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1. Introduction

In their (2007) Horsten en Welch prove that the CLuNr-consequence
set of a premise set is maximally Σ0

3-complete1. They give a concrete
premise set with a Σ0

3-complete consequence set. These results are very
useful, especially because they are easily generalizable to all adaptive
logics in standard format. However, their results for CLuNm are mis-
taken. A simple analysis of the definition leads them to deciding that
Π1

1 is an upper bound to the complexity. In the following lemmas they
reduce this upper bound to Σ0

3, concluding that the same complexity
results hold for both related logics. The proof for this reduction is very
hard to follow; their proposition 13 is dubious and some definitions are
sloppy. In this paper I will show that the reduction is indeed mistaken. I
will construct a premise set with a Π1

1-complete consequence set for an
arbitrary adaptive logic (that has a classical disjunction). This makes
Π1

1 the lowest upper bound for the complexity of CLuNm.
I will proceed by showing that the CLuNm-consequence set of a

particular infinite but recursive premise set ΓR is (at least) as complex
as a set that is the solution of a graph theoretic problem that is known
to be Π1

1-hard. The graph problem is whether some statement holds
for all paths in a recursive but infinite graph. There may be non-
enumerably many paths in such a graph. In the adaptive logic problem,
∗ Research for this paper was supported by subventions from Ghent University

and from the Fund for Scientific Research – Flanders. I am indebted to Diderik
Batens for comments on a former draft. I am also indebted to Dexter Kozen for his
useful help on Π1

1-hard problems.
1 For an introduction to these complexity classes, see (Rogers, 1967).
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every path will correspond to a set of minimally abnormal models of
the premise set. The property that has to hold for all paths in the
graph will correspond to a property that has to hold for all models in
the sets of minimally abnormal models corresponding to these paths.
Hence, every such set of models has to be checked, in order to know
which conclusions can be drawn from the premise set. So, to express the
consequence set mathematically, one needs a statement with a universal
quantifier that ranges over a non-enumerable amount of objects, which
is to say that it is at least Π1

1-complete.
First the graph problem is presented. Next, adaptive logics are se-

mantically and proof theoretically defined. In section 4 the actual proof
of the crucial theorem is given. Section 5 describes the adaptive proofs
for the relevant premise set. Section 6 discusses the possibility to define,
in a first order language, a finite premise set with similar properties.
Finally, some philosophical conclusions are formulated.

2. A Π1
1-complete problem expressed in graph theory

Let IN denote the natural numbers without 0 and let IN0 = IN ∪ {0}.
Let G = (IN, R) be a recursive directed graph with nodes IN and edges
R ∈ P(IN2). In this paper only graphs with set of nodes IN will be
considered and for this reason the relation R will fully define the graph.

The paths of the graph defined by a relation R are the elements of
the set Paths(R), which is defined as follows:

DEFINITION 1. The function Paths:P(IN2) → P(IN → IN0) express-
ing the paths of a graph, is defined by:
π ∈ Paths(R) iff (there is some m ∈ IN such that for all n ≤ m,
(π(n), π(n + 1)) ∈ R and for all m > n, π(m) = 0) or (for all n ∈ IN ,
(π(n), π(n + 1)) ∈ R).
The function Paths:P(IN2)× IN → P(IN → IN0) expressing the paths
of a graph starting in a node i, is defined by:
π ∈ Paths(R, i) iff π ∈ Paths(R) and π(1) = i.

DEFINITION 2. The function WF :P(IN2) → PIN expressing the set
of nodes from which only finite paths start, is defined by:
n ∈ WF (R) iff for all π ∈ Paths(R, n), there is a m ∈ IN , such that
π(m) = 0.

I shall use 〈i1, i2, i3, . . .〉 as a shorthand for the path π with π(1) = i1,
π(2) = i2, π(3) = i3, etc. A path is infinite iff for all i ∈ IN , π(i) 6= 0.
The function lth(π) denotes the length of a path π (lth(π) = ω iff π
is infinite and lth(π) = max{i|i ∈ IN ; π(i) 6= 0} otherwise) and lst(π)
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Figure 1. The example graph (IN, R1)

denotes the last item of a path π (lst(π) = π(lth(π))), which is obviously
undefined for infinite paths.

It is a well known fact that the set WF (R) is Π1
1-complete (see

(Kozen, 2002) and (Rogers, 1967)). The following example graph (IN, R1)
is clarifying (see also figure 1). R1 is defined by (i, j) ∈ R1 iff (i, j) =
(2, 2) or (j = i + 1 and i > 3 and j 6= 2k for some k ∈ IN) or
(i = 3 and j = 2k for some k > 1). Only in node 2 infinite paths
start (the path 〈2, 2, 2, . . .〉). In node 1 only the path 〈1, 0, 0, . . .〉 starts.
The paths that start in node 3 are arbitrary long but finite (the paths
〈3, 2k, 2k + 1, . . . , 2k+1 − 1, 0, 0, . . .〉, where k ≥ 2). Hence, WF (R1) =
IN − {2}.

3. Adaptive logics

3.1. The standard format of AL

In this section adaptive logics are very briefly presented (see (Batens,
2007) for an overview and (Batens, 2004) for the philosophical basis).
An adaptive logic in standard format is defined as a triple consisting
of:

− a LLL: a monotonic, reflexive, transitive and compact extension
of classical logic (CL) which has a characteristic semantics,

− a set of abnormalities: a set of LLL-contingent formulas Ω, char-
acterized by a (possibly restricted) logical form, and

− a strategy (the most important strategies in AL are ‘Reliability’
and ‘Minimal Abnormality’).
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The standard format demands that the LLL-language, next to its
own standard logical symbols, also encompasses formulas with the stan-
dard logical symbols of CL. They must behave classically, i.e. they
should function in a CL-standard manner (e.g. M ² ¬̌A iff M 6² A). In
this paper, we will denote the CL-symbols by means of ¬̌ (negation)
and ∨̌ (disjunction).

3.2. The proof theory of AL

The proof theory of an AL consists of a set of inference rules (deter-
mined by the LLL and Ω) and a marking definition (determined by
Ω and the chosen strategy). A line of an annotated AL-proof consists
of five elements: (1) a line number i, (2) a formula A, (3) the name
of a rule and the line numbers of the rule premises, (4) a condition
consisting of a set of abnormalities Θ ⊂ Ω. A stage s of a proof is the
subproof that is completed up to line number s. The inference rules
govern the addition of lines. There are 3 types of rules.

PREM If A ∈ Γ . . . . . .
A ∅

RU If A1, . . . , An `LLL B A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪∆n

RC If A1, . . . , An `LLL B ∨Dab(Θ) A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪∆n ∪Θ

The classical disjunction of the members of a finite ∆ ⊂ Ω, Dab(∆), is
called a Dab-formula. Dab(∆) is a minimal Dab-formula of stage s iff
Dab(∆) is derived at stage s on the condition ∅ and no Dab(∆′) with
∆′ ⊂ ∆ is derived on the condition ∅. The most important strategies
are Reliability and Minimal Abnormality.

DEFINITION 3. Marking definition for Reliability.
Where Dab(∆1), . . . , Dab(∆n) are the minimal Dab-formulas derived
on the condition ∅ at stage s, Us(Γ) = ∆1 ∪ . . . ∪ ∆n, and ∆ is the
condition of line i, line i is marked at stage s iff ∆ ∩ Us(Γ) 6= ∅.
DEFINITION 4. Marking definition for Minimal Abnormality.
Where Dab(∆1), . . . , Dab(∆n) are the minimal Dab-formulas derived
on the condition ∅ at stage s, Φ◦s(Γ) is the set of all sets that contain
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one member of each ∆i, Φs(Γ) are the ϕ ∈ Φ◦s(Γ) that are not proper
supersets of a ϕ′ ∈ Φ◦s(Γ), A is the formula and ∆ is the condition of
line i, line i is marked at stage s iff

(i) there is no ϕ ∈ Φs(Γ) such that ϕ ∩∆ = ∅, or

(ii) for some ϕ ∈ Φs(Γ), there is no line on which A is derived on
a condition Θ for which ϕ ∩Θ = ∅.

Two types of derivability are defined. A formula A is derived at a
stage iff A is derived on an unmarked line at the stage. A formula A
is finally derived at stage s iff A is derived on an unmarked line i at
stage s and line i will not be marked in any extension of the stage.
The finally derivable consequences of a premise set are independent
of the stage and constitute the consequence sets for ALr and ALm:
CnALr(Γ), respectively CnALm(Γ), and their consequence relations:
`ALr , respectively `ALm .

3.3. The semantics of AL

Dab(∆) is a minimal Dab-consequence of Γ iff Γ ²LLL Dab(∆) and, for
all ∆′ ⊂ ∆, Γ 2LLL Dab(∆′). Where Dab(∆1), Dab(∆2), . . . are the
minimal Dab-consequences of Γ, let U(Γ) =df ∆1 ∪ ∆2 ∪ . . .. Finally,
where M is a LLL-model, Ab(M) =df {A ∈ Ω | M |= A}.

DEFINITION 5. Reliable model and the corresponding semantical con-
sequence relation ²ALr.
A LLL-model M of Γ is reliable iff Ab(M) ⊆ U(Γ). Γ ²ALr A iff all
reliable models of Γ verify A.

DEFINITION 6. Minimally abnormal model and the corresponding
semantical consequence relation ²ALm.
A LLL-model M of Γ is minimally abnormal iff there is no LLL-model
M ′ of Γ for which Ab(M ′) ⊂ Ab(M). Γ ²ALm A iff all minimally
abnormal models of Γ verify A.

3.4. CLuNm and CLuNr

Let us consider the inconsistency-adaptive logics CLuNm and CLuNr.
The lower limit logic is the paraconsistent logic CLuN. CLuN is the
full positive fragment of CL with simple gluts for the negation connec-
tive. For any formula A, both A and ∼A may be true in CLuN. The set
of abnormalities is Ω = {∃(A&∼A) | A ∈ F}, with F the set of open
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or closed formulas and ∃ the existential closure. The strategies are re-
spectively Minimal Abnormality (CLuNm) and Reliability (CLuNr).
Where the name of the logic is not mentioned, CLuN is meant. For
example, the expression “models of Γ” will refer to the CLuN-models
of Γ.

4. Expressing the graph problem in propositional CLuNm

Let !A abbreviate A∧¬A and let R be an arbitrary relation in P(IN2).
The premise set ΓR that results in a Π1

1-complete consequence set is
defined as follows:

ΓR = ∆1 ∪∆2 ∪∆3 ∪∆4 ∪∆5

∆1 = {!pn
i ∨!pn

j |i, j, n ∈ IN ; i 6= j}

∆2 = {!pn
i ∨!pn+1

j |i, j, n ∈ IN ; (i, j) /∈ R}
∆3 = {!rn∨!pn

i |i, n ∈ IN}
∆4 = {q∨!rn|n ∈ IN}

∆5 = {(q∨!p1
i ) ⊃ ui|i ∈ IN}

Let ∆ abbreviate ∆1 ∪∆2 ∪ {¬̌!p1
i }. Let a series of normalities be

a set of formulas {¬̌!pn
g(n)|n ∈ I} ∪ {!pn

l |l ∈ IN ; n ∈ I; l 6= g(n) or
n = max(I)+1} with I an interval within the natural numbers and g a
function in I → IN . Infinite series of normalities have infinite intervals
and max([i, ω[) is obviously not defined for any i and the part of the
clause in the definition of the set after ‘or’ has to be omitted for infinite
series. We will refer to a specific series of normalities with interval I
and function g as SerNor(I,g).

In what follows, I will prove that each minimally abnormal model
for ΓR corresponds to a path of the graph and that all paths have
their minimally abnormal models. In these minimally abnormal models
all of the {!rn|n ∈ IN} will come out true if and only if the model
corresponds to an infinite path. The sentential letter q is derivable from
the premisses if and only if at least one of the {!rn|n ∈ IN} is false. If
all paths of the graph that start in a certain node are finite, then every
minimally abnormal model for ΓR that corresponds to these paths will
falsify some !rn and therefore they all verify q. If a path is infinite than
q may be true or false in the corresponding model, and therefore q will
not be a CLuNm-consequence in that particular case.
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Table I. A (part of a) model for the premises in ΓR, where the graph G = (IN, R) has
a path π, with π(1) = i′, π(n) = i, π(n′) = i′′, and lth(π) = n′. The truthvalues for
the !pl

k are given in the table. Remark that lemma 1 holds for this model.

k�l 1 n n′ n′ + 1 n′ + 2
... . . .

... . . .
...

...
...

i− 1 1 . . . 1 . . . 1 1 1
i 1 0 1 1 1

i + 1 1 1 1 1 1
...

...
...

...
...

i′ − 1 1 1 1 1 1
i′ 0 . . . 1 . . . 1 1 0

i′ + 1 1 1 1 1 1
...

...
...

...
...

i′′ − 1 1 1 1 1 1
i′′ 1 1 0 1 1

i′′ + 1 1 . . . 1 . . . 1 1 1
... . . .

... . . .
...

...
...

DEFINITION 7. The function Mp : P(W) → P(M), expressing the
set of models of a set of formulas that verify the same series of nor-
malities with an interval that contains the number 1, is defined by:
Υ ∈ Mp(Γ) iff there is an interval I ⊆ IN and a function g: I → IN ,
such that 1 ∈ I and Υ = {M |M ² Γ ∪ SerNor(I, g)}.

LEMMA 1. For any n ∈ IN , all LLL-models for ∆1 verify at least all
but one of the abnormalities in {!pn

k |k ∈ IN}. Every model that verifies
at least all but one of the abnormalities in {!pn

k |k ∈ IN} for any n ∈ IN
is a model for ∆1.

In the next lemmas we will state that there is a bijection between
the set of sets of models for ∆ that verify the same series of normalities
and the set of all paths π of the graph that start in node i.

LEMMA 2. For every LLL-model M for ∆ there is some π ∈ Paths(R, i),
such that M ² SerNor([1, lth(π)], π)2.

Proof. Suppose there is a model M of ∆ that does not verify SerNor(I ′, g)
for any function g and any interval I ′ = [1, k] or I ′ = [1, ω[. This is
impossible because of lemma 1 and M ² ¬̌!p1

i . Now suppose that there
is a model M for ∆ that verifies SerNor(I, f) for some function f
and some interval I, with π /∈ Bra(R, i) and π defined from f by the

2 Where a = ω, the interval notation [1, a] refers to [1, ω[.
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following: π(j) = f(j) for all j ∈ I and π(j) = 0 for all j /∈ I. This
would mean that for some j ∈ IN , M ² ¬̌!pj

k and M ² ¬̌!pj+1
l whereas

(k, l) /∈ R. This is in contradiction with M ²!pj
k∨!pj+1

l (M ² ∆2).

LEMMA 3. For every path π ∈ Paths(R, i) there is a LLL-model for
∆, such that M ² SerNor([1, lth(π)], π).

Proof. Let π be an arbitrary path in Paths(R, i). If π is a finite
path, define Mπ as the model that verifies the combination of series
of normalities

⋃{SerNor(In, fn)|fn(n(lth(π) + 1) + j) = π(j); In =
[n(lth(π) + 1) + 1, n(lth(π) + 1) + lth(π)]; j ∈ IN ; n ∈ IN0}. If π is
an infinite path, simply let Mπ be the model that verifies the series of
normalities SerNor([1, ω[, π). The constructed model Mπ is a model for
∆1 because of the fact that for any n ∈ IN , it verifies at least all but
one of the abnormalities in {!pn

k |k ∈ IN} and because of lemma 1. It is
a model for ∆2 as well since from the construction of Mπ follows that
for no j ∈ IN , Mπ ² ¬̌!pj

k and Mπ ² ¬̌!pj+1
l with (k, l) /∈ R. Therefore

non of the members of ∆2 will be falsified by Mπ. Trivially, it is also a
model for ¬̌!π1

i , and therefore Mπ is a model for ∆.

LEMMA 4. The function f :Paths(R, i) → Mp(∆) where f(π) = {M |M ²
∆ ∪ SerNor([1, lth(π)], π)} and its inverse are both total functions. In
other words, f defines a bijection between Paths(R, i) and Mp(∆).

Proof. This is a consequence of lemmas 2 and 3 and the definition
of the functions f and SerNor .

LEMMA 5. “For all models M of ∆ there is an n ∈ IN , such that for
all k ∈ IN , M ²!pn

k” (1) iff “for all minimally abnormal models M of
∆ ∪∆3, there is an m ∈ IN such that M 2!rm” (2).

Proof. I will first prove the left to right direction of the lemma and
then the right to left direction.

(⇒) Suppose (1) is true, but (2) is not. If (2) is false then there is a
minimally abnormal model M for ∆∪∆3, such that for all m ∈ IN ,
M ²!rm. Because M is minimally abnormal, there is no m ∈ IN ,
such that there is a model M ′ of ∆ ∪ ∆3 that verifies the same
abnormalities as M in {!pl

k|k, l ∈ IN} ∪ {!rk|k ∈ IN − {m}} but
M ′ 2!rm. But there is such a natural number m. (1) warrants that
for every model of ∆, and hence also every model of ∆∪∆3, there
is an n ∈ IN , such that for all k ∈ IN , M ²!pn

k . Take this n to
be the m we are looking for. Therefore, the only relevant premises
{!pm

k ∨!rm|m ∈ IN}, can be made true without !rm having to be
true. Since !rm does not occur in any other formula in ∆ ∪ ∆3,
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changing only the thruth value for !rm in M , results in a model
M ′ of ∆ ∪∆3. We have derived a contradiction.

(⇐) Suppose (2) is true, but (1) isn’t. If (1) is false then there is a
model of ∆, such that for all n ∈ IN , there is a k ∈ IN , M ² ¬̌!pn

k .
Therefore, this model M is also a model for ∆∪∆3 when M ²!rn

for all n ∈ IN (this makes all the formulas of ∆3 true). If (2) is true,
then M is not minimally abnormal. Hence there is a model that
makes a proper subset of the abnormalities of M true. This model
makes a proper subset of the abnormalities of M in {!pl

k|k, l ∈ IN}
true or at least one of the !rn false. The first is impossible because
this would mean that for some n, more than one abnormality is
falsified (c.f. lemma 1). The second part is impossible because,
knowing that per n ∈ IN one !pn

f(n) is false in M , if !rm is false in
M for some m ∈ IN , then !pm

f(m)∨!rm could never be verified by
M .

LEMMA 6. For any adaptive logic in standard format one can prove
that:

(a) if B does not not have any subformulas in common with a set of
formulas Γ ∪ {A}, then: Γ ∪ {A⊃̌B} ²ALm B iff Γ ²ALm A, and

(b) where B is an abnormality, Γ ²ALm A∨̌B iff Γ ∪ {¬̌B} ²ALm A.

Let a model M ∈MΓ iff M ²CLuN Γ and M ∈Mm
Γ iff M ²CLuNm

Γ.

COROLLARY 1. i ∈ WF (R) iff ΓR ²CLuNm ui.
Proof.

i ∈ WF (R)

iff

for all π ∈ Paths(R, i), there is a j ∈ IN such that π(j) = 0

iff (in view of lemma 4)

for all Υ ∈ Mp(∆), there is a j ∈ IN such that
(f−1(Υ))(j) = 0 (1)

iff

for all M ∈M∆, there is a j ∈ IN such that for all n

M ²!pj
n (2)
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iff (with lemma 5)

for all M ∈Mm
∆∪∆3

, there is a j ∈ IN such that
M 2!rj (3)

iff
for all M ∈Mm

∆∪∆3∪∆4
: M ² q

iff (in view of the definition of semantic consequence for CLuNm)

∆ ∪∆3 ∪∆4 ²CLuNm q

iff (obtained by application of lemma 6b)

∆1 ∪∆2 ∪∆3 ∪∆4 ²CLuNm !p1
i ∨ q

iff (using lemma 6a)
ΓR ²CLuNm ui

THEOREM 1. The consequence set of propositional adaptive logics
with infinite premise sets may be Π1

1-complete.

5. Proof theoretical approach

Of course the same results can be obtained by looking for syntactical
consequences of the above defined ΓR. I will not prove the crucial
lemma, but illustrate what the object-proofs would look like for ΓR ` ui

when i ∈ WF (R).

LEMMA 7.
φ ∈ Φ(ΓR) iff φ = {!p1

i |i ∈ IN − {π1(1)}} ∪ {!r1}∪
...
{!plth(π1)

i |i ∈ IN − {π1(lth(π1))}} ∪ {!rlth(π1)}∪
{!plth(π1)+1

i |i ∈ IN}∪
{!pn1+1

i |i ∈ IN − {π2(1)}} ∪ {!rn1+1}∪
...
{pn1+lth(π2)

i |i ∈ IN − {π2(lth(π2))}} ∪ {!rn1+lth(π2)}∪
{!pn1+lth(π2)+1

i |i ∈ IN}∪
{!pn2+1

i |i ∈ IN − {π3(1)}} ∪ {!rn2+1}∪
...
{!pn2+lth(π3)

i |i ∈ IN − {π3(lth(π3))}} ∪ {!rn2+lth(π3)}∪
{!pn2+lth(π3)+1

i |i ∈ IN}∪
...,
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where 〈π1, π2, . . .〉 is some infinite enumeration of possibly empty finite
paths of the graph or 〈π1, . . . , πm〉 is some finite enumeration of possibly
empty finite paths in the graph, except for πm, which is an infinite path
in the graph, and where 〈n1, n2, n3, . . .〉 = 〈lth(π1)+1, lth(π1)+lth(π2)+
2, lth(π1) + lth(π2) + lth(π3) + 3, . . .〉.

From this lemma follows that every path in the graph corresponds to
one or more elements of Φ(ΓR) (the φ ∈ Φ(ΓR) that have same π1 – see
lemma above). In other words, the paths of the graph define a partition
on Φ(ΓR).

The conclusions are only finally derived after an infinite proof (all
premises have to be inserted). Suppose all premises in ∆1 ∪ ∆2 ∪ ∆3

are inserted in the proof on lines 1.1 to 1.ω. The order nor the position
of these premises matters. They are alternated with the following lines
2.i.j.1 for any i, j ∈ IN (from 2.1.1.1 to 2.ω.ω.9):

2.i.j.1 q∨!rj Prem ∅
2.i.j.2 q 2.i.j.1; RC {!rj}
2.i.j.3 q∨!p1

i 2.i.j.2; RU {!rj}
2.i.j.4 !p1

i∨!p1
j Prem ∅ IF i 6= j

2.i.j.5 !p1
i 2.i.j.4; RC {!p1

j} IF i 6= j
2.i.j.6 q∨!p1

i 2.i.j.5; RU {!p1
j} IF i 6= j

2.i.j.7 (q∨!p1
i ) ⊃ ui Prem ∅

2.i.j.8 ui 2.i.j.3, 2.i.j.7; RU {!rj}
2.i.j.9 ui 2.i.j.6, 2.i.j.7; RU {!p1

j} IF i 6= j

Also for these lines the order of occurrence is of no importance as
long as the order within the finite blocks 2.i.j.1 to 2.i.j.9 is respected.
As a consequence, all the lines can easily be written in such a way that
they all occur in an infinite list of lines. Call this list stage s of the
proof. Using lemma 7, it is demonstrable that ui is finally derived at
this stage s of the proof iff i ∈ WF (R).

6. Expressing the graph problem in predicative CLuNm

In a predicative language a finite premise set is sufficient to express the
problem. Let Q be the weak system for first order arithmetic defined in
(Boolos et al., 2002) and TR(x, y) a formula that represents the recur-
sive relation R (which defines the edges of the aforementioned graphs)
in Q (there is such a formula in view of theorem 16.16a in (Boolos et al.,
2002)). The language has a sentential letter q, binary predicates P , S
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and U , variables x, y and z, a constant 0, and a successor function ′. It
is provable that the problem Γ′R `CLuNm Ux, where x is an arbitrary
natural number, is Π1

1-hard.

Γ′R = Q ∪∆′
1 ∪∆′

2 ∪∆′
3 ∪∆′

4 ∪∆′
5

∆′
1 = ∀x∀y∀z(x = y∨!Pxz∨!Pyz)

∆′
2 = ∀x∀y∀z(TR(x, y)∨!Pxz∨!Pyz′)

∆′
3 = ∀x∀y(!Sy∨!Pxy)

∆′
4 = ∀x(q∨!Sx)

∆′
5 = ∀x((q∨!Px0′) ⊃ Ux)

7. Conclusion and philosophical comments

I have proved that the set WF (R) of nodes in which only finite paths
start is reducible to the CLuNm-consequence set of a propositional infi-
nite but recursive premise set as well as to the CLuNm-consequence set
of a predicative finite set. So, Horsten and Welch’s ‘proof’ that propo-
sitional CLuNm with infinite premise sets is maximally Σ0

3-complex is
mistaken.

The results in this paper can immediately be generalized to all adap-
tive logics that have an object language in which classical disjunction
is present or definable and in which the logic’s abnormalities can be
expressed3. In the metatheoretic proofs of this paper, I only refer to
general properties of adaptive logics.

Adaptive logics that use the Minimal Abnormality strategy turn out
to be even more complex than Horsten and Welch thought. Although
they would probably see this result as an even bigger problem for
adaptive logics, I insist that a very complex consequence set is not
necessarily problematic for the logic. In (Batens et al., 2007) Horsten
and Welch’s negative reflections on their complexity results are rebut-
ted. However, there is more. The great complexity of the set of finally
derivable consequences can be seen as a positive property, as long as
the proofs themselves are not complex.

The type of logics under consideration are not candidates for the
standard of deduction, but determine the formally correct reasoning
steps within a certain problem solving context. Given that perspective,

3 There is also a ⊃ in ∆5. But since it is clear from section 5 that CnCLuNm(ΓR)∩
{ui|i ∈ IN} = CnCLuNm(Γ′′R)∩{ui|i ∈ IN}, where Γ′′R = ∆1∪∆2∪∆3∪{ui∨!p1

j |i, j ∈
IN ; i 6= j}∪{ui∨!rn|i, n ∈ IN}, ∆4 and ∆5 can be replaced by sets of ⊃-free formulas
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a logic can cope with a problem if there exists a function that translates
the relation between problem and solution into the logic’s actual stable
consequence relation between the premises, which correspond to the
problem, and a conclusion, which corresponds to a solution. If the
complexity of such a logic is defined as the maximal complexity of
its stable consequence set (as Horsten and Welch do), it is clear that
a less complex logic must fail to handle some complex problems. In
that sense, one cannot blame the designer of the logic if his logic is as
complex as the problems for which he wants to explicate the reasoning
processes.

Apparently, dynamic reasoning forms enable reasoning towards the
solutions of far more complex problems than usual logics. Logics with a
consequence set that is less than Π1

1-complete, cannot explicate the rea-
soning processes for problems for which the solution is only expressible
using a universal quantifier over a non-enumerable amount of objects.
The example I gave copes with a problem that refers to the possibly
non-enumerable amount of paths of a recursive graph. It is a technical
example, but one can easily devise other game theoretic and graph
related problems, that can be handled using adaptive logic. And of
course, the task of interpreting the premises as normally as possible
itself is sensible and has the same complexity. These problems are not
expressible in terms of first order classical logic nor are they expressible
in terms of the vast majority of other first order logics (they all are less
than Π1

1-complex).
Although one cannot develop logics that are less complex than the

reasoning processes one wants to explicate, it is important that the
actual proofs provide the user with insights in the problem that he
tries to solve. Therefore, they should not be hard to construct or to
verify. In adaptive logics these proofs are constructed and verified using
the definition of derivability at a stage, which is essentially not more
complex then the monotonic lower limit logic. Final derivability defines
the stable goal of the reasoning, even if, generally, this goal is not
reachable in finite time. One does not need this goal to obtain the
next line in the proof or to check whether a concrete proof is correct.
Therefore, if one wants to attack adaptive logics on their complexity,
one should really focus on the complexity of derivability at a stage.

I have explained that the complexity of the stable derivability notion
cannot be used as an argument against adaptive logics. Furthermore,
it is proven that exactly its Π1

1-complexity allows the adaptive logic to
express problems that are, if one uses classical logic, only expressible
in second order languages. Yes, adaptive logics are complex, they are
even more complex than Horsten and Welch think, but it is not hard
to see that this is an advantage rather than a disadvantage.
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