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abstract. The main result presented in this paper concerns a dia-
logic or game-theoretical interpretation of dynamic proofs. Dynamic
proofs in themselves do not form a demonstration of the derivability
of their last formula from a given premise set. Apart from the proof,
such a demonstration requires a specific metalevel argument. In a
natural and appealing form, the metalevel argument is phrased in
terms of the existence of a winning strategy for the proponent.

The aforementioned point is presented in terms of an approach
that is in a sense Hilbertian and anti-Tarskian: the characterization
of logical inference in terms of types of proofs, rather than in terms
of properties of the consequence relation.

1 Introduction

Dialogic and game theoretical semantics are fascinating enterprises. Whether
a formula A is a consequence of a premise set Γ may be understood and
sometimes resolved in terms of a dialogue between a Proponent, who claims
that Γ `L A, and an Opponent, who denies it. The underlying idea of
the games is not who wins the dialogue or game, but whether there exists
a winning strategy for one of the players. Obviously, the rules of the di-
alogue have to be spelled out in a precise way. One has to delineate the
moves allowed to each player in view of a certain state of the dialogue, the
conditions under which the Proponent (respectively Opponent) wins, and
the conditions under which the Proponent (possibly the Opponent) has a
winning strategy.

1Research for this paper was supported by subventions from Ghent University and
from the Fund for Scientific Research – Flanders. I am grateful to Kristof De Clercq
and especially to Joke Meheus, Christian Straßer, and Peter Verdée for comments on a
previous draft.
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One of the fascinating aspects of dialogic is that it offers an interpretation
of the idea of logical consequence: it is impossible that the conclusion is false
if the premises are true. This is matched to: whatever the choices made by
the Opponent, the Proponent has a winning strategy.

Of course computational aspects come into play. If the logic is decidable
and Γ 0L A, the Opponent will have a winning strategy. Sometimes there
is only a positive test for the consequence relation (it is semi-decidable). In
that case Γ 0L A has to be connected to the absence of a winning strategy
for the Proponent.

While dialogic is fascinating in the case of usual logics, there are other
logics for which there is not even a positive test. The proofs of such logics
are typically dynamic: a formula derived at some point in a proof from Γ,
may be considered not to be a consequence of Γ at a later point in the proof
in view of the insights in the premises that were gained by continuing the
proof. The dynamics need not stop there: at a still later point, the proof
may provide further insights in the premise set Γ and, as a result of this,
it is possible that the formula has to be considered again as a consequence
of Γ. Incidently, there are many such logics and they explicate reasoning
processes that occur frequently in scientific as well as in everyday context.

It will be shown in this paper that it is natural to apply a dialogic or game
theoretical approach to consequence relations defined by dynamic proofs. I
shall do so by discussing the dynamic proofs I am most familiar with, viz.
those of adaptive logics.

First static proofs will be introduced in Section 2 and dynamic proofs
in Section 3. Although everyone can recite Hilbert’s definition of a proof,
the extent to which logicians rely on implicit presuppositions concerning
proofs is striking. I try to repair this in these sections. Next, I shall briefly
introduce adaptive logics in Section 4. This will enable me to spell out the
dialogic approach for a sufficiently concrete and studied family of logics,
but nevertheless to do so for a very large set of logics. The dialogues them-
selves are presented and discussed in Section 5. Some open problems are
mentioned in Section 6.

2 Static Proofs

Let L be a language with a denumerable alphabet and W its set of closed
formulas. A logic L is a function that maps every set of closed formulas to
a set of closed formulas, L: ℘(W) → ℘(W). In other words, a logic assigns
a consequence set to every set of formulas. The L-consequence set of Γ will
be denoted by CnL(Γ). Alternatively, that A is a L-consequence of Γ is
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denoted by Γ `L A. Note that CnL(Γ) = {A | Γ `L A}.1
By a rule I shall mean a metalinguistic expression of the form “to derive

A from Σ”,2 in which A is a metalinguistic formula and Σ is a recursive (or
decidable) set of metalinguistic formulas. The rule “to derive A from Σ”
is finitary iff Σ is a finite set. If Σ is empty, A is usually called an axiom
schema.

A rule is derivable from a set R of rules iff it does not belong to R
but every result of its application can be obtained by applications of rules
belonging to R. Thus the following annotated metalinguistic proof demon-
strates that the commutativity of conjunction (to derive B∧A from A∧B)
is derivable from a set of rules that contains Simplification and Adjunction.3

1 A ∧B . . .
2 A 1; Simplification
3 B 1; Simplification
4 B ∧A 2, 3; Adjunction

Dynamic proofs are most easily described in terms of annotated proofs.
For the sake of comparison, let me describe static proofs in terms of anno-
tated proofs as well. Lines of static annotated proofs will be composed of
a line number, a formula, and a justification. The justification of a line l
consists of a (possibly empty) set of line numbers Nl and the name of a rule
Rl. Lines at which members of the premise set are introduced are justified
by the Premise rule. Given a set R of rules and a list4 of lines, a line l in the
list is R-correct iff (i) all members of Nl precede l in the list, (ii) Rl ∈ R,
and (iii) the formula of l is obtained by application of Rl to the formulas of
the lines Nl.

DEFINITION 1. A (static) R-proof from (the premise set) Γ is a list of
R-correct lines.

Where the rule “to derive A from Σ” is a member of a set R of rules,
the rule is redundant (with respect to R) iff there is a Σ′ ⊂ Σ for which “to
derive A from Σ′” is derivable from R. A set of rules R is minimal iff, for
every R′ ⊂ R, some R-proof is not a R′-proof.

THEOREM 2. If R is a minimal set of rules that characterizes R-proofs,
then all members of R are finitary.

1I shall use either notation as is simplest in a specific context. It is instructive to
rephrase statements in one notation into the other.

2The characters A, B, . . . will be used as metametalinguistic variables for metalinguistic
formulas.

3As presented below in the text, the demonstration presupposes static proofs, defined
later in this section.

4A list is an enumeration of a set in which each member of the set is associated with
a positive integer, which indicates its place in the list—see [10, Ch. 1].
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Proof. Consider a R-proof. In view of Definition 1, the proof is a list of
lines. If a member of R would be non-finitary, its resulting formula would
have to appear in the proof after the infinitely many formulas to which the
rule is applied. So applying the rule would not result in a list of formulas.
The theorem follows in view of the minimality of R. ¥

DEFINITION 3. A (static) R-proof of A from Γ is a R-proof from Γ in
which A is the formula of the last line.

The syntactic characterization of a logic L is often identified with the
logic itself. In this case proofs are named after the logic rather than after a
set of rules characterizing the logic.

DEFINITION 4. A logic L has finite and static proofs iff there is a recursive
set R of non-redundant rules such that Γ `L A iff there is a R-proof of A
from Γ.

That a logic L has finite and static proofs has a number of interesting
and easily provable consequences. Let RL be a recursive and minimal set of
non-redundant rules such that there is a RL-proof of A from Γ iff Γ `L A.
Note that there is a set RL whenever L has finite and static proofs.

THEOREM 5. If L has finite and static proofs, then L is Compact (if
A ∈ CnL(Γ) then A ∈ CnL(Γ′) for some finite Γ′ ⊆ Γ).

Proof. Suppose that the antecedent is true and that Γ `L A. In view
of Definitions 3 and 4 there is a finite RL-proof of A from Γ. So A is a
consequence of finitely many members of Γ. ¥

THEOREM 6. If L has finite and static proofs, then L is Reflexive (Γ ⊆
CnL(Γ)).

Proof. Suppose that the antecedent is true and that A ∈ Γ. By Definition
1, the list comprising a single line on which A is derived by the Premise rule
is a RL-proof of A from Γ. So A ∈ CnL(Γ) by Definition 4. ¥

THEOREM 7. If L has finite and static proofs, then L is Transitive (if
A ∈ CnL(∆) and ∆ ⊆ CnL(Γ), then A ∈ CnL(Γ)).

Proof. Suppose that the antecedent is true and that A ∈ CnL(∆) and
∆ ⊆ CnL(Γ). In view of Theorem 5, there is a finite ∆′ ⊆ ∆ such that
∆′ ⊆ CnL(Γ) and A ∈ CnL(∆′). Let ∆′ = {B1, . . . , Bn}. In view of
Definitions 4 and 1 there is, for each Bi (1 ≤ i ≤ n), a RL-proof pi of Bi

from Γ and there is a RL-proof of A from ∆′. Let pn+1 be the result of
deleting from the latter proof all lines on which a member of ∆′ is introduced
by the premise rule. The list obtained by concatenating p1, . . . , pn+1 is easily
seen to be a RL-proof of A from Γ. So A ∈ CnL(Γ) by Definition 4. ¥
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THEOREM 8. If L has finite and static proofs, then L is Monotonic
(CnL(Γ) ⊆ CnL(Γ ∪ Γ′) for all Γ′).

Proof. In view of Definition 3, every RL-proof of A from Γ is a RL-proof
of A from Γ ∪ Γ′. So the theorem follows by Definition 4. ¥

LEMMA 9. If L has finite and static proofs, all possible lines that occur in
RL-proofs can be written as finite strings of a denumerable alphabet.

Proof. This is obvious for the line number and the formulas. The justifica-
tion of a line contains a finite set of line numbers (in view of Theorem 2) and
the name of a rule. So all line numbers involved can be written as a finite
string of a finite alphabet and as RL is a denumerable set, finite strings of a
finite alphabet are sufficient to name all rules. The three elements of a line
and the elements of the justification can obviously be separated by finitely
many symbols. ¥

So we use a denumerable alphabet to write proof lines as finite strings.
Actually, if the lemma would not hold, humans would not be able to write
proofs.

There is a positive test for a logic L (L is semi-decidable) iff there is a
mechanical procedure that, for every decidable Γ and A, leads after finitely
many steps to the answer YES iff Γ `L A (but may not provide an answer
at any finite point if Γ 0L A).

THEOREM 10. If L has finite and static proofs, then there is a positive
test for L.

Proof. Suppose that Γ is a decidable set of formulas and that Γ `L A. In
view of Definitions 3 and 4, there is a finite RL-proof of A from Γ.

All finite lists of finite strings of the alphabet in which proofs are written
can be ordered into a list L. It is well-known (and easily seen) to be decidable
whether a member of L is a RL-proof of A from Γ. As some member of L
is bound to be a RL-proof of A from Γ, we shall find it after finitely many
steps. ¥

The upshot is that logics that have finite and static proofs are logics of
the usual kind. It is also the case, although not proved here, that most
usual logics have finite and static proofs. Not all known logics have finite
and static proofs. A well-know exception is second order logic, which is
not compact. An obvious example, taken from [10, p. 283] concerns the
premise set comprising second order axioms for arithmetic (roughly Peano
arithmetic plus the second order axiom of mathematical induction) together
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with all formulas of the form ∼c = i (for i ∈ {0, 0′, 0′′, . . .} and c a constant
that is added to the language of arithmetic). This set is inconsistent and
hence 0 = 0′ is derivable from it (by second order logic), but (on the suppo-
sition that arithmetic is consistent) 0 = 0′ is not derivable from any subset
of the premises. In order to define proofs for second order logic, one might
try to modify Definition 3 to the following.

DEFINITION 11. Where R is a set of rules, a R-proof of A from Γ is a
proof from Γ containing a line of which A is the formula.

Definition 1 merely requires the existence of a list of lines, possibly an
infinite one. By changing Definition 3 to Definition 11, one might hope to
allow for infinite proofs. However, this will not work, as is obvious from
the above example. The application of any set of rules could only lead to
deriving 0 = 0′ from the premise set after all premises were introduced in
the proof (because every subset of the premise set is consistent). But if all
premises occur in the proof, there are no positive integers left to associate
with 0 = 0′.

There are obviously ways around this. For example, one might allow for
proofs in which consequences of a (proper or improper) subset of the premise
set are introduced directly, that is without the premises being introduced.
This does not solve the whole problem: an infinitary rule might not enable
one to derive a formula A from the premises, but might enable one to
derive A from an infinite set of consequences of the premises. Rather than
continuing this discussion, let us move on.

By all means, the above trouble with second order logic (and with in-
finitary rules in general) does not entail that one cannot consider infinite
proofs in the sense of Definition 1. Although one obviously cannot write
down such proofs, we may consider them and reason about them, as we
shall see in Section 3.

Before leaving the matter, let me mention non-annotated proofs. These
are simply lists of formulas. The easy exercise of adjusting Definitions 1–4
to non-annotated proofs is left to the reader.

3 Dynamic Proofs

Dynamic proofs may be realized in several ways. I shall present the way
they grew out of the work of my research group during the last twenty years.
The proofs are those of adaptive logics. It is a long term aim of the research
group to characterize all forms of dynamic reasoning. Perhaps it is possible
to do so in terms of adaptive logics. Otherwise new types of logics will have
to be devised.

Dynamic proofs are meant to characterize a logic, in other words a con-
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sequence relation. This means that the dynamics should be handled in a
controlled way. It should not depend on decisions of the person constructing
the proof, but on something ‘objective’. In the peculiar form of dynamic
proofs considered here, this is realized as follows. First, the rules will al-
low one to derive some formulas on a condition. Next, there is a Marking
definition which determines whether a line is marked or unmarked at some
stage of the proof—stages will be defined in a precise way below. The defi-
nition proceeds in terms of the conditions and of the occurrence of certain
formulas at the stage. The formula of a line is considered as derived when
it is unmarked. To make the annotated proofs transparent, their lines are
quadruples consisting of a line number, a formula, a justification, and a con-
dition. The condition is a set of formulas—the expression “the formula of a
line” will always refer to the second element of the line. In the next section,
I shall present specific rules, which introduce and handle conditions, as well
as specific marking definitions. In the present section, I use these notions
in a more abstract way.

The rules and the Marking definition will be kept strictly apart. The
rules determine which lines may be added to a proof and do not in any way
interfere with the marks. The Marking definition determines which lines
are marked at a stage and which unmarked.

As a dynamic proof proceeds, marks may come and go. So in order to
describe dynamic proofs, we have to consider the relation between consec-
utive lists of lines. These will be identified with the stages of a proof. Let
R denote a set of rules as before.5

DEFINITION 12. A R-stage from Γ is a list of R-correct lines.

To facilitate terminology, I shall consider the empty list as a stage of
every R-proof from every premise set.

DEFINITION 13. Where L and L′ are R-stages from Γ, L′ is an extension
of L iff all elements that occur in L occur in the same order in L′.

Normally, the line resulting from the application of a rule to members of
L is appended to L. This will not be required for dynamic proofs. Indeed,
we shall soon see a reason to allow for the insertion of lines between the
lines of a previous stage (in such a way that the resulting list is a R-stage
from the premise set according to Definition 12).

DEFINITION 14. A (dynamic) R-proof from Γ is a chain of R-stages from
Γ, the first element of which is the empty list and all other elements of which
are extensions of their predecessors.

5I am indebted to Andrzej Wísniewski who convinced me, several years ago, to see a
proof as a chain of stages.
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Note that aR-proof from Γ may be finite or infinite. Consider the premise
set {pi, pi ⊃ qi | i ∈ N} and let Modus Ponens belong to R. Some R-proof
contains a stage in which occur the following three lines for all i ∈ N−{0}:
3i− 2 pi Premise
3i− 1 pi ⊃ qi Premise
3i qi 3i-2, 3i-1; Modus Ponens

It is often convenient to use the following terminology. A R-proof that
has s as its last stage will also be called a proof at stage s. Where no
confusion arises, I shall sometimes call finite stages by the number of the
line that was last added to them. This will also enable me to refer to stages
that are predecessors of the present stage.

The proof of Theorem 15 is obvious in view of that of Theorem 2 (which
sounds identical but concerns static proofs).

THEOREM 15. If R is a minimal set of rules that characterizes R-proofs,
then all members of R are finitary.

We shall see in the next section that, in some cases, there are reasons
to consider extensions of infinite stages (stages comprising infinitely many
lines). Are there such extensions? Clearly, if a stage s comprises infinitely
many lines, no extension of s can be obtained by appending a line to s,
because this does not result in a list of formulas. Recall, however, that we
have only to consider finitary rules (in view of Theorem 15). It follows that
all formulas required to apply some rule occur at a finite point in s; let
the last formula occur at the nth line of s. So the result of the application
can be inserted between the nth and (n + 1)th line of s. It is unimportant
whether one renumbers the lines from n + 1 on, or gives the inserted line
an unusual number, say n.1. All that matters is that the extension of s is a
list of formulas.

People who might have principled objections against the insertion of lines
in a proof should realize that the result of the insertion may obviously also
be obtained by appending only. In a sense, the resulting objects, viz. the
stages, are identical; only their history, viz. the chain of stages, is different.

DEFINITION 16. A is derived at stage s of a R-proof from Γ iff A is the
formula of a line of s and this line is unmarked at stage s.

DEFINITION 17. A is R-derivable at a stage from Γ iff A is derived on a
line of a stage of a R-proof from Γ.

A formula may be derivable at one stage and underivable at the next, or
vice versa. This is typical of dynamic proofs and there is nothing wrong
with it. Yet we also want to define a more stable notion of derivability to
express where the dynamics leads to in the end—whether we are able to find
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out where the dynamics leads to is a different matter. This stable notion
will be called final derivability.

DEFINITION 18. Where p is a R-proof from Γ at stage s, p is stable
with respect to line i iff (i) line i occurs in s and (ii) if line i is marked,
respectively unmarked, at stage s, then it is marked, respectively unmarked,
in all extensions of s.

The intuitive idea behind final derivability is that A is derived from Γ
on an unmarked line of a stage of a R-proof from Γ and that the proof is
stable with respect to that line.

Note that the final derivability of A from Γ cannot be warranted by any
proof in itself. One always needs a proof together with a metalevel reasoning
about all possible extensions of this proof. This should be taken into account
when forging a definition of final derivability.

There are A and Γ for which the following holds: only infinite R-proofs
from Γ contain an unmarked line on which A is derived and are stable with
respect to this line. That is obviously inconvenient. Such a proof can be
reasoned about, at the metalevel, but it cannot be produced. This is a good
reason to look for a different approach. However, it is difficult to do so at
the abstract level of the present section. So let us postpone this to the next
section, in which a specific family of logics is presented. If you wonder what
concrete dynamic proofs look like, you will obtain an answer there.

Before leaving this section, let me point out that static proofs are a
special case of dynamic proofs. Static proofs too may be seen as chains of
stages. They are just like dynamic proofs except that all lines have ∅ as
their condition and that no line is ever marked. As a consequence of this,
derivability at a stage coincides with final derivability.

4 Adaptive Logics

The motivation for studying adaptive logics cannot be presented here. I
refer the reader for example to [4].

Nearly all known adaptive logics have been phrased in standard format,6

which has major advantages as will become clear below. The format was
first introduced in [3] and most extensively studied in [5], which contains
details and metatheoretic proofs. Not too long from now, the best reference
should be [6]. From the next paragraph on, I disregard adaptive logics that
are not in standard format. So all claims on adaptive logics should be read
as claims on adaptive logics in standard format (even if some claims hold

6The only exception is Graham Priest’s LPm from [11], which at the predicative level
defines abnormalities with respect to models rather than with respect to the formulas
verified by models. See [2] for a discussion of some odd effects.
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for all adaptive logics).
While describing the standard format, I shall illustrate it with two related

logics, which I shall use for examples in Section 5. The information on these
logics is presented in separate paragraphs.

An adaptive logic AL in standard format is defined by a triple:

1. A lower limit logic LLL: a logic that has finite and static proofs, has
a characteristic semantics, and contains CL (Classical Logic).7

2. A set of abnormalities Ω : a set of LLL-contingent formulas, charac-
terized by a (possibly restricted) logical form F which contains at least
one logical symbol.

3. An adaptive strategy : Reliability or Minimal Abnormality.8

Examples Two related adaptive logics are CLuNr and CLuNm . Their
lower limit logic is CLuN (C lassical Logic allowing for gluts with
respect to N egation), viz. full positive CL with (A ⊃ ∼A) ⊃ ∼A
added as the only axiom for the standard negation, and extended9 with
classical negation ∼̌—see note 7. All other standard symbols have the
same meaning as the classical symbols. While A ∨ ∼A is a CLuN-
theorem, A ∧ ∼A is CLuN-contingent. The set of abnormalities Ω
comprises all formulas of the form ∃(A ∧ ∼A) (the existential closure
of A ∧ ∼A). The strategies are respectively Reliability and Minimal
Abnormality (as the superscripts reveal).

Extending LLL with an axiom that declares all abnormalities logically
false results in the upper limit logic ULL. If a premise set Γ does not require
that any abnormalities are true, the AL-consequences of Γ are identical to
its ULL-consequences. If the premise set requires some abnormalities to
be true, the AL-consequence set is stronger than the LLL-consequence set
(except for border cases) and is weaker than the ULL-consequence set.

Examples The upper limit logic of CLuNr and of CLuNm is CL.

7That LLL contains CL is realized by adding classical logical symbols (those having
the same meaning as in CL) to the language. These will be written as ∼̌, ∨̌, ∃̌, etc. The
classical symbols have mainly a technical use and are not meant to occur in the premises
or conclusions of standard applications.

8Strategies are ways to cope with derivable disjunctions of abnormalities. The effects
of Reliability and Minimal Abnormality become clear below in the text. Other strategies
than Reliability and Minimal Abnormality were developed mainly in order to characterize
consequence relations from the literature in terms of an adaptive logic. All those strategies
can be reduced to Reliability or Minimal Abnormality under a translation.

9Suitable axioms are (A ⊃ ∼̌A) ⊃ ∼̌A and A ⊃ (∼̌A ⊃ B).
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In the expression Dab(∆), ∆ will always be a finite subset of Ω, and
Dab(∆) will denote the classical disjunction (see note 7) of the members of
∆. Dab(∆) is called a Dab-formula (a disjunction of abnormalities).

Adaptive logics have dynamic proofs in the sense of the previous section.
The rules of adaptive logics in standard format are defined in terms of the
lower limit logic. Where

A ∆

abbreviates that A occurs in the proof on the condition ∆, the (generic)
rules are:

PREM If A ∈ Γ: . . . . . .
A ∅

RU If A1, . . . , An `LLL B: A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪∆n

RC If A1, . . . , An `LLL B∨̌Dab(Θ): A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪∆n ∪Θ

We need some technicalities in preparation of the marking definitions.
Dab(∆) is a minimal Dab-formula at stage s of an AL-proof iff Dab(∆) has
been derived at that stage on the condition ∅ whereas there is no ∆′ ⊂ ∆
for which Dab(∆′) has been derived on the condition ∅. A choice set of
Σ = {∆1,∆2, . . .} is a set that contains an element out of each mem-
ber of Σ. A minimal choice set of Σ is a choice set of Σ of which no
proper subset is a choice set of Σ. Consider a proof from Γ at stage s and
let Dab(∆1), . . . , Dab(∆n) be the minimal Dab-formulas at that stage.
Us(Γ) = ∆1 ∪ . . . ∪ ∆n and Φs(Γ) is the set of minimal choice sets of
{∆1, . . . , ∆n}.
DEFINITION 19. Marking for Reliability: Line i is marked at stage s iff,
where ∆ is its condition, ∆ ∩ Us(Γ) 6= ∅.
DEFINITION 20. Marking for Minimal Abnormality: Line i is marked at
stage s iff, where A is derived on the condition ∆ at line i, (i) there is no
ϕ ∈ Φs(Γ) such that ϕ ∩∆ = ∅, or (ii) for some ϕ ∈ Φs(Γ), there is no line
at which A is derived on a condition Θ for which ϕ ∩Θ = ∅.

This reads more easily: where A is derived on the condition ∆ on line i,
line i is unmarked at stage s iff (i) there is a ϕ ∈ Φs(Γ) for which ϕ∩∆ = ∅
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and (ii) for every ϕ ∈ Φs(Γ), there is a line at which A is derived on a
condition Θ for which ϕ ∩Θ = ∅.

The sense of the marking definitions (and their relation to the semantics)
is studied in other papers, for example [5], and cannot be discussed here.

What I can do here, now that we are considering more peculiar logics, viz.
adaptive logics in standard format, is to illustrate the different approach to
final derivability, as promised in the previous section.

As we have seen in the previous section, final derivability is established
by a proof and a metalevel reasoning. The existence of the proof should of
course not be established at the metalevel. So the proof should be finite.

I now present two definitions, show them to be adequate, and add some
comments. In the definitions, “proof” obviously refers to an AL-proof, or
rather to a proof defined in terms of the generic rules Prem, RU and RC.10

DEFINITION 21. A is finally derived on line i of an AL-proof from Γ at
stage s iff (i) A is the formula of line i, (ii) line i is not marked at stage
s, and (iii) every extension of the proof in which line i is marked may be
further extended in such a way that line i is unmarked.

DEFINITION 22. Γ `AL A (A is finally AL-derivable from Γ) iff A is
finally derived on a line of a proof from Γ.

Let me first show that this definition is adequate with respect to the
intuitive understanding of final derivability—see the previous section. To do
so we need some preparation. Dab(∆) is a minimal Dab-consequence of Γ iff
Γ `LLL Dab(∆) and there is no ∆′ ⊂ ∆ for which Γ `LLL Dab(∆′). Where
Dab(∆1),Dab(∆2), . . . are the minimal Dab-consequences of Γ, U(Γ) = ∆1∪
∆2 ∪ . . . and Φ(Γ) is the set of minimal choice sets of {∆1, ∆2, . . .}.11

Let ALr and ALm be adaptive logics the third element of which is Reli-
ability, respectively Minimal Abnormality. Theorems 23 and 24 are proved
as Theorems 6 and 8 in [5].12

THEOREM 23. Γ `ALr A iff there is a (finite) ∆ ⊂ Ω for which Γ `LLL

A∨̌Dab(∆) and ∆ ∩ U(Γ) = ∅.
THEOREM 24. Γ `ALm A iff, for every ϕ ∈ Φ(Γ), there is a ∆ ⊂ Ω such
that ∆ ∩ ϕ = ∅ and Γ `LLL A∨̌Dab(∆).

10The set of rules generated by the three generic rules contains redundant rules and is
obviously not minimal. However, this is irrelevant for the point I am making below in
the text.

11It is useful to compare the definition of U(Γ) with that of Us(Γ) and to compare the
definition of Φ(Γ) with that of Φs(Γ). In each case, the latter set is an estimate of the
former depending on the insights provided by the proof at a stage.

12In the theorems, I write ∨̌ because the standard disjunction might be abnormal in
the specific adaptive logic. In the adaptive logics CLuNr and CLuNm , the standard
negation is classical and hence ∨̌ can be safely replaced by ∨.
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There are only countably many minimal Dab-consequences of Γ, say
{Dab(∆1),Dab(∆2), . . .}. For each of these, there is a finite AL-proof,
say pi, in which Dab(∆i) is derived on the condition ∅. The resulting set
{p1, p2, . . .} is countable.

LEMMA 25. If Γ `ALr A, then there is an ALr -proof from Γ in which A
is derived on an unmarked line and that is stable with respect to that line.

Proof. Suppose that Γ `ALr A. By Theorem 23 there is a (finite) ∆ ⊂ Ω
for which Γ `LLL A∨̌Dab(∆) and ∆ ∩ U(Γ) = ∅. As LLL has finite and
static proofs, there is a finite ALr -proof in which A∨̌Dab(∆) is derived on
the condition ∅. From this A is derived on the condition Dab(∆) (in one
step by RC), say on line i. Let this be an ALr -proof at the finite stage s
and call this proof p0.

Consider the proof p′ of which the last stage, call it s′, is the concatenation
〈p0, p1, p2, . . .〉. As all minimal Dab-consequences of Γ have been derived on
the condition ∅ in s′, Us′(Γ) = U(Γ). As ∆ ∩ U(Γ) = ∅, line i is unmarked.
Moreover, as all minimal Dab-consequences of Γ have been derived on the
condition ∅ in s′, line i will be unmarked in every extension of s′. So p′ is
stable with respect to line i. ¥

For some Γ, Φ(Γ) is uncountable. However, the set of ∆ such that, for
some ϕ ∈ Φ(Γ), ∆ ∩ ϕ = ∅ and Γ `LLL A∨̌Dab(∆), is a countable set—
each of these ∆ is a finite set of formulas. Moreover, for each such ∆,
there is a finite proof of A∨̌Dab(∆). Let {p′1, p′2, . . .} be the countable
set of these proofs. The proof of Lemma 26 proceeds exactly as that of
Lemma 25, except that we now define p′ as a proof that has as stage s′ the
concatenation 〈p1, p

′
1, p2, p

′
2, . . .〉, which warrants that Φs′(Γ) = Φ(Γ) and

that, for every extension s∗ of s′, Φs∗(Γ) = Φ(Γ).

LEMMA 26. If Γ `ALm A, then there is an ALm -proof from Γ in which A
is derived on an unmarked line and that is stable with respect to that line.

Whether the third element of an adaptive logic is Reliability or Minimal
Abnormality, the following lemma holds.

LEMMA 27. If A is derived on an unmarked line of an AL-proof from Γ
that is stable with respect to that line, then Γ `AL A

Proof. Suppose that the antecedent is true. As the unmarked line on which
A is derived will not be marked in any extension of the proof, A is finally
AL-derived in this proof. ¥

THEOREM 28. Γ `AL A iff A is derived on an unmarked line of an AL-
proof from Γ that is stable with respect to that line.
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Proof. Immediate in view of Lemmas 25, 26, and 27. ¥

Having established that Definition 22 is adequate, let me show that the
matter is actually much simpler for Reliability than for Minimal Abnormal-
ity. Let an AL-proof be finite iff each stage of the proof is a finite list of
formulas.

THEOREM 29. If the strategy is Reliability, Definitions 21 and 22 are still
adequate if the proof and all extensions mentioned in Definition 21 are finite.

Proof. Case 1: Γ `ALr A. In view of Theorem 23 there is a (finite) ∆ ⊂ Ω
for which Γ `LLL A∨̌Dab(∆) and ∆ ∩ U(Γ) = ∅. As LLL has finite and
static proofs, there is a finite AL-proof from Γ in which A is derived on
the condition Dab(∆). Let A be so derived on line i of the proof and let s
be the last stage of this proof. Consider a finite extension s′ of s in which
line i is marked. There are at most finitely many Θ for which Dab(Θ) is a
minimal Dab-formula of s′ and Θ ∩∆ 6= ∅. For each of these Θ, there is a
minimal Dab-consequence Dab(∆i) of Γ such that ∆i ⊂ Θ and ∆∩∆i = ∅.
Append the proof pi of each of these ∆i to s′ and let the result be s′′. The
stage s′′ counts finitely many lines and ∆ ∩ Us′′(Γ) = ∅.

Case 2: Γ 0ALr A. In view of Theorem 23 it holds for all ∆ ⊂ Ω that
∆∩U(Γ) 6= ∅ if Γ `LLL A∨̌Dab(∆). Suppose that A has been derived on the
condition ∆ on a line, say i, of a finite ALr -proof from Γ and that the last
stage of this proof is s. It follows that there is a minimal Dab-consequence
Dab(Θ) of Γ for which Θ ∩ ∆ 6= ∅. As Γ `LLL Dab(Θ), Θ can be derived
on the condition ∅ in a finite extension s′ of s and there is no extension of
s′ in which line i is unmarked. ¥

5 The Dialogues

As the dialogue I want to propose is somewhat unusual, let me first say a
few words about usual dialogues. It is not difficult to define these, first for
CLuN, and next for CLuNr and CLuNm . Tableau methods presented in
[8] and [9] form a good start. The tableau methods may even be simplified
by extending the language with classical negation, whence there is no need
for signed formulas.

Adaptive logics do not have theorems of their own. If theorems are
defined by ∅ ` A, then the theorems of the adaptive logic, for example
CLuNr , are identical to those of its upper limit logic, in the example CL. If
theorems are defined by “for all Γ, Γ ` A”, then the theorems of the adaptive
logic are identical to those of its lower limit logic, in the example CLuN—
obviously all theorems of the lower limit logic are theorems of the upper limit
logic. This means that one cannot define the adaptive consequence relation
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in terms of theorems, but that dialogues for the consequence relation should
be devised. So one will have to adjust the description of a dialogue from,
for example, [12] or [13], and there will be a few peculiarities, to which I
return briefly in Section 6.

Let us now turn to the unusual dialogues I announced. The proponent
claims that Γ `AL A and the opponent denies this. We let the proponent
and opponent construct a proof together, laying down specific rules about
the moves they can make. The proponent starts. If, at the end of the dia-
logue, A is derived in the proof, the proponent wins; otherwise the opponent
wins.

This kind of dialogue is completely silly if the logic has static proofs. If
the proponent has to make a point in her first move, all she can do is produce
a proof of the conclusion from the premises. After this, the opponent can
only recognize that he lost.

The situation is dramatically different for logics that have dynamic proofs.
If the conclusion A is not derivable from the premises Γ by the lower limit
logic, then the proponent can only derive it on a non-empty condition. We
have seen that the resulting proof does not constitute a demonstration of
Γ `AL A. Actually, no proof forms such a demonstration. So it seems
natural to construct a demonstration of Γ `AL A as a dialogue between a
proponent, who tries to show that A is finally derivable but has to defend
herself against moves of the opponent. Let me first comment on the natural
character of the approach.

First a comparison. Every logician is acquainted with the situation in
which he or she tries to find out whether a formal system has a certain
property. If one is convinced that the property holds, one will attempt to
prove so. If one does not find the proof, this very fact will undermine the
conviction. At some point one will become convinced that the property does
not hold and one will try to find a counterexample—often insights from the
failing proof will indicate in which direction to look for a counterexample.
If, in turn, one fails to produce a counterexample, this may induce one to
look again for a proof, etc. The alternating phases may be seen as a dialogue
between a proponent and an opponent.

Let us now look more closely at adaptive logics. The idea is that abnor-
malities are presupposed to be false, unless and until proven otherwise.13

So two different aims should be realized in a well-directed proof: to estab-
lish the conclusion on some condition and to establish that the condition is
safe—in the case of Reliability, this means that no member of the condition

13The expression is taken from the oldest paper on adaptive logics, [1]. It is obviously
vague if disjunctions of abnormalities (Dab-formulas) are derivable on the condition ∅.
The strategy removes the vagueness.
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is unreliable; in the case of Minimal Abnormality, it means that the condi-
tion does not overlap with a minimal choice set of all Dab-consequences of
the premises and that, for each such minimal choice set ϕ, the conclusion
can be derived on a condition that does not overlap with ϕ. So it is indeed
natural to see this as a dialogue in which the proponent first establishes
the conclusion on some condition, next the opponent tries to show that the
condition is unsafe, next the proponent tries to reestablish the safety of the
condition, and so on. Some variant dialogues are possible. They will be
considered in some detail below.

Although no dynamic proof will establish that a conclusion is finally
derived from a premise set, the metalevel reasoning that is required next to
the proof can be seen in dialogic or game theoretic terms: the conclusion
is finally derivable iff the proponent can uphold it against every possible
attack.

It seems to me that this is at the heart of all forms of defeasible reasoning:
that one establishes a conclusion on some condition, and next considers the
safety of the condition.

Let us have a look at some possible types of dialogues. Given the dif-
ferences between the two strategies, I shall consider them in turn and start
with Reliability.
Stability with respect to a line One may devise a dialogue in terms
of proofs that are stable with respect to some line. First the proponent
establishes the conclusion on some condition on an unmarked line, say line
l, of a (finite or infinite) proof. Next, the opponent may extend the proof.
The opponent wins if he produces an extension in which line l is marked;
otherwise the proponent wins. The proponent has a winning strategy iff she
can produce a proof that warrants her winning.

This approach is all right, but requires that the proponent sometimes
starts off by producing an infinite proof. Consider the premise set Γ1 =
{p ∨ q,∼q, (q ∧ ∼q) ∨ (ri ∧ ∼ri), (q ∧ ∼q) ⊃ (ri ∧ ∼ri) | i ∈ N} and let
the proponent aim at establishing Γ1 `CLuNr q. Consider a finite proof,
produced by the proponent, that starts off with

1 p ∨ q Premise
2 ∼q Premise
3 p 1, 2; RC {q ∧ ∼q}
and moreover contains a (forcibly finite) number of lists of lines that have
the following form

j (q ∧ ∼q) ∨ (ri ∧ ∼ri) Premise
j + 1 (q ∧ ∼q) ⊃ (ri ∧ ∼ri) Premise
j + 2 ri ∧ ∼ri j, j+1; RU ∅
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Clearly, line 3 is unmarked in this proof. However, if the opponent extends
the proof with the line

l (q ∧ ∼q) ∨ (rk ∧ ∼rk) Premise

for a rk that does not yet occur in the proof, then line 3 is marked. So the
proponent looses. Of course, she should have a winning strategy, because
Γ1 `CLuNr q. And indeed there is one, but it requires that she introduces
all premises and all connected lines j + 1 and j + 2, which means that she
should produce an infinite proof in her first move. This is not handy. Infinite
proofs cannot be produced, but should be handled by a metalevel reasoning.
It would be more attractive if at least the first move in the dialogue would
be a proof that can actually be produced. Moreover, the type of dialogue
is not very attractive because the outcome fully depends on the first move
of the proponent. She has a winning strategy iff she is able to produce a
proof, as her first step, to which the opponent has no possible reaction.

Incidentally, some readers might balk at the artificiality of the premise
set Γ1. It is indeed hard to imagine real life applications in which the de-
picted complication would arise. Nevertheless, describing logics, one should
consider all possible complications, whether they are artificial or not.
Many turns In her first move, the proponent produces a finite proof in
which the conclusion is derived from the premises on a condition ∆ on an
unmarked line, say line l. Next, the opponent may try to show that ∆ is
unreliable by producing a finite extension of the proof. If the opponent’s
move is successful, line l is marked at the last stage of the extended proof.
The proponent may react by trying to finitely extend the proof in such a
way that line l is unmarked. And so on. The proponent has a winning
strategy iff she is able to answer every move of the opponent, viz. iff she is
able to extend every new extension in such a way that line l is unmarked.

This set up does not require that infinite proofs or infinite extensions are
produced. It does not exclude, however, that each player interferes infinitely
many times. Consider again Γ1 and let the dialogue be about the question
whether Γ1 `CLuNr q—we know that the correct answer is positive. And
indeed, the proponent has a winning strategy: if the proof starts off with
lines 1–3 (displayed before), she is able to extend every extension produced
by the opponent in such a way that line l is unmarked. Yet, the opponent
can react after every finite number of moves. That this set up is adequate
is a (slightly trivial) consequence of Theorem 29.

That the dialogue may go on forever does not constitute much of an
objection. In usual dialogues, for example establishing CL-validity, the
dialogue may go on forever if the conclusion is CL-invalid. Here the matter
is just a trifle more complicated: an infinite dialogue may result even if
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the conclusion is an adaptive consequence of the premises. This results
immediately from the absence of a positive test for final derivability. In the
end, the proponent will either win or loose, but we may be unable to find
out what the result in the end will be. This, however, is unavoidable in the
case of defeasible reasoning that is not artificially restricted to decidable
fragments.14

POP The proponent starts by producing a finite proof in which the con-
clusion is derived from the premises on a condition ∆ on an unmarked line,
say line l. Next, the opponent may try to show that ∆ is unreliable by pro-
ducing a finite extension. If the opponent is successful, line l is marked at
the last stage of the extended proof. The proponent may react by trying to
finitely extend the proof in such a way that line l is unmarked. The propo-
nent wins the dialogue if line l is unmarked after she extended the extension
produced by the opponent. The proponent has a winning strategy iff there
is a proof, which she should produce in her first move, that she can defend
against every possible move of the opponent. Note that the proof is a finite
proof in which the conclusion is finally derived according to Definition 22.

The only difference with the previous dialogue is that the opponent can
interfere only once. That the set up is adequate is established by Theorem
29. Given this, the many turns dialogue is needlessly postponing a decision
and is needlessly complicating the notion of a winning strategy.
Calling premises The proponent starts by producing a finite proof in
which the conclusion is derived from the premises on a condition ∆ on
an unmarked line, say line l. At this point, the opponent delineates a
finite set Γ′ of premises, but does not extend the proof at this point. The
proponent finitely extends her proof, introducing whatever premises she
wants. Next, the opponent extends the extension, introducing as premises
only members of Γ′ (but possibly relying on premises introduced by the
proponent). The proponent wins the dialogue if line l is unmarked after
the opponent extended the extension; otherwise the opponent wins. The
proponent has a winning strategy iff there is a proof, which she should
produce in her first move, that she can defend against every possible move
of the opponent.

This type of dialogue is a variant on the previous one. It illustrates that,
given the initial proof, winning the dialogue depends only on the LLL-
derivability of Dab-formulas. If the conclusion is ALr -derivable from the
premises and ∆∩U(Γ) = ∅, then there is a finite Γ′′ for which Γ′ ⊆ Γ′′ ⊆ Γ

14If the premises and conclusion belong to a CL-decidable fragment of the language
(this entails that the premise set is finite), then the dialogue will be finite. This follows
from a forthcoming result on the embedding of (full predicative) CLuN into CL—for
the result on the propositional case see [7].
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and ∆ ∩ U(Γ′′) = ∅.
Let me quickly show that this type of dialogue is adequate. Two cases

have to be considered. Case 1: ∆ ∩ U(Γ) = ∅. Consider the finitely many
minimal Dab-formulas, Dab(Θ1), . . . ,Dab(Θn), that are LLL-derivable from
Γ′. If ∆ ∩ U(Γ′) 6= ∅, then there are finitely many ∆1, . . . , ∆m ∈ Ω such
that (i) each of Dab(∆1), . . . ,Dab(∆m) is LLL-derivable from Γ, (ii) for
every Θi (1 ≤ i ≤ n) there is a ∆j (1 ≤ j ≤ m) such that ∆j ⊆ Θi and
(iii) ∆ ∩ (∆1 ∪ . . . ∪∆m) = ∅. As LLL is compact (in view of Theorem 5),
all of these ∆j are derivable from a finite subset of Γ. So the proponent can
choose as Γ′′ the union of this finite subset of Γ and (the finite set) Γ′ and
derive all minimal Dab-consequences of Γ′′. Case 2: ∆∩U(Γ) 6= ∅. So there
is a minimal Dab-consequence of Γ, say Dab(Θ), for which ∆ ∩Θ 6= ∅. By
the compactness of LLL, Dab(Θ) is LLL-derivable from a finite premise
set. The opponent chooses this set as Γ′. Whatever the reaction of the
proponent, the opponent introduces the members of Γ′ and derives Dab(Θ)
on the condition ∅. This causes line l to be marked.

More dialogue types may be possible, but those described before are
sufficient to make the point I was trying to make. So let us now move on
to the Minimal Abnormality strategy.

In general, Minimal Abnormality requires more complex proofs than Re-
liability. For some Γ and A, A can only be derived on an unmarked line if
A is derived on several conditions (and hence on several lines). Here is a
simple example. Let Γ2 = {p ∨ q,∼p,∼q, p ∨ r, q ∨ r}.
1 ∼p Premise ∅
2 p ∨ r Premise ∅
3 r 1, 2; RC {p ∧ ∼p}
4 p ∨ q Premise ∅
5 ∼q Premise ∅
6 (p ∧ ∼p) ∨ (q ∧ ∼q) 1, 4, 5; RU ∅
7 q ∨ r Premise ∅
8 r 5, 7; RC {q ∧ ∼q}
Line 3 is unmarked at stages 3–5 of the proof, marked at stage 6 and 7, and
again unmarked at stage 8. At stage 8, the proof is stable with respect to
line 3. Note that both lines 3 and 8 would be marked if Reliability were the
strategy.

The proof illustrates an interesting point. If Minimal Abnormality is the
strategy, the ‘defense’ of the proponent against an ‘attack’ by the opponent
is different from what it is in the case of Reliability. Indeed, the proponent
has not only to derive Dab-formulas in order to show that some of the Dab-
formulas in the opponents attack are not minimal. The opponent should
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also derive the intended conclusion on several conditions. For example, if
line 8 is absent from the previous proof, line 3 is marked.
Stability with respect to a line This dialogue is identical to its name-
sake for Reliability. The problems are also the same: in some cases the only
winning strategy for the proponent requires that she produces an infinite
proof in her first move. The trouble is adequately illustrated by the dialogue
for Γ1 `CLuNm q.
Many turns This dialogue is identical to its namesake for Reliability, ex-
cept that not all restrictions on the finiteness of the proof and its extensions
can be upheld. Actually, several complications should be considered.

Let Γ3 = {(pi∧∼pi)∨(pj∧∼pj) | i 6= j; i, j ∈ N}∪{q∨(pi∧∼pi) | i ∈ N}.
As Φ(Γ3) = {{pi ∧ ∼pi | i ∈ N} − {pj ∧ ∼pj} | j ∈ N}, it is easily seen (in
view of Theorem 24) that Γ3 `CLuNm q (because q can be derived on the
condition {pj ∧∼pj} for every j ∈ N). This seems to work fine with a finite
proof and finite extensions. The proponent starts off with, for example, the
proof

1 q ∨ (p0 ∧ ∼p0) Premise ∅
2 q 1; RC {p0 ∧ ∼p0}
after which the opponent offers a finite reply, an extension of 1–2 in which
line 2 is marked. There are infinitely many such extensions. All that is
required for line 2 to be marked is that, where s is the last stage of the
extension, there is a ϕ ∈ Φs(Γ3) for which p0 ∧∼p0 ∈ ϕ. A simple example
is the extension of 1–2 with the following single line.

3 (p0 ∧ ∼p0) ∨ (p1 ∧ ∼p1) Premise ∅
To every such extension—let it count l lines, the proponent has an ad-

equate reply. As the extension is finite, at most finitely many letters pi

occur in it. So the opponent can simply pick a pi that does not occur in the
extension and add the lines:

l + 1 q ∨ (pi ∧ ∼pi) Premise ∅
l + 2 q l + 1; RC {pi ∧ ∼pi}
As pi does not occur up to line l, pi∧∼pi is not a member of any ϕ ∈ Φl(Γ3)
and hence line l + 2 is unmarked. Moreover, as some ϕ ∈ Φl(Γ3) are bound
not to contain p0∧∼p0, line 2 is unmarked. So all seems well: Γ3 `CLuNm q
and the proponent has a reply to every attack of the opponent to 1–2.

However, consider Γ4 = {(pi∧∼pi)∨(pj∧∼pj) | i 6= j; i, j ∈ N}∪{q∨(pi∧
∼pi) | i ∈ N−{0}}—so Γ4 = Γ3−{q∨ (p0∧∼p0)}. As Φ(Γ4) = {{pi∧∼pi |
i ∈ N} − {pj ∧ ∼pj} | j ∈ N}, we now have (in view of Theorem 24) that
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Γ4 0CLuNm q (because q cannot be derived on the condition {p0 ∧ ∼p0}).
The only point at which the proponent turns out to loose the game is after
all premises of the form (pi ∧ ∼pi) ∨ (pj ∧ ∼pj) have been introduced. As
there is no line on which q is derived on the condition {p0∧∼p0}, all lines on
which q is derived are marked at this stage, call it s, because every condition
∆ on which q has been derived, overlaps with the ϕ ∈ Φs(Γ4) = Φ(Γ4) for
which ϕ = {{pi ∧ ∼pi | i ∈ N} − {p0 ∧ ∼p0}}.

Another difficulty concerns the first move by the proponent, viz. the
original proof. Consider the premise set Γ5 = {(pi ∧ ∼pi) ∨ (pj ∧ ∼pj) |
i, j ∈ N; i 6= j} ∪ {(∧{(pj ∧ ∼pj) ∨ (pk ∧ ∼pk) | j, k ∈ {0, . . . , i + 2}; j <
k}) ⊃ (q ∨ (pi ∧ ∼pi)) | i ∈ N}. Incidentally, the shortest member of the
second ‘part’ of the premise set is (((p0 ∧∼p0)∨ (p1 ∧∼p1))∧ ((p0 ∧∼p0)∨
(p2 ∧ ∼p2)) ∧ ((p1 ∧ ∼p1) ∨ (p2 ∧ ∼p2))) ⊃ (q ∨ (p0 ∧ ∼p0)). Note that
Φ(Γ5) = Φ(Γ3) = {{pi ∧ ∼pi | i ∈ N} − {pj ∧ ∼pj} | j ∈ N}. Moreover, in
a proof from Γ5, q is derivable on the condition {pi ∧ ∼pi} for every i ∈ N.
So the proponent should have a winning strategy in this case. However, in
every finite stage of a proof from Γ5, all lines on which q are derived are
marked. Indeed, the premises are prepared in such a way that, in order to
derive q on some condition {pi ∧ ∼pi}, say on line l, one has to introduce
first a number of premises that are Dab-formulas and that cause line l to
be marked.15 So it seems that we have to allow the proponent to produce,
as her first move, an infinite stage of a proof. Recall indeed that q should
be derived on an unmarked line at this stage.

The premise set Γ5 is clearly prepared in an artificial way. So I am
glad and grateful that Peter Verdée and Kristof De Clercq found a way
around the requirement that the first move of the proponent may end up
in an infinite stage. In Section 4, it was said that a Dab-formula is the
classical disjunction of the members of a finite set of abnormalities. As
the standard disjunction in CLuN has the same meaning as the classical
disjunction, I have neglected the distinction in the examples. However, by
strictly keeping to the requirement that the disjunction should be classical,
the proponent can produce a finite proof from Γ5 in which q is derived
on some condition but that does not contain any Dab-formula. So the
proponent may introduce (p0 ∧ ∼p0) ∨ (p1 ∧ ∼p1), but this is not a Dab-
formula. It is up to the opponent to derive the Dab-formula (p0 ∧ ∼p0)∨̌
(p1 ∧ ∼p1). And this is sensible also from a philosophical point of view.
All the proponent should do in her first move is to derive the conclusion

15The attentive reader will have remarked that, for example in order to derive q on
the condition {p0 ∧∼p0}, there is no need to introduce all disjuncts of the antecedent of
(((p0 ∧ ∼p0) ∨ (p1 ∧ ∼p1)) ∧ ((p0 ∧ ∼p0) ∨ (p2 ∧ ∼p2)) ∧ ((p1 ∧ ∼p1) ∨ (p2 ∧ ∼p2))) ⊃
(q ∨ (p0 ∧ ∼p0)). Nevertheless, the claim made in the text is correct.
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on some condition that will allow her to win the dialogue. Pointing out
Dab-formulas that cause the line on which the conclusion is derived to be
marked or unmarked is a task that belongs to the subsequent moves.

The upshot is that, for this type of dialogue, we can keep the proof as well
as the extensions finite, but we should allow the dialogue to go on infinitely
in order to do justice to the opponent.
POP The long discussion of the previous dialogue type gives us at once
the insights required for describing this type. The dialogue is identical to
its namesake for Reliability, except that the extension of the proof and the
extension of the extension should be allowed to be infinite. This is not too
bad. As was remarked before, the existence or absence of a winning strategy
for the proponent has to be established at the metalevel anyway.

That the set up is adequate is established by Theorem 29 and by the
insight concerning the requirement that Dab-formulas are strictly defined
in terms of classical disjunctions.
Calling premises This dialogue type is also identical to that for Reli-
ability, except that the opponent is allowed to delineate an infinite set of
premises and that, after this, the proponent is allowed to produce an infinite
extension of her proof.

The demonstration that this type of dialogue is adequate has slightly
to be adjusted for Minimal Abnormality. Possibly the proponent has to
derive infinitely many minimal Dab-formulas in her extension, which is not
a problem as their set is denumerable.

Given the absence of a positive test (in general), the computational com-
plexity of adaptive logics is even greater than that of classical (predicative)
logic. This does not prevent one, however, from describing dialogue types
and to show them adequate (which I summarily did).

6 In Conclusion

The main point I tried to make was that it is natural to understand final
derivability in dynamic proofs in terms of dialogues: roughly, that a formula
is finally derivable from a premise set iff there is a derivation of the formula
that can be defended against every attack. Of course the allowed moves had
to be made precise. I presented different types of dialogues for adaptive
logics in order to show that some variation is possible. Some type may
be more attractive than another, either with respect to its philosophical
interpretation or from a computational point of view.

An interesting open question concerns the combination of the types of
dialogues described in the previous section with more usual dialogues. Put
differently, it would be interesting to know what remains of the different
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moves described above if the proponent and opponent are given the usual
dialogic means, viz. not proofs and extensions of proofs, but attacks on and
defenses of formulas. Clearly the attacks and defenses can be most easily
defined by studying the semantics of adaptive logics (which I had to skip in
the present paper). Such dialogues seem to have some interesting aspects.
Consider for example a usual dialogue corresponding to the POP dialogue
described in the previous section. In a first phase the proponent will try to
establish the conclusion on some condition. In a second phase, the opponent
will try to establish that there is a selected (reliable, respectively minimally
abnormal) model in which the conclusion is false because a member of the
condition is true. In the third phase, the proponent tries to show that the
constructed model is not a selected one. Another interesting aspect are the
restrictions on the introduction of atomic formulas. It seems natural to keep
the restriction that the proponent cannot introduce literals in the phase in
which she attempts to derive the conclusion. In the phase in which the
opponent is attempting to establish abnormalities (that jointly correspond
to abnormalities in a selected model), I surmise that the restriction should be
adjusted in such a way that only the proponent can introduce abnormalities.

A very different open problem concerns dynamic proofs. It seems un-
problematic to define final derivability in terms of a proof that is stable
with respect to a certain line (on which the conclusion has been derived).
We have seen that Definitions 21 and 22 present a more attractive way to
characterize final derivability. It is unclear, however, whether this charac-
terization is adequate, in the sense of Theorem 28, for all logics that have
dynamic proofs. It should not be too difficult to delineate the set or sets of
conditions on the set of rules R that warrant that the characterization in
terms of Definitions 21 and 22 are adequate. Such a result would solve a
problem which is now approached in a piecemeal way, namely whether all
logics having dynamic proofs can be characterized, possibly under a trans-
lation, by an adaptive logic.
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