
Two, Many, And Differently Many

Diderik Batens∗

Centre for Logic and Philosophy of Science
Ghent University, Belgium

Diderik.Batens@UGent.be

JY – November 2, 2014

Abstract

This paper is a modest contribution to a universal logic approach to
many-valued semantic systems. The main focus is on the relation between
such systems and two-valued ones. The matter is discussed for usual
many-valued semantic systems. These turn out to exist for more logics
than expected. A new type of many-valued semantics is devised and its
use illustrated. The discussion, which involves truth-functionality and the
syntactic rendering of truth-values, leads to philosophical conclusions.

Keywords Many-valued semantics, universal logic, paraconsistency.

1 Aim of this paper

The general aim of this paper concerns the relation between two-valued and
many-valued semantic characterizations of Tarski logics—reflexive, transitive
and monotonic functions that map sets of closed formulas (the premises) to sets
of closed formulas (the consequences). Suszko [38] has shown that logics (in
this sense of the term) have a two-valued semantics.1 This casts doubts on the
use of “many-valued” as an attribute of logics. Moreover, it suggests that, at
least for some logics, there must be an interesting relation between the values of
their two-valued semantics and those of their many-valued semantics. We shall
see in Section 3 that this relation is usually of a specific kind. In the present
article three-valued and four-valued logics will be introduced that are rather
unusual. For example, the relation between their values and the values from
the two-valued semantic characterization will be very different from the similar
relation for usual many-valued logics.

A two-valued semantic characterization of a (so-called) many-valued logic
connects the logical symbols to truth-preservation, as Suszko’s proof underlines.
We shall consider several relations that connect the values of the two-valued
characterization to values of a many-valued characterization. Varying the rela-
tion brings one from the same two-valued semantics to different many-valued
semantics and to different interpretations.

∗The author is indebted to Joke Meheus for comments on a former draft.
1Throughout this paper, “semantics of a logic L” should be read as “characteristic L-

semantics”.

1

JY.tex – November 7, 2014 2

A new such relation will be introduced in this paper. Its use will be illus-
trated in terms of a specific problem in adaptive logics, viz. the identification
of flip-flop logics—Section 6. Readers that have no specific insight in adaptive
logics should not worry; the flip-flop problem will be easy to understand. In
comparison to CL (Classical Logic), some Tarski logics allow for gluts or gaps—
see Section 2—with respect to certain logical symbols. Delineating the precise
points at which gluts or gaps originate offers important insights for solving the
flip-flop problem. As we shall see, the delineation also provides an revealing
interpretation of the non-extreme values.

Needless to say, the new type of many-valued logics are not meant to replace
the usual ones. Also, they are not superior in any sense of the term. They are
helpful, however, to reveal the presuppositions that lurk underneath widespread
views on many-valued logics, often confusing technical features with ontological
ones. Rather central presuppositions concern truth-functionality.

2 Preliminaries

A logic is defined over a language schema L of which F is the set of formulas
and W the set of closed formulas. I shall need some names for sets of schematic
letters for non-logical symbols: S (sentential letters), Pr (predicates of each
rank r ∈ {1, 2, . . .}), C (individual constants), and V (individual variables).

To handle quantifiers in the semantics, extend L to the pseudo-language
schema LO. This is just like L except that the role of C is played by C ∪ O,
in which O is a set of pseudo-constants. Strictly speaking, we introduce a
pseudo-language schema O for each model M , requiring that O has at least
the cardinality of the domain of M .2 FO and WO are the sets of formulas,
respectively closed formulas, of LO.

A model is a tuple. One of the elements of the tuple is the domain D, which
is a non-empty set. Another element is the assignment v, which relates certain
linguistic entities to the other elements of the tuple. Next, for each model M ,
the meaning of the logical symbols of L is fixed by vM , the valuation function
determined by M .

In the usual CL-semantics, v relates the non-logical symbols to the model.
More specifically v:S → {0, 1}. In order to turn indeterministic two-valued
semantic systems into deterministic ones—see below—I shall generalize this to
v:WO → {0, 1}.3

In the case of the CL-semantics, the pseudo-language schemas LO extend
the standard predicative language schema Ls (which I do not describe here).
A CL-model M = ⟨D, v⟩, in which D is a non-empty set and v an assignment
function, is an interpretation of WO. The assignment function v is defined
by:4

C1 v:WO → {0, 1}
2The pseudo-language schema LO is not a language schema whenever its set of symbols

is non-denumerable. The resulting style of semantics—examples follow in the text—offer a
means to quantify over non-denumerable sets.

3This move is independent of the reference to the pseudo-language schema LO. To combine
the move with a different semantic style, restrict it to v:W → {0, 1}.

4The restriction in C2 ensures that ⟨D, v⟩ is only a CL-model if every element of D is
named by a constant or pseudo-constant. In C3, ℘(Dr) is the power set of the r-th Cartesian
product of D.

JY.tex – November 7, 2014 3

C2 v: C ∪ O → D (where D = {v(α) | α ∈ C ∪ O})
C3 v:Pr → ℘(Dr)

The valuation function determined by M , vM :WO → {0, 1}, is defined as fol-
lows:

CS where A ∈ S, vM (A) = v(A)
CPr vM (πrα1 . . . αr) = 1 iff ⟨v(α1), . . . , v(αr)⟩ ∈ v(πr)
C= vM (α = β) = 1 iff v(α) = v(β)
C¬ vM (¬A) = 1 iff vM (A) = 0
C⊃ vM (A ⊃ B) = 1 iff vM (A) = 0 or vM (B) = 1
C∧ vM (A ∧B) = 1 iff vM (A) = 1 and vM (B) = 1
C∨ vM (A ∨B) = 1 iff vM (A) = 1 or vM (B) = 1
C≡ vM (A ≡ B) = 1 iff vM (A) = vM (B)
C∀ vM (∀αA(α)) = 1 iff {vM (A(β)) | β ∈ C ∪ O} = {1}
C∃ vM (∃αA(α)) = 1 iff 1 ∈ {vM (A(β)) | β ∈ C ∪ O}

M
 A (CL-model M verifies A) iff vM (A) = 1. M is a model of Γ iff
M
 A for all A ∈ Γ. Γ �CL A iff all models M of Γ verify A. �CL A (A is
valid) iff all models verify A.

The metalanguage is classical and will be so in the rest of this article. All
identities that occur in the semantics outside the expression vM (α = β) are
metalinguistic identities and hence are classical.

I still need to illustrate the use of clause C1. The logic CLuN is like CL
except in that it allows for gluts with respect to N egation—in some CLuN-
models M there are A such that vM (A) = vM (¬A) = 1.5 A semantics of
CLuN is obtained from the CL-semantics by replacing the equivalence C¬ by
an implication

C¬iu if vM (A) = 0, then vM (¬A) = 1

The resulting logic is paraconsistent (for example p,¬p 2CLuN q),6 invalidates
Replacement of Equivalents (for example �CLuN p ≡ (p∨p) and �CLuN ¬p ⊃ ¬p
but 2CLuN ¬p ⊃ ¬(p ∨ p)), invalidates Replacement of Identicals (for example
a = b,¬Pa 2CLuN ¬Pb), and invalidates many other rules validated by CL (for
example Disjunctive Syllogism, Contraposition, Modus Tollens, . . .).

This CLuN-semantics is indeterministic. Indeed, consider a CLuN-model
M = ⟨D, v⟩ in which v(p) = 1 and hence vM (p) = 1. In view of C¬iu, both
vM (¬p) = 0 and vM (¬p) = 1 are possible. To be more precise, the CLuN-
semantics is bound to contain a copy of this M in which vM (¬p) = 0 and another
copy in which vM (¬p) = 1. Both copies of M need to belong to the CLuN-
semantics because a semantics is required to exhaust the logical possibilities—in
this case CLuN-possibilities.

That a semantics is indeterministic is somewhat annoying. Models are sup-
posed to exhaust the logical possibilities. That variants have to be taken into
account—actually a non-denumerable set of variants for each model—introduces

5The indeterministic propositional semantics was first formulated in [8]; the deterministic
predicative semantics in [10].

6Technically speaking, a logic L is paraconsistent iff A,¬A ⊢L B does not hold generally.
Interesting discussions of the underlying philosophical questions are available, for example by
Béziau [18, 19].

JY.tex – November 7, 2014 4

a complication that is not matched by any advantage.7 Fortunately it is possible
to devise a deterministic semantics for CLuN [10] and the result was later gen-
eralized to other gluts and gaps—the best survey paper on the matter [15] is only
electronically published at this moment. In order to obtain the deterministic
CLuN-semantics one replaces C¬iu by

C¬u vM (¬A) = 1 iff vM (A) = 0 or v(¬A) = 1 .

The first disjunct guarantees that Excluded Middle holds, the second disjunct
introduces gluts for some A.

This approach is easily generalized, first to gaps with respect to negation
and to both gluts and gaps with respect to negation, and next to gluts and gaps
with respect to other logical symbols—details are in another paper [15]. Just
to give you the flavour, the logic CLaN allows for gaps (not gluts) with respect
to negation. Its indeterministic semantics requires

C¬ia if vM (A) = 1, then vM (¬A) = 0

and its deterministic semantics is delivered by

C¬a vM (¬A) = 1 iff vM (A) = 0 and v(¬A) = 1 .

CLoN allows for both gaps and gluts with respect to negation. Its indeter-
ministic semantics is obtained by dropping the negation clause altogether. Its
deterministic semantics is obtained by

C¬o vM (¬A) = v(¬A) .

Restoring Replacement of Identicals in CLuN is easy. Given a CLuN-
model M , define, for each A ∈ WO, an equivalence class ⟦A⟧: (i) A ∈ ⟦A⟧ and
(ii) if α, β ∈ C ∪ O, A is B(α), and v(β) = v(α), then B(β) ∈ ⟦A⟧. Note that
⟦A⟧ = {A} if A ∈ S. Next, replace C¬u by

C¬uR vM (¬A) = 1 iff vM (A) = 0 or v(¬B) = 1 for a B ∈ ⟦A⟧ .

and analogously for C¬a and C¬o. Note that the semantics characterizes the
same logic if “for a B ∈ ⟦A⟧” is replaced by “for all B ∈ ⟦A⟧”—for every model
of the one semantics there is a model of the other semantics that verifies exactly
the same members of W—recall that verification depends on vM and not on v.

The present approach to gluts and gaps leads to rather basic logics. Thus
the propositional fragment of CLuN was shown [32] to be the intersection
of all propositional logics that allow for negation gluts but do not allow for
any other gluts nor for any gaps. Obviously some logics extend CLuN and
are nevertheless paraconsistent, and similarly for other gluts and for gaps. A
very popular paraconsistent extension of CLuN is a logic that I prefer to call
CLuNs because its propositional version was first proposed by Kurt Schütte
[36].8 The idea is that de Morgan properties and all similar negation-reducing
properties are restored. I consider at once a version that validates Replacement

7Still, indeterministic semantic systems, have been around at least since the 1970s and led
to interesting studies, for example in work by Arnon Avron and associates [5, 6, 7].

8CLuNs is apparently the most popular paraconsistent logic. It is known under a mu-
tiplicity of names. Further useful references to studies of CLuNs and of its fragments are
[2, 3, 4, 8, 16, 22, 24, 25, 26, 27, 28, 29, 33, 34, 37]. Proofs of some results are in [16, 13].

JY.tex – November 7, 2014 5

of Identicals. Let Fa
O be the set of atomic (or primitive) members of FO—

those not containing any logical symbols other than identity—and Wa
O the set

of atomic members of WO. The deterministic CLuNs-semantics is obtained by
replacing C¬ in the CL-semantics by the following clauses:

C¬us where A ∈ Wa
O, vM (¬A) = 1 iff vM (A) = 0 or v(¬B) = 1 for a B ∈ ⟦A⟧

C¬¬ vM (¬¬A) = vM (A)
C¬⊃ vM (¬(A ⊃ B)) = vM (A ∧ ¬B)
C¬∧ vM (¬(A ∧B)) = vM (¬A ∨ ¬B)
C¬∨ vM (¬(A ∨B)) = vM (¬A ∧ ¬B)
C¬≡ vM (¬(A ≡ B)) = vM ((A ∨B) ∧ (¬A ∨ ¬B))
C¬∀ vM (¬∀αA(α)) = vM (∃α¬A(α))
C¬∃ vM (¬∃αA(α)) = vM (∀α¬A(α))

The CLuNs-semantics enables me to illustrate a method to restore Re-
placement of Identicals that does not refer to equivalence sets. Let v assign to
predicates a couple of extensions rather than a single one: v:Pr → ⟨Σ1,Σ2⟩
with Σ1 ∪ Σ2 = Dr. Identity is handled as a binary predicate with the special
characteristic that Σ1 = {⟨o, o⟩ | o ∈ D}. For all predicates, including iden-
tity, one defines v+(πr) = Σ1 and v−(πr) = Σ2. Finally, one replaces v(πr) by
v+(πr) in CPr, and one replaces C¬us by two clauses:

- where A ∈ S, vM (¬A) = 1 iff vM (A) = 0 or v(¬A) = 1
- vM (¬πrα1 . . . αr) = 1 iff ⟨v(α1), . . . , v(αr)⟩ ∈ v−(πr)

This may be called the ±-semantics of CLuNs.9

The words “glut” and “gap” were used rather intuitively until now. Actually,
these words were used with several meanings in the literature. For example,
Georg Henrik von Wright [40] says that there is an overlap (rather than glut)
when a formula is true together with its negation and that there is a gap if a
formula is false together with its negation. In the same place, von Wright calls
a formula false iff its negation is true. So he also says that there is a glut (or
overlap) if a formula is both true and false, and a gap if it is neither.

I shall use the terms differently. I already mentioned that the metalanguage
of this paper is fully classical. Unlike von Wright, I shall consider “true” and
“false” as exhaustive and exclusive within a classical metalanguage. Finally,
“glut” and “gap” will be used in a way that is directly contingent on the clauses
of the CL-semantics. Any formula in WO −Wa

O has a specific logical form F,
determined by its central logical term ∗. The CL-semantics contains a specific
clause for F. This clause may be seen as the conjunction of two implications,
one specifying when vM (F) = 1 and one specifying when vM (F) = 0. Consider
a model M of a logic L. If in M the condition is fulfilled for vM (A) = 1 in
CL-models but vM (A) = 0, then this situation is said to cause a ∗-gap. If
in M the condition is fulfilled for vM (A) = 0 in CL-models but vM (A) = 1,
then this is said to cause a ∗-glut. Thus that vM (p ∨ q) = vM (¬r) = 1 and
vM ((p∨q)∧¬r) = 0 causes a ∧-gap. Similarly, that 1 /∈ {vM (A(β)) | β ∈ C ∪ O}
and vM (∃αA(α)) = 1 causes a ∃-glut.

Let us make this more precise. Define, for each A ∈ WO, the set of direct
subformulas of A, dsub(A), as follows: (i) dsub(¬A) = {A}, (ii) where ∗ ∈

9Another version of the approach, requiring only a single clause, is illustrated in a paper
under review [39].

JY.tex – November 7, 2014 6

{∨,∧,⊃,≡}, dsub(A ∗ B) = {A,B}, and (iii) where α ∈ V and ∗ ∈ {∀, ∃},
dsub(∗αA(α)) = {A(β) | β ∈ C ∪ O}. If A /∈ Wa

O, then, in the CL-semantics,
vM (A) is a function of the valuation values of the members of dsub(A). In a
semantics of a different logic, vM (A) will be said to be a glut or a gap if it departs
from that function. Consider a CLuN-model in which vM (p) = 1, vM (¬p) = 1
and vM (¬¬p) = 0. The former two cause a ¬-glut. The combination of the
first and third do not cause a gap, notwithstanding the fact that, within the
CL-semantics, vM (¬¬A) = 1 whenever vM (A) = 1.

This seems the best point to mention a few simple technicalities. The set
of subformulas of A ∈ WO, sub(A) is the smallest set such that (i) dsub(A) ⊆
sub(A) and (ii) if B ∈ sub(A), then sub(B) ⊆ sub(A). Note that A /∈ sub(A).

We shall need the set of first subformulas of A ∈ WO, fsub(A). This is
the smallest set such that (i) A ∈ fsub(¬A), (ii) where ∗ ∈ {∨,∧,⊃,≡}, A ∈
fsub(A ∗B), (iii) where α ∈ V and ∗ ∈ {∀, ∃}, A(a) ∈ fsub(∗αA(α)), and (iv) if
A ∈ fsub(B), then fsub(A) ⊆ fsub(B).10 The crucial distinction with the set
sub(A) is in (ii) and (iii). We actually need fsub(A) to define the set of first
superformulas of A, viz. fsup(A) = {B ∈ WO | A ∈ fsub(B)}.

Another concept we shall need is that of a (finite) pseudo-partition. {Σ1, . . . ,
Σn} is a pseudo-partition of Σ iff (i) Σi∩Σj = ∅ for all different i, j ∈ {1, . . . , n}
and (ii)

∪
{Σ1, . . . ,Σn} = Σ (but it is not required that the members of the

pseudo-partition are non-empty).

3 The Usual Many-Valued Approach

The CL-semantics is deterministic: the valuation value of every formula is de-
termined by the model; in the presence of LO it is determined by the assignment
values of the non-logical symbols that occur in the formula and its subformu-
las. The CL-semantics is also recursive: there is a complexity function such
that, for every non-atomic formula A ∈ WO, vM (A) depends only on valuation
values of formulas that are less complex than A. The CL-semantics is also
truth-functional: there is a function that connects the valuation value of every
non-atomic formula A ∈ WO to the valuation values of subformulas of A; only
the value of atomic formulas is directly determined by assignment values.

A presupposition of this type of semantics is that a distinction can be made
between two things. On the one hand, there is the model itself: M = ⟨D, v⟩.
This represents a state of the world. All non-logical symbols receive their mean-
ing here—the assignment assures that they do. On the other hand, there is the
realm of the logical symbols. These are required to formulate statements about
the world. Indeed, by merely concatenating atomic statements one cannot ex-
press that an atomic statement is false or that one of two atomic statements is
true but not necessarily both. Still, truth-functionality makes complex state-
ments parasitic on atomic statements in that the valuation values of the complex
statements are fully determined by the valuation values of atomic statements.

To be sure, a semantics is defined with respect to a language schema. In this
sense, its models represent at best structural states of the world. In order to
transform the models into representations of actual states of the world, one needs
to replace the language schema by a language that is covered by the schema. So

10In (iii), a is the alphabetically first individual constant, which is used here as a metalin-
guistic name of itself.

JY.tex – November 7, 2014 7

a semantics involves a hypothesis about the structure of the language in which
the world, or some parts or aspects of it, may be adequately described. Needless
to say, adequacy comes in degrees and the estimated adequacy may be poor due
to the present state of our knowledge.11

When many-valued logics came around, new valuation values were added
next to “true” and “false”. There were two intuitions behind the new val-
ues. One idea was that some sentences do not have a truth-value, but are
indeterminate in one of several senses. According to the other idea there are
further truth-values, which are sometimes seen as expressing degrees of partial
truth. The logical symbols of those logics were still truth-functions, viz. with
respect to the extended set of valuation values. Apparently the architects of
many-valued logics first had the idea of additional ‘truth-values’ and next de-
vised truth-functional operators in terms of them. They apparently did not
imagine, and possibly could not imagine, that a logical symbol would not be
truth-functional.12

Within a many-valued semantics, semantic consequence is defined in terms
of designated and non-designated values. This shows the way from the many-
valued semantics to the two-valued one. It is instructive to consider also the
opposite road. This road was explored a long time ago for the propositional
case, among others by me [9], and the generalisation to the predicative level
is obvious. The idea is that bivalent values of several formulas are ‘melted
together’ into a many-valued value of a single formula. The approach works
fine for some paraconsistent logics, for example for CLuNs. Consider, for any
A ∈ WO, the couple ⟨vM (A), vM (¬A)⟩ in the above two-valued semantics. The
possible couples are ⟨1, 0⟩, ⟨1, 1⟩, and ⟨0, 1⟩. These may be handled as three
valuation values and, if they are so handled, it is convenient to rename them
to T , I, and F , which correspond to “consistently true”, “inconsistent” and
“consistently false” respectively. The resulting three-valued semantics is truth-
functional, as I show below. The matter is utterly simple for the propositional
case. For predicative models, the easiest approach requires that the assignment
is redefined, for example as in the next paragraph.

In a three-valued CLuNs-model M = ⟨D,V ⟩, defined over the language LO,
the domain D is a set and the assignment V has the following four properties.
(i) V :S → {T, I, F}.13 (ii) V : C ∪ O → D (where D = {V (α) | α ∈ C ∪
O}). (iii) V :Pr → ⟨Σ1,Σ2,Σ3⟩ such that {Σ1,Σ2,Σ3} is a pseudo-partition
of ℘(Dr). To simplify the notation, consider V as composed in this case of
the three functions V T , V I , and V F , with V T (πr) = Σ1, V I(πr) = Σ2, and
V F (πr) = Σ3.14 (iv) Identity is handled as a binary predicate with the special
characteristic that V T (=) ∪ V I(=) = {⟨o, o⟩ | o ∈ D}.

The valuation function VM :WO → {T, I, F} is defined as follows:

CS where A ∈ S, VM (A) = V (A)

11Carnap [20, 21] clearly saw the linguistic relativity of the semantic enterprise. Apparently,
many have forgotten his insight and seem to presume that they can talk about states of the
world in an absolute way.

12I do not intend to refer, for example, to a worlds semantics but rather to a non-truth-
functional semantics such as the ones from Section 2, the indeterministic as well as the deter-
ministic ones.

13There is no need to assign a three-valued assignment value to all members of WO.
14The three functions determine for which r-tuples the predicate is true, inconsistent, and

false respectively.

JY.tex – November 7, 2014 8

CPr for X ∈ {T, I, F}, VM (πrα1 . . . αr) = X iff ⟨V (α1), . . . , V (αr)⟩ ∈ V X(πr)

Ccon ¬ ⊃ T I F ∧ T I F
T F T T I F T T I F
I I I T I F I I I F
F T F T T T F F F F

C∀ VM ((∀α)A(α)) = T iff VM (A(β)) = T for all β ∈ C ∪ O
VM ((∀α)A(α)) = F iff VM (A(β)) = F for at least one β ∈ C ∪ O
VM ((∀α)A(α)) = I otherwise

Define M
 A (a three-valued CLuNs-model M verifies A) iff VM (A) ∈
{T, I}; and so on.

The other logical symbols are defined explicitly: A ∨ B =df ¬(¬A ∧ ¬B),
A ≡ B =df (A ⊃ B) ∧ (B ⊃ A), and (∃α)A(α) =df ¬(∀α)¬A(α).

This three-valued CLuNs-semantics is equivalent to the two-valued CLuNs-
semantics from Section 2 in that their semantic consequence relations coincide—
this is easily shown by slightly modifying the proof of Theorem 1 in [16].

So this is the usual approach to many-valued logics. There is a n-tuple of
functions ⟨f1, . . . , fn⟩ such that fi:WO → WO for each i; the n-tuple of bivalent
values ⟨vM (f1(A)), . . . , vM (fn(A))⟩ functions as the many-valued value VM (A).
Expressed somewhat crudely, the (bivalent) values of formulas containing A are
pushed into the (many-valued) value of A.

The attractiveness of the approach seems related to the fact that the many-
valued valuation values appear to be a kind of truth-values that are more so-
phisticated than the bivalent valuation values and that are introduced for sound
philosophical reasons. The view on logical symbols is simply the traditional
view: they are truth-functions. They differ from the classical logical symbols as
a result of the modified set of valuation values.

Let us proceed more carefully. We already knew that a logic that has a
many-valued semantics also has a two-valued semantics. It seems obvious that
any many-valued semantics can be described as obtained by pushing the bivalent
values of a tuple of formulas into the many-valued value of an atomic formula.
From a technical point of view, the two semantics are on a par. Still, there is the
philosophical question which semantics is ontologically correct. Are there many
truth-values or are these merely tuples of binary truth-values? Consider again
CLuNs. Is the truth of ¬A a consequence of the fact that A has the truth-value
I or is saying that A has the value I merely a statement summarizing that A
and ¬A are both true?

The truth-values of the bivalent CL-semantics may be seen as ‘expressed’
within the standard CL-language by A and ¬A respectively. Similarly, one
may (explicitly) define n logical symbols V1, . . . ,Vn within the language of
 Lukasiewicz’s n-valued logics Ln such that, for all i ∈ {1, . . . , n}, M
 ViA
iff vM (A) = i—see [35, 39]. It is not possible to do so for CLuNs; a definable
symbol does so correspond to the semantic value I, but no definable logical
symbol so corresponds to T or to F .

Some will see this as an argument to consider the truth-values of the two-
valued CL-semantics and those of the n-valued Ln-semantics as real truth-
values, at least with respect to the presuppositions of those logics, but will
not consider the valuation values of the three-valued CLuNs-semantics as real

JY.tex – November 7, 2014 9

truth-values.15 They might argue that, if statements may have three different
truth-values, then the logical symbols of your language should enable you to
express, for each of the truth-values, that it pertains to a statement. Whether
you may get to know the actual truth-value of a statement is altogether a
different matter.16

Others will be less demanding and consider the fact that a logic has an ade-
quate many-valued semantics in which all its logical symbols are truth-functions
as a sufficient reason to consider those values as truth-values. The view appar-
ently presupposes that some logics do not have such a semantics, but is that
correct?

It seems unlikely a priori that CLuN has an adequate semantics in which all
logical symbols are truth-functions. Apart from some transparent exceptions,
such as (p∧¬p)∧¬(p∧¬p) ⊢CLuN p∧¬p, inconsistencies seems to be independent
of each other within CLuN. Consider for example the set ∆ = {¬p,¬(p ∧
p),¬(p∧ (p∧ p)),¬(p∧ (p∧ (p∧ p))), . . .}. Each member of ∆ is CL-equivalent
to ¬p. However, for every ∆′ ⊂ ∆, there is a CLuN-model M such that
M
 A for all A ∈ {p} ∪ ∆′ whereas M 1 A for all A ∈ ∆ − ∆′. And there
is more. Let Wp comprise the formulas in which occurs no other non-logical
term than p. For every ∆′ ⊆ ∆, infinitely many members of Wp are verified
by some CLuN-models of {p} ∪ ∆′ and falsified by other CLuN-models of
{p} ∪ ∆′. Here are some examples of members of Wp for which this holds: ¬B
for any B ∈ ∆′; ¬((p∧ p)∧ p) and all similar results of commuting two different
conjuncts in a conjunctive subformula of a B ∈ ∆′; all ¬(p∧B) ∈ Wp−∆′ such
that the considered models verify B; and so on. Notwithstanding all this, all
logical symbols are truth-functions in an infinite-valued CLuN-semantics. This
is shown in Section 4.

If even the negation of CLuN is a truth-function in a many-valued semantics,
one wonders whether being a truth-functional logic (with respect to some many-
valued semantics) is a distinctive feature and, if it were distinctive, whether
there is anything interesting about it. According to a truth-functional logic, the
truth-value of every formula is fully determined by the truth-value of its atomic
subformulas. This hardly means anything if it is realized by coding the binary
valuation value of every complex formula into the many-valued valuation value
of an atomic formula.

Independent of philosophical worries concerning truth-functionality, one may
wonder whether many-valued logics may not be cast in a way that is different
from the usual approach. I shall be looking for an unusual mould in Section 5.

4 The Case of the Logic CLuN

In this section it is shown that even CLuN is a many-valued logic on the usual
many-valued approach. It seems instructive to describe the way in which this
result was obtained, both in order to make the argument transparent and in
order to illustrate the way in which the result may be extended to other logics.

The usual approach requires that all information required to fix the valuation

15Similarly for the valuation values of the three-valued LP-semantics [34] and for the valu-
ation values of four-valued semantics for relevant logics [1].

16As was already pointed out by Viktor Kraft [31], nothing warrants that the syntactically
atomic sentences of a language are also epistemologically atomic.

JY.tex – November 7, 2014 10

value of a formula A is contained in the valuation value of the atomic subformulas
of A. It follows that infinitely many bits of information have to be contained in a
single valuation value. Recall indeed that the following holds for the two-valued
CLuN-semantics: if vM (p) = 1, then vM (¬p) may be 1 or 0, depending on the
value of v(¬p); if vM (p) = vM (¬p) = 1, then the same applies to vM (¬¬p); and
so on. So the information contained in v(p), v(¬p), v(¬¬p), . . . in a two-valued
CLuN-model needs to be compressed in the valuation value of p within the
corresponding many-valued CLuN-model—I shall write this valuation value as
VM (p).17 The situation is even more complex. If vM (p∧q) = 1, then vM (¬(p∧q))
may be 1 as well as 0, depending on the value of v(¬(p∧q)), and this information
too must be contained in VM (p) or in VM (q). Note also that, in the considered
case, v(¬(p ∧ q)) and v(¬(p ∧ r)) are not only independent of each other, but
also of v(¬p), v(¬q), and v(¬r).

So, if the approach can be applied to CLuN, then the valuation value VM (A)
contains all information contained in an infinite list ⟨vM (A), v(B1), v(B2), . . .⟩
in which B1, B2, . . . are formulas of which A is a subformula. In view of this, it
seems fitting to identify VM (A) with an infinite sequence of zeros and ones. In
order for the approach to be viable, several difficulties have to be resolved.

Consider VM (¬(p ∧ q)). This should be a truth-function of VM (p) and of
VM (q). So, in terms of the two-valued semantics, the information on v(¬(p∧q))
needs to be contained in VM (p) or VM (q). For every binary logical term ∗, I shall
store the information on v(¬(A∗B)) in VM (A). This is obviously a conventional
matter and there are several alternatives. The information on the two-valued
assignment value v(¬∀xPx) should also be contained within the many-valued
valuation value of an atomic formula. I shall store it in VM (Pa). In view of
these conventions I defined (at the end of Section 2), for every A ∈ WO, the set
fsub(A) of ‘first subformulas’ of A and the set fsup(A) of ‘first superformulas’
of A. For every B ∈ fsup(A), v(B) (from the two-valued model) will be stored
in VM (A) (from the many-valued model).18

Fact 1 For all A ∈ WO, fsub(A) is finite and decidable.

Fact 2 For all A ∈ WO, there is exactly one B ∈ fsub(A) ∩Wa
O.

Fact 3 If A,B ∈ Wa
O are different, then fsup(A) ∩ fsup(B) = ∅.

Fact 4 If A ∈ fsub(B), then fsup(B) ⊆ fsup(A).

Fact 5 If A /∈ fsub(B) and B /∈ fsub(A), then fsup(A) ∩ fsup(B) = ∅.

So the present state of our plot is to identify a many-valued valuation value
with ⟨vM (A), v(B1), v(B2), . . .⟩, where ⟨B1, B2, . . .⟩ is an ordering of fsup(A).
However, notwithstanding Fact 3, fsup(A) is uncountable if LO is uncountable
and this is always the case if model M is uncountable. In that case, however,

17In the text I use the name M for both models although they are not only different but
even different in kind. Where it matters, I shall obviously introduce different names.

18If B does not have the form ¬C, then v(B) does not play any role within the CLuN-
semantics. So one might just as well decide not to store the value of v(B) in VM (A) for such
B ∈ fsup(A). While the disadvantage of the approach followed in the text is that some digits
of VM (A) are irrelevant, the advantage is that the approach is more general, as is the case for
the assignment function of the two-valued semantics itself. That the advantage outweighs the
disadvantage will show in Section 5.

JY.tex – November 7, 2014 11

there is no list ⟨vM (A), v(B1), v(B2), . . .⟩. Fortunately the Löwenheim-Skolem
Theorem enables one to restrict a semantics to its countable models. So let us
do this and consider only countable pseudo-language schemas LO in the sequel
of the present section.19

Fact 6 For all A ∈ WO, fsup(A) is infinite, enumerable, and decidable.

Consider a Gödel numbering and let G(A) be the Gödel number of A. Let
LA = ⟨B1, B2, . . .⟩ be such that (i) {B1, B2, . . .} = fsup(A) and (ii) i ≤ j iff
G(Bi) ≤ G(Bj). Where B ∈ fsup(A), let #A(B) be the place of B in LA—so if
LA = ⟨B1, B2, . . .⟩, then #A(Bi) = i.

Fact 7 For all A ∈ WO, LA is a recursive list.

Fact 8 If B ∈ fsup(A), then all members of LB occur in the same order in LA.

Fact 9 If B ∈ fsup(A), then there is a computable function f such that LB =
f(LA).

Let S, the set of valuation values, be the set of infinite sequences of 0s and 1s;
let s be a variable for members of S; let SD = {⟨d0, d1, . . .⟩ ∈ S | d0 = 1} (the
set of designated values). Where VM (A) = ⟨d0, d1, . . .⟩, define VM (A)[A] = d0
and define, for all B ∈ fsup(A), VM (A)[B] = d#A(B).

20

In a S-valued CLuN-model M = ⟨D,V ⟩ (defined over the countable pseudo-
language schema LO), the domain D is a countable set and the assignment
V has the following four properties. (i) V :S → S. (ii) V : C ∪ O → D
(where D = {V (α) | α ∈ C ∪ O}). (iii) Where S = {s1, s2, . . .}, V :Pr →
⟨Σs1 ,Σs2 , . . .⟩ such that (a) {Σs1 ,Σs2 , . . .} is a pseudo-partition of ℘((C ∪ O)r)
and (b) if V (β) = V (αi) (1 ≤ i ≤ r), ⟨α1, . . . , αi−1, αi, αi+1, . . . , αr⟩ ∈ Σsj ,
and ⟨α1, . . . , αi−1, β, αi+1, . . . , αr⟩ ∈ Σsk , then sj , sk ∈ SD or sj , sk ∈ S−SD.
To simplify the notation, consider V as composed in this case of uncountably
many functions V s1 , V s2 , . . . , with V s1(πr) = Σs1 , V s2(πr) = Σs2 , and so on.
(iv) Identity is handled as a binary predicate with the special characteristic that∪
{V s(=) | s ∈ SD} = {⟨α, β⟩ | α, β ∈ C ∪ O;V (α) = V (β)}. The valuation

function VM :WO → S is defined as follows:

CS where A ∈ S, VM (A) = V (A)

CPr VM (πrα1 . . . αr) = s iff ⟨α1, . . . , αr⟩ ∈ V s(πr)

C¬ Where L¬A = ⟨C1, C2, . . .⟩, VM (¬A) = ⟨max(1−VM (A)[A], VM (A)[¬A]),
VM (A)[C1], VM (A)[C2], . . .⟩.

C∧ Where LA∧B = ⟨C1, C2, . . .⟩, VM (A ∧B) = ⟨min(VM (A)[A], VM (B)[B]),
VM (A)[C1], VM (A)[C2)], . . .⟩.

C∨ Where LA∨B = ⟨C1, C2, . . .⟩, VM (A∨B) = ⟨max(VM (A)[A], VM (B)[B]),
VM (A)[C1], VM (A)[C2)], . . .⟩.

C⊃ Where LA⊃B = ⟨C1, C2, . . .⟩, VM (A ⊃ B) = ⟨max(1−VM (A)[A], VM (B)
[B]), VM (A)[C1], VM (A)[C2)], . . .⟩.

19These are actually language schemas. Still LO need to be different from L in order to
allow for models that are not ω-complete.

20So, if LA = ⟨B1, B2, . . .⟩ and VM (A) = ⟨1011 . . .⟩, then VM (A) contains the information
that in the corresponding two-valued model M ′ holds: vM′ (A) = 1, v(B1) = 0, v(B2) = 1,
v(B3) = 1, and so on.

JY.tex – November 7, 2014 12

C≡ Where LA≡B = ⟨C1, C2, . . .⟩, VM (A ≡ B) = ⟨min(max(1 − VM (A)[A],
VM (B)[B]),max(1−VM (B)[B], VM (A)[A])), VM (A)[C1], VM (A)[C2)], . . .⟩.

C∀ Where L∀αA(α) = ⟨C1, C2, . . .⟩, VM (∀αA(α)) = ⟨min{VM (A(β)) | β ∈
C ∪ O}, VM (A(a))[C1], VM (A(a))[C2], . . .⟩.

C∃ Where L∃αA(α) = ⟨C1, C2, . . .⟩, VM (∃αA(α)) = ⟨max{VM (A(β)) | β ∈
C ∪ O}, VM (A(a))[C1], VM (A(a))[C2], . . .⟩.

Define M
 A (a S-valued CLuN-model M verifies A) iff VM (A) ∈ SD; and
so on. To avoid confusion, let Γ �S

CLuN A denote that A is a CLuN-semantic
consequence of Γ on the S-valued semantics.

Fact 10 The S-valued CLuN-semantics is recursive.

Fact 11 All logical symbols are truth-functions in the S-valued CLuN-semantics.

Lemma 1 If M = ⟨D, v⟩ is a two-valued CLuN-model, then there is a S-
valued CLuN-model M ′ = ⟨D,V ⟩ such that, for all A ∈ WO, VM ′(A)[A] =
vM (A) and, where LA = ⟨B1, B2, . . .⟩, VM ′(A)[Bi] = v(Bi) for all i ∈ {1, 2, . . .}.

Proof. From M construct M ′ as follows. For all α ∈ C ∪ O, V (α) = v(α). If
A ∈ S and LA = ⟨B1, B2, . . .⟩ then V (A) = ⟨vM (A), v(B1), v(B2), . . .⟩. For all
α1, . . . , αr ∈ C ∪ O, ⟨α1, . . . , αr⟩ ∈ V s(πr) iff, where Lπrα1...αr = ⟨B1, B2, . . .⟩,
s = ⟨vM (πrα1 . . . αr), v(B1), v(B2), . . .⟩.

From this one establishes the lemma for A ∈ Wa
O. With that as a basis, one

establishes the lemma by an obvious induction.

Lemma 2 If M ′ = ⟨D,V ⟩ is a S-valued CLuN-model, then there is a two-
valued CLuN-model M = ⟨D, v⟩ such that, for all A ∈ WO, vM (A) = VM ′(A)[A]
and, where LA = ⟨B1, B2, . . .⟩, v(Bi) = VM ′(A)[Bi] for all i ∈ {1, 2, . . .}.

Proof. Obvious in view of the converse of the transformation described in the
proof of Lemma 1.

Theorem 1 Γ �CLuN A iff Γ �S
CLuN A.

Proof. ⇒ Suppose that Γ 2S
CLuN A. So there is a S-valued CLuN-model M

that verifies all members of Γ and falsifies A. By the transformation described
in the proof of Lemma 1, there is a two-valued CLuN-model M ′ that verifies
exactly the same formulas as M .

⇐ Suppose that Γ 2CLuN A. In view of the relevant Löwenheim-Skolem
Theorem, a countable two-valued CLuN-model M verifies all members of Γ
and falsifies A. By the transformation described in the proof of Lemma 2, there
is a S-valued CLuN-model M ′ that verifies exactly the same formulas as M .

Let T be the set of all finite sequences of 0s and 1s. The logic CLuN is
compact. This enables us to replace the S-valued semantics by a semantics
that takes its values from T.

As a first step we represent some infinite sequences of 0s and 1s by finite se-
quences. This is easy: remove trailing ones from the sequences, reducing for ex-
ample the infinite sequence ⟨110100011 . . .⟩, in which the ellipsis represents ones
only, by the finite sequence ⟨1101000⟩. Of course the first member of a sequence
is always retained. So the finite sequences are ⟨0⟩, ⟨1⟩, ⟨00⟩, ⟨10⟩, ⟨000⟩, ⟨010⟩, ⟨100⟩,

JY.tex – November 7, 2014 13

⟨110⟩, . . ., all but one of which end with a 0. The remaining infinite sequences
are those in which there is no last 0. We simply remove them.

The set T of valuation values is the set of sequences ⟨d0, . . . , dn⟩ such that
(i) n ≥ 0, (ii) d0, . . . , dn ∈ {0, 1}, and (iii) dn = 0 if n > 0. Let t be a variable
for members of T. Let TD = {⟨d0, . . . , dn⟩ ∈ T | d0 = 1} (the set of designated
values). Where VM (A) = ⟨d0, . . . , dn⟩, define VM (A)[A] = d0 and define, for all
B ∈ fsup(A), VM (A)[B] = d#A(B) if #A(B) ≤ n and VM (A)[B] = 1 otherwise.21

Where ⟨d0, . . . , dn⟩ is a sequence of 0s and 1s, let ⟨d0, . . . , dn ◃⟩ be the result
of removing trailing 1s as long as the sequence counts more than one digit. So
⟨d0, . . . , dn ◃⟩ ∈ T.

Fact 12 T is denumerable (infinite and enumerable) and decidable.

After these preliminaries, let us turn to the semantics. In a T-valued CLuN-
model M = ⟨D,V ⟩ (defined over the countable pseudo-language schema LO),
the domain D is a countable set and the assignment V has the following four
properties. (i) V :S → T. (ii) V : C ∪ O → D (where D = {V (α) | α ∈ C ∪ O}).
(iii) Where T = {t1, t2, . . .}, V :Pr → ⟨Σt1 ,Σt2 , . . .⟩ such that (a) {Σt1 ,Σt2 , . . .}
is a pseudo-partition of ℘(Dr) and (b) if V (β) = V (αi) (1 ≤ i ≤ r), ⟨α1, . . . , αi−1,
αi, αi+1, . . . , αr⟩ ∈ Σtj , and ⟨α1, . . . , αi−1, β, αi+1, . . . , αr⟩ ∈ Σtk , then tj , tk ∈
TD or tj , tk ∈ T − TD. To simplify the notation, consider V as composed in
this case of the denumerably many functions V t1 , V t2 , . . . , with V t1(πr) = Σt1 ,

V t2(πr) = Σt2 , and so on. (iv) Identity is handled as a binary predicate with the
special characteristic that

∪
{V t(=) | t ∈ TD} = {⟨α, β⟩ | α, β ∈ C ∪ O;V (α) =

V (β)}.
In the clauses below, let VM (A) count nA members and let VM (A(a)) count

nA(a) members. The valuation function VM :WO → T is defined as follows:

CS where A ∈ S, VM (A) = V (A)

CPr VM (πrα1 . . . αr) = t iff ⟨α1, . . . , αr⟩ ∈ V t(πr)

C¬ Where L¬A = ⟨C1, C2, . . .⟩, VM (¬A) = ⟨max(1−VM (A)[A], VM (A)[¬A]),
VM (A)[C1], . . . , VM (A)[CnA] ◃⟩.

C∧ Where LA∧B = ⟨C1, C2, . . .⟩, VM (A ∧B) = ⟨min(VM (A)[A], VM (B)[B]),
VM (A)[C1], . . . , VM (A)[CnA)] ◃⟩.

C∨ Where LA∨B = ⟨C1, C2, . . .⟩, VM (A∨B) = ⟨max(VM (A)[A], VM (B)[B]),
VM (A)[C1], . . . , VM (A)[CnA)] ◃⟩.

C⊃ Where LA⊃B = ⟨C1, C2, . . .⟩, VM (A ⊃ B) = ⟨max(1−VM (A)[A], VM (B)
[B]), VM (A)[C1], . . . , VM (A)[CnA)] ◃⟩.

C≡ Where LA≡B = ⟨C1, C2, . . .⟩, VM (A ≡ B) = ⟨min(max(1 − VM (A)[A],
VM (B)[B]),max(1−VM (B)[B], VM (A)[A])), VM (A)[C1], . . . , VM (A)[CnA)]
◃⟩.

C∀ Where L∀αA(α) = ⟨C1, C2, . . .⟩, VM (∀αA(α)) = ⟨min{VM (A(β)) | β ∈
C ∪ O}, VM (A(a))[C1], . . . , VM (A(a))[CnA(a)] ◃⟩.

C∃ Where L∃αA(α) = ⟨C1, C2, . . .⟩, VM (∃αA(α)) = ⟨max{VM (A(β)) | β ∈
C ∪ O}, VM (A(a))[C1], . . . , VM (A(a))[CnA(a)] ◃⟩.

21So, if LA = ⟨B1, B2, . . .⟩ and VM (A) = ⟨1110⟩, then VM (A) contains the information that
in the corresponding two-valued model M ′ holds: vM′ (A) = 1, v(B1) = 1, v(B2) = 1, v(B3) =
0, and v(Bi) = 1 whenever i > 3; similarly, VM (A) = ⟨0⟩ then contains the information that in
the corresponding two-valued modelM ′ holds: vM′ (A) = 0 and v(Bi) = 1 for all i ∈ {1, 2, . . .}.

JY.tex – November 7, 2014 14

A M
 A (a T-valued CLuN-model M verifies A) iff VM (A) ∈ TD; M is
a model of {A1, . . . , An} iff M
 A1, . . . , and M
 An. B1, . . . , Bn �T

CLuN A
iff every T-valued CLuN-model of {B1, . . . , Bn} verifies A; Γ �T

CLuN A iff
B1, . . . , Bn �T

CLuN A for some B1, . . . , Bn ∈ Γ.
The only ‘inconvenience’ with this semantics is that, for some Γ and A,

Γ 2T
CLuN A while no T-valued CLuN-model of Γ falsifies A. An example

is {¬3np,¬3n+1p,¬3n+2p ⊃ q | n ∈ N} 2T
CLuN q in which ¬i abbreviates a se-

quence of i occurrences of ¬. Every two-valued CLuN-model M of {¬3np,¬3n+1p,¬3n+2p ⊃
q | n ∈ N} that falsifies q has, for all n ∈ N, v(¬3n+1p) = 1 and v(¬3n+2p) = 0.
There is a S-valued CLuN-model that corresponds to M but obviously not a T-
valued one. Indeed, as VM ′(p) = V (p) counts finitely many digits, say m, there
is bound to be a n such that #p(¬3n+2p) > m, whence VM ′(¬3n+2p) ∈ TD;
but then VM ′(¬3n+2p ⊃ q) /∈ TD or VM ′(q) ∈ TD; so if M ′ is a model of
{¬3np,¬3n+1p,¬3n+2p ⊃ q | n ∈ N}, it falsifies q. Of course the inconvenience
has no effect on the semantic consequence relation in view of the special way in
which it is defined.

Fact 13 The T-valued CLuN-semantics is recursive.

Fact 14 All logical symbols are truth-functions in the T-valued CLuN-semantics.

Lemma 3 If M = ⟨D, v⟩ is a two-valued CLuN-model, M
 A, M 1 B,
and M ′ = ⟨D, v′⟩ is obtained from M by letting v(¬C) = 1 whenever ¬C /∈
{A,B} ∪ sub(A)∪ sub(B), then M ′ is a two-valued CLuN-model, M ′
 A and
M ′ 1 B.

Proof. By an obvious induction on the length of A or of B, whichever is longer.

Lemma 4 If M = ⟨D, v⟩ is a two-valued CLuN-model, and, for every A ∈
Wa

O, v(B) = 0 for at most finitely many B ∈ fsup(A), then there is a T-valued
CLuN-model M ′ = ⟨D,V ′⟩ such that, for all A ∈ WO, VM ′(A)[A] = vM (A)
and, where LA = ⟨B1, B2, . . .⟩, VM ′(A)[Bi] = v(Bi) for all i ∈ {1, 2, . . .}.

Proof. Suppose that the antecedent is true. In view of Lemma 1, there is
a S-valued CLuN-model M ′′ = ⟨D,V ′′⟩ with the required property. The S-
valued CLuN-model M ′′ is transformed to the required T-valued CLuN-model
M ′ = ⟨D,V ′⟩ by the following steps. Consider an A ∈ S and let VM ′′(A) = s.
As, for every A ∈ Wa

O, v(B) = 0 for at most finitely many B ∈ fsup(A), there
is bound to be a last 0 in the sequence s. So the result of removing trailing 1s
from s results in a member of T. The reasoning for formulas πrα1 . . . αr proceeds
similarly. Next one invokes an obvious induction on the length of A ∈ WO as
in Lemma 1.

Lemma 5 If M ′ = ⟨D,V ⟩ is a T-valued CLuN-model, then there is a two-
valued CLuN-model M = ⟨D, v⟩ such that, for all A ∈ WO, vM (A) = VM ′(A)[A]
and, where LA = ⟨B1, B2, . . .⟩, v(Bi) = VM ′(A)[Bi] for all i ∈ {1, 2, . . .}.

Proof. Obvious.

Lemma 6 If M is a two-valued CLuN-model, M ′ is a T-valued CLuN-model,
and M and M ′ correspond in the sense of Lemmas 4 and 5, then M
 A iff
M ′
 A for all A ∈ WO.

JY.tex – November 7, 2014 15

Proof. A proof by cases gives one the result for A ∈ Wa
O. This provides the

basis for the obvious induction on the complexity of A ∈ WO.

Theorem 2 Γ �T
CLuN A iff Γ �CLuN A.

Proof. ⇒ Suppose that Γ 2CLuN A. Consider any B1, . . . , Bn ∈ Γ. As CLuN
is compact, B1, . . . , Bn 2CLuN A. Note that B1 ∧ . . . ∧ Bn 2CLuN A. In
view of the relevant Löwenheim-Skolem Theorem and of Lemma 3, there is a
countable binary CLuN-model M = ⟨D, v⟩ such that M
 B1 ∧ . . . ∧ Bn, and
M 1 A and v(C) = 0 for at most finitely many formulas C /∈ Wa

O. In view of
Lemmas 4 and 6, it follows that there is a T-valued CLuN-model M ′ such that
M ′
 B1 ∧ . . . ∧Bn and M ′ 1 A.

⇐ Suppose that Γ 2T
CLuN A. The definition of �T

CLuN entails, for arbitrary
B1, . . . , Bn ∈ Γ, that B1 ∧ . . . ∧ Bn 2T

CLuN A. So a T-valued CLuN-model
verifies B1 ∧ . . .∧Bn and falsifies A. By Lemmas 5 and 6, there is a two-valued
CLuN-model M ′ such that M ′
 B1 ∧ . . . ∧Bn and M ′ 1 A.

The members of T are obtained from members of S by removing trailing
1s. The reader may find it more convenient to consider finite sequences of
0s and 1s that are obtained by removing trailing 0s. Another alternative is
finite sequences from which trailing 1s are removed except for the first one as
well as finite sequences from which trailing 0s are removed except for the first
one. In both cases the result corresponds to the one presented above and the
inconvenience is exactly the same.

5 A Different Many-Valued Approach

Take another look at the two-valued CLuNs-semantics from Section 2, compar-
ing it to the three-valued CLuNs-semantics from Section 3. That a two-valued
model verifies p ∧ ¬p is the result of v(p) = 1 and v(¬p) = 1 and these are
separate and independent ‘facts’. If a two-valued model verifies A ∧ ¬A for
complex A, then again M
 A depends on one set of ‘facts’ whereas M
 ¬A
depends on a separate set of ‘facts’. The idea behind the three-valued semantics
is completely different. That a three-valued model verifies p ∧ ¬p depends on
the sole ‘fact’ that V (p) = I. Moreover, if M
 A∧¬A for complex A, then, as
a little inspection readily reveals, there are always inconsistent ‘facts’ on which
both M
 A and M
 ¬A depend.

I now set out to construct a very different kind of many-valued semantics,
called tuaf semantics. For a start, the assignment of the tuaf semantics will
be the same as the assignment of the two-valued semantics. I shall retain the
convention that valuation values are determined starting from the least complex
formulas. If v(p) = 1, then p will obtain the valuation value t (for true),
independent of the valuation value of ¬p. If vM (p) = t and v(¬p) = 0, then
vM (¬p) = f (for false). However, if vM (p) = t and v(¬p) = 1, then vM (¬p) = u
(for glut). Similarly, if vM (p) = f and v(¬p) = 0, then vM (¬p) = a (for
gap).22 The idea is that a formula receives the valuation value u, respectively
a, iff it has the wrong truth-value with respect to its subformulas. This idea
is clearly different from the usual one, described in Section 3. However, as we

22Some values will be absent for some logics; CLuNs, for example, does not allow for gaps.

JY.tex – November 7, 2014 16

shall soon see, some choices have still to be made in order to turn the approach
into something workable.

By way of preparation, we start with an alternative formulation of the CL-
semantics. The semantics from Section 1 will be called the clausal semantics.
Let us turn it into a tabular semantics by leaving the assignment function un-
changed, replacing the ten clauses specifying the valuation function by the fol-
lowing ten tables—the last two are amalgamated.

Where A ∈ S: v(A) A
1 1
0 0

Where α1, . . . , αn ∈ C ∪ O and π ∈ Pn: ⟨v(α1), . . . , v(αn)⟩, v(π) πα1 . . . αn

∈ 1
/∈ 0

Where α, β ∈ C ∪ O: v(α), v(β) α = β
= 1
̸= 0

¬
1 0
0 1

∧ 1 0
1 1 0
0 0 0

∨ 1 0
1 1 1
0 1 0

⊃ 1 0
1 1 0
0 1 1

≡ 1 0
1 1 0
0 0 1

{vM (A(α)) | α ∈ C ∪ O} ∀α(A(α)) ∃α(A(α))
{1} 1 1
{0, 1} 0 1
{0} 0 0

We have seen that some logics display gluts or gaps or both. For them,
I shall articulate a semantics in which the valuation has the form vM :WO →
{t, u, a, f}, in which the values intuitively stand for true, glut, gap, and false—
hence the name tuaf semantics. The designated values are t and u. So M
 A iff
vM (A) ∈ {t, u}. This settles at once the semantic consequence relation Γ � A.

Some logics do not allow for gluts or for gaps. So only two or three of the
values will be used in their tuaf semantics. For example, the tuaf semantics for
CL is boringly isomorphic to CL’s tabular semantics: for the valuation, every
1 is replaced by t and every 0 by f—the point of the replacement will soon
become clear. I spell out this semantics for future reference.23

Where A ∈ S: v(A) A
1 t
0 f

Where α1, . . . , αn ∈ C ∪ O and π ∈ Pn: ⟨v(α1), . . . , v(αn)⟩, v(π) πα1 . . . αn

∈ t
/∈ f

Where α, β ∈ C ∪ O: v(α), v(β) α = β
= t
̸= f

23I use the same notation, vM (A), for the valuation function in all three kinds of semantics
and I shall do so for all logics. The matter is always disambiguated by the context.

JY.tex – November 7, 2014 17

These three first tables, which concern the atomic formulas, are identical for all
subsequent logics. They will not be repeated.

¬
t f
f t

∧ t f
t t f
f f f

∨ t f
t t t
f t f

⊃ t f
t t f
f t t

≡ t f
t t f
f f t

{vM (A(α)) | α ∈ C ∪ O} ∀α(A(α)) ∃α(A(α))
{t} t t
{f, t} f t
{f} f f

The matter gets interesting when we move to logics that tolerate gluts or
gaps. Let us start with CLuN. Its tabular semantics is identical to that for
CL, except that the table for negation is replaced.

A v(¬A) ¬A
1 0 0
1 1 1
0 (any) 1

The table describes vM (¬A) as a function of vM (A) and of v(¬A). The “(any)”
indicates that the value of v(¬A) has no effect at this point, viz. where vM (A) =
0.

Let us turn to the tuaf semantics of CLuN. Its assignment is as for all
two-valued semantics in this paper and the three valuation tables for atomic
formulas is as for CL. The rest of the valuation function is determined by the
following tables—some explanation follows.

A v(¬A) ¬A
t 0 f
t 1 u
u 0 f
u 1 u
f (any) t

∧ t u f
t t t f
u t t f
f f f f

∨ t u f
t t t t
u t t t
f t t f

⊃ t u f
t t t f
u t t f
f t t t

≡ t u f
t t t f
u t t f
f f f t

{vM (A(α)) | α ∈ C ∪ O} ∀α(A(α)) ∃α(A(α))
⊆ {t, u} t t
= {f} f f
(other) f t

As the value u is introduced by the table for negation—if vM (A) ∈ {t, u}
and v(¬A) = 1, then vM (¬A) = u—the value u has to occur in all tables
in which the input entries are valuation values. The “(any)” has the same
meaning as in the tabular semantics. The “(other)” obviously means that the
set {vM (A(α)) | α ∈ C ∪ O} contains at least one f and at least one t or u.

JY.tex – November 7, 2014 18

Until now, the design of the tuaf semantics proceeded on somewhat insecure
grounds. There apparently is a clear design behind it, but the design is not
made fully explicit. So let us see where precisely the tuaf semantics assigns the
value u? This question may be answered in several ways and, depending on
the answer, the tuaf semantics of other logics will vary. That the question may
be answered in at least two different ways is caused by the fact that CLuN
has the following remarkable property: for any formula A, an adequate CLuN-
semantics has models M and M ′ such that (i) M
 A and M
 ¬A, (ii) M ′
 A
and M ′ 1 ¬A, and (iii) M and M ′ verify exactly the same subformulas of A.
So for no true A, however complex, does the truth of its negation result from its
proper subformulas. CLuN has also a different, actually more general, property.
Consider a complexity function that assigns to a formula A a complexity c(A)
that is higher than the complexity it assigns to any proper subformula of A. For
any formula A, there are two-valued CLuN-models M and M ′ such that the
aforementioned (i) and (ii) obtain whereas M and M ′ verify exactly the same
subset of {B | c(B) < c(A)}.

A first view on the tuaf semantics of CLuN may be called the agreement
view. In the tabular semantics for CL, every table defines, for a non-atomic
form A, vM (A) as a function of the valuation value of subformulas of A. So it
is easy to check whether the valuation function of CLuN, or of any other logic
L allowing for gluts or gaps, agrees with CL at a specific point. If a two-valued
L-model M has vM (A) = vM (B) = vM (A ∧ B) = 1, then the tuaf L-model
M ′ has vM ′(A ∧ B) = t because vM (A ∧ B) = 1 agrees with all CL-models M
that have vM (A) = vM (B) = 1. If a two-valued L-model M has vM (A) = 0
and vM (A ∧ B) = 1, then the tuaf L-model M ′ has vM ′(A ∧ B) = u because
CL-models have vM (A ∧ B) = 0 whenever they have vM (A) = 0. By a similar
reasoning, if the L-model M has vM (A) = vM (B) = 1 and vM (A∧B) = 0, then
the tuaf L-model M ′ has vM ′(A ∧B) = a. It is left to the reader to check that
the occurrence of output entries u in the tuaf semantics of CLuN is in line with
the agreement view.

Next there is what I shall call the interference view. The two output entries u
in the tuaf semantics of CLuN depend on the assignment. For both v(¬A) = 1.
If this is modified to v(¬A) = 0, the value of vM (¬A) is modified to f . So,
on the interference view, a complex formula A obtains the valuation value u,
respectively a, iff the two-valued valuation value depends on the assignment
value v(A), and not only on valuation values of subformulas of A. So this view
incorporates the agreement view and moreover takes into account whether the
valuation value of a specific complex formula is a function of the valuation values
of its subformulas. Put differently, the values u and a are assigned at points
where gluts or gaps originate.

An example clarifies this even further. In the two-valued CLuNs-semantics,
vM (¬¬A) = vM (A). Let vM (p) = 1 = v(¬p) in a two-valued CLuNs-model
M , whence vM (¬p) = vM (¬¬p) = 1. So the corresponding tuaf model M has
vM (¬p) = u because if v(¬p) were 0, then vM (¬p) would be 0 in the two-valued
semantics. However, vM (¬¬p) = t on the interference view. Indeed, although
vM (¬p) = 1 and vM (¬¬p) = 1 in the two-valued semantics, the latter value
does not depend on v(¬¬p) but is a direct result of vM (p) = 1.24 Note that the

24The counterfactual and causal phraseology can obviously be rephrased extensionally (in
terms of all models that have certain properties).

JY.tex – November 7, 2014 19

agreement view leads to a different result at this point for CLuNs; it leads to
vM (¬¬p) = u in the considered example.

It is again left to the reader to check that the occurrence of output entries u
in the tuaf semantics of CLuN is in line with the interference view. Both views
explain the absence of output entries u outside the negation table. They also
clarify in general why ¬A may have the valuation value u whereas A will never
have that valuation value, unless of course in case A itself has the form ¬B. In
the sequel of this paper, I shall restrict attention to the interference view.

The tabular semantics as well as the tuaf semantics of CLuNs require the
equivalence classes defined in Section 2. The tabular semantics is just like that
for CL, except that the table for negation is replaced by the following tables.

Where A ∈ Wa
O: A {v(¬B) | B ∈ ⟦A⟧} ¬A

1 = {0} 0
1 ̸= {0} 1
0 (any) 1

A ¬¬A
A ∧ ¬B ¬(A ⊃ B)
¬A ∨ ¬B ¬(A ∧B)
¬A ∧ ¬B ¬(A ∨B)

(A ∨B) ∧ (¬A ∨ ¬B) ¬(A ≡ B)
∃α¬A(α) ¬∀αA(α)
∀α¬A(α) ¬∃α¬A(α)

1 1
0 0

The lower table is obviously a summary of seven tables, each stating that the
formula in the right column has the same value as the formula in the left column.
Of course, the fascinating bit is the tuaf semantics. Again, the assignment is as
for CL and so are the three tables for the atomic formulas.

Where A ∈ Wa
O: A {v(¬B) | B ∈ ⟦A⟧} ¬A

t = {0} f
t ̸= {0} u
f (any) t

A ¬¬A
A ∧ ¬B ¬(A ⊃ B)
¬A ∨ ¬B ¬(A ∧B)
¬A ∧ ¬B ¬(A ∨B)

(A ∨B) ∧ (¬A ∨ ¬B) ¬(A ≡ B)
∃α¬A(α) ¬∀αA(α)
∀α¬A(α) ¬∃α¬A(α)

t t
u t
f f

∧ t u f
t t t f
u t t f
f f f f

∨ t u f
t t t t
u t t t
f t t f

⊃ t u f
t t t f
u t t f
f t t t

≡ t u f
t t t f
u t t f
f f f t

JY.tex – November 7, 2014 20

{vM (A(α)) | α ∈ C ∪ O} ∀α(A(α)) ∃α(A(α))
⊆ {t, u} t t
= {f} f f
(other) f t

There is only one output entry u in all these tables. Atomic formulas never
receive the value u. Formulas of which the central symbol is not a negation
cannot receive a u because their valuation value (does not depend on their
assignment value but) is fully determined by the valuation value of less complex
formulas. In the table for the negation of complex formulas, there is a u among
the input entries. Please note that the only formulas in the left column that may
have a valuation value u are those of the form A that moreover have the form
¬C. But even if this formula has the value u, the formula of the corresponding
form ¬¬A needs the value t because the assignment does not interfere. Indeed, it
holds within the two-valued CLuNs-semantics that vM (¬¬A) = 1 if vM (A) = 1,
whatever v(¬¬A).

I mentioned before that the tuaf semantics introduces values u and a where
the gluts or gaps originate. Please check this. If vM (Pa) = vM (¬Pa) = 1 in the
clausal or tabular CLuNs-semantics, the tuaf semantics settles for vM (¬Pa) =
u. It holds within the two-valued CLuNs-semantics that if vM (Pa) = vM (¬Pa) =
vM (Qb) = 1, then vM (Pa∧Qb) = vM (¬Pa∨¬Qb) = 1, and hence also vM (Pa∧
Qb) = vM (¬(Pa∧Qb)) = 1. The tuaf semantics settles for vM (¬(Pa∧Qb)) = t.
This is precisely as we want it: the glut does not originate with ¬(Pa ∧Qb); it
originates with ¬Pa.

Consider the tuaf semantics of a very weak extension of CLuN, viz. with
A ⊃ ¬¬A, for which I shall use the rather arbitrary name CLuNNN . The tuaf
semantics is identical to that of CLuN, except for the tables for negation—
there are two of them. Let Wn

O be the set of formulas that do not have ¬ as
their first symbol.

Where A ∈ Wn
O: A v(¬A) ¬A

t 0 f
t 1 u
f (any) t

A v(¬¬A) ¬¬A
t (any) t
u (any) t
f 0 f
f 1 u

There are no input entries u in the first table because only formulas of the form
¬B can have the value u. The output value of the second line of the second table
is t because the assignment does not interfere. If vM (A) = f , then vM (¬A) = t,
whence vM (¬¬A) ∈ {u, f}.

There are two output entries u in this semantics. So negation gluts originate
at two kinds of points in CLuNNN -models, first where the negation of a non-
negated verified formula is itself verified and next where the double negation of
a falsified formula is verified—the negation of the formula is then verified and,
by the interference of the assignment, also its double negation.

Let us, as a non-paraconsistent illustration, consider the tuaf semantics for
the logic with the beautiful name CLuCoDaM, in words, the logic that leaves

JY.tex – November 7, 2014 21

room for conjunction gluts, for both disjunction gluts and disjunction gaps,
and for implication gaps. Let us consider the version in which Replacement of
Identicals is not added. So we do not need the equivalence classes from the
CLuNs-semantics. Moreover, I skip the tabular semantics. The reader may
very easily construct it in case the tuaf semantics would not be obvious at once.
The assignment and the valuation tables for atomic formulas are as for CL.

¬
t f
u f
a t
f t

≡ t u a f
t t t f f
u t t f f
a f f t t
f f f t t

v(A ∧B) = 1 :

∧ t u a f
t t t u u
u t t u u
a u u u u
f u u u u

v(A ∨B) = 1 :

∨ t u a f
t t t t t
u t t t t
a t t u u
f t t u u

v(A ⊃ B) = 1 :

⊃ t u a f
t t t f f
u t t f f
a t t t t
f t t t t

v(A ∧B) = 0 :

∧ t u a f
t t t f f
u t t f f
a f f f f
f f f f f

v(A ∨B) = 0 :

∨ t u a f
t a a a a
u a a a a
a a a f f
f a a f f

v(A ⊃ B) = 0 :

⊃ t u a f
t a a f f
u a a f f
a a a a a
f a a a a

{vM (A(α)) | α ∈ C ∪ O} ∀α(A(α)) ∃α(A(α))
⊆ {t, u} t t
⊆ {a, f} f f
(other) f t

This semantics illustrates a variety of cases. As there are no gluts or gaps with
respect to negation, equivalence, and the quantifiers, the output entries are all
t and f in the tables for those logical symbols. For conjunction there are only
gluts. So if v(A ∧ B) = 0, one obtains the normal table; if v(A ∧ B) = 1 every
f in the normal table is replaced by a u. Implication and disjunction illustrate
the other cases.

The tuaf semantics of da Costa’s Cn logics [23] illustrates a possible compli-
cation. Let A(1) abbreviate ¬(C∧¬C) and let A ≡c B denote that A and B are
congruent in the sense of Kleene or that one formula results from the other by
deleting vacuous quantifiers—Kleene [30, p. 153] summarizes his definition as
follows: “two formulas are congruent, if they differ only in their bound variables,
and corresponding bound variables are bound by corresponding quantifiers.”
The congruence requirement may be handled by first defining a pre-valuation,
which looks just like a tuaf semantics itself, and next defining a valuation from
the pre-valuation. The tuaf semantics of C1 clarifies the matter.

The assignment function is again the general one, as in the CL-semantics
from the beginning of this section. For atomic formulas, the pre-valuation
vM :WO → {t, u, f} has the same tables as the tuaf valuation of CLuN—these
tables are not repeated.

JY.tex – November 7, 2014 22

Where A ∈ Wa
O: vM (A) v(¬A) vM (¬A)

t 0 f
t 1 u
f (any) t

Where † ∈ {∨,∧,⊃} and A †B has not the form C ∧ ¬C:

vM (A †B) vM (A(1)) vM (B(1)) v(¬(A †B)) vM (¬(A †B))
t t t (any) f
t (other) 0 f
t (other) 1 u
f (any) (any) t

Where Q ∈ {∀, ∃}:

vM (QαA(α)) {vM (A(β)(1)) | β ∈ C ∪ O} v(¬QαA(α)) vM (¬QαA(α))
t = {t} (any) f
t ̸= {t} 0 f
t ̸= {t} 1 u
f (any) (any) t

The other tables apply to all members of WO:

vM (¬A) v(¬¬A) vM (¬¬A)
t (any) f
u 0 f
u 1 u
f (any) t

¬A A(1)

t t
u f
f t

∧ t u f
t t t f
u t t f
f f f f

∨ t u f
t t t t
u t t t
f t t f

⊃ t u f
t t t f
u t t f
f t t t

≡ t u f
t t t f
u t t f
f f f t

{vM (A(α)) | α ∈ C ∪ O} ∀αA(α) ∃αA(α)
∈ ℘{t, u} t t

= {f} f f
(other) f t

Let f(A) be the obtained by first deleting all vacuous quantifiers in A and then
systematically replacing all variables in the result by the first variables of the
alphabet in alphabetical order. Next, define the valuation values VM in terms
of the pre-valuation values vM by VM (A) = vM (f(A)).

Alternatively, a pre-valuation vM is called a valuation iff vM (A) = vM (B)
whenever A ≡c B.

Transforming the above semantics to a Cn logic (for 1 < n < ω) is an easy
exercise left to the reader—the formulation of the tables for C1 and the plot
described in the previous paragraph indicate the road. For Cω, one replaces

JY.tex – November 7, 2014 23

the tables for negation by the left and middle table below; for Cω (which is Cω

extended with classical negation, ∼) one adds the table to the right below.

vM (A) v(¬A) vM (¬A)
t 0 f
t 1 u
f (any) t

vM (¬A) v(¬¬A) vM (¬¬A)
t (any) f
u 0 f
u 1 u
f (any) t

A ∼A
t f
u f
f t

Incidentally, an indeterministic tuaf semantics is often more transparent than
its deterministic counterpart. As an indeterministic tuaf semantics does not
refer to the valuation, it has less clutter in the heads of the tables. So let me
display the relevant tables, viz. negation tables, for C1.

Where A ∈ Wa
O: A ¬A

t [f, u]
f t

Where † ∈ {∨,∧,⊃} and A †B has not the form C ∧ ¬C:

A ∗B A(1) B(1) ¬(A ∗B)
t t t f
t (other) [f, u]
f (any) t

Where Q ∈ {∀, ∃}: QαA(α) {vM (A(β)(1)) | β ∈ C ∪ O} ¬QαA(α)
t {t} f
t (other) [f, u]
f (any) t

The other tables apply to all members of WO: ¬A ¬¬A
t f
u [f, u]
f t

¬A A(1)

t t
u f
f t

The expression [f, u] indicates that the value may be f or u—this is an
indeterministic semantics. Note that the ‘normal’ value, the one that agrees
with CL at this point, is f . So if the value is u, it ‘drops from the sky’ as far
as the indeterministic semantics is concerned—in the deterministic semantics,
the assignment function interferes at this point. The ‘dropping from the sky’
holds for the semantics only; a premise set may require that some values are u
in its models. For other logics, a premise set may require some values to be a.
The metaphor is helpful, however, because it highlights that the values u and a
occur at points where an abnormality is generated.

The application of the semantics should clearly be separated from the un-
derlying idea. Even in indeterministic versions, the occurrence of output values
u should be understood in terms of the assignment’s interference.

JY.tex – November 7, 2014 24

6 An Application: The Flip-Flop Danger

A logic assigns a set of consequences to every premise set.25 A logic L is adaptive
if it adapts itself to the specific premises to which it is applied. One way
to explicate this phrase is by saying that there are rules R such that L does
not validate R, but L validates some applications of R to some premise sets.
Adaptive logics were developed with the aim to obtain precise formulations of
defeasible reasoning forms. These reasoning forms are methodological, rather
than logico-deductive.

This is not the place to present an introduction to adaptive logics—many
survey papers are available and a new state-of-the-art overview is on its way
[11, 12, 14]. I shall merely present an example to give the reader a feel of
adaptive logics. The example will allow me to point out a problem that is
solved by the new type of many-valued semantics.

Let Γ1 = {p, q,¬p ∨ r,¬q ∨ s,¬q}. Note that Γ1 0CLuN s and Γ1 0CLuN r.
Yet, there is a clear difference between p and q. While Γ1 requires that q behaves
inconsistently, it does not require that p behaves inconsistently. This holds intu-
itively and CLuN leads to exactly the same insight: Γ1 ⊢CLuN q ∧ ¬q whereas
Γ1 ⊢CLuN p but Γ1 0CLuN ¬p. The idea behind inconsistency-adaptive logics
is to interpret premise sets as normal as possible, where normality is obviously
connected to consistency. Interpreting Γ1 as normally as possible entails that q
is considered as inconsistent whereas p and many other formulas are considered
as consistent. Doing so results in r and not in s. Indeed, Γ1 ⊢CLuN r∨ (p∧¬p)
and p ∧ ¬p is considered to be false; Γ1 ⊢CLuN s ∨ (q ∧ ¬q) but q ∧ ¬q is true
anyway. Precisely this result is delivered by the inconsistency-adaptive logic
CLuNm .

A crucial component of adaptive logics is their set of abnormalities. In
the case of CLuNm , this set is {∃(A ∧ ¬A) | A ∈ F}, the existential closure
of contradictory formulas. As suggested before, the idea is that, if B is an
abnormality and A is not, if A ∨ B is CLuN-derivable, and if the premises
allow one on systematic and formal grounds to consider B as false,26 then A is
an adaptive consequence, in this case a CLuNm -consequence.

Now consider another inconsistency-adaptive logic, CLuNsm . One differ-
ence is that CLuN is replaced by CLuNs. This has the effect that all CLuNs
consequences are derivable from the premises independently of the fact that one
aims at a maximally normal interpretation. Thus Γ1 ⊢CLuNsm ¬¬q, whereas
Γ1 0CLuNm ¬¬q.27

In defining CLuNsm , one might be tempted to consider the same set of
abnormalities as in the case of CLuNm , viz. {∃(A∧¬A) | A ∈ F}. If one does so,
however, one looses the adaptive effect. Indeed, although Γ1 ⊢CLuNs r∨(p∧¬p)
and Γ1 0CLuN p ∧ ¬p, one cannot simply consider p as behaving consistently
on Γ1. This is so because Γ1 ⊢CLuN (p ∧ ¬p) ∨ ((r ∧ q) ∧ ¬(r ∧ q)), whereas
Γ1 0CLuN (r∧q)∧¬(r∧q). So (p∧¬p)∨((r∧q)∧¬(r∧q)) is a minimal disjunction
of abnormalities that is CLuNs-derivable from Γ1. One of the disjuncts is false,
but we do not know which one and cannot decide on logical grounds for one or

25This weak characterization is preferable in order to avoid prejudged narrowing of the
domain. It is equivalent to the characterization offered by Béziau [18].

26The matter is handled by an adaptive strategy—see the referred survey papers.
27If this sounds puzzling, please realize that {q,¬q,¬¬q,¬¬¬q} is more inconsistent than

{q,¬q,¬¬¬q} and that CLuN does not validate A ⊃ ¬¬A.

JY.tex – November 7, 2014 25

for the other if both disjuncts count as abnormalities. It can be shown that this
reasoning can be generalized. If CLuNsm is given {∃(A∧¬A) | A ∈ F} as its set
of abnormalities, the consequences derivable by CLuNsm from any inconsistent
premise set Γ are identical to the consequences derivable by CLuNs from Γ.
Such an adaptive logic is called a flip-flop: its consequence set is identical to
the CL-consequence set if Γ is consistent and to the CLuNs-consequence set
otherwise.28

This does not mean that a decent inconsistency-adaptive logic CLuNsm

cannot be defined. Such a logic is obtained, e.g., by defining {∃(A ∧ ¬A) | A ∈
Fa} as the set of abnormalities, Fa being the set of atomic formulas of L. In
this case p∧¬p can be considered as false and r will be a CLuNsm -consequence
of Γ1.29

Abnormality is used here as a technical term. There is obviously a relation
to the intuitive sense of the term. The intuitive sense may be seen as defined by
CL.30 Every inconsistent theory is intuitively abnormal : it has no CL-models.
This justifies the choice of {∃(A ∧ ¬A) | A ∈ Fa} as the set of abnormalities
for the inconsistency-adaptive logic CLuNsm . Indeed, if Γ is inconsistent, then
there is an A ∈ {∃(A∧¬A) | A ∈ Fa} such that Γ ⊢CLuNs A. So if Γ is normal
in the intuitive sense, then it is CLuNsm -normal; and vice versa.

The handiest way to describe gluts and gaps is available when all classical
logical symbols are present in the language. A negation gap will for example
be described by ¬̌A ∧̌ ¬̌¬A, in which the ‘checked’ symbols have their CL-
meaning.31 Similarly, a disjunction glut may be described by ¬̌A ∧̌ ¬̌B ∧̌(A∨B)
or, more transparently, by ¬̌(A ∨̌B) ∧̌ (A ∨B).

A possible source of confusion should be clarified here. If vM (¬p) = u
in a tuaf-semantics, then M
 ¬̌p ∧ ¬̌¬p—the classical negation of p is true
while its standard negation is false. If vM (¬p) = a in a tuaf-semantics, then
M
 ¬̌¬̌p ∧ ¬p—the classical negation of p is false while its standard negation
is true.32 Similarly for other logical symbols. So it is important to distinguish
between the formula A that ‘displays’ a glut or gap in a model M , whether on
the agreement view or on the interference view, and the formula that ‘describes’
the glut or gap and is verified by M . Let the (A)a, respectively (A)u, be the
formula that ‘describes’ that A ‘displays’ a gap, respectively a glut.

An adaptive logic that is a flip-flop may be turned into a non-flip-flop by
weakening its set of abnormalities. There is, however a danger to that as well.
The danger may be illustrated by considering the inconsistency-adaptive logic—
call it X—that is obtained by replacing the set of abnormalities of CLuNm by
the set {∃(A ∧ ¬A) | A ∈ Fa}. Consider the simple but explicit premise set
Γ2 = {p ∨ ((q ∧ r) ∧ ¬(q ∧ r))}. The fact is that Γ2 0X p and the reason
is that there are no abnormalities A1, . . . , An ∈ {∃(A ∧ ¬A) | A ∈ Fa} such

28In some exceptional cases, one wants an adaptive logic that is a flip-flop.
29The formula (r ∧ q)∧¬(r ∧ q) is not an abnormality but it is a CLuNsm -consequence of

Γ1. Indeed, q ∧ ¬q is a CLuNs-consequence (and hence a CLuNsm -consequence) of Γ1, r is
a CLuNsm -consequence of Γ1, and q ∧ ¬q, r ⊢CLuNs (r ∧ q) ∧ ¬(r ∧ q).

30Still and to the best of my knowledge, paraconsistent logics that do not allow for other
gluts or gaps and were proposed to serve a sensible purpose agree with CL in classifying Γ as
inconsistent.

31The ‘checked’ symbols are metalinguistic names for certain symbols of the language L of
logic L. If the ∧ is a classical conjunction in L and ∼ is a classical negation in L, then the
formula in the text stands for ∼A ∧ ∼¬A.

32Note that M
 p ∧ ¬p will do just as good.

JY.tex – November 7, 2014 26

that Γ2 ⊢CLuN p ∨ (A1 ∨ . . . ∨ An). So here lurks a different danger: that the
technical sense of abnormality is too weak with respect to the intuitive sense
of abnormality, whence some consistent sets, like Γ2, are not assigned all CL-
consequences. If the aim is to interpret theories as consistently as possible in
the sense of CL, then the inconsistency-adaptive logic X is clearly too weak.

So while there is, on the one hand, the flip-flop danger, there is, on the
other hand, (what may be called) the wimp danger. It is typical for adaptive
logics that both extending the set of abnormalities and reducing it may lead to
a weakening of the consequence set. The matter is too complex to fully discuss
it here, but the use of the many-valued logics from the previous section may
still be illustrated. They do not offer a single criterion, but rather two criteria.
Moreover, they obviously can only be applied if the considered logics have a tuaf
semantics. Finally, I cannot show that the (partial) criteria in the subsequent
paragraph are correct because this requires much more technical information on
adaptive logics—people familiar with adaptive logics will find the matter rather
transparent.

Let L be the deductive logic that underlies the adaptive logic—like CLuN
and CLuNs in the previous examples—and let the semantic phraseology refer
to the tuaf semantics of L. Let the adaptive logic be Lm and Ω ⊂ W its set of
abnormalities.

(a) Lm is not a flip-flop if, for every A ∈ W, (i) (A)a /∈ Ω if there is a L-tuaf-
model M such that vM (A) = t and M
 (A)a and (ii) (A)u /∈ Ω if there is
a L-tuaf-model M such that vM (A) = f and M
 (A)u.33

(b) Lm is not a wimp if, for every A ∈ W, (i) (A)a ∈ Ω if there is a L-tuaf-
model M such that vM (A) = a and M
 (A)a and (ii) (A)u ∈ Ω if there is
a L-tuaf-model M such that vM (A) = u and M
 (A)u.34

The main antecedent of (a) is not fulfilled for any flip-flops but is fulfilled
for some wimps. The main antecedent of (b) is not fulfilled for any wimps, but
is fulfilled for some flip-flops. If it sounds confusing, realize that (a) and (b)
delineate extremes of the sets of abnormalities, not of the adaptive consequence
sets.

7 Some Reflections

The tuaf semantics introduced in Section 5 provides insights that are useful in-
dependent of the flip-flop problem.35 The tuaf semantics delineates the points
at which inconsistencies originate—similarly for other non-standard features,
but I shall continue to concentrate on inconsistencies. So the information pro-
vided by a tuaf semantics is very valuable for comparing different paraconsistent
logics and even for understanding specific paraconsistent logics separately. A

33The main antecedent warrants that there are L-models M and M ′ of intuitively abnormal
Γ such that {A ∈ Ω | M
 A} ⊂ {A ∈ Ω | M ′
 A}. That some L-models of intuitively
abnormal Γ are not minimally abnormal L-models of Γ entails that Lm is not a flip-flop.

34The main antecedent warrants that every minimally abnormal L-modelM of an intuitively
normal Γ is such that {A ∈ Ω | M
 A} = ∅. This entails that, for all intuitively normal Γ,
Γ ⊢Lm A iff Γ ⊢CL A. So Lm is not a wimp.

35In connection with the flip-flop problem, the result may easily be generalized to, for
example, modal logics. There are indeed adaptive logics in which abnormalities have the form
♢A ∧ ¬A or the form ♢A ∧ ♢¬A. This, however, should not be elaborated here.

JY.tex – November 7, 2014 27

typical difference between CLuNs and CLuN is that the former makes all in-
consistencies dependent on inconsistencies in atomic formulas whereas CLuN
makes inconsistencies independent of each other.36 While it is not difficult to
understand the behaviour of inconsistencies in those two logics, the matter is
more difficult for other paraconsistent logics, such as C1 or CLuNNN—and
also for other non-standard behaviour as allowed by logics like CLuCoDaM.
In all such cases, the tuaf semantics is definitely clarifying. Some readers may
question the use of these many-valued logics in view of the fact that the infor-
mation they provide may also be obtained (in a more laborious way) from the
two-valued semantics. This objection does not hold water. If it did, it would
just as well be an objection against usual many-valued semantic systems.

The main conclusion on semantic systems in general is that one should sepa-
rate technical features from philosophical ones. That a logic has a many-valued
semantics is a technical feature, and so is the fact that the logical symbols are or
are not truth-functions in that semantics. Such technicalities do not determine
the ontological structure of domains to which the logic may sensibly be applied.
The same logic may very well agree with different ontological views and each
of these may suggest a different set of valuation values. A nice example is that
Priest’s LP has a three-valued semantics in which all logical symbols are truth-
functions, but that the ontology underlying this semantics is clearly at odds
with Priest’s dialetheism [34, §19.7]—see also footnote 15.

A logic L need not to be given an interpretation that agrees with a L-
semantics in which all logical symbols are truth-functions. In some cases it is
hard to imagine an interpretation that would go along with such a semantics—
the S-valued and the T-valued semantics of CLuN are ready examples. Which
is the set of truth-values, or more generally of valuation values, that statements
may take, is a philosophical question. A sensible person might hold that there
are three truth-values, say plain truth, plain falsehood, and inconsistency, and
this person might want to allow for complex inconsistencies that have only
consistent components, some true, some false. This person might end up with
CLuN as her preferred logic and might end up with a three-valued CLuN-
semantics, in which negation is not a truth-function, as the best way to picture
the world’s ontology.

The aim of this paper was to raise questions, rather than to draw conclusions.
The aim of the questions was to criticize prejudices, especially prejudices on
many-valued logics, on the use or need to express the valuation values within
the object language, on truth-functionality, and on the connection of all this to
the semantics’ ontological significance.

In a sense this paper concerns consequences of Suszko’s aforementioned re-
sult. If many-valued logics have a two-valued semantics and if this semantics,
unlike the many-valued one, expresses the truth-preservation underlying the
consequence relation, then the many-valued semantics is bound to serve a dif-
ferent purpose. But obviously there are several such purposes and these will
lead to different many-valued semantic characterizations of the same logic.

Much work remains to be done in connection with the two preceding para-
graphs. An obvious topic of research is the generalization of the S-semantics
and of the T-semantics to other logics than CLuN and the study of the prop-

36A conjunct of an inconsistency may be an inconsistency itself, as is the case for (p∧¬p)∧
¬(p ∧ ¬p). Even then the complex inconsistency is independent of the less complex one.

JY.tex – November 7, 2014 28

erties of logics and of classes of logics revealed by this generalization. Coding
the information from a worlds-semantics into a many-valued semantics seems a
closely related task. A very different topic concerns the articulation of many-
valued logics originating from the agreement view, as opposed to the interference
view, and the study of insights offered by both types of many-valued semantics.
While CL was considered as the absolute point of reference in the present paper,
shifting to a different point of reference may have enlightening effects. All such
research will help us, logicians, to overcome traditional prejudices and to better
understand the aims, properties, and uses of logic at the service of reasoning
and thus of understanding and action.

References

[1] Alan Ross Anderson, Nuel D. Belnap, Jr., and J. Michael Dunn. Entail-
ment. The Logic of Relevance and Necessity, volume 2. Princeton University
Press, 1992.

[2] Ofer Arieli, Arnon Avron, and Anna Zamansky. Maximal and premaximal
paraconsistency in the framework of three-valued semantics. Studia Logica,
97:31–60, 2011.

[3] Arnon Avron. On an implication connective of RM. Notre Dame Journal
of Formal Logic, 27:201–209, 1986.

[4] Arnon Avron. Natural 3-valued logics—Characterization and proof theory.
The Journal of Symbolic Logic, 56:276–294, 1991.

[5] Arnon Avron. Non-deterministic matrices and modular semantics of rules.
In Jean-Yves Béziau, editor, Logica Universalis, pages 149–167. Birkhäuser
Verlag, Basel – Boston – Berlin, 2005.

[6] Arnon Avron, Jonathan Ben-Naim, and Beata Konikowska. Cut-free ordi-
nary sequent calculi for logics having generalized finite-valued semantics.
Logica Universalis, 1:41–70, 2007.

[7] Arnon Avron and Beata Konikowska. Multi-valued calculi for logics based
on non-determinism. Journal of the Interest Group of Pure and Applied
Logic, 10:365–387, 2005.

[8] Diderik Batens. Paraconsistent extensional propositional logics. Logique et
Analyse, 90–91:195–234, 1980.

[9] Diderik Batens. A bridge between two-valued and many-valued semantic
systems: n-tuple semantics. Proceedings of the 12th International Sympo-
sium on Multiple-Valued Logic, IEEE:Los Angeles, 318–322, 1982.

[10] Diderik Batens. Inconsistency-adaptive logics. In Ewa Or lowska, editor,
Logic at Work. Essays Dedicated to the Memory of Helena Rasiowa, pages
445–472. Physica Verlag (Springer), Heidelberg, New York, 1999.

[11] Diderik Batens. A general characterization of adaptive logics. Logique et
Analyse, 173–175:45–68, 2001. Appeared 2003.

JY.tex – November 7, 2014 29

[12] Diderik Batens. A universal logic approach to adaptive logics. Logica
Universalis, 1:221–242, 2007.

[13] Diderik Batens. Adaptive Logics and Dynamic Proofs. Mastering the Dy-
namics of Reasoning. 201x. Forthcoming.

[14] Diderik Batens. Tutorial on inconsistency-adaptive logics. 201x.

[15] Diderik Batens. Spoiled for choice? Journal of Logic and Computation, in
print. doi:10.1093/logcom/ext019, 1913.

[16] Diderik Batens and Kristof De Clercq. A rich paraconsistent extension of
full positive logic. Logique et Analyse, 185–188:227–257, 2004. Appeared
2005.

[17] Diderik Batens, Chris Mortensen, Graham Priest, and Jean Paul Van Ben-
degem, editors. Frontiers of Paraconsistent Logic. Research Studies Press,
Baldock, UK, 2000.

[18] Jean-Yves Béziau. What is paraconsistent logic? In Batens et al. [17],
pages 95–111.

[19] Jean-Yves Béziau. Are paraconsistent negations negations? In Walter A.
Carnielli, Marcelo E. Coniglio, and Itala M. Loffredo D’Ottaviano, edi-
tors, Paraconsistency. The Logical Way to the Inconsistent, pages 465–486.
Marcel Dekker, New York, 2002.

[20] Rudolf Carnap. Meaning and Necessity. University of Chicago Press,
Chicago, 1947.

[21] Rudolf Carnap. Logical Foundations of Probability. University of Chicago
Press, Chicago, 1950.

[22] Walter A. Carnielli, João Marcos, and Sandra de Amo. Formal inconsis-
tency and evolutionary databases. Logic and Logical Philosophy, 8:115–152,
2001. Appeared 2002.

[23] Newton C.A. da Costa. On the theory of inconsistent formal systems. Notre
Dame Journal of Formal Logic, 15:497–510, 1974.

[24] Itala M. L. D’Ottaviano. Sobre uma Teoria de Modelos Trivalente (in
Portuguese). PhD thesis, State University of Campinas (Brazil), 1982.

[25] Itala M. L. D’Ottaviano. The completeness and compactness of a
three-valued first-order logic. In Proceedings of the 5th Latin American
Symposium on Mathematical Logic, pages 77–94. Revista Colombiana de
Matemáticas, 1–2, 1985.

[26] Itala M. L. D’Ottaviano. The model extension theorems for J3-theories. In
Carlos A. Di Prisco, editor, Methods in Mathematical Logic: Proceedings of
the 6th Latin American Symposium on Mathematical Logic, Lecture Notes
in Mathematics 1130, pages 157–173. Springer-Verlag, 1985.

[27] Itala M. L. D’Ottaviano. Definability and quantifier elimination for J3-
theories. Studia Logica, 46(1):37–54, 1987.

JY.tex – November 7, 2014 30

[28] Itala M. L. D’Ottaviano and Richard L. Epstein. A paraconsistent many-
valued propositional logic: J3. Reports on Mathematical Logic, 22:89–103,
1988.

[29] Olivier Esser. A strong model of paraconsistent logic. Notre Dame Journal
of Formal Logic, 44:149–156, 2003.

[30] Stephen Cole Kleene. Introduction to Metamathematics. North-Holland,
Amsterdam, 1952.

[31] Victor Kraft. Der Wiener Kreis. Springer, Wien, 1950.

[32] Iddo Lev. Preferential systems for plausible non-classical reasoning. Mas-
ter’s thesis, Department of Computer Science, Tel-Aviv University, 2000.
Unpublished M.A. dissertation.

[33] Graham Priest. The logic of paradox. Journal of Philosophical Logic,
8:219–241, 1979.

[34] Graham Priest. In Contradiction. A Study of the Transconsistent. Oxford
University Press, Oxford, 2006. Second expanded edition (first edition
1987).

[35] J. B. Rosser and A. R. Turquette. Axiom schemes for m-valued proposi-
tional calculi. Journal of Symbolic Logic, 10:61–82, 1945.

[36] Kurt Schütte. Beweistheorie. Springer, Berlin, 1960.

[37] Elena D. Smirnova. An approach to the justification of semantics of para-
consistent logics. In Batens et al. [17], pages 255–262.

[38] Roman Suszko. The Fregean axiom and Polish mathematical logic in the
1920s. Studia Logica, 36:377–380, 1977.

[39] Peter Verdée and Diderik Batens. Nice embedding in classical logic. Under
review, 201x.

[40] Georg Henrik von Wright. Truth-logics. Acta Philosophica Fennica, 60:71–
91, 1996.

