
Algorithmic check of standards for IQ
dimensions

Giuseppe Primiero

FWO - Research Foundation Flanders
Centre for Logic and Philosophy of Science, Ghent University

Giuseppe.Primiero@Ugent.be
http://www.philosophy.ugent.be/giuseppeprimiero/

14 December 2012, University of Hertfordshire



Error-free Information

“Sound Information. [...] The soundness of information is
usually independent of task and decision. An information
consumer requires information to be error free and well
represented”. [Kahn et al., 2002, p.189]

G. Primiero (Ghent University) IQ Check Workshop on IQ 2 / 44



Some Questions

What is unsound information?

Can we characterize errors?

Can we assess how errors affect IQ evaluation?

G. Primiero (Ghent University) IQ Check Workshop on IQ 3 / 44



Tasks of this research

1 Set quality dimensions and their standards in a model of
information processing (inspired by software production
[Abran et al., 2008], [Suryn et al., 2003])

2 Design an effective way to determine if and where IQ standards
fail;

3 Provide a metric by algorithmic resolution and evaluation
methods;

4 Provide a formal translation of the definitions, checked in Coq.

5 Claim: soundness as error-freeness is not level-independent

G. Primiero (Ghent University) IQ Check Workshop on IQ 4 / 44



Tasks of this research

1 Set quality dimensions and their standards in a model of
information processing (inspired by software production
[Abran et al., 2008], [Suryn et al., 2003])

2 Design an effective way to determine if and where IQ standards
fail;

3 Provide a metric by algorithmic resolution and evaluation
methods;

4 Provide a formal translation of the definitions, checked in Coq.

5 Claim: soundness as error-freeness is not level-independent

G. Primiero (Ghent University) IQ Check Workshop on IQ 4 / 44



Outline

1 Methodology

2 Model

3 Errors

4 Identifying IQ dimension errors

5 Metrics from Errors
First Strategy: Resolve Errors
Second Strategy: Evaluate Errors

6 Algorithmic Check (Extracts)

G. Primiero (Ghent University) IQ Check Workshop on IQ 5 / 44



1 Methodology

2 Model

3 Errors

4 Identifying IQ dimension errors

5 Metrics from Errors
First Strategy: Resolve Errors
Second Strategy: Evaluate Errors

6 Algorithmic Check (Extracts)
G. Primiero (Ghent University) IQ Check Workshop on IQ 6 / 44



Information Flow from software production

Functional System LevelArchitect System’s Task and Purpose

System Design LevelSystem Designer System Description

Algorithm Design LevelAlgorithm Designer Algorithmic Description

Algorithm Implementation LevelEngineer System Implementation

Algorithm Execution LevelSystem Running System

System Interaction LevelUser Information Processing

G. Primiero (Ghent University) IQ Check Workshop on IQ 6 / 44



Matching LoAs and Information Flow

LoA AGENT INFORMATION ACT
FSL Architect Semantic Purpose Definition
DSL System Designer Operational Representation
ADL Algorithm Designer Syntactical Representation
AIL Engineer Translation to Supported Language
AEL System Data Manipulation
SIL User Semantic Information Manipulation

G. Primiero (Ghent University) IQ Check Workshop on IQ 7 / 44



1 Methodology

2 Model

3 Errors

4 Identifying IQ dimension errors

5 Metrics from Errors
First Strategy: Resolve Errors
Second Strategy: Evaluate Errors

6 Algorithmic Check (Extracts)
G. Primiero (Ghent University) IQ Check Workshop on IQ 8 / 44



A Simplified Errors Schema (based on
[Primiero, 2012])

Validity Correctness Physical
Conceptual Mistake Failure x

Material x Failure/Slip Malfunctions
Executive x x Slip

G. Primiero (Ghent University) IQ Check Workshop on IQ 8 / 44



Breach of Requirements

Validity Correctness Physical
Conceptual Mistake Failure x

Material x Failure/Slip Malfunctions
Executive x x Slip

G. Primiero (Ghent University) IQ Check Workshop on IQ 9 / 44



Breach of Requirements (II)

Validity requirements: the set of conditions established by the
logical and semantical structure of the process defined to reach
the given purpose;

Correctness requirements: the syntactic conditions for the same
process;

Physical Rquirements: the purely contextual conditions in which
the information processing is executed.

G. Primiero (Ghent University) IQ Check Workshop on IQ 10 / 44



Occurrence Mode

Validity Correctness Physical
Conceptual Mistake Failure x

Material x Failure/Slip Malfunctions
Executive x x Slip

G. Primiero (Ghent University) IQ Check Workshop on IQ 11 / 44



Occurrence Mode (II)

Conceptual Mode: the aspect involved by LoAs at which the
configuration and design of the system are given;

Material Mode: the aspect involved by LoAs at which
implementation of the system;

Executive Mode: the level of successful execution and use, which
can be purely accidental with respect to purpose and design.

G. Primiero (Ghent University) IQ Check Workshop on IQ 12 / 44



Four Main Error Cases

1 Mistakes are errors related to the breaching of validity
requirements at the functional and design levels;

2 Failures are errors related to the breaching of correctness
requirements at the functional, design or implementation levels;

3 Malfunctions are errors related to the breaching of physical
requirements at execution level;

4 Slips are errors related either to the breaching of correctness
requirements at the implementation level; or to the breaching of
physical requirements at the level of system use.

G. Primiero (Ghent University) IQ Check Workshop on IQ 13 / 44



1 Methodology

2 Model

3 Errors

4 Identifying IQ dimension errors

5 Metrics from Errors
First Strategy: Resolve Errors
Second Strategy: Evaluate Errors

6 Algorithmic Check (Extracts)
G. Primiero (Ghent University) IQ Check Workshop on IQ 14 / 44



Matching Information Flow, Dimensions and Errors

AGENT LoA ACTION BREACH IQ DIMENSIONS ERROR
Architect FSL Purpose Definition Invalid Consistency (reqs) Mistake

Incorrect Accuracy (specs)
Incorrect Completeness (specs)

System Designer DSL Procedure Definition Invalid Consistency (design) Mistake
Incorrect Completeness (routines) Failure
Incorrect Accuracy (data) Failure
Incorrect Accessibility (data) Failure

Algorithm De-
signer

ADL Algorithm selection Invalid Consistency (processes) Mistake

Invalid Completeness (design) Mistake
Invalid Relevance (design) Mistake
Invalid Accuracy (design) Mistake

Engineer AIL Algorithm Imple-
mentation

Incorrect Access (data) Failure

Incorrect Security (routines) Failure
Incorrect Flexibility/scalability (data) Failure
Incorrect Precision (I/O) Failure
Incorrect Efficiency (task) Failure
Incorrect Reliability (task) Failure
Incorrect Sufficiency (design) Failure

System AEL Execution Unusable Usableness Malfunction
Unusable Usefulness Malfunction
Unusable Accessibility (data) Malfunction

User SIL Use Unusable Understandability Malfunction
Unusable Efficiency Malfunction
Unusable Precision (system) Malfunction
Unusable Precision (user) Slip
Invalid Relevance (purpose) Mistake
Incorrect Completeness Failure/Slip

G. Primiero (Ghent University) IQ Check Workshop on IQ 14 / 44



Breaching Validity Conditions: Mistakes

At FSL:
I Consistency of requirements
I Accuracy of purpose description

At DSL:
I Consistency of procedure definition

At ADL:
I Consistency of selected processes
I Completeness of selected processes
I Relevance of selected processes

At SDL
I Accuracy of selected processes
I Accuracy of selected routines

At SIL:
I Relevance of system use with respect to purpose

G. Primiero (Ghent University) IQ Check Workshop on IQ 15 / 44



Breaching Correctness Conditions: Failures

At DSL
I Completeness of selected routines
I Accuracy of selected input data
I Accessibility of selected input data

At AIL
I Accessibility of selected input data
I Security of selected routines
I Flexibility/Scalability of selected input data
I Precision of Input/Output relation
I Efficiency of task execution
I Reliability of task execution
I Sufficiency of task execution

At SIL
I Completeness of use with respect to purpose

G. Primiero (Ghent University) IQ Check Workshop on IQ 16 / 44



Breaching Physical Material Conditions: Malfunctions

At AIL
I Accessibility of data (due to Design Failure)
I Usability of system (due to Design Failure)
I Usefulness of system (due to Conceptual Error)

At SIL
I Understandability of the system by the user (due to Design Failure)
I Efficiency of the system (due to Design Failure)
I Precision of the system (due to Design Failure)

G. Primiero (Ghent University) IQ Check Workshop on IQ 17 / 44



Breaching Physical Executive Conditions: Slips

At SIL
I Precision of use by the user
I Completeness of execution procedures by the user

G. Primiero (Ghent University) IQ Check Workshop on IQ 18 / 44



Some Remarks

Not all the possible dimensions are included; extensions
possible;

Restriction on applicable dimensions at given LoAs:
I e.g., believability holds only at SIL level (excluded for the time

being)

Some dimensions are implicit:
I e.g., clarity of data could be obtained by consistent, complete and

accurate design and implementation.

Direct and detailed definitions of all dimensions and the
corresponding failures are formulated formally in the code.

G. Primiero (Ghent University) IQ Check Workshop on IQ 19 / 44



1 Methodology

2 Model

3 Errors

4 Identifying IQ dimension errors

5 Metrics from Errors
First Strategy: Resolve Errors
Second Strategy: Evaluate Errors

6 Algorithmic Check (Extracts)
G. Primiero (Ghent University) IQ Check Workshop on IQ 20 / 44



Defining a Metric

Task: define an abstract metric, based on how much failures
occur in the information processing, and at which LoAs do they
occur

Viewpoint: the higher the LoA at which errors occur and the more
important the requirement breached, the greater the loss of
quality

for errors occurring at lower LoA, or involving less important
requirements breaches, the less IQ one loses

2 uses: first, to establish the error-check order; second, to
establish which errors are more costly in terms of information
quality.

G. Primiero (Ghent University) IQ Check Workshop on IQ 20 / 44



Visualizing the Model

Requirements

LoA

complete
relevant

precise
efficient

understandable
accessible

clear

useful

usable
sufficient

reliable
efficient

precise
flex-scalable

secure
accessible

accurate

relevant
complete

consistent

accessible
accurate

complete
consistent

complete

accurate
consistent

Physical Correctness Validity

SIL

AEL

AIL

ADL

DSL

FSL

G. Primiero (Ghent University) IQ Check Workshop on IQ 21 / 44



Outline

1 Methodology

2 Model

3 Errors

4 Identifying IQ dimension errors

5 Metrics from Errors
First Strategy: Resolve Errors
Second Strategy: Evaluate Errors

6 Algorithmic Check (Extracts)

G. Primiero (Ghent University) IQ Check Workshop on IQ 22 / 44



Design of the Algorithm

1 identify errors
2 resolve them
3 move back to the above level
4 proceed with the improved evaluation
5 move again down to the next dimension

G. Primiero (Ghent University) IQ Check Workshop on IQ 23 / 44



Design of the Algorithm

LoA1

Dimension 1 fail

resolve

Dimension n fail

resolve

Check1

LoA2 Dimension1 fail

resolve

Dimension n fail

resolve

Check2

G. Primiero (Ghent University) IQ Check Workshop on IQ 24 / 44



Pseudo-Code

1 Start LoA1 := FSL;
2 check Dimension 1 := Consistency of
Requirement;

3 check = yes, move to 5;
4 check = mistake, resolve and return to 2;
5 check Dimension 2 := Accuracy of
Specifications;

6 check = yes, move to 8;
7 check = mistake, resolve and return to 5;
8 check Dimension 3 := Completeness of
Specifications;

9 check = yes, move to 11;
10 check = mistake, resolve and return to 8;
11 Move to LoA2 := DSL;
12 . . .;

n end.
G. Primiero (Ghent University) IQ Check Workshop on IQ 25 / 44



Pseudo-Code

1 Start with System Specification;
2 check mistake in dim1 = are the requirements
presented consistent?;

3 check = yes, move to 5;
4 check = contradictory req found, resolve and
return to 2;

5 check mistake in dim2 = are the requirements
presented accurate?;

6 check = yes, move to 8;
7 check = unclear req found, resolve and return
to 5;

8 check mistake in dim3 = are the requirements
presented complete?;

9 check = yes, move to 11;
10 check = incomplete req found, resolve and

return to 8;
11 Move to LoA2 := DSL;
12 ...;
n end.

G. Primiero (Ghent University) IQ Check Workshop on IQ 26 / 44



Outline

1 Methodology

2 Model

3 Errors

4 Identifying IQ dimension errors

5 Metrics from Errors
First Strategy: Resolve Errors
Second Strategy: Evaluate Errors

6 Algorithmic Check (Extracts)

G. Primiero (Ghent University) IQ Check Workshop on IQ 27 / 44



Design of the Algorithm

1 dimension standard assessment might not require a reset of the
procedure

2 only a lowering of the overall evaluation
3 allowed on some dimensions and combined with resolution for

other (more crucial ones)
4 Dimensions can be listed in any desired priority order and with

any desired assignment of evaluations

G. Primiero (Ghent University) IQ Check Workshop on IQ 28 / 44



Design of the Algorithm

LoA1

Dimension 1 fail

resolve

evaluate+1

Dimension n fail

evaluate-0.8

Check1:+0.2

LoA2 Dimension1 fail

evaluate-0.3

Dimension n evaluate+1Check2:+1.1

G. Primiero (Ghent University) IQ Check Workshop on IQ 29 / 44



Pseudo-Code

n Move to LoA4 := AIL;

n+m . . .;

n+m+1 check failure in dim2 = are the procedures used
secure?

n+m+2 check = yes, move to [n+m+4];

n+m+3 check = hackable proc found; evaluate to −0.8
and move to [n+m+4];

n+m+4 check failure in dim3 = are the routines
effective?

n+m+5 check = yes, return to [n+m+2] force = yes;

n+m+6 check = no output proc, evaluate to −1.0 and
return to LoA3 := ADL;

n+m+7 . . .

G. Primiero (Ghent University) IQ Check Workshop on IQ 30 / 44



Some Remarks

1 Very scalable and highly modifiable algorithm

2 it can be strengthened or relaxed, according to required specs

3 it can be modified as to skip parameters, assign low- and
high-scores

4 all depending on context and applications.

G. Primiero (Ghent University) IQ Check Workshop on IQ 31 / 44



1 Methodology

2 Model

3 Errors

4 Identifying IQ dimension errors

5 Metrics from Errors
First Strategy: Resolve Errors
Second Strategy: Evaluate Errors

6 Algorithmic Check (Extracts)
G. Primiero (Ghent University) IQ Check Workshop on IQ 32 / 44



Mistakes

Coq < Inductive mistake : Type -> Type :=
Coq < | missing_type : mistake (forall A, Empty A)
Coq < | type_illdefined : mistake (forall t:proc, no_purpose)
Coq < | term_retype : mistake (exists A, exists t:proc,
Coq < In t A <-> ~ In t A).
mistake is defined
mistake_rect is defined
mistake_ind is defined
mistake_rec is defined

G. Primiero (Ghent University) IQ Check Workshop on IQ 32 / 44



Failures

Coq <
Coq <
Coq < Inductive failure : Type -> Type :=
Coq < | wrong_rule : failure
(match A with match_rule => ~ A end)
Coq < | bad_rule : failure
(match A with context_rule => ~ A end)
Coq < | bad_address : failure
(match A with B => ~ B end)
Coq < | no_resources : failure
(match A with t => ~ t end).
Warning: pattern B is understood as a pattern variable
failure is defined
failure_rect is defined
failure_ind is defined
failure_rec is defined

G. Primiero (Ghent University) IQ Check Workshop on IQ 33 / 44



Malfunctions

Coq <
Coq < Inductive malfunction : Type -> Type :=
Coq < | unusable_wrong_rule: malfunction
(exists t, match t with match_rule => ~t end)
Coq < | unusable_bad_rule : malfunction
(exists t, match t with context_rule => ~ t end)
Coq < | unusable_bad_address : malfunction
(exists t, match t with B => ~t end)
Coq < | unusable_no_resources : malfunction
(exists t, match t with t’ => ~t end).
Warning: pattern B is understood as a pattern variable
malfunction is defined
malfunction_rect is defined
malfunction_ind is defined
malfunction_rec is defined

G. Primiero (Ghent University) IQ Check Workshop on IQ 34 / 44



Slips

Coq <
Coq <
Coq < Inductive slip : Type -> Type :=
Coq < | exception_rule : slip
(~forall t t’, value t -> full_eval t t’)
Coq < | bad_location : slip
(~forall t1 t2 t3 t,
Coq < full_eval t1 tm_true ->
Coq < full_eval t2 t ->
Coq < full_eval (tm_if t1 t2 t3) t)
Coq < | redundant_process : slip
(forall A, match A with match_rule => ~A end)
Coq < | recurrent_data : slip
(forall A, match A with t => ~t end).
slip is defined
slip_rect is defined
slip_ind is defined
slip_rec is defined

G. Primiero (Ghent University) IQ Check Workshop on IQ 35 / 44



On Purpose (FSL)

Coq < Inductive invalid_purpose : Type -> Type :=
Coq < | inconsistent_req : invalid_purpose
(forall t:proc, no_purpose).
invalid_purpose is defined
invalid_purpose_rect is defined
invalid_purpose_ind is defined
invalid_purpose_rec is defined

Coq <
Coq < Inductive incorrect_purpose : Type -> Type :=
Coq < | inaccurate_req : incorrect_purpose
(match A with t => no_purpose end)
Coq < | incomplete_req : incorrect_purpose
(match A with t => forall t,
Coq < exists t1, value t -> full_eval t1 tm_true end).
incorrect_purpose is defined
incorrect_purpose_rect is defined
incorrect_purpose_ind is defined
incorrect_purpose_rec is defined

G. Primiero (Ghent University) IQ Check Workshop on IQ 36 / 44



On Design (DSL)
Coq < Inductive invalid_design : Type -> Type :=
Coq < | inconsistent_design : invalid_design
(exists A, exists t:proc, In t A <-> ~ In t A).
invalid_design is defined
invalid_design_rect is defined
invalid_design_ind is defined
invalid_design_rec is defined

Coq <
Coq < Inductive incorrect_design : Type -> Type :=
Coq < | incomplete_routine : incorrect_design
(match A with match_rule => ~ A end)

Coq < | incomplete_routine2 : incorrect_design
(match A with context_rule => ~ A end)

Coq < | inaccurate_data : incorrect_design
(match A with B => ~ B end)

Coq < | inaccessible_data : incorrect_design
(match A with t => ~ t end).

Warning: pattern B is understood as a pattern variable
incorrect_design is defined
incorrect_design_rect is defined
incorrect_design_ind is defined
incorrect_design_rec is defined

Coq <

G. Primiero (Ghent University) IQ Check Workshop on IQ 37 / 44



Checking Purpose I

Coq <
Coq < Inductive Check_invalid_purpose : Type -> Type :=
Coq < | check_inconsistent_req : Check_invalid_purpose
Coq < (exists A:Prop, match inconsistent_req with A
=> no_purpose end).
Warning: pattern A is understood as a pattern variable
Check_invalid_purpose is defined
Check_invalid_purpose_rect is defined
Check_invalid_purpose_ind is defined
Check_invalid_purpose_rec is defined

Coq <
Coq < Inductive Check_incorrect_purpose : Type -> Type :=
Coq < | check_inaccurate_req :
(forall A:Prop, forall t:proc, match A with t => purpose end) ->

Coq < Check_incorrect_purpose
(exists A:Prop, match inaccurate_req with A => no_purpose end).

G. Primiero (Ghent University) IQ Check Workshop on IQ 38 / 44



Resolving Errors on Design I

Coq < Inductive Resolve_invalid_design : Type -> Type :=
Coq < | resolve_inconsistent_design :
(exists A, exists t:proc,

Coq < match inconsistent_design with t => ~ A end) ->
Coq < Resolve_invalid_design
(exists t’:proc, exists A’, A’ purpose).
Resolve_invalid_design is defined
Resolve_invalid_design_rect is defined
Resolve_invalid_design_ind is defined
Resolve_invalid_design_rec is defined

Coq <
Coq <
Coq < Inductive Resolve_incorrect_design : Type -> Type :=
Coq < | resolve_incomplete_routine :
(exists A:Prop, match A with match_rule => ~ A end) ->

Coq < Resolve_incorrect_design
(exists A’:Prop, match A’ with match_rule => A’ end)
Coq < | resolve_incomplete_routine2 :
(exists A:Prop,match A with context_rule => ~ A end) ->

G. Primiero (Ghent University) IQ Check Workshop on IQ 39 / 44



Resolving Errors on Design II

Coq < Resolve_incorrect_design
(exists A’:Prop, match A’ with context_rule => A’ end)
Coq < | resolve_inaccurate_data :
(exists A:Prop, exists B:Prop, match A with B => ~ B end) ->

Coq < Resolve_incorrect_design
(exists A’:Prop, exists B:Prop, match A’ with B => B end)
Coq < | reslve_inaccessible_data :
(exists A:Prop, exists t:proc, match A with t => ~ t end) ->

Coq < Resolve_incorrect_design
(exists A:Prop, exists t’:proc, match A with t’ => t’ end).
Warning: pattern B is understood as a pattern variable
Warning: pattern B is understood as a pattern variable
Resolve_incorrect_design is defined
Resolve_incorrect_design_rect is defined
Resolve_incorrect_design_ind is defined
Resolve_incorrect_design_rec is defined

G. Primiero (Ghent University) IQ Check Workshop on IQ 40 / 44



Conclusions

We have presented an approach to IQ assessment that relies on
a negative algorithmic approach;

Negative because it looks for errors occurring in a model of
information processing;

Algorithmic because it provides procedures to check, resolve or
evaluate IQ dimensions in view of such errors;

Currently still working on a proper translation for the resolve
algorithm;

Suggestions? Extensions? Critiques?

G. Primiero (Ghent University) IQ Check Workshop on IQ 41 / 44



References I

Abran, A., Al-Qutaish, R. E., Desharnais, J.-M., and Habra, N.
(2008).
Chapter 5: Iso-based models to measure software product
quality,.
In Jain, B. R. K., editor, Software Quality Measurement -
Concepts and Approaches,, pages pp. 61–96,. ICFAI University
Press., Hyderabad, India.

Kahn, B. K., Strong, D. M., and Wang, R. Y. (2002).
Information quality benchmarks: product and service
performance.
Commun. ACM, 45(4):184–192.

Primiero, G. (2012).
A taxonomy of errors for information systems.
Submitted.

G. Primiero (Ghent University) IQ Check Workshop on IQ 42 / 44



References II

Suryn, W., Abran, A., and April, A. (2003).
Iso/iec square: The second generation of standards for software
product quality.
In Proceedings of the 7th IASTED International Conference on
Software Engineering and Applications (ICSEAâ03, pages 1–9.

G. Primiero (Ghent University) IQ Check Workshop on IQ 43 / 44


	Methodology
	Model
	Errors
	Identifying IQ dimension errors
	Metrics from Errors
	First Strategy: Resolve Errors
	Second Strategy: Evaluate Errors

	Algorithmic Check (Extracts)

