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1. Introduction

1.1. Normative conflicts and normative gaps

Ideally, sets of norms issued by agents, authorities, legislators, etc. are both
consistent and complete. In our everyday practice, however, such sets often
contain norm-conflicts and norm-gaps. A norm-conflict occurs when two or
more norms are issued that are mutually unsatisfiable. The existence of such
conflicts is motivated as follows by Alchourrón and Bulygin:

Even one and the same authority may command that p and that
not p at the same time, especially when a great number of norms
are enacted on the same occasion. This happens when the legisla-
ture enacts a very extensive statute, e.g. a Civil Code, that usually
contains four to six thousand dispositions. All of them are regarded
as promulgated at the same time, by the same authority, so that
there is no wonder that they sometimes contain a certain amount of
explicit or implicit contradictions [3, pp. 112-113].

Norm-conflicts do not always consist of conflicting commands or obligations.
They also arise where both an obligation to do something and a (positive)
permission not to do it are promulgated [1, 3, 12, 46].

The logics presented in this paper should not just be able to adequately deal
with normative conflicts but also with normative gaps. We say that a set of
norms contains a normative gap with respect to a A if A is neither positively
permitted nor forbidden nor obliged. For a defense of the existence of normative
gaps, see e.g. [2, Chapters 7,8], [13].

Note that the formulation refers to positive permissions (also, strong permis-
sions), i.e. permissions that are either explicitly stated as such, or permissions
that are derivable from other explicitly stated permissions or obligations. This
is to be distinguished from so-called weak or negative permissions: A is weakly
permitted in case A is not forbidden. Would we replace “positive permission” by
“weak permission” in the definition of normative gaps then the concept would
be vacuous since each A is either forbidden or not forbidden (and hence, weakly
permitted).

The practical use of the distinction between positive and negative permis-
sion can be illustrated by means of the legal principle nullum crimen sine lege.
According to this principle anything which is not forbidden is permitted. Al-
ternatively, the principle states that a negative permission to do A implies a
positive permission to do A. Typically, the nullum crimen principle is under-
stood as a rule of closure permitting all the actions not prohibited by penal law
[2, pp. 142-143]. We return to this principle in Section 2.1.

We will in the remainder of the paper tacitly assume that in case A is obliged
then A is positively permitted. In this case, there is a normative gap with respect
to A iff A is neither positively permitted nor forbidden.

Another way to think about normative gaps is in terms of normative de-
termination: A is normatively determined if and only if A is either positively
permitted or forbidden, which is to say that there is no normative gap with
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respect to A.1 We say that a set of norms is normatively complete if all of its
norms are normatively determined, i.e. if there are no gaps with respect to any
of its norms. From the existence of incomplete legal systems, Bulygin concludes
that legal gaps are perfectly possible:

It is not true that all legal systems are necessarily complete. The
problem of completeness is an empirical, contingent, question, whose
truth depends on the contents of the system. So legal gaps due to
the silence of the law . . . are perfectly possible [13, p. 28].

1.2. Norm-propositions and their formal representation

In ordinary language, normative sentences exhibit a characteristic ambiguity.
The very same words may be used to enunciate a norm (give a prescription) and
to make a normative statement (description) [44, pp. 104-106]. In deontic logic,
it is important to carefully distinguish between this prescriptive and descriptive
use of norms.

When interpreted prescriptively, a formula of the form pOAq means some-
thing like “you ought to do pAq”, or “it ought to be that pAq”, and a formula
of the form pPAq means something like “you may do pAq”, or “it is permitted
that pAq”.2 When interpreted descriptively, a formula of the form pOAq [pPAq]
means something like “there is a norm to the effect that pAq is obligatory [per-
mitted]”. Following [44], we take the term norm to denote the prescriptive, and
norm-proposition to denote the descriptive interpretation of normative state-
ments.3

According to Alchourrón and Bulygin [1, 2, 3], any perceived harmony be-
tween norms and norm-propositions in deontic logic is merely apparent. Instead
of using the same calculus of deontic logic for reasoning with both norms and
norm-propositions, we need two separate logics: a logic of norms and a logic of
norm-propositions. This paper is concerned with the characterization of a logic
of norm-propositions.

In formal language normative conflicts are expressed by formulas such as
pOA ∧ O not Aq in case two obligations conflict, and pOA ∧ P not Aq in case
an obligation conflicts with a permission. We call a conflict of the former kind
an OO-conflict, and a conflict of the latter kind an OP-conflict.

Normative gaps occur if neither pPAq nor pO not Aq is the case. A full
formal characterization of normative gaps is presented after the definition of our
formal language. As pointed out above, the permission in question is a strong
permission. Weak permissions may be simply defined as the modal dual to O:

1The notion of normative determination is adopted from [45].
2Until our formal language is defined, we use brackets “p” and “q” for denoting formulas.
3Von Wright [44] and Åqvist [5] cite Ingemar Hedenius as the first philosopher to note the

distinction between norms and norm-propositions. According to Hedenius, norms are “gen-
uine”, and norm-propositions are “spurious” deontic sentences [22]. The distinction between
norms and norm-propositions was later also drawn – among others – by Wedberg [47], Stenius
[38], Alchourrón[1], and Hansson [20] (see also [5]).
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by pnot O not Aq. The latter expresses that “there is no norm to the effect that
pnot Aq is obliged” and hence it expresses the descriptive meaning of a weak
permission. However, we need an independent permission operator P in order
to express strong permissions. From pPAq we cannot infer pnot O not Aq due
to the possible existence of an OP-conflict. Similarly we cannot, vice versa, infer
pPAq from pnot O not Aq since, despite the absence of a norm that expresses
that pnot Aq is obliged, pAq may not be positively permitted.4

1.3. The structure of the paper

This paper is structured as follows. In Section 2 we define the logic LNP
of which the syntax is sufficiently expressive to formalize all properties peculiar
to norm-propositions without having to resort to the meta-language. Inside the
scope of its deontic operators, LNP makes use of a paraconsistent and para-
complete negation connective for dealing with normative conflicts and normative
gaps.

As a result of the weakness of this negation connective, LNP is not pow-
erful enough for capturing many intuitive normative inferences. We deal with
this problem in Section 3, where we strengthen LNP within the adaptive log-
ics framework for non-monotonic reasoning. This results in two adaptive logics
which interpret a given premise set ‘as consistently and as completely as possi-
ble’.

In Section 4 we equip the logics defined in Section 3 with a proof theory,
and prove some further meta-theoretical results. In Section 5, we compare our
logics to other approaches taken up in the literature on norm-propositions and
on conflicting norms.

2. A negation-weakened foundation: the logic LNP

2.1. Syntax

In the setting of norm-propositions, negation behaves differently depending
on whether it occurs inside or outside the scope of an operator O or P. Outside
the scope of a deontic operator, negation behaves classically. A formula pnot Opq
is read as “it is not the case that there is a norm to the effect that p is obligatory”.
Under this reading, pnot Opq is incompatible with pOpq: pOpq and pnot Opq
cannot both be the case.

Things change when we turn to negations inside the scope of O or P. Here,
both pOpq and pO not pq are verified by the same set of norm-propositions
if this set contains an OO-conflict with respect to p. Moreover, neither pPpq
nor pO not pq are verified by a given set of norm-propositions that contains a
normative gap with respect to p. Given the standard laws of distribution for O
and P, this means that – inside the scope of O or P– both the consistency and

4See [2, 44] for further arguments against the equivalence of pPAq and pnot O not Aq in a
descriptive setting.
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the completeness constraint for negation fail in some instances: pP(p∧ not p)q
is true in case of a normative conflict, and pO(p ∨ not p)q is false in case of a
normative gap.

The logic LNP is defined in such a way that it respects this distinction: out-
side the scope of a deontic operator, only the classical negation connective “¬”
occurs. Inside the scope of a deontic operator, LNP makes use of the connective
“∼”, which is a paraconsistent and paracomplete “negation” connective, i.e. it
invalidates both p(A∧∼A) ⊃ Bq (Ex Contradictione Quodlibet) and pA∨∼Aq
(Excluded Middle).5

Where Wa = {p, q, r, . . .} is a denumerable set of atomic propositions, we
define W¬ as the 〈¬,∨,∧,⊃,≡〉-closure of Wa, and W∼ as the 〈∼,∨,∧,⊃,≡〉-
closure of Wa. Let:
WO := O〈W∼〉 | P〈W∼〉 | ¬〈WO〉 | 〈WO〉 ∨ 〈WO〉 | 〈WO〉 ∧ 〈WO〉 | 〈WO〉 ⊃
〈WO〉 | 〈WO〉 ≡ 〈WO〉
Then the setW of well-formed formulas of LNP is defined as the 〈¬,∨,∧,⊃,≡〉-
closure of W¬ ∪WO.
Since the denotation of formulas is no longer ambiguous now that our language
W is defined, we skip the pq-marks in the remainder of the paper. For future
reference, we also define the set W l = {A,∼A | A ∈ Wa} of ∼-literals.

Both normative conflicts and normative gaps are expressible in the object
language W. A normative conflict occurs relating to a formula A ∈ W∼ when-
ever we can derive one of OA ∧ O∼A or OA ∧ P∼A. A normative gap occurs
relating to A whenever we can derive ¬PA ∧ ¬O∼A, i.e. whenever there is no
norm to the effect that A is permitted or forbidden.

The P-operator functions as an operator for positive permission. A propo-
sition A is said to be negatively permitted if there is no obligation to the con-
trary, i.e. if ¬O∼A. The nullum crimen principle can be formalized as an axiom
schema:

(NC) ¬O∼A ⊃ PA

Clearly, (NC) a priori excludes the possibility of normative gaps. That is
why it is invalidated by any gap-tolerant logic of norm-propositions.

2.2. Semantics

LNP is characterizable within a Kripke-style semantics with a set of worlds
or points W and a designated or ‘actual’ world w0 ∈ W . In w0, negation is
defined classically by means of the connective “¬”. In the other worlds, negation
is defined by the paraconsistent and paracomplete connective “∼”.6

5“∼” as defined below is actually a “dummy” connective rather than a negation connective:
it has no properties at all, except that it validates de Morgan’s laws. However, in sections 3
and 4 we show that “∼” functions as a negation connective in the adaptive extensions of the
logic LNP.

6The semantic clauses for accessible worlds are inspired by those for (the propositional
fragment of) Batens’ paraconsistent and paracomplete logic CLoNs, a variation on the para-
consistent logic CLuNs as found in e.g. [8]. CLoNs is defined in Section Appendix A of the
Appendix.
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An LNP-model is a tuple 〈W,w0, R, v0, v〉, where R = {w0} × (W \ {w0}) is a
serial accessibility relation, and v0 : Wa → {0, 1} and v : W l × (W \ {w0}) →
{0, 1} are assignment functions. v0 assigns truth-values to atomic propositions.
Since all logical connectives (including negation) behave classically in this world,
truth values for complex formulas can be defined in terms of a valuation function
in the usual way. The situation is slightly different for other worlds. In the latter,
the ∼-connective does not behave classically and truth values are assigned to
all ∼-literals, i.e. all atomic propositions p and their ∼-negation ∼p.
Let w ∈W,w′ ∈W \ {w0}. Then the valuation vM : (W ×{w0}) ∪ (W∼ ×W \
{w0})→ {0, 1}, associated with the model M , is defined by

(C0) where A ∈ Wa, vM (A,w0) = 1 iff v0(A) = 1
(Cl) where A ∈ W l, vM (A,w′) = 1 iff v(A,w′) = 1
(C¬) vM (¬A,w0) = 1 iff vM (A,w0) = 0
(C∼∼) vM (∼∼A,w′) = 1 iff vM (A,w′) = 1
(C∼⊃) vM (∼(A ⊃ B), w′) = 1 iff vM (A ∧ ∼B,w′) = 1
(C∼∧) vM (∼(A ∧B), w′) = 1 iff vM (∼A ∨ ∼B,w′) = 1
(C∼∨) vM (∼(A ∨B), w′) = 1 iff vM (∼A ∧ ∼B,w′) = 1
(C∼≡) vM (∼(A ≡ B), w′) = 1 iff vM ((A ∨B) ∧ (∼A ∨ ∼B), w′) = 1
(C⊃) vM (A ⊃ B,w) = 1 iff vM (A,w) = 0 or vM (B,w) = 1
(C∧) vM (A ∧B,w) = 1 iff vM (A,w) = vM (B,w) = 1
(C∨) vM (A ∨B,w) = 1 iff vM (A,w) = 1 or vM (B,w) = 1
(C≡) vM (A ≡ B,w) = 1 iff vM (A,w) = vM (B,w)
(CO) vM (OA,w0) = 1 iff vM (A,w′) = 1 for every w′ such that Rw0w

′

(CP) vM (PA,w0) = 1 iff vM (A,w′) = 1 for some w′ such that Rw0w
′

(C0) and (Cl) simply take over the values of the assignment functions v0 and
v respectively. (C¬) determines truth values for the classical negation connec-
tive “¬” in w0. (C∼∼)-(C∼ ≡) guarantee that de Morgan’s laws hold for “∼”
in accessible worlds. (C⊃)-(C≡) determine truth values for the other classical
connectives ⊃,∧,∨, and ≡ in all worlds, and (CO) and (CP) define the deontic
operators O and P in the usual way.
A semantic consequence relation for LNP is defined in terms of truth preserva-
tion at the actual world. An LNP-model M verifies A (M 
 A) iff vM (A,w0) =
1. Where Γ ⊆ W, M is an LNP-model of Γ iff M is an LNP-model and M 
 A
for all A ∈ Γ. �LNP A iff all LNP-models verify A, and Γ �LNP A iff all LNP-
models of Γ verify A.

2.3. Axiomatization and meta-theory

Inside the scope of O and P, we want to allow for the consistent possibility
of contradictions and gaps. In order to do so, we make use of the propositional
fragment of the logic CLoNs (cfr. footnote 6). CLoNs is defined by adding de
Morgan’s laws for “∼” to the positive fragment of classical (propositional) logic
CL:7

7An axiomatization of the positive fragment of CL (i.e. CL without negation) is contained
in Section Appendix A of the Appendix.
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(A∼∼) ∼∼A ≡ A
(A∼⊃) ∼(A ⊃ B) ≡ (A ∧ ∼B)
(A∼∧) ∼(A ∧B) ≡ (∼A ∨ ∼B)
(A∼∨) ∼(A ∨B) ≡ (∼A ∧ ∼B)
(A∼≡) ∼(A ≡ B) ≡ ((A ∨B) ∧ (∼A ∨ ∼B))

Except for de Morgan’s laws, “∼” has no properties at all. The logic LNP
is fully axiomatized by CL (with the classical negation connective “¬”) plus:

(K) O(A ⊃ B) ⊃ (OA ⊃ OB)
(D) OA ⊃ PA
(NEC∼) If `CLoNs A then ` OA
(KP) O(A ⊃ B) ⊃ (PA ⊃ PB)
(OD) O(A ∨B) ⊃ (OA ∨ PB)
(PD) P (A ∨B) ⊃ (PA ∨ PB)

We write Γ `LNP A to denote that A is LNP-derivable from Γ, and `LNP A
to denote that A is LNP-derivable from the empty premise set.

LNP resembles SDL in the sense that it contains (K), (D), and a necessi-
tation rule. However, it is non-standard in the sense that its necessitation rule
(NEC∼) is defined in terms of theoremhood in CLoNs instead of theoremhood
in CL. Moreover, in LNP the permission operator P is not definable in terms
of the obligation operator O. Instead, the P-operator is characterized by the
axiom schemata (KP), (OD), and (PD), all of which also hold in SDL.
The axiom schemata (O-AND) and (P-AND) are derivable in LNP (their deriv-
ability is shown in Fact 1 in Section Appendix B of the Appendix):

(O-AND) OA,OB `LNP O(A ∧B)
(P-AND) OA,PB `LNP P(A ∧B)

Theorem 1. If Γ `LNP A, then Γ �LNP A. (Soundness of LNP)

Theorem 2. If Γ �LNP A, then Γ `LNP A. (Strong Completeness of LNP)

Proofs for Theorem 1 and Theorem 2 are contained in Section Appendix C
of the Appendix.

2.4. Discussion

LNP allows for the consistent possibility of normative conflicts and norma-
tive gaps, and invalidates deontic explosion:

Op ∧ O∼p 6`LNP Oq (1)

Op ∧ P∼p 6`LNP Oq (2)

¬Pp ∧ ¬O∼p 6`LNP Oq (3)

In accordance with the discussion in Section 1.2, the following interdependencies
between the O- and P-operators are invalid in LNP:

Pp 6`LNP ¬O∼p (4)
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¬Pp 6`LNP O∼p (5)

Op 6`LNP ¬P∼p (6)

¬Op 6`LNP P∼p (7)

(4)-(7) correspond to the characterization of the P-operator as an operator for
positive permission. (4) fails in the presence of an OP-conflict Pp ∧ O∼p. (5)
fails in the presence of a gap ¬Pp∧¬O∼p. (6) fails in the presence of a conflict
Op ∧ P∼p, and (7) fails in the presence of a gap ¬P∼p ∧ ¬Op.

The conflict- and gap-tolerance of LNP, as well as the non-interdefinability
of its O- and P-operators, all depend crucially on the paraconsistency and para-
completeness of the “∼”-connective. However, the very weak characterization
of “∼”also causes the LNP-invalidity of the following inferences:

O(p ∨ q),O∼q 6`LNP Op (8)

O(p ∨ q),O(∼p ∨ q) 6`LNP Oq (9)

O(p ⊃ q),O∼q 6`LNP O∼p (10)

Indeed, except for de Morgan’s laws LNP invalidates all classically valid in-
ferences that somehow depend on the properties of the ∼-connective, e.g. the
Disjunctive Syllogism or Contraposition rules. (8) is invalid because the possi-
bility of an OO-conflict Oq ∧ O∼q cannot be excluded. In that case, Op need
not follow from the premises O(p∨q) and O∼q. Likewise, (9) is invalid since Oq
need not follow from O(p ∨ q) and O(∼p ∨ q) in the presence of an OO-conflict
Op ∧ O∼p.

(10) fails (i) in case of a normative conflict relating to q or (ii) in case of a
normative gap relating to p. Suppose that O(p ⊃ q) and O∼q are true at the
actual world. Then p ⊃ q and ∼q are true at all accessible worlds. In case (i),
both q and ∼q are true in at least one accessible world. In this world, p ⊃ q
is automatically true in view of (C⊃), and ∼p need not be true. In case ∼p is
false at an accessible world, we have a model in which O∼p is false at the actual
world. In case (ii), both p and ∼p will be false in at least one accessible world.
Again we have a model in which O∼p is false at the actual world.

For similar reasons all of the following ‘variants’ of (8)-(10) are invalid in
LNP:

O(p ∨ q),P∼q 6`LNP Pp (11)

P(p ∨ q),O∼q 6`LNP Pp (12)

O(p ∨ q),P(∼p ∨ q) 6`LNP Pq (13)

P(p ∨ q),O(∼p ∨ q) 6`LNP Pq (14)

O(p ⊃ q),P∼q 6`LNP P∼p (15)

P(p ⊃ q),O∼q 6`LNP P∼p (16)

O(p ⊃ q) 6`LNP O(∼q ⊃ ∼p) (17)

P(p ⊃ q) 6`LNP P(∼q ⊃ ∼p) (18)
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In spite of the rationale behind their invalidity (i.e. the possibility of normative
conflicts/gaps), all of (8)-(17) have some intuitive appeal. In real life, we tend to
assume that norms behave consistently and that propositions are normatively
regulated. Normative conflicts and normative gaps are anomalies. We rely on
inferences like (8)-(17) in our everyday reasoning processes, albeit in a defeasible
way.

It seems then, that LNP is too weak to account for our normative reasoning.
Inferences like (8)-(17) should only be blocked once we can reasonably assume
that one of the norm-propositions needed in the inference behaves abnormally,
i.e. that there might be a conflict or gap relating to this norm-proposition. Note
that this reasoning process is non-monotonic: new premises may provide the
information that there is a conflict or gap relating to some norm-proposition
that was previously deemed to behave normally. Consider, for instance, the
inference from O(p ∨ q) and O∼p to Oq. This inference is intuitive assuming
that there is no normative conflict relating to p. If, however, we obtain the new
information that there is a normative conflict relating to p, then the inference
should be blocked, since we do not want to rely on conflicted norm-propositions
in deriving new information.

In the next section, we strengthen LNP in a non-monotonic fashion in order
to overcome the problems mentioned here, and to make formally precise the idea
of ‘assuming’ norm-propositions to behave ‘normally’.

3. Two adaptive extensions

For any A ∈ Wa, the classical negation connective “¬” satisfies the following
semantic conditions at the actual world:

(†) If vM (A,w0) = 1, then vM (¬A,w0) = 0,
(‡) If vM (A,w0) = 0, then vM (¬A,w0) = 1.

(†) guarantees the consistency of A: A and ¬A cannot both be true at w0. (‡)
imposes a completeness condition on A: at least one of A and ¬A is true at w0.

As is clear from the LNP-semantics, (†) and (‡) fail for “∼” at accessible
worlds. Instead of (†) and (‡), only the weaker conditions (†’) and (‡’) hold for
“∼” at a world w ∈W \ {w0}:

(†’) If vM (A,w) = 1, then vM (∼A,w) = 0 or vM (A ∧ ∼A,w) = 1,
(‡’) If vM (A,w) = 0, then vM (∼A,w) = 1 or vM (A ∨ ∼A,w) = 0.

In view of the semantic clauses for LNP it is easily checked that whenever a
normative conflict occurs relating to a proposition p, the formula p∧∼p is true
at some accessible world. In case of an OP-conflict Op∧P∼p or O∼p∧Pp, this
follows in view of (CO), (CP), and (C∧). In case of an OO-conflict Op ∧ O∼p,
it follows in view of (CO), (C∧) and the seriality of the accessibility relation.

In a similar fashion, we can check that whenever a normative gap occurs
relating to p, the formula p ∨∼p is false at some accessible world. Suppose, for
instance, that ¬Op∧¬P∼p is true at w0. Then by (C¬), both Op and P∼p are
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false at w0. By (CO), there is a world w such that Rw0w and v(p, w) = 0. By
(CP), ∼p too is false at this world: v(∼p, w) = 0. By (C∨), v(p ∨ ∼p, w) = 0.

Normative conflicts create truth-value gluts, whereas normative gaps create
truth-value gaps at accessible worlds. Suppose now that we label such gluts
and gaps as abnormal, and that we try to interpret our worlds as normally as
possible. Then, in view of (†’) and (‡’), normal behavior corresponds to the
satisfaction of the consistency and completeness demands (†) and (‡) for “∼”
at accessible worlds.

The adaptive logics LNPr and LNPm defined in this section exploit the
above idea in making the assumption that norm-propositions behave ‘normally’
unless and until we find out that they are involved in some normative conflict
or gap.

3.1. Semantic characterization of LNPr and LNPm

Adaptive logics in the so-called standard format from [6] are characterized
as triples, consisting of:

(1) A lower limit logic (LLL): a compact, reflexive, transitive, and monotonic
logic that contains CL and has a characteristic semantics.
(2) A set of abnormalities Ω: a set of formulas, characterized by a (possibly
restricted) logical form F; or a union of such sets.
(3) An adaptive strategy: reliability or minimal abnormality

The LLL of an adaptive logic (AL) in standard format is its monotonic base;
everything derivable by means of the LLL is derivable by means of the AL.
The AL extends the LLL by interpreting abnormalities as false “as much as
possible”. The formal disambiguation of this idea is relative to the adaptive
strategy used by the AL. At the moment, two adaptive strategies are included
in the standard format: the reliability strategy and the minimal abnormality
strategy.

We use LNPx as a generic name for the logics LNPr and LNPm. The
former uses the reliability strategy, whereas the latter uses minimal abnormality
(hence the superscripts r and m). Both of these logics have LNP as their LLL.
Moreover, LNPr and LNPm share the same set of abnormalites Ω = Ω1 ∪Ω2,
where Ω1 = {P(A ∧ ∼A) | A ∈ Wa} and Ω2 = {¬O(A ∨ ∼A) | A ∈ Wa}.

Ω1 is the set of atomic gluts true at some accessible world. Note that, in view
of the validity of de Morgan’s laws for “∼”, more complex gluts can be reduced
to (disjunctions of) atomic gluts by the LLL, e.g. if vM ((p∨q)∧∼(p∨q), w) = 1,
then (vM (p ∧ ∼p, w) = 1 or vM (q ∧ ∼q, w) = 1). Consequently, whenever some
LNP-model verifies an OO- or OP-conflict, it also validates an abnormality in
the set Ω1.

In view of the LNP-semantics, p ∨ ∼p is false at some accessible world
whenever ¬O(p ∨ ∼p) is true at the actual world. Thus Ω2 is the set of atomic
gaps true at some accessible world. Again, complex instances of gaps are LNP-
reducible to a (disjunction of) atomic gap(s), e.g. if vM ((p∨q)∨∼(p∨q), w) = 0,
then (vM (p ∨ ∼p, w) = 0 or vM (q ∨ ∼q, w) = 0). Hence whenever some LNP-
model verifies a normative gap, it also validates an abnormality in the set Ω2.
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For any atomic proposition p, the Ω2-abnormality ¬O(p∨∼p) expresses that
there is an accessible world in which neither p nor ∼p is verified, whereas the
Ω1-abnormality P(p ∧ ∼p) expresses that there is an accessible world in which
both p and ∼p are verified. Thus, in LNP both gluts and gaps in accessible
worlds constitute abnormalities. In view of the discussion at the beginning
of this section, this means that both normative conflicts and normative gaps
constitute abnormalities in LNP.

Semantically, adaptive logics proceed by selecting a subset of their LLL-
models.8 This selection makes use of the abnormal part of an LNP-model, i.e.
the set of all abnormalities verified by it. The abnormal part of an LNP-model
M is defined as Ab(M) = {A ∈ Ω |M 
LNP A}.

The minimal abnormality strategy selects all LNP-models of a premise set
Γ which have a minimal abnormal part (with respect to set-inclusion).

Definition 1. An LNP-model M of Γ is minimally abnormal iff there is no
LNP-model M ′ of Γ such that Ab(M ′) ⊂ Ab(M).

The semantic consequence relation of the logic LNPm is defined by selecting
the minimally abnormal LNP-models:

Definition 2. Γ |=LNPm A iff A is verified by all minimally abnormal LNP-
models of Γ.

Before we can define the semantic consequence relation for LNPr, we need
some more terminology. Where ∆ is a finite, non-empty set of abnormalities,
the disjunction

∨
∆ is called a Dab-formula and is written as Dab(∆). A

Dab-formula Dab(∆) is a Dab-consequence of Γ if it is LNP-derivable from Γ;
Dab(∆) is a minimal Dab-consequence of Γ if it is a Dab-consequence of Γ and
there is no ∆′ such that Dab(∆′) is a Dab-consequence of Γ and ∆′ ⊂ ∆.

The set of formulas that are unreliable with respect to Γ, denoted by U(Γ),
is defined by

Definition 3. Where Dab(∆1),Dab(∆2), . . . are the minimal Dab-consequences
of Γ, U(Γ) = ∆1∪∆2∪ . . . is the set of formulas that are unreliable with respect
to Γ.

Where Ab(M) is defined as above, we can now select the reliable models and
define the semantic consequence relation for LNPr:

Definition 4. An LNP-model M of Γ is reliable iff Ab(M) ⊆ U(Γ).

Definition 5. Γ |=LNPr A iff A is verified by all reliable models of Γ.

The fact that the set of LNPx-models of Γ is a subset of the set of LNP-
models of Γ immediately ensures that LNPx strengthens LNP.

8Besides adaptive logics many other formal frameworks make use of semantic selections,
e.g. [27, 37].
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Theorem 3. If Γ |=LNP A, then Γ |=LNPx A.

Where MLNP
Γ ,Mm

Γ , and Mr
Γ denote the set of LNP-models, minimally

abnormal LNP-models, resp. reliable LNP-models of Γ, we also know that:

Theorem 4. (Strong Reassurance.) If M ∈ MLNP
Γ −Mm

Γ , then there is a
M ′ ∈ Mm

Γ such that Ab(M ′) ⊂ Ab(M). If M ∈ MLNP
Γ −Mr

Γ, then there is a
M ′ ∈Mr

Γ such that Ab(M ′) ⊂ Ab(M).

Theorem 4 is shown generically for adaptive logics in standard format as
Corollary 1 in [6].

3.2. Some illustrations

Example 1. Let Γ1 = {Op,O(∼p ∨ q)}. Then, for all LNP-models M of Γ1,
M,w0 |= Op and M,w0 |= O(∼p ∨ q). By (CO), M,w |= p and M,w |= ∼p ∨ q
for all worlds w such that Rw0w. The possible truth values for p,∼p, q, and ∼q
at accessible worlds in M are depicted in Table 1a. Let R(w0) abbreviate the
set of worlds w ∈W \ {w0} such that Rw0w. Then each w ∈ R(w0) is of one of
types (1)-(6).

Table 1: Accessible worlds for Γ1 and Γ3

(a) Accessible worlds for Γ1

w p ∼p q ∼q
(1) 1 0 1 0
(2) 1 0 1 1
(3) 1 1 0 0
(4) 1 1 0 1
(5) 1 1 1 0
(6) 1 1 1 1

(b) Accessible worlds for Γ3

w p ∼p q ∼q
(1) 0 0 0 1
(2) 0 0 1 1
(3) 0 1 0 1
(4) 0 1 1 1
(5) 1 0 1 1
(6) 1 1 1 1

If at least one w ∈ R(w0) is of one of types (3)-(6), then, by (C∧) and
(CP), M,w0 |= P(p ∧ ∼p), and P(p ∧ ∼p) ∈ Ab(M). Similarly, if at least one
w ∈ R(w0) is of type (2) or type (6), then P(q∧∼q) ∈ Ab(M). Moreover, if some
w ∈ R(w0) is of type (3), then, by (C∨), (CO) and (C¬), M,w0 |= ¬O(q ∨∼q),
and ¬O(q ∨ ∼q) ∈ Ab(M).

If, however, all worlds w ∈ R(w0) are of type (1), then M verifies no abnor-
malities relating to p or q. In view of Definition 1, only models for which all
worlds w ∈ R(w0) are of type (1) qualify as minimally abnormal LNP-models
of Γ1. Note that, for all type (1)-worlds w ∈ R(w0), M,w |= q. By (CO),
M,w0 |= Oq. By Definition 2, Γ1 |=LNPm Oq.

Since Γ1 has LNP-models M of which all accessible worlds w ∈ R(w0) are
such that, for all A ∈ Wa, M,w 6|= A∧∼A and M,w |= A∨∼A, we can conclude
that Γ1 has LNP-models M such that Ab(M) = ∅. It follows that Γ1 has no
minimal Dab-consequences. In view of Definition 3, U(Γ1) = ∅. By Definition
4, Ab(M) = ∅ for all reliable LNP-models M of Γ1. Again, only models for
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which all worlds w ∈ R(w0) are of type (1) qualify as reliable LNP-models of
Γ1. By Definition 5, Γ1 |=LNPr Oq.

Example 2. Let Γ2 = {Op,O(∼p∨ q),O∼p}. It is easily checked that Γ2 |=LNP

P(p∧∼p). Consequently, all LNP-models verify this abnormality, including the
minimally abnormal and reliable ones. Hence all accessible worlds in all LNP-
models of Γ2 are of one of types (3)-(6) in Table 1a. Since P(p ∧ ∼p) is the
only Dab-consequence of Γ2, the selected LNPx-models for both strategies are
those which verify exactly this abnormality, i.e. models of which all accessible
worlds are of type (4) or (5). In all of these models, p,∼p ∨ q, and ∼p are true
at all accessible worlds. Since q need not be true at some of these worlds, Γ2

has LNPx-models in which Oq is false. Hence Γ2 6|=LNPx Oq.
Note that Examples 1 and 2 illustrate the non-monotonicity of LNPx:

adding the premise O∼p to Γ1 blocks the derivation of Oq.

Example 3. Let Γ3 = {O(p ⊃ q),O∼q}, and let M be an LNP-model of Γ3.
The possible truth values for p,∼p, q, and ∼q at accessible worlds in M are
depicted in Table 1b.

If at least one w ∈ R(w0) is of one of types (1) or (2), then ¬O(p ∨ ∼p) ∈
Ab(M). If at least one w ∈ R(w0) is of one of types (2), (4), (5) or (6), then
P(q ∧ ∼q) ∈ Ab(M). Only if all w ∈ R(w0) are of type (3) it is possible that
Ab(M) = ∅. In view of Definition 1, only models of which all w ∈ R(w0) are of
type (3) qualify as minimally abnormal models. But then M,w0 |= O∼p, and,
by Definition 2, Γ3 |=LNPm O∼p. It is safely left to the reader to check that, in
view of Definitions 4 and 5, Γ3 |=LNPr O∼p.
Example 4. Let Γ4 = {O(p∧ q),O(∼(p∨ q)∨ r),P(∼p∨∼q)}, and let M be an
LNP-model of Γ4. By (CO) we know that, for all w ∈ R(w0) in M , M,w |= p∧q
and M,w |= ∼(p ∨ q) ∨ r. Hence every w ∈ R(w0) is of one of types (1)-(10)
depicted in Table 2.

w p ∼p q ∼q r ∼r
(1) 1 0 1 0 1 0
(2) 1 0 1 0 1 1
(3) 1 0 1 1 1 0
(4) 1 0 1 1 1 1
(5) 1 1 1 0 1 0
(6) 1 1 1 0 1 1
(7) 1 1 1 1 0 0
(8) 1 1 1 1 0 1
(9) 1 1 1 1 1 0
(10) 1 1 1 1 1 1

Table 2: Accessible worlds for Γ4

By (CP), we also know that there is at least one world w such that w ∈ R(w0)
and M,w |= ∼p∨∼q. Thus, w cannot be of type (1) or type (2). If w is of type
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(3), then P(q ∧ ∼q) ∈ Ab(M). If w is of type (5), then P(p ∧ ∼p) ∈ Ab(M). It
is easily checked that if w is of type (4), (6), (7), (8), (9), or (10), then either
{P(p ∧ ∼p)} ⊂ Ab(M) or {P(q ∧ ∼q)} ⊂ Ab(M).

In general, it follows by Definition 1 that M only qualifies as a minimally
abnormal LNP-model of Γ4 if either w is of type (3) and all w′ ∈ R(w0) \ {w}
are of type (1) or type (3), or w is of type (5) and all w′ ∈ R(w0)\{w} are of type
(1) or type (5). Hence if M is minimally abnormal, then all accessible worlds in
M are of type (1), type (3), or type (5). But then, by (CO), M,w0 |= Or and,
by Definition 2, Γ4 |=LNPm Or.

Since at least one accessible world w in M is of types (3)-(10), it follows by
(C∧), (CP), and (C∨) that M,w0 |= P(p ∧ ∼p) ∨ P(q ∧ ∼q). Since M,w0 6|=
P(p∧∼p) andM,w0 6|= P(q∧∼q), it follows that P(p∧∼p)∨P(q∧∼q) is a minimal
Dab-consequence of Γ4. Thus, by Definition 3, P(p ∧ ∼p),P(q ∧ ∼q) ∈ U(Γ4).

Suppose now that all w ∈ R(w0) are of type (8), and that, for all A ∈
Wa \ {p, q, r}, M,w 6|= A ∧ ∼A and M,w |= A ∨ ∼A. Then it is easily verified
that the only abnormalities verified by M are P(p ∧ ∼p) and P(q ∧ ∼q). Thus,
Ab(M) ⊆ U(Γ4). By Definition 4, M is reliable. However, M,w0 6|= Or. Thus,
by Definition 5, Γ4 6|=LNPr Or.

Example 4 illustrates that there are premise sets Γ ⊆ W and formulas A ∈ W
such that Γ 6|=LNPr A and Γ |=LNPm A. The inverse does not hold: in Section
4.3 we show that in general the logic LNPm is strictly stronger than LNPr.

4. Proof theory and meta-theory for LNPr and LNPm

In Section 4.1, we define the proof theory for LNPx in a generic way. An
illustration is provided in Section 4.2. Further (meta-)theoretical properties of
LNPr and LNPm are stated in Section 4.3.

4.1. Proof theory

A line in an annotated LNPx-proof consists of a line number, a formula, a
justification and a condition. The justification consists of a (possibly empty)
list of line numbers (from which the formula is derived) and of the name of
a rule. The presence of a condition is part of what makes an adaptive proof
dynamic. The dynamics of these proofs is controlled by attaching conditions
to derived formulas and by a marking definition. The rules determine which
lines (consisting of the four aforementioned elements) may be added to a given
proof. The effect of the marking definition is that, at every stage9 of the proof,
certain lines may be marked whereas others are unmarked. Whether or not a
line is marked depends only on the condition of the line and on the minimal
Dab-formulas (cfr. Definition 6) that have been derived in the proof.

9A stage of a proof is a sequence of lines and a proof is a sequence of stages. Every proof
starts off with stage 1. Adding a line to a proof by applying one of the rules of inference
brings the proof to its next stage, which is the sequence of all lines written so far.
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The rules of inference of LNPx reduce to three generic rules. Where Γ is
the set of premises, and where

A ∆

abbreviates that A occurs in the proof on the condition ∆, the inference rules
are given by

PREM If A ∈ Γ:
...

...
A ∅

RU If A1, . . . , An `LNP B: A1 ∆1

...
...

An ∆n

B ∆1 ∪ . . . ∪∆n

RC If A1, . . . , An `LNP B ∨Dab(Θ) A1 ∆1

...
...

An ∆n

B ∆1 ∪ . . . ∪∆n ∪Θ

The premise rule PREM simply states that, at any line of a proof, a premise
may be introduced on the empty condition. What the unconditional rule RU
comes to is that, whenever A1, . . . , An `LNP B and A1, . . . , An occur in the
proof on the conditions ∆1, . . . ,∆n respectively, then B may be added to the
proof on the condition ∆1 ∪ . . . ∪∆n.

If A1, . . . , An `LNP B ∨ Dab(Θ) and A1, . . . , An occur in a proof on the
conditions ∆1, . . . ,∆n respectively, then, by the conditional rule RC, we can
infer B on the condition ∆1 ∪ . . . ∪∆n ∪Θ. RC is the only rule that allows for
the introduction of new conditions in an adaptive proof.

The marking definition for the reliability strategy proceeds in terms of the
minimal Dab-formulas derived at a stage of the proof:

Definition 6. Dab(∆) is a minimal Dab-formula at stage s iff, at stage s,
Dab(∆) is derived on the condition ∅, and no Dab(∆′) with ∆′ ⊂ ∆ is derived
on the condition ∅.

Definition 7. Where Dab(∆1),Dab(∆2), . . . are the minimal Dab-formulas de-
rived at stage s, Us(Γ) = ∆1 ∪∆2 ∪ . . ..

Definition 8. Marking for reliability. Where ∆ is the condition of line i, line
i is marked at stage s iff ∆ ∩ Us(Γ) 6= ∅.
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The marking definition for minimal abnormality requires some more termi-
nology. A choice set of Σ = {∆1,∆2, . . .} is a set that contains one element out
of each member of Σ. A minimal choice set of Σ is a choice set of Σ of which
no proper subset is a choice set of Σ. Where Dab(∆1),Dab(∆2), . . . are the
minimal Dab-formulas that are derived at stage s, Φs(Γ) is the set of minimal
choice sets of {∆1,∆2, . . .}.

Definition 9. Marking for minimal abnormality. Where A ∈ W is derived at
line i of a proof from Γ on a condition ∆, line i is marked at stage s iff
(i) there is no ∆′ ∈ Φs(Γ) such that ∆′ ∩∆ = ∅, or
(ii) for some ∆′ ∈ Φs(Γ), there is no line at which A is derived on a condition
Θ for which ∆′ ∩Θ = ∅.

For both strategies, the marking proceeds in terms of the minimal Dab-
formulas that are derived at a certain stage. It is clear that marking is a dynamic
matter: a line may be unmarked at a stage s, marked at a later stage s′ and
again unmarked at an even later stage s′′. This is why a more stable notion of
derivability is needed:

Definition 10. A is finally derived from Γ at line i of a proof at finite stage
s iff (i) A is the second element of line i, (ii) line i is not marked at stage s,
and (iii) every extension of the proof in which line i is marked may be further
extended in such a way that line i is unmarked.

The derivability relation of LNPx is defined with respect to the notion of
final derivability:

Definition 11. Γ `LNPx A (A is finally LNPx-derivable from Γ) iff A is finally
derived at a line of a LNPx-proof from Γ.

Theorem 5 below is proved generically for adaptive logics in standard format
as Theorem 16 in [6]:

Theorem 5. (Proof Invariance.) If Γ `LNPx A, then every finite LNPx-proof
from Γ can be extended in such a way that A is finally derived in it.

Any adaptive logic in standard format is sound and complete with respect
to its semantics:

Theorem 6. Γ `LNPx A iff Γ �LNPx A.

Since LNPx is defined within the standard format for adaptive logics, the
proof of Theorem 6 follows immediately by Corollary 2 and Theorem 9 from [6].

4.2. Illustration

In this section, we illustrate the proof theory by means of the premise set Γ4

from Section 3.2. We start a LNPr-proof for Γ4 by entering the premises via
the premise introduction rule:

1 O(p ∧ q) PREM ∅
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2 O(∼(p ∨ q) ∨ r) PREM ∅
3 P(∼p ∨ ∼q) PREM ∅

Since O(p ∧ q) `LNP Op, we can derive Op by applying RU to line 1:

4 Op 1; RU ∅

By (O-AND), we can aggregate lines 2 and 4. Hence line 5 follows via RU:

5 O((∼(p ∨ q) ∨ r) ∧ p) 2,4; RU ∅

As ((∼(p∨ q)∨ r)∧ p) ⊃ (r∨ (p∧∼p)) is a CLoNs-theorem, line 6 follows from
line 5 by (NEC∼) and (K). Thus, via RU:

6 O(r ∨ (p ∧ ∼p)) 5; RU ∅
7 Or ∨ P(p ∧ ∼p) 6; RU ∅
8 Or 7; RC {P(p ∧ ∼p)}

Line 7 is obtained by applying (OD) to line 6. At line 8, the abnormality
derived in disjunction with Or at line 7 is moved to the condition by means of an
application of RC. At stage 8 of the proof, Or is considered derived. Intuitively,
line 8 can be interpreted as “Or is derived on the assumption that P(p∧∼p) is
false”.

In the proof above, lines 4-7 serve a purely explanatory purpose; their aim
is to show that Or∨P(p∧∼p) is a LNP-consequence of lines 1 and 2. However,
since indeed O(p ∧ q),O(∼(p ∨ q) ∨ r) `LNP Or ∨ P(p ∧ ∼p), we could have
skipped these lines and applied RC immediately to lines 1 and 2.

In a fashion analogous to the derivation of Or ∨ P(p ∧ ∼p) above, we can
show that O(p ∧ q),O(∼(p ∨ q) ∨ r) `LNP Or ∨ P(q ∧ ∼q). Hence we can apply
RC immediately to lines 1 and 2:

9 Or 1,2; RC {P(q ∧ ∼q)}

Consider now the premises at lines 1 and 3. By (P-AND), we can derive
P((p∧q)∧(∼p∨∼q)). Since `CLoNs ((p∧q)∧(∼p∨∼q)) ⊃ ((p∧∼p)∨(q∧∼q)),
it follows by (NEC∼) and (KP) that P((p∧∼p)∨ (q∧∼q)). By (PD), we obtain
P(p ∧ ∼p) ∨ P(q ∧ ∼q). Thus we can continue the proof as follows (we repeat
the proof from line 8 on):

8 Or 6; RC {P(p ∧ ∼p)}X10

9 Or 1,2; RC {P(q ∧ ∼q)}X10

10 P(p ∧ ∼p) ∨ P(q ∧ ∼q) 1,3; RU ∅

The formula P(p∧∼p)∨P(q ∧∼q) is a minimal Dab-formula at stage 10. Both
its disjuncts are in the set of unreliable formulas at this stage: U10(Γ4) =
{P(p∧∼p),P(q ∧∼q)}. In view of Definition 8, this causes the marking of lines
8 and 9 at stage 10 (hence the checkmark sign). Consequently, the formula Or
is no longer considered derived at stage 10 of the proof. Moreover, since there
is no way to extend the proof from Γ4 in such a way that Or is derived on an
unmarked line, we know by Definitions 10 and 11 that Γ4 6`LNPr Or.

Suppose now that the above proof is a LNPm-proof from Γ4. We repeat
the proof from line 8 on:
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8 Or 7; RC {P(p ∧ ∼p)}
9 Or 6; RC {P(q ∧ ∼q)}

10 P(p ∧ ∼p) ∨ P(q ∧ ∼q) 1,3; RU ∅

In the LNPm-proof from Γ4, the set Φ10(Γ4) of minimal choice sets of Γ4 at
stage 10 consists of the sets {P(p∧∼p)} and {P(q ∧∼q)}. In view of Definition
9, lines 8 and 9 remain unmarked. Since there is no way to extend the proof in
such a way that these lines become marked, it follows by Definitions 10 and 11
that Γ4 `LNPm Or.

The different behavior of the logics LNPr and LNPm for this example
is explained by considering the intuitions behind the reliability and minimal
abnormality strategies. According to the reliability strategy, a formula is deemed
‘suspicious’ and is subsequently marked whenever it is derived on a line of which
the condition intersects with some disjunct of a minimal Dab-formula. The
minimal abnormality strategy is a tad less cautious. In this example, the latter
strategy takes only one of the disjuncts P(p ∧ ∼p) and P(q ∧ ∼q) to be true,
although of course we do not know which one. If, on the one hand, P(p ∧ ∼p)
is true, then P(q ∧ ∼q) is safely considered false. Hence Or is derivable in view
of line 9. If, on the other hand, P(q ∧ ∼q) is true, then P(p ∧ ∼p) is safely
considered false. Hence Or is derivable in view of line 8.

4.3. Further meta-theoretical properties

Formulating adaptive logics in the standard format has the advantage that
a rich meta-theory is immediately available for this format. Generic proofs for
Theorems 7-9 below can be found in [6].

In case no Dab-formulas are derivable from a premise set by means of the
lower limit logic, it is safe to consider all abnormalities as false. As a conse-
quence, the adaptive logic will then yield the same consequence set as the logic
that interprets all abnormalities as false (or equivalently, as the logic that fully
validates the inference rules whose application the adaptive logic only allows
conditionally). This logic is called the upper limit logic (ULL) of an adaptive
logic. The ULL of LNPx is obtained by adding to LNP the axiom schemas
(U1) and (U2), which trivialize all members of Ω1 and Ω2 respectively:

(U1) P(A ∧ ∼A) ⊃ B
(U2) ¬O(A ∨ ∼A) ⊃ B

ULL is related to LNP as set out by the Derivability Adjustment Theorem:

Theorem 7. Γ `ULL A iff (there is a ∆ ⊆ Ω for which Γ `LNP A ∨ Dab(∆)
or Γ `LNP A).

The set of Dab-consequences derivable from the premise set determines the
amount to which the LNPx-consequence set will resemble the ULL-consequence
set. This is why adaptive logicians say that LNPx adapts itself to a premise
set. LNPx will always be at least as strong as LNP and maximally as strong
as ULL:
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Theorem 8. CnLNP(Γ) ⊆ CnLNPx(Γ) ⊆ CnULL(Γ).

In view of Theorem 11 from [6], it follows immediately that:

Corollary 1. CnLNP(Γ) ⊆ CnLNPr(Γ) ⊆ CnLNPm(Γ) ⊆ CnULL(Γ).

If Γ is normal, i.e. if Γ has no Dab-consequences, then we can even prove a
stronger result:

Theorem 9. If Γ is normal, then CnLNPx(Γ) = CnULL(Γ).

The reader may have noticed that ULL trivializes both gluts and gaps at
accessible worlds, thus promoting “∼” to a fully classical negation connective.
It should come as no surprise then, that ULL is just SDL in disguise. Where
Γ ⊆ W, define Γ¬ by replacing every A ∈ Γ by π(A), where π(A) is the result
of replacing every occurrence of “∼” in A by “¬”. Then:

Theorem 10. Γ `ULL A iff Γ¬ `SDL π(A).

A proof outline for Theorem 10 is contained in Section Appendix D of the
Appendix.

5. Related work

5.1. Alchourrón and Bulygin

In [1, 2, 3, 4], Alchourrón and Bulygin present a logic of norm-propositions
that is built ‘on top’ of a logic of norms.10 A norm-proposition “there exists a
norm to the effect that A is permitted” is formalized as NPA, where the operator
N behaves like a quantifier over the norm PA. The latter formula (without N)
is read simply as “A is permitted”.

Alchourrón and Bulygin’s logic of norms is just SDL. Their logic of norm-
propositions NL extends SDL by adding to it the axiom schema (NK) and the
rule (NRM):

(NK) N(A ⊃ B) ⊃ (NA ⊃ NB)
(NRM) If ` A ⊃ B then ` NA ⊃ NB

In NL, OO-conflicts are formulas of the form NOA ∧ NO¬A. Similarly,
OP-conflicts are formulas of the form NOA ∧ NP¬A. As opposed to normative
conflicts, normative gaps cannot be expressed in the object language of NL.
Instead, Alchourrón and Bulygin define a normative gap as a situation in which,
for some CL-formula A we cannot derive NPA nor NO¬A, i.e. 6`NL NPA ∨

10Alchourrón and Bulygin’s logic of norm-propositions is inspired by Rescher’s assertion
logic from [35].
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NO¬A. Normative conflicts and gaps are treated consistently in NL. Where A
and B are well-formed NL-formulas:11

NOA ∧ NO¬A 6`NL B (19)

NOA ∧ NP¬A 6`NL B (20)

6`NL NPA ∨ NO¬A (21)

However, the following variants of deontic explosion are valid in NL:

NOA ∧ NO¬A `NL NOB (22)

NOA ∧ NP¬A `NL NOB (23)

With Alchourrón, Bulygin, and von Wright, we agree that “experience seems to
testify that mutually contradictory norms may co-exist within one and the same
legal order – and also that there are a good many “gaps” in any such order”
[46, p. 32]. But if conflicting normative propositions indeed often coexist within
a normative order, then deontic explosion should be avoided by any logic of
normative propositions. No judge will agree that a normative order containing
one or more conflicts contains norms to the effect that anything whatsoever is
obligatory. Hence (22) and (23) cause serious problems for NL.

(22) and (23) follow by applications of (NRM) and (NK) to the SDL-
theorems ` OA ⊃ (O∼A ⊃ OB) and ` OA ⊃ (P∼A ⊃ OB) respectively. This
led von Wright to questioning the presupposition of SDL by NL [46, footnote
2].

As opposed to NL, LNPx is not built ‘on top’ of the CL-based logic SDL.
Although LNP contains full CL, its ‘deontic’ formulas make use of the much
weaker logic CLoNs inside the scope of the O- and P-operator. This way,
LNPx avoids deontic explosion.

Interestingly, Alchourrón and Bulygin point out that under the assumptions
of consistency and completeness, the logic of norm-propositions is ‘isomorphic’
to SDL: if we dismiss the possibility of normative conflicts and normative gaps,
the differences between both logics disappear [1, 4]. In Section 4.3 we proved this
isomorphism for LNPx by showing that for normal (consistent and complete)
premise sets, LNPx is just as strong as SDL.

5.2. Input/output logic

In input/output logic (I/O logic), norms are represented as ordered pairs
of formulas (a, x), where each coordinate of a pair is a CL-formula.12 The

11Alchourrón and Bulygin allow for iterated/nested deontic and normative operators. Noth-
ing in principle prevents the occurrence of such nestings in LNPx. This requires some mod-
ifications of the language W and of the sets Ω1 and Ω2 such that e.g. PP(p ∧ ∼p) is also
considered an abnormality.

12The framework of I/O logic was initially developed for dealing with conditional norms.
We do not discuss its merits as a conditional logic here. Instead, we focus on issues related
to conflict- and gap-tolerance. For a discussion of the representation of conditional norms in
I/O logic, see [48].
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body of such a pair constitutes an input consisting of some condition or factual
situation. The head constitutes an output representing what the norm tells us
to be desirable/obligatory/permitted in that situation. A normative order or
system is a set G of input/output pairs. G is seen as a ‘transformation device’
in which CL functions as its ‘secretarial assistant’ [31, p. 2].

In [28], Makinson and van der Torre define various operations of the form
out(G,A) for making up the output A of G. In [29], the authors add con-
straints to these systems for dealing with contrary-to-duty scenarios and con-
flicting norms. In [30], the framework is extended for dealing with permissions.
Constrained I/O logics make use of maximally consistent subsets. In doing so,
they avoid explosion when dealing with conflicting conditional obligations, even
if e.g. the norms (a, x) and (a,¬x) tell us that both x and ¬x are obligatory
under the same circumstances.

The treatment of obligation-permission conflicts by constrained I/O logics is
less straightforward. In [39], Stolpe noted that the constrained systems deonti-
cally explode when facing a conflict between an obligation (a, x) and a positive
permission (a,¬x).13 Stolpe’s solution to this problem is to treat positive per-
missions as derogations: “a positive permission suspends, annuls or obstructs
a covering prohibition, thereby generating a corresponding set of liberties” [39,
p. 99].

Stolpe’s solution creates an asymmetry between obligations and permissions.
In obligation-obligation conflicts, both norms may still be of equal importance.
In obligation-permission conflicts however, the permission always overrides the
obligations it is in conflict with. Although certainly of interest in legal contexts,
where the concept of derogation is a very important one, we doubt that all
obligation-permission conflicts can be dealt with in this way.

In the literature on I/O logic, normative gaps are left unmentioned. However,
it seems possible to model gaps in this framework. For instance, we could say
that there is a normative gap relating to proposition x in circumstances a if
neither the obligations to do x or ¬x, nor the positive permissions to do x
or ¬x are in the output of a given set of norms. One drawback seems to be
that, whichever I/O operation we pick, both the obligation to do x ∨ ¬x and
the positive permission to do x ∨ ¬x will always be in the output set. This is
due to the closure of the output set under classical logic. Furthermore, as with
Alchourrón and Bulygin’s approach, normative gaps cannot be modeled at the
object level in I/O logic.

Another difference between I/O logic and LNPx is that for I/O operations
the input is restricted to simple norm-bases, i.e. sets of input-output pairs. More
complex formulas such as disjunctions between norms or negated norms cannot
be fed into the system. LNPx is more flexible in this sense, since it can easily
deal with premise sets containing formulas such as ¬Op, Oq ∨ Pr, etc.

13Translated to the I/O setting, deontic explosion ensues from a given input if – under
certain circumstances invoked by the input – everything becomes obligatory in the output.
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5.3. SDL-weakened modal logics

The logics LNP and LNPx are SDL-weakened conflict-tolerant deontic
logics. In the literature on conflicting norms in deontic logic, many different
weakenings of SDL have been proposed for dealing with conflicting norms.

The most popular approach for tolerating normative conflicts is to weaken
SDL by invalidating the aggregation principle (O-AND), e.g. [15, 36, 49, 16].
Non-monotonic systems that validate only certain applications of (O-AND) were
presented in [25, 23, 19, 32, 33].14

An alternative approach for weakening SDL suggested by Goble in [17, 18]
restricts the modal inheritance principle (RM):

(RM) If ` A ⊃ B then ` OA ⊃ OB

The result is a family of monotonic SDL-weakened systems capable of con-
sistently accommodating OO-conflicts. Non-monotonic adaptive extensions of
this logic were presented in [40, 42].

A third way of weakening SDL consists in giving up the Ex Contradictione
Quodlibet schema:

(ECQ) (A ∧ ¬A) ⊃ B

The result is a paraconsistent deontic logic. This approach was taken up in
[14, 34]. A non-monotonic adaptive paraconsistent deontic logic is presented in
[11, 10]. The systems defined in this paper are ‘paraconsistent’ in the sense that
they restrict (ECQ) for the negation connective “∼”.

None of the SDL-weakened systems mentioned in this section were designed
for reasoning in the presence of normative gaps. Consequently, these logics do
not provide a satisfactory treatment of normative gaps. Moreover, in systems
in which a permission operator is characterized, the latter is always treated as
the dual of the obligation-operator, i.e. PA ≡ ¬O¬A is valid.

5.4. SDL-strengthened modal logics

In [26], Kooi and Tamminga deal with conflicting norms by enriching SDL
so as to be capable of distinguishing between various sources and interest groups
in view of which norms arise. Moreover, following [24] they equip their system
with modal stit-operators for dealing with the difficult notion of (moral) agency.
Similarly, we could try to deal with conflicting norms by imposing a preference
ordering on our obligations and permissions, e.g. [21].

Such extensions are very successful in increasing the expressive power of
SDL, but they are unable to consistently allow for all normative conflicts.
Remember from Section 1.1 that conflicts may arise between norms promulgated
at the same time, by the same authority. It is not difficult to see how we could

14Although the (constrained) I/O logics from Section 5.2 are presented in a non-modal
framework, these too are non-monotonic non-aggregative systems in the sense that for two
obligations (a, x) and (a, y) fed to the logic, the output does not always contain x ∧ y, e.g. if
x and y are logically incompatible.
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extend this type of reasoning to norms of the same hierarchical foot, addressed at
the same group of people etc. so that in the end we need a logic that invalidates
at least some SDL-theorems if we want to deal with all instances of normative
conflicts.

A weakness of the systems devised in this paper is that they are not very
expressive. Relativizing the deontic operators to individual/group operators is
relatively straightforward (this can be done by defining a set of operators OI and
PI where I is an index set representing some (group of) agent(s)), but it is less
clear how to extend LNPx in a way that it satisfactorily treats e.g. conditional
norms or the notion of agency.

Moreover, the SDL-strengthened logics discussed here point to a trade-off
between complexity and degrees of conflict-tolerance in dealing with conflicts in
deontic logic. On the one hand, many normative conflicts can be dealt with in
a monotonic way by making explicit the different sources they arise from or the
different levels of priority attributed to them. On the other hand, if we want
our logic to be fully conflict-tolerant we need to weaken SDL and allow only for
the defeasible validity of some of its inferences. The latter option is technically
more involving and computationally more complex.15

6. Conclusion and outlook

We presented two non-monotonic logics for reasoning with norm-propositions
in the presence of normative conflicts and normative gaps. The logics LNPr

and LNPm interpret a given premise set ‘as consistently and as completely as
possible’. LNPr uses a slightly more cautious strategy than LNPm.

LNPr and LNPm are equipped with a well-defined semantics and proof
theory. Due to their characterization within the standard framework for adap-
tive logics, soundness and completeness properties are guaranteed, as are many
of their meta-theoretical properties.

As opposed to other systems devised for dealing with norm-propositions,
the logics defined in this paper make use of a formal language in which all
necessary distinctions can be made already at the object level. This is realized
by making use of a classical negation connective outside, and a paraconsistent
and paracomplete negation connective inside the scope of the operators O and
P.

Two possible drawbacks of the non-classical SDL-weakened approach taken
up here are that (i) due to their non-monotonicity the resulting logics are highly
complex from the computational point of view; and (ii) the systems defined in
this paper are not very expressive. In response to (i), we conjecture that in order
to model actual human reasoning, a complex logic is what we need (see e.g. [9]).
In response to (ii), we point to some existing work on more expressive adaptive
deontic logics [10, 41, 40] and hope to provide more results in the future.

15For some results and a discussion on the computational complexity of adaptive logics, see
[9, 43].
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APPENDIX

Appendix A. CLoNs and the positive fragment of CL

Syntactically, the positive fragment of CL is defined by Modus Ponens (MP) and
the following axiom schemata:

(A⊃1) A ⊃ (B ⊃ A)
(A⊃2) (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))
(A⊃3) ((A ⊃ B) ⊃ A) ⊃ A
(A∧1) (A ∧B) ⊃ A
(A∧2) (A ∧B) ⊃ B
(A∧3) A ⊃ (B ⊃ (A ∧B))
(A∨1) A ⊃ (A ∨B)
(A∨2) B ⊃ (A ∨B)
(A∨3) (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨B) ⊃ C))
(A≡1) (A ≡ B) ⊃ (A ⊃ B)
(A≡2) (A ≡ B) ⊃ (B ⊃ A)
(A≡3) (A ⊃ B) ⊃ ((B ⊃ A) ⊃ (A ≡ B))

In order to obtain full CL, all one has to do is to add the axiom schemata (A¬1)
and (A¬2) below to its positive fragment.

(A¬1) (A ⊃ ¬A) ⊃ ¬A
(A¬2) A ⊃ (¬A ⊃ B)

CLoNs is defined by adding to the positive fragment of CL the axiom schemata
(A∼∼)-(A∼≡) from Section 2.3. CLoNs-derivability for a formula A ∈ W∼ from a
set of formulas Γ ⊆ W∼ is denoted by Γ `CLoNs A. If A ∈ W∼ is CLoNs-derivable
from the empty set, then `CLoNs A.

Semantically, CLoNs-models are associated with an assignment function v :W l →
{0, 1}. The valuation function vM for the CLoNs-model M is defined by adjusting
clauses (Cl) and (C∼∼)-(C≡) so that references to accessible worlds are dropped, e.g.

(Cl) where A ∈ W l, vM (A) = 1 iff v(A) = 1
(C∼∼) vM (∼∼A) = 1 iff vM (A) = 1

and so on. A CLoNs-model M verifies A (M 
 A) iff vM (A) = 1. Where Γ ⊆ W∼, M
is a CLoNs-model of Γ iff M is a CLoNs-model and M 
 A for all A ∈ Γ. �CLoNs A
iff all CLoNs-models verify A, and Γ �CLoNs A iff all CLoNs-models of Γ verify A.

Appendix B. Some Facts about LNP and CLoNs

The following theorems will come in handy for the proof of Theorem 2. Let in the
remainder L ∈ {CLoNs,LNP}:

Theorem 11. L is reflexive, transitive and monotonic.16

16Where CnL(Γ) denotes the consequence set of some premise set Γ for L, L is reflexive
iff, for all premise sets Γ, Γ ⊆ CnL(Γ); it is transitive iff, for all sets of wffs Γ and Γ′, if
Γ′ ⊆ CnL(Γ) then CnL(Γ ∪ Γ′) ⊆ CnL(Γ); and it is monotonic iff, for all sets of wffs Γ and
Γ′, CnL(Γ) ⊆ CnL(Γ ∪ Γ′).
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Theorem 12. L is compact (if Γ `L A then Γ′ `L A for some finite Γ′ ⊆ Γ).

Theorem 13. If Γ `L B and A ∈ Γ, then Γ−{A} `L A ⊃ B (Generalized Deduction
Theorem for L).

The proofs of Theorems 11 – 13 are straightforward and safely left to the reader.

Fact 1. (i) OA,OB `LNP O(A ∧B)
(ii) OA,PB `LNP P(A ∧B)
(iii) `LNP (OA ∧ OB) ⊃ O(A ∧B)
(iv) `LNP (OA ∧ PB) ⊃ P(A ∧B)
(v) `LNP P(A ⊃ A)
(vi) If `CLoNs A

′ ⊃ A then A ⊃ B `CLoNs A
′ ⊃ B.

(vii) If `CLoNs B ⊃ B′ then A ⊃ B `CLoNs A ⊃ B′.
(viii) `CLoNs (A ∨ (A ⊃ B)) ≡ (((A ∨ (A ⊃ B)) ⊃ B) ⊃ B)
(ix) `DP (A⊃(A⊃B))⊃(A⊃B)
(x) `CLoNs A ∨ (A ⊃ B).

Proof. Ad(i). Suppose OA and OB. By (A∧3), `CLoNs A ⊃ (B ⊃ (A ∧ B)). By
(NEC∼), it follows that `LNP O(A ⊃ (B ⊃ (A ∧ B))). By (K), `LNP OA ⊃ O(B ⊃
(A ∧B)). By (MP), O(B ⊃ (A ∧B)). By (K), OB ⊃ O(A ∧B). By (MP), O(A ∧B).

Ad(ii). Suppose OA and PB. By (A∧3), `CLoNs A ⊃ (B ⊃ (A ∧ B)). By
(NEC∼), `LNP O(A ⊃ (B ⊃ (A ∧ B))). By (K), `LNP OA ⊃ O(B ⊃ (A ∧ B)). By
(MP), O(B ⊃ (A ∧B)). By (KP), PB ⊃ P(A ∧B). By (MP), P(A ∧B).

Ad(iii)-(iv). Immediate in view of (i),(ii), and Theorem 13.
Ad(v). Since A ⊃ A is a theorem of the positive fragment of CL, it is also a

CLoNs-theorem. By (NEC∼), `LNP O(A ⊃ A). By (D), `LNP P(A ⊃ A).
Ad (vi): Suppose `CLoNs A

′⊃A. By (A⊃2), `CLoNs (A′⊃(A⊃B))⊃
((A′⊃A)⊃(A′⊃B)). By (A⊃1) and (MP), A⊃B `DP A′⊃(A⊃B). The rest follows
by multiple applications of (MP).

Ad (vii): The proof is similar and left to the reader.
Ad (viii): Left-to-right : By (MP), (A ∨ (A ⊃ B)) ⊃ B,A ∨ (A ⊃ B) `CLoNs B.

The rest follows by Theorem 13. Right-to-left : By (A⊃1), (†) `CLoNs B ⊃ (A ⊃ B).
By (A∨2), (‡) `CLoNs (A ⊃ B) ⊃ (A ∨ (A ⊃ B)). Altogether, by (†), (‡), (vii) and
(MP), `CLoNs B ⊃ (A ∨ (A ⊃ B)). Hence, by (vii), `CLoNs ((A ∨ (A ⊃ B) ⊃ B) ⊃
B) ⊃ ((A ∨ (A ⊃ B) ⊃ B) ⊃ (A ∨ (A ⊃ B))). By (A⊃3), `CLoNs ((A ∨ (A ⊃ B) ⊃
B) ⊃ (A ∨ (A ⊃ B))) ⊃ (A ∨ (A ⊃ B)). Hence, again by (vii), ((A ∨ (A ⊃ B) ⊃ B) ⊃
B) ⊃ (A ∨ (A ⊃ B)).

Ad (ix): By (MP),A,A⊃(A⊃B) `CLoNs A⊃B. By (MP),A,A⊃(A⊃B) `CLoNs

B. By Theorem 13, A⊃(A⊃B) `CLoNs A⊃B, `CLoNs (A⊃(A⊃B))⊃(A⊃B).
Ad (x): By (A∨1), `CLoNs A ⊃ (A∨ (A ⊃ B)). By (vi), `CLoNs (A∨ (A ⊃ B)) ⊃

B `CLoNs A ⊃ B. By Theorem 13, `CLoNs ((A ∨ (A ⊃ B)) ⊃ B) ⊃ (A ⊃ B). By
(A∨2), `CLoNs (A ⊃ B) ⊃ (A∨ (A ⊃ B)). Hence, by (vii), `CLoNs ((A∨ (A ⊃ B)) ⊃
B) ⊃ (A∨ (A ⊃ B)). By (viii), `CLoNs (A∨ (A ⊃ B)) ≡ (((A∨ (A ⊃ B)) ⊃ B) ⊃ B).
Thus, by (vii), `CLoNs ((A ∨ (A ⊃ B)) ⊃ B) ⊃ (((A ∨ (A ⊃ B)) ⊃ B) ⊃ B). By
(vix) and (MP), `CLoNs ((A ∨ (A ⊃ B)) ⊃ B) ⊃ B. By (viii), (A≡2), and (MP),
`DP A ∨ (A ⊃ B).

Appendix C. Proofs of Theorems 1 and 2

In order to simplify the notation in the following meta-proofs we define R(w) =
{w′ | Rww′}.
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Proof of Theorem 1. Let in the following M = 〈W,w0, R, v0, v〉 be an LNP-model.
It is easy to check that all CL-axiom schemata hold at w0 in M due to (C0), (C¬),

and (C⊃)-(C≡). Similarly, (†) where w ∈W \ {w0}, all CLoNs-axiom schemata hold
at w in M due to (Cl) and (C∼∼)-(C≡).

Ad (NEC∼). Let |=CLoNs A. By (CO), (†) and the definition of R, vM (OA,w0) =
1.

Ad (K). Suppose M 
 O(A ⊃ B). By (CO) and (C⊃), for all w ∈ R(w0),
vM (A,w) = 0 or vM (B,w) = 1. SupposeM 
 OA, then for all w ∈ R(w0), vM (A,w) =
1. Hence, for all w ∈ R(w0), vM (B,w) = 1. Thus by (CO), M 
 OB. Hence, by
(C⊃), M 
 OA ⊃ OB. Altogether, by (C⊃), M 
 O(A ⊃ B) ⊃ (OA ⊃ OB).

Ad (D). Suppose M 
 OA. Hence for all w ∈ R(w0), vM (A,w) = 1 (by (CO)). By
the seriality of R, there is a w ∈ R(w0) for which vM (A,w) = 1. By (CP), M 
 PA.
By (C⊃), M 
 OA ⊃ PA.

Ad (KP). Suppose M 
 O(A ⊃ B). By (CO) and (C⊃), (‡) for all w ∈ R(w0),
vM (A,w) = 0 or vM (B,w) = 1. Suppose M 
 PA. Then, by (CP) there is a
w ∈ R(w0) for which vM (A,w) = 1. Hence, by (‡), there is a w ∈ R(w0) such that
vM (B,w) = 1. Thus, by (CP) M 
 PB and, by (C⊃), M 
 PA ⊃ PB. Altogether, by
(C⊃), M 
 O(A ⊃ B) ⊃ (PA ⊃ PB).

Ad (OD). Suppose M 
 O(A ∨ B). By (CO) and (C∨), (?) for all w ∈ R(w0),
vM (A,w) = 1 or vM (B,w) = 1. Suppose M 6
 PB. By (CP): for all w ∈ R(w0),
vM (B,w) = 0. By (?), for all w ∈ R(w0), vM (A,w) = 1. Thus, by (CO), M 
 OA.
Hence, by (C∨), M 
 OA ∨ PB. Altogether, by (C⊃), M 
 O(A ∨B) ⊃ (OA ∨ PB).

Ad (PD). This is similar to the previous case and is left to the reader.
We now know that all axiom schemata and rules of LNP are semantically valid.

That Γ `LNP A implies Γ |=LNP A can now be shown via the usual induction on the
length of the proof of A. This is safely left to the reader.

Let in the remainder Wc be the LNP-deductively closed and maximally LNP-non-
trivial subsets of W.17 Moreover, let W∼c be the CLoNs-deductively closed subsets Γ
of W∼ where Γ is prime, i.e. for each A ∨B ∈ Γ either A ∈ Γ or B ∈ Γ.

For the completeness proof of LNP, we make use of the following lemmas.18

Lemma 1. If ∆ ∈Wc, then ∆ is prime.

Proof. Suppose that, for a ∆ ∈Wc, A∨B ∈ ∆ and A 6∈ ∆ and B 6∈ ∆. Then, since ∆
is maximally LNP-non-trivial, ∆∪{A} is trivial and ∆∪{B} is trivial. Then, for any
C ∈ W, ∆∪{A} `LNP C and ∆∪{B} `LNP C. Then, by Theorem 13, ∆ `LNP A ⊃ C
and ∆ `LNP B ⊃ C. But then, by (MP) and (A∨3), ∆ `LNP (A ∨ B) ⊃ C. Since
A∨B ∈ ∆, since by (MP) ∆ `LNP C, and since ∆ is LNP-deductively closed, C ∈ ∆.
This contradicts the supposition. Hence if A ∨ B ∈ ∆, then A ∈ ∆ or B ∈ ∆. The
other direction is shown in a similar way by means of (A∨1) and (A∨2). This is left
to the reader.

Where Γ ∈ Wc and A ∈ W∼, we will use the following abbreviations: ΓO = {B |
OB ∈ Γ}, ΓA

O = ΓO ∪ {A}, ΓP = {B | PB /∈ Γ}, ∨ΓP = {
∨

I Bi | Bi ∈ ΓP } and
∨ΓB

P = {
∨

I Bi | Bi ∈ ΓP ∪ {B}}.

17Where WL is the set of wffs of L, Γ is L-trivial iff CnL(Γ) = WL, Γ is L-deductively
closed iff CnL(Γ) = Γ, and Γ is maximally L-non-trivial iff it is L-non-trivial and all supersets
Γ′ ⊃ Γ are L-trivial.

18The proof of Lemma 4 is inspired by the proof of Lemma 1.7.1 from [7].

26



Lemma 2. Let Γ ∈ Wc. (i) If C ∈ CnCLoNs(ΓO) then OC ∈ Γ. (ii) Where PA ∈ Γ,
if C ∈ CnCLoNs(Γ

A
O) then PC ∈ Γ.

Proof. Ad (i): Suppose that ΓO `CLoNs C. Then Γ′ `CLoNs C for some finite Γ′ ⊆ ΓO

(given the compactness of CLoNs). Hence, `CLoNs

(∧
Γ′
)
⊃ C by Theorem 13. Thus,

`LNP O
((∧

Γ′
)
⊃ C

)
by (NEC∼). By (K), `CLoNs O

∧
Γ′ ⊃ OC. By the deductive

closure of Γ, the fact that Γ′ ⊆ Γ and Fact 1 (i), O
∧

Γ′ ∈ Γ. By (MP), OC ∈ Γ.
Ad (ii): Suppose that ΓA

O `CLoNs C. Then Γ′ `CLoNs C for some finite Γ′ ⊆ ΓA
O

(given the compactness of CLoNs). Then Γ′ ∪ {A} `CLoNs C by the monotonicity of
CLoNs. Then `CLoNs

(∧
Γ′∧A

)
⊃ C by Theorem 13. Then `LNP O

((∧
Γ′∧A

)
⊃ C

)
by (NEC∼). Then `LNP P

(∧
Γ′ ∧ A

)
⊃ PC by (KP) and (MP). By the supposition,

{OB | B ∈ Γ′} ⊆ Γ and PA ∈ Γ. Given the deductive closure of Γ and `LNP (O(
∧

Γ′)∧
PA)⊃P(

∧
Γ′ ∧ A) (which follows from Fact 1 (ii)), it follows that P

(∧
Γ′ ∧ A

)
∈ Γ.

Hence PC ∈ Γ, since Γ is deductively closed and `LNP P
(∧

Γ′ ∧A
)
⊃ PC.

Lemma 3. Let Γ ∈ Wc. (i) Where PA ∈ Γ, ∨ΓP ∩ CnCLoNs(Γ
A
O) = ∅. (ii) Where

B /∈ ΓO, ∨ΓB
P ∩ CnCLoNs(ΓO) = ∅.

Proof. Ad (i): Let C =
∨

I Ci where Ci ∈ ΓP . Suppose C ∈ CnCLoNs(Γ
A
O) then by

Lemma 2 (ii), P
∨

I Ci ∈ Γ. Hence, by (PD),
∨

I PCi ∈ Γ. Hence, since Γ is prime,
there is an i ∈ I for which PCi ∈ Γ and hence Ci /∈ ΓP ,—a contradiction.

Ad (ii): Let C =
∨

I Ci where Ci ∈ ΓP ∪ {B}. Suppose C ∈ CnCLoNs(ΓO). By
Lemma 2 (i), O

∨
I Ci ∈ Γ. Assume that all Ci ∈ ΓP . By (D), P

∨
I Ci ∈ Γ. By (PD),∨

I PCi ∈ Γ. Hence, since Γ is prime, there is an i ∈ I such that PCi ∈ Γ and hence
Ci /∈ ΓP ,—a contradiction. Hence there is a non-empty J ⊆ I such that for each
j ∈ J , Cj = B. Hence, by (OD), OB ∨ P

∨
I\J Ci. Thus, by (PD), OB ∨

∨
I\J PCi.

Since B /∈ ΓO and since Γ is prime, there is an i ∈ I \ J such that PCi ∈ Γ and hence
Ci /∈ ΓP ,—a contradiction.

Lemma 4. Let Γ ∈Wc.

1. Where PA ∈ Γ, there is a ∆ ⊆ W∼ for which (i) ΓA
O ⊆ ∆, (ii) ∨ΓP ∩ ∆ = ∅,

and (iii) ∆ ∈W∼c .

2. Where B /∈ ΓO, there is a ∆ ⊆ W∼ for which (i) ΓO ⊆ ∆, (ii) ∨ΓB
P ∩∆ = ∅,

and (iii) ∆ ∈W∼c .

Proof. Let 〈ΓO,ΓP〉 ∈ {〈ΓA
O,
∨ ΓP 〉, 〈ΓO,

∨ ΓB
P 〉}. Where 〈B1, B2, . . .〉 is a list of the

members of W∼, define ∆0 = CnCLoNs(ΓO) and ∆ = ∆0 ∪∆1 ∪ . . . where

∆i+1 =

{
CnCLoNs(∆i ∪ {Bi+1}) if ΓP ∩ CnCLoNs(∆i ∪ {Bi+1}) = ∅
∆i otherwise

Ad (i): this holds by the construction and the reflexivity of CLoNs.
Ad (ii): By Lemma 3 ∆0 ∩ ΓP = ∅. The rest follows by the construction.
Ad (iii): We first show that ∆ is CLoNs-deductively closed. Suppose there is a

Bi /∈ ∆ such that ∆ `CLoNs Bi. Then, by the construction of ∆, there is a D ∈ ΓP

such that ∆∪{Bi} `CLoNs D and hence by Theorem 13, ∆ `CLoNs Bi ⊃ D. However,
by (MP) also ∆ `CLoNs D. By the compactness of CLoNs there is a ∆i for which
∆i `CLoNs D. By the construction ∆i = CnCLoNs(∆i) and whence D ∈ ∆i. Hence,
D ∈ ∆,—a contradiction with (ii).

We now show that ∆ is prime. Suppose A1 ∨ A2 ∈ ∆. Assume A1, A2 /∈ ∆.
Hence, by the construction of ∆, ∆ ∪ {A1} `CLoNs D1 and ∆ ∪ {A2} `CLoNs D2 for
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some D1, D2 ∈ ΓP. By Theorem 13, ∆ `CLoNs A1 ⊃ D1 and ∆ `CLoNs A2 ⊃ D2.
By some simple propositional manipulations, ∆ `CLoNs (A1 ∨ A2) ⊃ (D1 ∨D2). By
(MP), ∆ `CLoNs D1 ∨D2 and hence D1 ∨D2 ∈ ∆. However, by the definition of ΓP,
D1 ∨D2 ∈ ΓP,—a contradiction with (ii).

Definition 12. The binary relation R ⊆
(
Wc ×W∼c

)
is defined as follows: RΓ∆ iff

the following two conditions are met

(a) if OA ∈ Γ then A ∈ ∆, and

(b) if A ∈ ∆ then PA ∈ Γ.

In view of the definition of R, the following holds:

Lemma 5. Where Γ ∈Wc, PA ∈ Γ iff there is a ∆ ∈W∼c such that RΓ∆ and A ∈ ∆.

Proof. Left-right : Suppose PA ∈ Γ. Then, by Lemma 4.1, there is a ∆ ⊆ W∼ such
that (i) ΓA

O ⊆ ∆, (ii) for all C ∈ ΓP , C 6∈ ∆, (iii) ∆ ∈ W∼c . We now show that RΓ∆.
Ad (a): if, for some D, OD ∈ Γ then D ∈ ΓA

O, hence D ∈ ∆ by (i). Ad (b): suppose
PE 6∈ Γ for some E ∈ W∼. Then E ∈ ΓP , hence E 6∈ ∆ by (ii).

Right-left : Follows directly by Definition 12.

Lemma 6. For every Γ ∈Wc, there is a ∆ ∈W∼c such that RΓ∆ (i.e. R is serial).

Proof. By Fact 1 (v), `LNP P(A ⊃ A). Hence, P(A ⊃ A) ∈ Γ for every Γ ∈ Wc. But
then, by Lemma 5, there is a ∆ ∈ W∼c such that RΓ∆ and A ⊃ A ∈ ∆. Hence R is
serial as required.

Lemma 7. Where Γ ∈Wc, OA ∈ Γ iff, for all ∆ ∈W∼c such that RΓ∆, A ∈ ∆.

Proof. Left-right : This is an immediate consequence of Definition 12.
Right-left : Suppose OA /∈ Γ. Hence, A /∈ ΓO. By Lemma 4.2, there is a ∆ ⊆ W∼

for which (i) ΓO ⊆ ∆, (ii) (ΓP ∪ {A}) ∩∆ = ∅, and (iii) ∆ ∈W∼c . We now show that
RΓ∆. Ad (a): if, for some D, OD ∈ Γ then D ∈ ΓO, hence D ∈ ∆ by (i). Ad (b):
suppose PE 6∈ Γ for some E ∈ W∼. Then E ∈ ΓP , hence E 6∈ ∆ by (ii).

Lemma 8. Where ∆ ∈ Wc, there is an LNP-model M such that M 
 A for all
A ∈ ∆ and M 6
 A for all A ∈ W \∆.

Proof. Let ∆ ∈Wc. We construct an LNP-model M = 〈{∆} ∪W∼c , w0,R, v0, v〉 such
that:

(i) w0 = ∆
(ii) For all A ∈ Wa, v0(A) = 1 iff A ∈ w0

(iii) For all A ∈ W l and all w ∈W∼c , v(A,w) = 1 iff A ∈ w
By Lemma 6, R is serial. We now show that:

(*) (a) for all A ∈ W, vM (A,w0) = 1 iff A ∈ w0,
(b) for all A ∈ W∼ and all w ∈W∼c , vM (A,w) = 1 iff A ∈ w.

The proof proceeds as usual by an induction on the complexity of A. Let w ∈ {w0} ∪
W∼c , and A ∈ Wa. If w = w0, then, by (ii), v0(A) = 1 iff A ∈ w0. By (C0), it follows
that vM (A,w) = 1 iff A ∈ w. If w 6= w0, then, by (iii), v(A,w) = 1 iff A ∈ w. By (Cl),
it follows that vM (A,w) = 1 iff A ∈ w. Hence, for all w ∈ {w0} ∪W∼c , vM (A,w) = 1
iff A ∈ w and (*) is valid for all A ∈ Wa.
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Depending on the logical form of A, we distinguish 8 cases (6 for the connectives
∼,¬,∨,∧,⊃,≡, and 2 for the modal operators O and P) and show for each of them
that vM (A,w) = 1 iff A ∈ w.

Case 1. Let w ∈W∼c . We show that vM (∼A,w) = 1 iff ∼A ∈ w. Either ∼A ∈ W l,
or A has one of the forms ∼B,B∨C,B∧C,B ⊃ C, or B ≡ C (note that, since w 6= w0,
A cannot have the form OB or PB).

If ∼A ∈ W l, then, by (Cl), vM (∼A,w) = 1 iff v(∼A,w) = 1. By (iii), it follows
that vM (∼A,w) = 1 iff ∼A ∈ w.

If A has the form ∼B, then, by (C∼∼), vM (∼∼B,w) = 1 iff vM (B,w) = 1. By
the induction hypothesis, vM (∼∼B,w) = 1 iff B ∈ w. By (A∼∼), vM (∼A,w) = 1 iff
∼A ∈ w.

If A has the form B ∨ C, then, by (C∼∨), vM (∼(B ∨ C), w) = 1 iff vM (∼B ∧
∼C,w) = 1 iff [by (C∧)] vM (∼B,w) = 1 and vM (∼C,w) = 1 iff [by the induction
hypothesis] ∼B ∈ w and ∼C ∈ w iff [by (A∧3)] ∼B ∧∼C ∈ w iff [by (A∼∨)] ∼A ∈ w.

The cases where A is of one of the forms B ∧C,B ⊃ C, or B ≡ C are similar and
left to the reader.

Case 2. Let w = w0. Suppose vM (¬A,w) = 1. By (C¬), vM (A,w) = 0. By the
induction hypothesis, A 6∈ w. Then, since w is maximally LNP-non-trivial, w∪{A} is
LNP-trivial and w∪{A} `LNP ¬A. By Theorem 13, it follows that w `LNP A ⊃ ¬A.
Then, since w is LNP-deductively closed, A ⊃ ¬A ∈ w and, by (A¬1) and (MP),
¬A ∈ w.

Suppose ¬A ∈ w. We show via reductio that A 6∈ w. Suppose thus that A ∈ w.
Then, by (A¬2), (MP), and since w is LNP-deductively closed, B ∈ w for any B ∈ W.
This contradicts the non-triviality of w, hence A 6∈ w. But then, by the induction
hypothesis vM (A,w) = 0 and, by (C¬), vM (¬A,w) = 1.

Case 3. Let w ∈ {w0} ∪ W∼c . Suppose vM (A ∨ B,w) = 1. Then, by (C∨),
vM (A,w) = 1 or vM (B,w) = 1. By the induction hypothesis, A ∈ w or B ∈ w. Hence,
by (A∨1), (A∨2), (MP), and the fact that w is LNP-(in case w = w0)/CLoNs-(in
case w ∈W∼c )-deductively closed, A ∨B ∈ w.

Suppose A ∨ B ∈ w. If w = w0, then, by the definition of W∼c , A ∈ w or B ∈ w.
If w 6= w0, then, by Lemma 1, A ∈ w or B ∈ w. By the induction hypothesis,
vM (A,w) = 1 or vM (B,w) = 1. Hence, by (C∨), vM (A ∨B,w) = 1.

Case 4. Let w ∈ {w0} ∪ W∼c . Suppose vM (A ⊃ B,w) = 1. Then by (C⊃),
vM (A,w) = 0 or vM (B,w) = 1. By the induction hypothesis, A /∈ w or B ∈ w. Let
now w ∈ W∼c . If A /∈ w, then, since `CLoNs A ∨ (A ⊃ B) by Fact 1 (x) and since
w is prime, also A ⊃ B ∈ w. If B ∈ w, then since by (A⊃1) `CLoNs B ⊃ (A ⊃ B)
and by (MP), also A ⊃ B ∈ w. The same argument applies to w = w0 since also
`LNP A ∨ (A ⊃ B), and (A⊃1) and (MP) are also valid in LNP.

Suppose A ⊃ B ∈ w. By (MP), if A ∈ w then B ∈ w. By the induction hypothesis,
if vM (A,w) = 1 then vM (B,w) = 1. Hence, by (C⊃), vM (A ⊃ B,w) = 1.

The proof for the other classical connectives (cases 4-6) is similar and left to the
reader. We proceed with the cases for O and P.

Case 7. Let w = w0. By Lemma 7, OA ∈ w0 iff A ∈ w for all w such that Rw0w.
Hence, by the induction hypothesis, OA ∈ w0 iff vM (A,w) = 1 for all w such that
Rw0w. But then, by (CO), OA ∈ w0 iff vM (OA,w0) = 1.

Case 8. Let w = w0. By Lemma 5, PA ∈ w0 iff A ∈ w for some w such that Rw0w.
Hence, by the induction hypothesis, PA ∈ w0 iff vM (A,w) = 1 for some w such that
Rw0w. But then, by (CP), PA ∈ w0 iff vM (PA,w0) = 1.

The rest follows by (i) and (*).
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Lemma 9. Let Γ ⊆ W and Γ 6`LNP A. There is a ∆ ⊆ W such that (i) Γ ⊆ ∆, (ii)
A /∈ ∆, and (iii) ∆ ∈Wc.

Proof. Where 〈B1, B2, . . .〉 is a list of the members of W, define ∆0 = CnLNP(Γ) and
∆ = ∆0 ∪∆1 ∪ . . . where

∆i+1 =

{
CnDP(∆i ∪ {Bi+1}) if A /∈ CnLNP(∆i ∪ {Bi+1})
∆i else

Ad (i): This holds by the construction of ∆ and the reflexivity of LNP.
Ad (ii): This holds by the construction and since A /∈ CnLNP(Γ).
Ad (iii): Assume that B /∈ ∆ and ∆ `LNP B. Hence, by the construction of ∆,

∆ ∪ {B} `LNP A and whence by Theorem 13, ∆ `LNP B ⊃ A. But then by (MP),
∆ `LNP A. Thus, by the compactness of LNP and since each ∆i = CnLNP(∆i),
there is a ∆i such that A ∈ ∆i,—a contradiction to (ii).

Suppose B /∈ ∆. Assume that ¬B /∈ ∆. By the construction of ∆ and the
monotonicity of LNP, ∆ ∪ {¬B} `LNP A and whence by Theorem 13, ∆ `LNP

¬B⊃A. Analogously, ∆ `LNP B⊃A. By (A∨3), ∆ `LNP (B ∨ ¬B)⊃A. Since
`CL B ∨ ¬B, also ∆ `LNP B ∨ ¬B. By (MP), ∆ `LNP A,—a contradiction to (ii).
Hence, ¬B ∈ ∆. Thus, ∆ ∪ {B} is CL-trivial and hence also LNP-trivial.

Proof of Theorem 2. Suppose Γ 6`LNP A. Then, by Lemma 9, there is a ∆ ⊇ Γ such
that A 6∈ ∆ and ∆ ∈ Wc. Then, by Lemma 8, there is an LNP-model M such that
M 
 B for all B ∈ Γ and M 6
 A. Hence Γ 6�LNP A.

Appendix D. Proof of Theorem 10

SDL is fully axiomatized by adding to CL the axiom schemata (K), (D), (PO),
and (NEC¬):

(PO) PA ≡ ¬O¬A
(NEC¬) If `CL A then ` OA

Lemma 10. If Γ `ULL A then Γ¬ `SDL π(A).

Proof. It easily checked that, under the transformation given in Section 4.3, all of (K),
(D), (KP), (OD), (PD), (U1), and (U2) are SDL-valid. Moreover, since CLoNs is a
proper fragment of CL, (NEC∼) too is valid in SDL (assuming again the transforma-
tion from Section 4.3).

Lemma 11. If Γ¬ `SDL π(A) then Γ `ULL A.

Proof. By the definition, ULL verifies (K) and (D). It remains to show that ULL
verifies (i) all instances of PA ≡ ¬O∼A and (ii) the rule “If `CL∼ A then `ULL OA”,
where CL∼ is classical propositional logic with the negation symbol ∼.

Ad (i). Left-Right. By (A∧3), PA ⊃ (O∼A ⊃ (PA ∧ O∼A)). By Fact 1 (iv),
(PA ∧O∼A) ⊃ P(A ∧∼A). Thus, by some propositional manipulations in CL, PA ⊃
(O∼A ⊃ P(A ∧ ∼A)), which is CL-equivalent to (†) PA ⊃ (¬O∼A ∨ P(A ∧ ∼A)).
Suppose now that PA. By (†), ¬O∼A∨P(A∧∼A). Moreover, by (U1), P(A∧∼A) ⊃
¬O∼A. Thus, by (MP) and some simple CL-manipulations, we obtain ¬O∼A.
Right-left. By CL, O(A ∨ ∼A) ∨ ¬O(A ∨ ∼A). By (OD), O(A ∨ ∼A) ⊃ (O∼A ∨ PA).
Thus, by some propositional manipulations in CL, (O∼A ∨ PA) ∨ ¬O(A ∨ ∼A). The
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latter formula is CL-equivalent to ¬O∼A ⊃ (PA ∨ ¬O(A ∨ ∼A)). Suppose now that
¬O∼A. By (MP), PA ∨ ¬O(A ∨ ∼A). By (U2), ¬O(A ∨ ∼A) ⊃ PA. Thus, by (MP)
and some simple CL-manipulations, PA.

Ad (ii). Note that A ∈ W∼ iff π(A) ∈ W¬. Thus, where
(A∼1): (A ⊃ ∼A) ⊃ ∼A,
(A∼2): A ⊃ (∼A ⊃ B),

it follows by the definitions of CLoNs and CL that `CLoNs∪{(A∼1),(A∼2)} A iff `CL

π(A). We show that (i) if `CLoNs A, then `ULL A, (ii) `ULL O((A ⊃ ∼A) ⊃ ∼A),
and (iii) `ULL O(A ⊃ (∼A ⊃ B)).
(i) In case A is a CLoNs-theorem, OA follows immediately in view of (NEC∼).
(ii) (A∨∼A) ⊃ ((A ⊃ ∼A) ⊃ ∼A) is an instance of the theorem (A∨B) ⊃ ((A ⊃ B) ⊃
B) of positive CL, thus it is a CLoNs-theorem. By (NEC∼), `ULL O((A ∨ ∼A) ⊃
((A ⊃ ∼A) ⊃ ∼A)). By (K), `ULL O(A ∨ ∼A) ⊃ O((A ⊃ ∼A) ⊃ ∼A). By CL, (†)
`ULL O((A ⊃ ∼A) ⊃ ∼A) ∨ ¬O(A ∨ ∼A). We know by (U2) that ¬O(A ∨ ∼A) ⊃
O((A ⊃ ∼A) ⊃ ∼A). Hence, by (†) and CL, `ULL O((A ⊃ ∼A) ⊃ ∼A).
(iii) (A ⊃ (∼A ⊃ B))∨(A∧∼A) is an instance of the theorem (A ⊃ (B ⊃ C))∨(A∧B)
of positive CL, thus it is a CLoNs-theorem. By (NEC∼), `ULL O((A ⊃ (∼A ⊃ B))∨
(A∧∼A)). By (OD), (‡) `ULL O(A ⊃ (∼A ⊃ B))∨P(A∧∼A). We know by (U1) that
P(A∧∼A) ⊃ O(A ⊃ (∼A ⊃ B)). Hence, by (‡) and CL, `ULL O(A ⊃ (∼A ⊃ B)).

Theorem 10 follows immediately by Lemmas 10 and 11.
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