is a succession of stages, each consisting of a sequence of lines.
 - Adding a line to a proof is to move on to a next stage.
- Each line of a proof consists of 4 elements:
 - a line number,
 - a formula,
 - a justification, and
 - an adaptive condition (= a set of abnormalities)
- Deduction Rules
 - As all AbL^x are based on the same LLL, the deduction rules are the same for all of them.
- Marking Criterium

- As all AbL^x are based on the same adaptive strategy, the marking criterium is the same for all of them.
- Dynamic proofs

Dab–Formulas

 $Dab^{x}(\Delta) = \bigvee (\Delta)$, with $\Delta \subset \Omega_{x}$

Dab-Formulas $Dab^{x}(\Delta) = \bigvee (\Delta), \text{ with } \Delta \subset \Omega_{x}$

Deduct	ion Rules		
PREM	If $A \in \Gamma$:	<u> </u>	Ø
RU	If $A_1, \ldots, A_n \vdash_{RBK} B$:	A ₁ :	Δ ₁ :
			Δ_n $\Delta_1 \cup \ldots \cup \Delta_n$
RC	If $A_1, \ldots, A_n \vdash_{RBK} B \lor Dab^x(\Theta)$	<i>A</i> ₁	Δ ₁
			\vdots Δ_n $\Delta_1 \cup \ldots \cup \Delta_n \cup \Theta$

Minimal Dab^x-consequences

 $Dab^{x}(\Delta)$ is a minimal Dab^{x} -consequence of Γ at stage *s* of a proof, iff (1) it occurs on an unmarked line at stage *s*, (2) all members of its adaptive condition belong to a $\Omega_{x'}$ such that $\Omega_{x'} > \Omega_{x}$, and (3) there is no $\Delta' \subset \Delta$ for which the same applies.

Minimal *Dab^x*–consequences

 $Dab^{x}(\Delta)$ is a minimal Dab^{x} -consequence of Γ at stage *s* of a proof, iff (1) it occurs on an unmarked line at stage *s*, (2) all members of its adaptive condition belong to a $\Omega_{x'}$ such that $\Omega_{x'} > \Omega_{x}$, and (3) there is no $\Delta' \subset \Delta$ for which the same applies.

The Set of Unreliable Formulas of a Certain Priority

 $U_s^x(\Gamma) = \Delta_1 \cup \Delta_2 \cup ...$ for $Dab^x(\Delta_1)$, $Dab^x(\Delta_2)$,... the minimal Dab^x -consequences of Γ at stage *s* of the proof.

Minimal *Dab^x*–consequences

 $Dab^{x}(\Delta)$ is a minimal Dab^{x} -consequence of Γ at stage *s* of a proof, iff (1) it occurs on an unmarked line at stage *s*, (2) all members of its adaptive condition belong to a $\Omega_{x'}$ such that $\Omega_{x'} > \Omega_{x}$, and (3) there is no $\Delta' \subset \Delta$ for which the same applies.

The Set of Unreliable Formulas of a Certain Priority $U_s^x(\Gamma) = \Delta_1 \cup \Delta_2 \cup ...$ for $Dab^x(\Delta_1)$, $Dab^x(\Delta_2)$,... the minimal Dab^x -consequences of Γ at stage *s* of the proof.

Marking Definition

Line *i* is marked at stage *s* of the proof iff, where Δ is its condition, $\Delta \cap U_s^x(\Gamma) \neq \emptyset$.

Minimal *Dab^x*–consequences

 $Dab^{x}(\Delta)$ is a minimal Dab^{x} -consequence of Γ at stage *s* of a proof, iff (1) it occurs on an unmarked line at stage *s*, (2) all members of its adaptive condition belong to a $\Omega_{x'}$ such that $\Omega_{x'} > \Omega_{x}$, and (3) there is no $\Delta' \subset \Delta$ for which the same applies.

The Set of Unreliable Formulas of a Certain Priority $U_s^x(\Gamma) = \Delta_1 \cup \Delta_2 \cup ...$ for $Dab^x(\Delta_1)$, $Dab^x(\Delta_2)$,... the minimal Dab^x -consequences of Γ at stage *s* of the proof.

Marking Definition

Line *i* is marked at stage *s* of the proof iff, where Δ is its condition, $\Delta \cap U_s^x(\Gamma) \neq \emptyset$.

Marking Proceeds Stepwise

First for the highest priority level, and afterwards for the lower ones.

H. Lycke (Ghent University)

Derivability

A is derived from Γ at stage s of a proof iff A is the second element of an unmarked line at stage s.

Derivability

A is derived from Γ at stage s of a proof iff A is the second element of an unmarked line at stage s.

Final Derivability

A is finally derived from Γ on a line *i* of a proof at stage s iff (i) A is the second element of line *i*, (ii) line *i* is not marked at stage s, and (iii) every extension of the proof in which line *i* is marked may be further extended in such a way that line *i* is unmarked.

• $\Gamma \vdash_{AbL^{*}} A$ iff A is finally derived on a line of a proof from Γ .

Outline

- Abduction?
- Logic–Based Approaches to Abduction
- Aim of this Talk
- 2 The Deductive Frame
 - Abduction vs Deduction
 - A Modal Frame
 - Representing Abductive Reasoning Contexts
- On Defeasible Inference
- 4

Enter Adaptive Logics

- Multiple Abduction Processes
- General Characterization
- Proof Theory
- Examples

Definition $\langle A, B \rangle =_{df} \Box_n (A \supset B) \land B \land \neg \Box_e B \land \neg A$

Definition $\langle A, B \rangle =_{df} \Box_n (A \supset B) \land B \land \neg \Box_e B \land \neg A$

Example	
---------	--

1	$\Box_n(p \supset q)$	−;PREM Ø)
2	$\Box_n(r \supset q)$	−;PREM Ø)
3	q	−;PREM Ø)

$$\begin{array}{l} U_3^{bk}(\Gamma) = \{ \Box_n(p \supset q), \Box_n(r \supset q) \} \\ U_3^p(\Gamma) = \emptyset \end{array}$$

Definition $\langle A, B \rangle =_{df} \Box_n (A \supset B) \land B \land \neg \Box_e B \land \neg A$

E	Example					
1 2 3 4 5 6	$ \Box_n(p \supset q) \Box_n(r \supset q) q \neg \Box_e q p r $	-;PREM -;PREM -;PREM -;RC 1, 3, 4;RC 2, 3, 4;RC				

Set of Unreliable Formulas $U_6^{bk}(\Gamma) = \{\Box_n(p \supset q), \Box_n(r \supset q)\}$ $U_6^p(\Gamma) = \emptyset$

Definition

 $\langle A, B \rangle =_{df} \Box_n (A \supset B) \land B \land \neg \Box_e B \land \neg A$

Ex	Example				
1 2 3 4 5 6 7 8	$ \begin{array}{c} \Box_n(p \supset q) \\ \Box_n(r \supset q) \\ q \\ \neg \Box_e q \\ p \\ r \\ \langle p, q \rangle \lor \langle r \land \neg p, q \rangle \\ \langle r, q \rangle \lor \langle p \land \neg r, q \rangle \end{array} $	-;PREM -;PREM -;PREM -;RC 1,3,4;RC 2,3,4;RC 1,2,3,4;RU 1,2,3,4;RU			

Set of Unreliable Formulas $U_8^{bk}(\Gamma) = \{\Box_n(p \supset q), \Box_n(r \supset q)\}$ $U_8^p(\Gamma) = \{\langle p, q \rangle, \langle r \land \neg p, q \rangle, \langle r, q \rangle, \langle p \land \neg r, q \rangle\}$

Definition

 $\langle A, B \rangle =_{df} \Box_n (A \supset B) \land B \land \neg \Box_e B \land \neg A$

Example				
$ \begin{array}{rcl} 1 & \Box_n(p \supset q) \\ 2 & \Box_n(r \supset q) \\ 3 & q \\ 4 & \neg \Box_e q \\ 5 & p \\ 6 & r \\ 7 & \langle p, q \rangle \lor \langle r \land \neg p, q \rangle \\ 8 & \langle r, q \rangle \lor \langle p \land \neg r, q \rangle \end{array} $	-;PREM -;PREM -;PREM -;RC 1,3,4;RC 2,3,4;RC 1,2,3,4;RU 1,2,3,4;RU 1,2,3,4;RU	\emptyset \emptyset $\{\Box_e q\}$ $\{\Box_e q, \langle p, q \rangle\}$ $\{\Box_e q, \langle r, q \rangle\}$ $\{\Box_e q\}$ $\{\Box_e q\}$	√ √	

Set of Unreliable Formulas

$$U_8^{bk}(\Gamma) = \{\Box_n(p \supset q), \Box_n(r \supset q)\}$$

$$U_8^p(\Gamma) = \{\langle p, q \rangle, \langle r \land \neg p, q \rangle, \langle r, q \rangle, \langle p \land \neg r, q \rangle\}$$

Definition

 $\langle A, B \rangle =_{df} \Box_n (A \supset B) \land B \land \neg \Box_e B \land \neg A$

E	Example					
1 2 3 4 5 6 7 8 9	$ \begin{array}{c} \square_n(p \supset q) \\ \square_n(r \supset q) \\ q \\ \neg \square_e q \\ p \\ r \\ \langle p, q \rangle \lor \langle r \land \neg p, q \rangle \\ \langle r, q \rangle \lor \langle p \land \neg r, q \rangle \\ p \lor r \end{array} $	-;PREM -;PREM -;PREM -;RC 1,3,4;RC 2,3,4;RC 1,2,3,4;RU 1,2,3,4;RU 1,2,3,4;RU 1,2,3,4;RC	$ \emptyset \emptyset \{\Box_e q\} \{\Box_e q, \langle p, q \rangle \} \{\Box_e q, \langle r, q \rangle \} \{\Box_e q\} \{\Box_e q\} \{\Box_e q\} \{\Box_e q, \langle p \lor r, q \rangle \} $	√ √		

Set of Unreliable Formulas $U_{9}^{bk}(\Gamma) = \{\Box_n(p \supset q), \Box_n(r \supset q)\}$ $U_{9}^{p}(\Gamma) = \{\langle p, q \rangle, \langle r \land \neg p, q \rangle, \langle r, q \rangle, \langle p \land \neg r, q \rangle\}$

Definition

 $\langle A_1 \wedge ... \wedge A_n, B \rangle =_{df} \Box_n((A_1 \wedge ... \wedge A_n) \supset B) \wedge B \wedge \neg \Box_e B \wedge \neg A \wedge \neg [A_1^n \supset B]$

< (17) > < (17) > >

Definition

 $\langle A_1 \wedge ... \wedge A_n, B \rangle =_{df} \Box_n((A_1 \wedge ... \wedge A_n) \supset B) \wedge B \wedge \neg \Box_e B \wedge \neg A \wedge \neg [A_1^n \supset B]$

Example

1	$\Box_n(p \supset q)$	–;PREM	Ø
2	$\Box_n(r \supset q)$	–;PREM	Ø
3	q	–;PREM	Ø

Set of Unreliable Formulas

$$U_3^{bk}(\Gamma) = \{\Box_n(p \supset q), \Box_n(r \supset q)\} \\ U_3^t(\Gamma) = \emptyset$$

A (1) > (1) > (2) > (2) > (2)

Definition $\langle A_1 \wedge ... \wedge A_n, B \rangle =_{df} \Box_n((A_1 \wedge ... \wedge A_n) \supset B) \wedge B \wedge \neg \Box_e B \wedge \neg A \wedge \neg [A_1^n \supset B]$ Example $\Box_n(p \supset q)$ -:PREM Ø 1 2 $\Box_n(r \supset q)$ -:PREM Ø 3 -:PREM Ø q 4 р 1,3;RC { $\Box_e q, \Box_n q, \langle p, q \rangle$ } 5 r 2.3;RC { $\Box_e q, \Box_n q, \langle r, q \rangle$ }

Set of Unreliable Formulas $U_5^{bk}(\Gamma) = \{\Box_n(p \supset q), \Box_n(r \supset q)\}$ $U_5^t(\Gamma) = \emptyset$

Definition

 $\langle A_1 \wedge ... \wedge A_n, B \rangle =_{df} \Box_n((A_1 \wedge ... \wedge A_n) \supset B) \wedge B \wedge \neg \Box_e B \wedge \neg A \wedge \neg [A_1^n \supset B]$

Example $\Box_n(p \supset q)$ -:PREM Ø 1 2 $\Box_n(r \supset q)$ -:PREM Ø 3 -:PREM Ø q 4 1,3;RC { $\Box_e q, \Box_n q, \langle p, q \rangle$ } р 5 2,3;RC { $\Box_e q, \Box_n q, \langle r, q \rangle$ } 6 $\langle p,q \rangle \lor \langle r \land \neg p,q \rangle$ 1,2,3;RC $\{\Box_e q, \Box_n q, \Box_n (r \supset q), \Box_n (\neg p \supset q)\}$ 7 $\langle r, q \rangle \lor \langle p \land \neg r, q \rangle$ 1,2,3;RC { $\Box_e q, \Box_n q, \Box_n (p \supset q), \Box_n (\neg r \supset q)$ }

Set of Unreliable Formulas

$$U_7^{bk}(\Gamma) = \{ \Box_n(p \supset q), \Box_n(r \supset q) \} \\ U_7^t(\Gamma) = \{ \langle p, q \rangle, \langle r \land \neg p, q \rangle, \langle r, q \rangle, \langle p \land \neg r, q \rangle \}$$

$\begin{array}{l} \hline \textbf{Definition} \\ \langle A_1 \wedge ... \wedge A_n, B \rangle =_{df} \Box_n((A_1 \wedge ... \wedge A_n) \supset B) \wedge B \wedge \neg \Box_e B \wedge \neg A \wedge \neg [A_1^n \supset B] \end{array}$

E	Example				
1 2 3 4 5 6 7	$egin{aligned} & \Box_n(p \supset q) \ & \Box_n(r \supset q) \ & q \ & p \ & r \ & \langle p,q angle \lor \langle r \land \neg p,q angle \ & \langle r,q angle \lor \langle p \land \neg r,q angle \end{aligned}$	-;PREM 1,3;RC 2,3;RC 1,2,3;RC			

Set of Unreliable Formulas

```
U_7^{bk}(\Gamma) = \{ \Box_n(p \supset q), \Box_n(r \supset q) \} \\ U_7^t(\Gamma) = \emptyset
```

Definition

 $\langle A, B \rangle_t \in \Omega_t, \, \langle A, B \rangle_{pt_i} \in \Omega_{pt_i} \text{ and } \langle A, B \rangle_{pp_i} \in \Omega_{pp_i}$

Definition

 $\langle A, B \rangle_t \in \Omega_t, \, \langle A, B \rangle_{\it pt_i} \in \Omega_{\it pt_i} \text{ and } \langle A, B \rangle_{\it pp_i} \in \Omega_{\it pp_i}$

Example				
$1 \Box_n(p \supset q)$ $2 \Box_n \diamond_e(p \land q)$ $3 \Box_n(r \supset q)$ $4 \Box_n \diamond_e \diamond_e(r \land q)$ $5 q$	–;PREM –;PREM –;PREM –;PREM –;PREM	0 0 0 0 0		

Set of Unreliable Formulas

 $U^{bk}_5(\Gamma) = \{\Box_n(p \supset q), \Box_n(r \supset q)\}$

Definition

 $\langle A, B \rangle_t \in \Omega_t, \, \langle A, B \rangle_{pt_i} \in \Omega_{pt_i} \text{ and } \langle A, B \rangle_{pp_i} \in \Omega_{pp_i}$

Example		
$1 \Box_n(p \supset q)$ $2 \Box_n \Diamond_e(p \land q)$ $3 \Box_n(r \supset q)$ $4 \Box_n \Diamond_e \Diamond_e(r \land q)$ $5 q$ $6 p$ $7 r$	-;PREM -;PREM -;PREM -;PREM 1,2,5;RC 3,4,5;RC	$ \begin{cases} \emptyset \\ \emptyset \\ \emptyset \\ \emptyset \\ \{ \Box_{e} q, \Box_{n} q, \langle p, q \rangle_{pt_{1}} \} \\ \{ \Box_{e} q, \Box_{n} q, \langle r, q \rangle_{pt_{2}} \} \end{cases} $

Set of Unreliable Formulas $U_7^{bk}(\Gamma) = \{\Box_n(p \supset q), \Box_n(r \supset q)\}$

Definition

 $\langle A, B \rangle_t \in \Omega_t, \, \langle A, B \rangle_{\rho t_i} \in \Omega_{\rho t_i} \text{ and } \langle A, B \rangle_{\rho \rho_i} \in \Omega_{\rho \rho_i}$

E	Example				
1 2 3 4 5 6 7 8 9	$ \begin{array}{c} \Box_n(p \supset q) \\ \Box_n \Diamond_e(p \land q) \\ \Box_n(r \supset q) \\ \Box_n \diamond_e \diamond_e(r \land q) \\ q \\ p \\ r \\ \langle p, q \rangle_{pt_1} \lor \langle r \land \neg p, q \rangle_{pp_2} \\ \langle r, q \rangle_{pt_2} \lor \langle p \land \neg r, q \rangle_{pp_1} \end{array} $	-;PREM -;PREM -;PREM -;PREM 1,2,5;RC 3,4,5;RC 1,2,3,4,5;RC 1,2,3,4,5;RC			

Set of Unreliable Formulas

 $U_9^{bk}(\Gamma) = \{ \Box_n(p \supset q), \Box_n(r \supset q) \}$

Definition

 $\langle \boldsymbol{A}, \boldsymbol{B} \rangle_t \in \Omega_t, \, \langle \boldsymbol{A}, \boldsymbol{B} \rangle_{\textit{pt}_i} \in \Omega_{\textit{pt}_i} \text{ and } \langle \boldsymbol{A}, \boldsymbol{B} \rangle_{\textit{pp}_i} \in \Omega_{\textit{pp}_i}$

Example						
1 2 3 4 5 6 7 8 9 10 11	$ \begin{array}{c} \Box_{n}(p \supset q) \\ \Box_{n} \diamond_{e}(p \land q) \\ \Box_{n}(r \supset q) \\ \Box_{n} \diamond_{e} \diamond_{e}(r \land q) \\ q \\ p \\ r \\ \langle p, q \rangle_{pt_{1}} \lor \langle r \land \neg p, q \rangle_{pp_{2}} \\ \langle r, q \rangle_{pt_{2}} \lor \langle p \land \neg r, q \rangle_{pp_{1}} \\ \langle r \land \neg p, q \rangle_{pp_{2}} \\ \langle r, q \rangle_{pt_{2}} \end{array} $	-;PREM -;PREM -;PREM -;PREM 1, 2, 5;RC 3, 4, 5;RC 1,2,3,4,5;RC 1,2,3,4,5;RC 1,2,3,4,5;RC 8;RC 9;RC				

Set of Unreliable Formulas
$$U_{11}^{bk}(\Gamma) = \{\Box_n(p \supset q), \Box_n(r \supset q)\}$$
 $U_{11}^{bl_2}(\Gamma) = \{\langle r, q \rangle_{pl_2}\}$ $U_{11}^{pp_2}(\Gamma) = \{\langle r \land \neg p, q \rangle_{pp_2}\}$

Definition

 $\langle \boldsymbol{A}, \boldsymbol{B} \rangle_t \in \Omega_t, \, \langle \boldsymbol{A}, \boldsymbol{B} \rangle_{\textit{pt}_i} \in \Omega_{\textit{pt}_i} \text{ and } \langle \boldsymbol{A}, \boldsymbol{B} \rangle_{\textit{pp}_i} \in \Omega_{\textit{pp}_i}$

Example						
1 2 3 4 5 6 7 8 9 10 11	$ \begin{array}{c} \Box_n(p \supset q) \\ \Box_n \diamond_e(p \land q) \\ \Box_n(r \supset q) \\ \Box_n \diamond_e \diamond_e(r \land q) \\ q \\ p \\ r \\ \langle p, q \rangle_{pt_1} \lor \langle r \land \neg p, q \rangle_{pp_2} \\ \langle r, q \rangle_{pt_2} \lor \langle p \land \neg r, q \rangle_{pp_1} \\ \langle r \land \neg p, q \rangle_{pp_2} \\ \langle r, q \rangle_{pt_2} \end{array} $	-;PREM -;PREM -;PREM -;PREM 1,2,5;RC 3,4,5;RC 1,2,3,4,5;RC 1,2,3,4,5;RC 1,2,3,4,5;RC 8;RC 9;RC		×		

Set of Unreliable Formulas

$$U_{11}^{bk}(\Gamma) = \{\Box_n(p \supset q), \Box_n(r \supset q)\}$$

$$U_{11}^{pp_2}(\Gamma) = \{\langle r \land \neg p, q \rangle_{pp_2}\}$$

$$U_{11}^{pp_2}(\Gamma) = \{\langle r \land \neg p, q \rangle_{pp_2}\}$$

Further Research

Finetuning of

• the adaptive logics for prioritized abduction.

Development of

- adaptive logics for abduction based on inconsistent background knowledge, and of
- adaptive logics that combine abduction with induction.

References

- ALISEDA-LLERA, A. Abductive Reasoning. Logical Investigations into Discovery and Explanation, vol. 330 of Synthese Library. Kluwer, Dordrecht, 2006.
- BATENS, D. A universal logic approach to adaptive logics. *Logica Universalis* 1 (2007), 221–242.
- BATENS, D., MEHEUS, J., PROVIJN, D., AND VERHOEVEN, L. Some adaptive logics for diagnosis. Logic and Logical Philosophy 11–12 (2003), 39–65.
- HEMPEL, C.G., AND OPPENHEIM, P. Studies in the logic of explanation. *Philosophy of Science 15* (1948), 135–175.
- MAYER, M. C., AND PIRRI, F. First-order abduction via tableau and sequent calculi. *Logic Journal of the IGPL 1* (1993), 99–117.
- MCILRAITH, S. Logic-based abductive inference. Tech. Rep. Number KSL-98-19, Knowledge Systems Laboratory, July 1998.
- MEHEUS, J., AND BATENS, D. A formal logic for abductive reasoning. *Logic Journal of the IGPL 14* (2006), 221–236.
- MEHEUS, J., VERHOEVEN, L., VAN DYCK, M., AND PROVIJN, D. Ampliative adaptive logics and the foundation of logic–based approaches to abduction. In L. Magnani, N. J. Nersessian, and C. Pizzi, Eds. *Logical and Computational Aspects of Model-Based Reasoning*, Kluwer, Dordrecht, 2002, pp. 39–71.
- PAUL, G. Al approaches to abduction. In D. Gabbay, and R. Kruse, Eds. Abductive Reasoning and Uncertainty Management Systems, vol. 4 of Handbook of Defeasable Reasoning and Uncertainty Management Systems, Kluwer, Dordrecht, 2000, pp. 35–98.