
When logic faces digital circuitry. L. De Mol

When logic faces digital circuitry.

Early interactions between notation,

formalism, programming and machinery.

Liesbeth De Mol

Centre for Logic and Philosophy of Science, Belgium

Fellow of the Fund for Scientific Research – FWO

elizabeth.demol@ugent.be

Logic in question, Paris 1

When logic faces digital circuitry. L. De Mol

Some publicity first...

www.computing-conference.ugent.be

Logic in question, Paris 2

Introduction L. De Mol

Intro.

Logic in Question, Paris 3

Introduction L. De Mol

Introduction (1)

⇒ Topic (Mathematical) Logic —- (physical) Computers

⇒ Motivation (local) “[P]rofessional philosophers have taken very little in-

terest in it, presumably because they found it too mathematical. On the

other hand, most mathematicians, have taken very little interest in it, be-

cause they found it too philosophical” (Skolem, 1928)

⇒ Rendered “concrete” with computer (science) – a meeting point between

logic, math, engineering and humans

⇒ Opportunity for philosophers to think through some high-speed logic,

towards a more down-to-earth philosophy of computing (NOT Minds and

Machines!)

⇒ Approach Tracing interaction/relation between formalism, notation, pro-

gramming and machines in the early history of computer science

Logic in Question, Paris 4

Introduction L. De Mol

Introduction (2)
Why Logic (here)?

• (Assumption) Logic as a product of the human mind

• (Assumption) Logic as a “suitable” language for the computer

⇒ Logic as an intermediary between human and computer

Three opportunities (historical):

I. Logic as Computation in H/C: Emil Post’s “Church-Turing” thesis

II. Logic as Language between H/C: Curry’s theory of programming

III. Logic as Reasoning by H/C: Lehmer’s criticism on automated theorem

proving

Logic in Question, Paris 5

I. (H-C) computation L. De Mol

Human |
∣
∣
∣| Machine

⇑
Computation

Post’s CTT

Logic in Question, Paris 6

I. (H-C) computation L. De Mol

Computation: Post’s CTT

Classic CTT (1936) Identification between vague notion of

effective calculability (Church)/computability (Turing) and λ-

definability (Church)/Turing machines – definitional

Post’s CTT I & II Identification between vague notion of gen-

erated set (1921)/solvability (1936) and normal set (1921)/for-

mulation I (1936)

Logic in Question, Paris 7

I. (H-C) computation L. De Mol

Computation: Post’s CTT
From Principia to tag systems and normal form

• Strongly influenced by PM, Russell and Whitehead + Lewis’ Survey of SL:

“The clear separation of [the form of a system from its content] is the ideal

set by “mathematics without meaning”” (Lewis, 1918) – the heterodox view

on math

• Formalism as a method to study mathematics as a whole , “to obtain the-

orems about all [...] possible assertions” (Post,1921) → quest for an algo-

rithm that decides any mathematical problem

• The Lewisian method: “Perhaps the chief [characteristic of this] method is

its preoccupation with the outward forms of symbolic expressions, and pos-

sible operations thereon, rather than with logical concepts as clothed in, or

reflected by, correspondingly particularized symbolic expressions, and oper-

ations thereon.”

• Development of a series of more and more “meaningless” forms: canonical

form A, B, tag systems, canonical form C, normal system

Logic in Question, Paris 8

I. (H-C) computation L. De Mol

Definition of tag systems. A (relatively) famous Example

Let TPost be defined by Σ = {0, 1}, v = 3, 1 → 1101, 0 → 00

A0 = 10111011101000000 ⇒ Primitive assertion

Logic in Question, Paris 9

I. (H-C) computation L. De Mol

Definition of tag systems. A (relatively) famous Example

Let TPost be defined by Σ = {0, 1}, v = 3, 1 → 1101, 0 → 00

A0 = 10111011101000000 ⇒ Primitive assertion
101110111010000001101

Logic in Question, Paris 9

I. (H-C) computation L. De Mol

Definition of tag systems. A (relatively) famous Example

Let TPost be defined by Σ = {0, 1}, v = 3, 1 → 1101, 0 → 00

A0 = 10111011101000000 ⇒ Primitive assertion
101110111010000001101
1101110100000011011101

Logic in Question, Paris 9

I. (H-C) computation L. De Mol

Definition of tag systems. A (relatively) famous Example

Let TPost be defined by Σ = {0, 1}, v = 3, 1 → 1101, 0 → 00

A0 = 10111011101000000 ⇒ Primitive assertion
101110111010000001101
1101110100000011011101
11101000000110111011101

Logic in Question, Paris 9

I. (H-C) computation L. De Mol

Definition of tag systems. A (relatively) famous Example

Let TPost be defined by Σ = {0, 1}, v = 3, 1 → 1101, 0 → 00

A0 = 10111011101000000 ⇒ Primitive assertion
101110111010000001101
1101110100000011011101
11101000000110111011101
0100000011011101110100

Logic in Question, Paris 9

I. (H-C) computation L. De Mol

Definition of tag systems. A (relatively) famous Example

Let TPost be defined by Σ = {0, 1}, v = 3, 1 → 1101, 0 → 00

A0 = 10111011101000000 ⇒ Primitive assertion
101110111010000001101
1101110100000011011101
11101000000110111011101
0100000011011101110100
000001101110111010000

Logic in Question, Paris 9

I. (H-C) computation L. De Mol

Definition of tag systems. A (relatively) famous Example

Let TPost be defined by Σ = {0, 1}, v = 3, 1 → 1101, 0 → 00

A0 = 10111011101000000 ⇒ Primitive assertion
101110111010000001101
1101110100000011011101
11101000000110111011101
0100000011011101110100
000001101110111010000
00110111011101000000

︸ ︷︷ ︸

A0

⇒ Periodicity!

Logic in Question, Paris 9

I. (H-C) computation L. De Mol

Definition of tag systems. A (relatively) famous Example

Let TPost be defined by Σ = {0, 1}, v = 3, 1 → 1101, 0 → 00

A0 = 10111011101000000 ⇒ Primitive assertion
101110111010000001101
1101110100000011011101
11101000000110111011101
0100000011011101110100
000001101110111010000
00110111011101000000

︸ ︷︷ ︸

A0

⇒ Periodicity!

⇒ Definition of a class of symbolic logics according to a form

⇒ Two decision problems (finiteness problems) for tag systems: the halting

and reachability problem

⇒ Exploration of tag systems → study of the dynamic behavior rather than

logical concepts/coding; focus on the process of generating words

⇒ The reversal “[T]he general problem of “tag” appeared hopeless, and with

it our entire program of the solution of finiteness problems.”

Logic in Question, Paris 9

I. (H-C) computation L. De Mol

Post’s thesis I

• “Mathematics without meaning” → tag systems → normal form

→ Normal form theorem:

“In view of the generality of the system of Principia Mathematica, and its

seeming inability to lead to any other generated set of sequences on a given

set of letters than those given by our normal systems, we are led to the

following generalization”, i.e., Post’s thesis I (Davis,1982)

• Given thesis I + idea reversal programme:

“[...] the finiteness problem for the class of all normal systems is unsolv-

able”

“A complete logic is impossible”

Logic in Question, Paris 10

I. (H-C) computation L. De Mol

Post’s “philosophy” of computing

• “Establishing this universality is not a matter for mathematical proof, but

of psychological analysis of the mental processes involved in combinatory

mathematical processes [m.i.].

• “For if symbolic logic has failed to give wings to mathematicians this study

of symbolic logic opens up a new field concerned with the fundamental limi-

tations of mathematics, more precisely the mathematics of Homo Sapiens.”

(Post to Church, March 24, 1936)

• “[T]he creativeness of human mathematics has a counterpart inescapable

limitation thereof – witness the absolutely unsolvable (combinatory) prob-

lems. Indeed, with the bubble of symbolic logic as universal logical machine

finally burst, a new future dawns for it as the indispensable means for re-

vealing and developing those limitations. For [...] Symbolic Logic may be

said to be Mathematics become self-conscious.”

• Focus on and sensitive to processes and time (“time accounts”)

Logic in Question, Paris 11

I. (H-C) computation L. De Mol

Post’s formalism and philosophy in human and machine

computations (1)

⇒ Analysis of systems of symbolic logic and search for form without meaning

results in time sensitive and very down-to-earth view on “computation” ≈

computer science attitude

⇒ Emphasizes that CTT is not computationalist (as often assumed) but, on

the contrary, about limitations it imposes on human and machine compu-

tation, with logic being a method for exploring those limits.

⇒ Post’s systems are highly suitable for a study of the “dynamics” of com-

putation and logic-as-computation through computer-assisted research (re:

form without meaning)

⇒ It are Post’s “meaningless” forms rather than Turing’s machines that are

considered as the more natural for more practical aspects of computer sci-

ence

Logic in Question, Paris 12

I. (H-C) computation L. De Mol

Post’s formalism and philosophy in human and machine
computations (2)

• Backus-Naur form (Notation and programming!): “It was only in trying

to describe ALGOL 58 that I realized that there was trouble about syntax

description. It was obvious that Post’s productions were just the thing [m.i.],

and I hastily adapted them to that use.” (Backus, 1981)

<letter string> ::= <letter> | <letter string><letter>

<letter> ::= A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P

| Q | R | S | T | U | Y | W | X | Y | Z

• Patterson and Burroughs company: “We are interested in your “produc-

tions” and your theory of canconical languages, which appeal to us as possi-

bly the most natural approach to the theory of computabiliy from the stand-

point of one interested in syntactical machines.” (letter to Post, Dec. 17,

1952)

• Chomsky and formal language theory: Post’s canonical form C = Post pro-

duction systems: “I was interested at the time in automata theory and

possible applications to linguistics. I’d studied standard versions of recur-

sive function theory (Kleene, etc.), but when I came across Post’s work

(in Davis) it was obvious that this was a good framework for systems of

the sub-recursive hierarchy that could be adapted to the study of language,

specifically context-sensitive and context free grammars” (personal commu-

nication, 2005)

Logic in Question, Paris 13

I. (H-C) Language L. De Mol

Human |
∣
∣
∣| Machine

⇑
Language

Curry’s theory of programming

Logic in Question, Paris 14

I. (H-C) Language L. De Mol

ENIAC – A machine without language (1946)

• “to talk”: Programming through direct physical contact: the ENIAC “was

a son-of-a-bitch to program” (De Mol & Bullynck, 2008)

• “to listen”: Direct access to the computational process through sound and

lights: “[W]hen you were doing calculations these lights were flashing as the

numbers built up and as you transferred numbers and things of this kind.

They were very essential to debugging, very essential. [...] That’s the only

way you read what the machine [...] stored, what it was doing. [I]t was [...]

where people saw for the first time, saw calculations taking place” (Jean

Bartik, 1973)

⇒ Absence of an intermediary language: a major bottleneck or not?

Logic in Question, Paris 15

I. (H-C) Language L. De Mol

Haskell Curry’s reply to the bottleneck

• Use of a prototypical “logical” problem: “[The problem of inverse in-

terpolation] is almost ideal for the study of programming; because, although

it is simple enough to be examined in detail by hand methods, it is complex

enough to contain a variety of kinds of program compositions”

• The problem of composition: Suppose that we wish to perform a compu-

tation which is a complex of simple processes that have already been planned.

Suppose that for each of these component processes we have a plan recorded

in the form of what is here called a program, by means of a system of

symbolization called a code. It is required to form a program for the com-

posite computation. This problem is here attacked theoretically by using

techniques similar to those used in some phases of mathematical logic.”

• New notation and introduction of automated composition: “The

present theory develops in fact a notation for program construction which

is more compact than the “flow charts” of [Goldstine and Von Neumann].

Flow charts will be used [...] primarily as an expository device. By means

of this notation a composite program can be exhibited as a function of its

components in such a way that the actual formation of the composite pro-

gram can be carried out by a suitable machine.”

Logic in Question, Paris 16

I. (H-C) Language L. De Mol

Haskell Curry’s reply to the bottleneck (detailed)
Steps of program composition I: Substitution

Basic Definition and notation for transformation of first and second kind +

recplacement

Substitution – Notation: Z = X → Y

X = AC and Y = BC are normal, m is the location number (m ∈ A) at which

Y ist to be substituted, then Z = X → Y = SY (X) = [ΘT1

[T2](Y)
](X) =

ΘT1

[T2](Y)
(T1)(X) is defined by

T1(k) =

8

>

>

<

>

>

:

k for 0 < k < m

m + |B| − 1 for k = m

k + |B| − 1 for m < k ≤ |A| + |C|

T2(k) =

8

<

:

m + k − n for n ≤ k ≤ n + |B| − 1

|A| + k − n for n + |B| < k ≤ n + |B| + |C| − 1

Logic in Question, Paris 17

I. (H-C) Language L. De Mol

Haskell Curry’s reply to the bottleneck (detailed)

Steps of program composition I: Substitution

A C ... B C

A1
... A2 C ∅

|B|
m n

|B|

A C ... B C

... B ... C ∅

m n

A C ... B C

A1 B A2 C ∅

m n

Logic in Question, Paris 18

I. (H-C) Language L. De Mol

Haskell Curry’s reply to the bottleneck (detailed)

Steps of program composition II: Development of Notation

Y → (It(m, i) → I and O2)

It(m, i) = {i : A} → {A + 1 : A} → {A : i} → {m : A} → {A − i : A} → {A < 0}

n! = {1 : A} → {A : x} → {A : i} → Y → It(n, i)

Y = {ix : x}

“The present theory develops in fact a notation for program con-

struction [...] which is more compact than the “flow charts”’

Logic in Question, Paris 19

I. (H-C) Language L. De Mol

Haskell Curry’s reply to the bottleneck (detailed)
Steps of program composition III: Compilers and basic pro-
grams

• Analysis into basic programs “This analysis can, in principle at least, be

carried clear down until the ultimate constituents are the simplest possible

programs [...] Of course, it is a platitude that the practical man would not

be interested in composition techniques for programs of such simplicity, but

it is a common experience in mathematics that one can deepen ones insight

into the most profound and abstract theories by considering trivially simple

examples.” (Curry, 1949)

• Extremely sensitive to machine issues: motivation basic programs re-

lated to time and (especially) space efficiency: “[T]he possibility of making

such [arithmetic] programs without using auxiliary memory is a great ad-

vantage to the programmer. Therefore, it is recommended that, if it is not

practical to design the machine so as to allow these additional orders, then

a position in the memory should be permanently set aside for making the

reductions contemplated”

• Basis for construction arithmetic compiler (complete) and first steps com-

piler for branching and secondary programs

Logic in Question, Paris 20

I. (H-C) Language L. De Mol

Curry’s approach on the development of a “logical” lan-
guage between human and computer

• Theory of program composition ≈ combinatorial calculus

• The mathematical logician’s attitude: “[I]t is evident that one can formal-

ize in various ways and that some of these ways constitute a more profound

analysis than others. Although from some points of view one way of for-

malization is as good as any other, yet a certain interest attaches to the

problem of simplification [...] In fact we are concerned with con-

structing systems of an extremely rudimentary character, which

analyze processes ordinarily taken for granted.” (Curry, 1942)

• In sharp contrast with von Neumann approach (the programmer vs. the

quick hacker) + awareness of necessity of a distance between human and

machine through intermediary language:

“[O]ne comment seems to be in order in regard to this arrangement. The

scheme allows certain data to be inserted directly into the machine by

means of a typewriter-like device. Such an arrangement is very desirable

for trouble-shooting and computations of a tentative sort, but for final

computations of major importance it would seem preferable to proceed

entirely from a program or programs

“It is said that during the war an error in one of the firing tables was

caused by using the wrong lead screw in the differential analyser. Such

Logic in Question, Paris 21

I. (H-C) Language L. De Mol

an error would have been impossible if the calculation had been com-

pletely programmed.”

• BUT, with Curry, distance does not imply “ambient intelligence”: Sensitiv-

ity to machine issues and awareness of feed-back between human, language

(logic) and machine.

• Systematic analysis towards a calculus of programming ≈ systematic anal-

ysis towards a theory of computing (Emil Post)

Logic in Question, Paris 22

I. (H-C) computation L. De Mol

Human |
∣
∣
∣| Machine

⇑
Reasoning

Lehmer’s critcism on automated theorem proving

Logic in Question, Paris 23

I. (H-C) computation L. De Mol

Lehmer’s criticism on automated theorem proving
⇒ Lehmer’s view on computers and math

• Computer as a means to disclose and explore the universe of math

• The machine is only useful in tackling humanly impractical prob-

lems.: “In casting about for genuine theorems the proofs of which will tax

the powers of a human being, we want to exploit the speed of the machine.

This means that the proof must involve many thousands of steps all suf-

ficiently different so that the outcome cannot be forecast. We must also

exploit those features of the logical system of the machine that permit it

to supervise and organize its own program. We should make it proceed in

an unpredictable way by laying its own track ahead of it like a caterpillar

tractor. At the same time it should keep a record of where it has been, so

that it can return at a previous point and branch out along another path

whenever it decides that this is necessary. Humans find this kind of work

difficult even when it occurs in only moderate amounts.” (Lehmer, 1963)

Logic in Question, Paris 24

I. (H-C) computation L. De Mol

Lehmer’s criticism on automated theorem proving
Two pioneers: Davis and Wang

• “A readily quotable [...] indication of the power of the program P is the fact

that it disposed of nine chapters of Principia in about 8.4 minutes, with an

output of about 110 pages of 60 lines each, containing full proofs of all the

theorems (over 350). [...] [T]he theorems of the propositional calculus (over

200) were proved in about 37 minutes with the on-line printer, and it was

estimated that the computing time was only about 3 minutes [...] the 200

strong theorems in the propositional calculus took about 5 minutes while

the 150 strong theorems with quantifiers took less than 4 minutes.” (Wang,

1960)

• “Since it is now known that Presburger’s procedure was worse than expo-

nential complexity, it is not surprising that this program did not perform

very well. Its great triumph was to prove that the sum of two even numbers

is even” (Davis, 1957)

Logic in Question, Paris 25

I. (H-C) computation L. De Mol

Lehmer’s criticism on automated theorem proving

• “[E]xamples of [...] programs for doing elaborate logic are [...]those of

Wang for proving theorems on foundations of mathematics. These striking

achievements are only the beginning of today’s theorem proving develop-

ments. From one point of view [...] these efforts may be regarded as

contributions to the art of simulation. In particular the theorems

proved are not new and are easily proved by a human being at

a blackboard. In fact, one gets a spurious feeling of satisfaction

in thus being able to compete so successfully with a multi-million

dollar monster at (what we mistakenly think is) its own game. I

would like to speak briefly of some theorem proving programs that we have

been running in which the human is completely ouclassed in what [...] are

fair contests. [...] I hope I have convinced you that one can get to first base

in the game of theorem proving. Perhaps the professional logician will con-

sider it unfair that we didn’t start from home base, namely Peano’s axioms.

But this requirement is waived for human beings so why should one require

it of the machine? (Lehmer, Some high-speed logic1963)

Logic in Question, Paris 26

I. (H-C) computation L. De Mol

Lehmer’s criticism on automated theorem proving
A tradition of anti-simulation?

• Licklider, 1960: “Computing machines can do readily, well, and rapidly

many things that are difficult or impossible for man, and men can do read-

ily and well, though not rapidly, many things that are difficult or impos-

sible for computers. That suggests that a symbiotic cooperation, if

successful in integrating the positive characteristics of men and

computers, would be of great value.”

• Dijkstra, 1985: “feel that the effort to use machines to try to mimic human

reasoning is both foolish and dangerous. It is foolish because if you look

at human reasoning as is, it is pretty lousy; even the most trained mathe-

maticians are amateur thinkers. Instead of trying to imitate what we are

good at, I think it is much more fascinating to investigate what we are poor

at. It is foolish to use machines to imitate human beings, while

machines are very good at being machines, and that is precisely

something that human beings are very poor at. Any successful AI

project by its very nature would castrate the machine.”

⇒ ≈ Post and search for “form” without meaning.

⇒ Impose ideal of Logic on computer? “HAL: Dave, I don’t know how else to

put this, but it just happens to be an unalterable fact that I am incapable of

being wrong.”

Logic in Question, Paris 27

5. Discussion L. De Mol

5. Discussion

Mogic in Question, PAris 28

5. Discussion L. De Mol

Discussion
Human-Logic-Machines: Three situations/opportunities

1. Development of “pure” (meaningless) form out of logic – limitations and

possibilities of computing in H and C; logic as a calculating process in time

2. Logic as a method to develop the necessary distance between Humans/machines,

BUT, not to hide the machine! In search for a logic that lies in-between.

3. Logic and human/machine reasoning – a tricky problem: not simulation of

human reasoning but engage and intertwine human with machine “reason-

ing/doing”. Logic and formalism can help here.

Questions....

• La logique est-elle multiple/ relative?

• La logique doit-elle être mathématique (pour le développement de l’informatique)?

• La logique résout-elle des problèmes philosophiques?

• Raisonner est-ce calculer?

• La logique est-elle nécessaire (pour le développement de l’informatique)?

Mogic in Question, PAris 29

