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Abstract

Contextual type theories are largely explored in their applications to
programming languages, but less investigated for knowledge representa-
tion purposes. The combination of a constructive language with a modal
extension of contexts appears crucial to explore the attractive idea of
a type-theoretical calculus of provability from refutable assumptions for
non-monotonic reasoning. This paper introduces such a language: the
modal operators are meant to internalize two different modes of correct-
ness, respectively with necessity as the standard notion of constructive
verification and possibility as provability up to refutation of contextual
conditions.

1 Introduction

In the landscape of non-classical logics, constructive formal systems use proofs
as first-class citizens to define the notion of truth, generalized to truth valid
under assumptions. The idea of contextual truth, that originated with sequent
calculi, is well interpreted for provability in the type-theoretical languages based
on intuitionistic logic, such as in Martin-Löf Type Theory.1

In such a system, expressions have judgemental form A true with propo-
sitional content A, the latter being justified by an appropriate proof term
a : A. The corresponding notion of contextual truth allows formulas of the
form Γ ` a :A, where Γ is of the standard form [x1 :A1, . . . , xn :An], a being a
proof of A whenever appropriate substitutions are performed on the variables in
Γ, so that [x1/a1 :A1, . . . , xn/an :An] ` a : A holds. This means that, construc-
tively, hypothetical truth is reduced to dependent closed constructions and that
hypotheses are grounded on the primitive notion of premise. In Martin-Löf’s

∗Fellow of the FWO - Research Foundation Flanders.
1See [22], [23], [25].
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Type Theory, this induces the conceptual distinction between a known judge-
ment and a judgement-candidate.2 The notion of an assumption is obtained
by abstraction: from a construction of a proposition, one abstracts to obtain
an assumption used in an implicational relation, whose computational content
can be reconstructed when needed (as its content has been known). This con-
struction is reflected in the usual introduction rule for implication in Natural
Deduction calculi. Different research fields can be traced back to similar princi-
ples grounded around the notion of context. One of the first was the modeling of
contexts from AI, which eventually led to the propositional logic and first-order
logic of context.3 Further research with applications in linguistics and hardware
verification has the very same starting point.4

The ability to speak of contexts via a modal extension represents the next
obvious step. Along with the standard accessibility relations for modal opera-
tors in the intuitionistic translation of K and the constructive version of S4,5

a weaker format to accommodate the notion of context is given by the calculus
CK in [27]. The latter provides a possible-world semantics sound and com-
plete with respect to the natural deduction interpretation given in [14]. The
same kind of issues led recently to the formulation of contextual modal type
theories in [30] and [29]. In particular, the formal language presented in [30]
exploits constructions for both modalities from the same principle of contextual
derivability: the possibility judgement (♦A true) (proposition ‘possible A’ is
true) is obtained from a contextually valid proposition; the necessity judgement
(�A true) (proposition ‘necessarily A’ is true) internalizes validity by satisfying
assumptions, mimicking the Necessitation Rule from the semantics for a normal
modal logic.

In the present paper, we deviate from the propositional approach: our for-
mulas will be respectively of the form �(A true) (necessarily, proposition A is
true) and ♦(A true) (possibly, proposition A is true). Our focus is on an inter-
pretation of the modalities as meta-operators to express contextual validity. We
shall understand the necessity judgement as saying that the assertion conditions
for the related proposition are satisfied. The possibility judgement refers to a
proposition whose assertion conditions are admissible, but whose construction
is not guaranteed. We shall call these judgements ‘open assumptions’.

Our starting point is the constructive reading of the notion of truth as exis-
tence of a verification, i.e. a notion of truth by verification; this is extended by
a semantic format for the epistemic notion of verification under open assump-
tions. Technically, this amount to a version of the type-theoretical language
that does not satisfy explicit substitutions on variables for assumptions,6 in this
way expressing a notion of truth up to refutability. This distinction recalls a
sensible topic for constructive logics. A standard explanation of constructive

2See e.g. [23], [40]. The term ‘judgement-candidate’ is originally due to Göran Sundholm.
3See [26], [6], [5].
4See e.g. the bibliography in [1].
5For this see [31], [41], [3], [2], [1]; see [37] for an overview of the early studies on intuition-

istic modal logics.
6See e.g. [38].
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refutation is based on the meaning of intuitionistic negation as the condition
that there is no construction for an absurdity. On this basis, indirect proofs
in the form of a reductio ad absurdum are standardly not admitted, whereas
the usual intuitionistic absurdity rule interprets the classical ex falso quodlibet.7

The foundational work [20] represents the basic result of translation of classi-
cal mathematics into intuitionistic mathematics: Kolmogorov reduces classical
formulas to intuitionistic ones as long as they are double-negated, what he calls
‘pseudo-truths’, the implication from ¬¬A to A being valid in the domain of
the finitary. The present paper dwells on this foundational idea that truth is
admissible for a content which cannot be refuted, provided this is valid over a
finitary domain. We provide distinct constructors for ‘pseudo-truths’ (to keep
on using Kolmogorov’s terminology) and for constructive truths. Formally, this
requires constraining a part of the language to a finitary set of formulas with
direct verification processes: in this fragment of the language, the meaning of a
valid judgement ‘A true’ justifies the further conclusion that no construction for
‘¬A true’ is possible. We then extend the language by introducing the weaker
notion of ‘truth admissible up to refutation’: this is defined by a constructor
obtained as a double negation introduction from the previously given set of con-
structors, representing an appropriate formulation for a constructive notion of
admissible or not-yet-refuted truth-candidate. The related constructions do not
need to satisfy any corresponding negation conditions, as it is the case for the
notion of constructive refutation introduced in [21].8 We only require that the
notion of admissible truth-candidate literally satisfies the logical concept of an
assumption, a term which might not have an appropriate β-reduction (as from
the corresponding λ-calculus).9 By interpreting hypotheses as open construc-
tions, a judgement Γ ` a : A expresses the truth of the proposition A on the
basis of the information provided in Γ, unless some of the judgements formu-
lated in Γ is refuted. The modal extension solves the problem of expressing such
an epistemic relation on contextual constructions in the language, giving a set
of rules by which this notion is preserved under logical inference. In this way
we are allowed to survey our epistemic stand towards a finite amount of logical
information and claim our actual stand towards the possible extensions.

The structure of the paper is as follows. Section 2 provides a variant in-
terpretation of the basic system of constructive type-theory, where the link
between hypotheses and refutable contents becomes admissible; in section 2.2
this language is extended by introducing epistemic modal operators defined by

7See e.g. [39, p. 40].
8The conditions required in [21] are: (I) a construction c proves ¬A if and only if c refutes

A; (II) it is decidable whether or not c proves A, and whether or not c refutes A, whereas it
is not explicitly excluded that a formula may be proved by one construction and refuted by
another; (III) a construction c refutes ¬A if and only if c proves A. The combination of points
(I) and (III) represents a direct translation of constructive proof into refutation.

9Notoriously, the Curry-Howard isomorphism which matches formulas in a Hilbert-style
system and types in calculi of combinatorial logic, has its further step in the analogy between
natural deduction derivations and the terms of a λ- calculus. This latter analogy was estab-
lished by Martin-Löf in a paper titled Infinite terms and a system of natural deduction in
1969. I owe this information to Göran Sundholm.
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their judgemental scope; finally in section 3 the set of rules for such modal
type-theory is formulated in order to preserve refutability under a consequence
relation. In the conclusion, the next steps of this research are mentioned.

2 Interpreting proved and refutable contents

In the description of realistic knowledge processes, it seems appropriate to ex-
plain hypotheses as contents whose truth is declared, but whose refutation is not
ruled out. Whereas a standard constructive reading of a hypothetical judgement
is of the kind

(I know that) S is P , provided (I know that) A1 to An hold,

we refer to the representation of knowledge states related to the following schema
of sentential contents:

(I know that) S is P , provided that A1 to An are not refuted

where S, P are terms and Ai are all propositions. Contextual reasoning allows
us to implement this meaning of open assumptions as possible truth. To this
aim, formally distinct notions of global and local validity can be used to in-
terpret truth in context via the underlying reading of assumptions along with
constructive truth. This is required because in the basic constructive definition
of truth, refutable contents are not discussed. Hence, if the proof of a construc-
tion [x1 : A1, . . . , xn : An] ` a : A is a process admitting the proof of A under
not yet verified assumptions, the truth of propositions A1, . . . , An needs to be
introduced in a non-constructive way.

In order to formalize such a reading, one needs to keep introduction rules for
proven and assumed propositional contents separate, i.e. where the latter are
not ultimately justified on the basis of the former. Judgemental modalities will
be used to express the resulting different modes of correctness of a propositional
content derivable in the context of either proven or assumed propositions:

• a judgement �(A true) expresses that a content A is true in any epistemic
state, as A is independent from any refutable condition (either there are
none, or all of them have been secured);

• a judgement ♦(A true) expresses that a content A is true in some epistemic
states, namely where certain conditions are not refuted.

To obtain a modal language where the meaning of the operators is explained
in this way, we start from a polymorphic language containing one basic sort
type for categorical (non assumptions-based) constructive judgements with cor-
responding term constructors a, b; and one sort typeinf (information type) for
judgements in a context of refutable conditions, with corresponding variable
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constructors x1, x2.10 Judgements of the first sort (type) induce a constructive
notion of truth (true), the second ones (typeinf ) a weaker predicate of truth
up to verification (true∗): type objects are meaning objects, each related to a
corresponding semantic predicate.

Our syntax, justified in the following two subsections and extended to the
modal formulas only in the next section, is the following:

Types := type; typeinf ;
Propositions := A;A ∧B;A ∨B;A→ B; (∃ai :Ai)B; (∀ai :Ai)B;A ⊃ B;

A→ ⊥
Proof terms := a; (a, b); a(b);λ(a(b));<a, b>;
Proof variables := x; (x(b)); (x(b))(a);
Contexts := Γ, x :A; Γ, a :A;�Γ;♦Γ;
Judgments := a :A;¬(A→ ⊥);x :A;A true;A true∗; Γ ` A true;♦(A true);

�(A true).

The basic novelty of this syntax is represented by the introduction of the non-
standard kind typeinf and the corresponding semantic notion true∗: they will
provide us with the required syntactic-semantic weakening appropriate for the
notion of refutable assumption. It is on the basis of such extension that the
modal fragment will be introduced in the next section.

2.1 The non-modal fragment

The two objects type and typeinf are the linguistic/ontological categories of
our system. Type Formation is no longer a unique judgement (as it is the case
with Martin-Löf’s Type Theory), because it now includes two distinct cases.
Absolute judgements in our type theory are of the form a :A and ¬(A → ⊥),
the latter generating an assumption judgement x :A. From these two judgements
we define both the types and the semantic terms of our language.

Type formation and the verificationist principle of truth for categorically
justified propositions are our basic inferences:

a :A Type formation
A type

a :A
Truth Definition

A true

The first rule says: given a categorical construction a for proposition A, A
is of the sort type. The second rule says: given a categorical construction a
for proposition A, the sort A is categorically true. Provided they are justified
in the same way, in the following – and especially in the elimination rules for

10The reason to call refutable types Information Type is dictated by the underlying epis-
temic difference between functional information and knowledge, where the former is defined
as meaningful data, whereas the latter by meaningful justified (and hence true) data. Given
both this conceptual distinction and the formal rules to follow, expressions in type can be see
as a proper subset of the information type.
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connectives – we will take the liberty of using a judgement of the form A true in
rules that usually require the sortA to be equipped with term a, asA true always
presupposes a :A. For type the standard identity rules that define Reflexivity,
Symmetry and Transitivity hold as usual. The set of judgements in type are
the (categorically) verifiable formulas of the language. Constructors for these
judgements are composed by way of listing, application, abstraction and pairing
to define connectives and quantifiers: ∧,∨,→,∀,∃.

a :A b :B
I∧

(a, b) :A ∧B true
A ∧B true

E∧
l(a) :A

A ∧B true
E∧

r(b) :B

a :A
Left I∨

l(a) :A ∨B true
b :B Right I∨

r(b) :A ∨B true

A ∨B true A→ C true B → C true
E∨

C true

a :A A true ` b :B
I →

a(b) :A→ B true
A→ B true a :A

E →
(a)b :B

a1 :Ai, . . . , an :Ai Ai true→ b :B λ((ai(b))A,B)
I∀

(∀ai :Ai)B type

(∀ai :Ai)B type (ai(b))A,B
E∀

Ai true→ b :B

Ai true→ b :B (< ai, b >,A,B)
I∃

(∃ai :Ai)B type

(∃ai :Ai)B type (< ai, b >,A,B)
E∃

Ai true→ b :B

a :A
I⊥¬A→ ⊥

We omit identity rules on constructors, we use the λ-operator as a ∀-constructor
on terms combined by application, angled parentheses <,> for ordered pairs
as an ∃-constructor. → is obtained by application a(b) of the construction
a of the antecedent to the construction b of the consequent, rather than by
abstraction: it can be seen as a λ-term presented together with one of its α-
terms.11 This construction reduces all implicational relations to categorical
terms and it validates no implication from the false.

11It interprets strict implication á la Heyting, recalling ideas mentioned by Martin-Löf and
the calculus of types with explicit substitutions presented in [38].
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Quantifiers are formulated accordingly. Universal predication abstracts from
enumerable sets of equivalent constructions of Ai all implying the same propo-
sition B. Its elimination picks one application out of those constructions. Exis-
tential quantification is justified by paired constructions, i.e. from a constructor
of B which can be obtained from any of the equivalent constructors of Ai. Its
elimination picks out the constructor of Ai to reconstruct the implication.

The negation introduction rule is obviously derivable in the intuitionistic
setting and it is crucial for the following extension to functional expressions:
¬ occurs in a (negated) implication from a valid type to the absurdum, saying
that if A true is a known judgement, then one infers that no construction for
¬A holds. The corresponding elimination rule would validate double-negation
elimination, but we formulate instead a non-standard extension to functional ex-
pressions by a connective ⊃. Formally, a functional relation among expressions
is explained as follows: if A type holds, then a construction of a new type B is
possible by considering the latter as a family of sets over some x :A such that
B type[x :A] whenever the substitution [x/a] is performed. The type checking
will require first A to be well-formed, secondly evaluation to a current environ-
ment (i.e. the variables’ appropriate typing) for extraction of variable terms,
thirdly construction for the variable in that environment, and finally evaluation
of the variable and the formulation of the binding expression to a value for that
environment. The generalization to multiple dependence being allowed, terms
for B type whenever [x1 :A1, . . . , xn :An] are evaluated by being put into normal
forms (eventually: weak head normal forms, explicit substitutions, closures) in
order for the predication B type to be valid.

A new task is to admit no explicit substitution on such formulas, requiring
that variables be well-typed without requiring that they be brought to standard
normal form. This leads to the introduction of assumed truth in the sense of
(still) refutable contents.

We start by allowing the new type format typeinf . A judgement A typeinf
is not given by direct construction, rather it is given by checking that no con-
struction for ¬A type is already given. In this way, an admissible (but not-yet-
grounded) predication is performed; the resulting semantic judgement is the one
for hypothetical truth (true∗):12

¬(A→ ⊥)
Informational Type formation

A typeinf

A typeinf x :A
Hypothetical Truth Definition

A true∗

12It is intuitive to understand the rule formation for A typeinf as neutralized by a con-
struction for ¬A, i.e. as soon as a refutation of A is given. The epistemic dynamics naturally
involved by this rule can be described as the free act of the knowing agent to invoke A ‘as
long as it is not refuted’. As mentioned in a previosu footnote, the reason to cal this an In-
formation Type is due to the distinction we draw between judgements grounding knowledge,
and judgements providing information used to build (hypothetical) knowledge.
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The judgement ¬(A → ⊥) in the previous fragment of the language says that
there exists no pair of constructions < a, b > such that a(b) :A true→ ⊥. It does
not imply that a :A follows: the latter justification is kept entirely constructive
and therefore cannot be given by indirect proof. The typeinf formation rule
reminds us of a double negation elimination and it recalls an introduction rule,
but it is not the appropriate counterpart of its classical version. This can be
only seen in terms of the implicational relation ⊃ that holds for typeinf and
that shall be introduced below.

The second rule says that provided A can be admitted as a typeinf , a weak
truth-predicate true∗ (true up to refutation) is inferred by assuming a construc-
tion for A exists: it can be seen as a place-holder for admissible but strictly
yet-ungrounded truth.13 As open terms of this form lack direct computational
content (i.e. their constructor is only implicit but not evaluated), intensional
identity cannot be defined over typeinf and only extensional identity as equal-
ity of the negated originating type is defined. For this reason, only conversions
are admitted, so that type-checking and well-formedness of types becomes unde-
cidable in view of the proposed extension with typeinf ; this also means that the
introduction rule for the new sort typeinf substitutes the usual η-expansion.14

Under this interpretation, we introduce within the typeinf fragment:

A typeinf x :A ` B typeinf
Function Construction

x :A ` B true∗

13This interpretation represents a more epistemically oriented reading of similar uses of
open terms, notoriously relevant in, for instance, partial evaluation, see [19], [18].

14This is clearly a different notion of extensional type than what is usually intended for
Martin-Löf’s Type Theory, which nonetheless leads to an equivalent result of general unde-
cidability. Our language seems inappropriate to define typically extensional concepts such as
pointwise equal functions and quotient types. Our main aim is instead to preserve as much
as possible a constructive model and then adapt it to forms of natural reasoning. Given the
nature of the project, what is more worrying for us is the impossibility of defining, in prin-
ciple, equality of proofs and identifying equivalent propositions that are not reduced to the
type fragment. This suggests that, under this interpretation, forms of reasoning may remain
incomparable when starting with distinct – even though equivalent – refutable assumptions.
Provided the general incomputability of the typeinf extension, peculiar consequences of the
extensional version of Type Theory, such as the refutation of Church’s Thesis, become less
surprising. Nonetheless, it is maybe useful to notice that for every term in typeinf that can
be correctly instantiated, there will be a corresponding term in type for which standard in-
tensional and extensional identity can be defined; similarly, for any such term that cannot
be instantiated, there will be the corresponding neutralizing refutation in type, which again
satisfies equality and identity. The philosophical literature questioning the axiomatic view on
mathematical proofs and their interpretation as mechanically checkable derivations is growing.
In this direction, there is a large convergence on understanding the real process of proving
mathematical statements as a problem-solving task that makes a crucial use of hypotheses,
supported by a mixture of deductive moves and induction. See e.g. [36], [7], [17]. The present
work offers some formal means of representing assumptions-based reasoning, by enriching the
formal structure of constructive proofs with a weaker format of admissible truth. Nonetheless,
from a purely formal viewpoint, the ultimate understanding of validity for our system relies
on the appropriate reduction to the standard fragment of Constructive Type Theory with the
type sort only, hence to a standard identity of proofs and executable (mechanically checkable)
programs.

8



A typeinf x :A ` B true∗
I⊃

((x)b) : A ⊃ B true

(A ⊃ B) true A type[x/a]
E⊃

B true

A typeinf x :A ` B typeinf a :A
β-conversion

(x(b))(a) = b[a/x] :B type[a/x]

Function construction says that B is true up to A being refuted (i.e. the formu-
lation of a construction of ¬A being provided). The new implicational connec-
tive ⊃ induces the standard dependent functional construction by abstraction.
Its classical-like behavior is preserved by the introduction rule, where the an-
tecedent is formulated in the first premise by an instance of the Information
Type Formation rule and thus in principle by a double negation introduction.
But the corresponding elimination rule explicitly requires a substitution of the
double negated type x : A with a term a, so preventing that it collapses into
classical implication (namely by avoiding its holding with a false antecedent).
β-conversion provides the appropriate translation to standard dependent type
formation by application, expressing reducibility of typeinf to type.

The restriction imposed by E⊃ and explicitly formulated by the β-conversion
rule, prevents the system from collapsing into classical logic by ensuring that
A ⊃ B true whenever A→ B true, and allowing that A ⊃ B true without A→
B true, so invalidating the equivalence between the two implicational relations.
In [8] it is shown how the equivalence of a classical-like and an intuitionistic-like
implications can be produced by unrestrictedly accepting one of the schemas
A true → (B → A true) or A true ⊃ (B → A true).15 The collapse is then
justified as follows:

1. (A→ B true) ⊃ (A ⊃ B true)

2. (A ⊃ B true) ⊃ (A→ B true)

3. (A ⊃ B true) ⊃ (A true→ (A ⊃ B true))

4. A→ B

5. (A→ B) iff (A ⊃ B).16

In particular step 2. is obtained from step 1. by using an unrestricted version
of A true ⊃ (B → A true). As A occurs in this schema as the antecedent of ⊃
and the consequent of →, obviously by E ⊃ the restriction holds that A type.17

In the following subsection we will present the extension to epistemic modal-
ities derived from the introduced type constructors expressing the validity of
truth over contextual extensions.

15Here and below, the notation of [8] is abandoned in view of an adaptation to ours.
16As this is supposed to express the collapse of the two implication relations, the equivalence

is metatheoretical and can be expressed in either language.
17In [8] the corresponding restriction on the axiom schema is that for A every occurrence

of classical implication, equivalence or negation be in the scope of an intutionistic negation or
implication, i.e. that A true ⊃ (B → A true) holds if A is so called persistent.
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2.2 Modalities for provability up to refutation

The distinction between the notions of ‘truth by verification’ and ‘verifiability-
up-to-refutation’ can be internalized by the use of epistemic modalities as op-
erators that apply to judgements of the form A true.

In the preceding section, strictly constructive truth is limited to the epistemic
protocol by which a verification can be formulated analytically,18 i.e. without
assumptions. This explanation of the truth of a proposition supports the iden-
tity between the judgements “A true” and “A has a verification in an empty
context of assumptions”:

A true⇔ ∅ ` a :A

where (∅) describes the epistemic situation in which no condition for a is needed,
as such external conditions either do not exist, or they have all been satis-
fied. Provided categorical justifications have epistemic priority over dependent
ones,19 if A true holds, it also holds under refutable data being added, because
by definition no declaration ¬A typeinf will be allowed if A type holds and thus
a : A is formulated. This will make A verified in any extension of the empty
context:20

A true⇔ ∅ ` A true⇔ �(A true).

The following obvious step is to relate dependent truth with a possibility
form of judgement. The judgement “it is possible that proposition A is true”,
should mean that only in some context the truth of A can be stated: the context
Γ in which A true holds will contain all the conditions that satisfy a :A, and will
be preserved by any other context in which these conditions are not refuted:

A true∗ ⇔ Γ ` A true⇔ ♦(A true)

where Γ contains propositions of the form Ai true
∗.21 Where β-conversion

applies, there is an immediate reduction to the previous case of A true and the
necessity judgement.

The use of modal judgements is meant to internalize the distinction among
categorical and hypothetical (refutable) truth. The generalization to hypotheti-
cal reasoning allows us to clarify the notion of assumption. We shall rely on the
different introduction rules for the semantic judgements A true and A true∗.

18This notion of analytic judgement is introduced by Martin-Löf in [24].
19Truth by verification has epistemic priority on provability up to refutation, whereas de-

pendent constructions with satisfied conditions (i.e. with valid β-conversions) are conceptually
prior (because more general) to categorical constructions.

20Judgmental necessity satisfies the correlation between validity and justification under no
condition, as for the system presented in [30]; it is nonetheless justified in a completely different
way, as the judgement “it is necessary that proposition A is true” is based on the analysis
of its assertion conditions, by explaining necessity as validity against any possible state that
contains refutable data for the construction of A.

21For more on the philosophical justification of this notion of judgemental modalities, see
[33].
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In the following section the full system for a modal language of proven and
refutable contents is formulated.

3 Contextual Modal Type Theory for verifica-
tion and refutation

The system for a modal type theory that includes a validity relation up to refuta-
tion is formulated by using the two distinct truth predicates, with propositional
variables closed under logical connectives, proof terms and proof variables with
distinct operations of application and abstraction depending on the required
semantic specification. Terms a, b, . . . and variables x, y, . . . are respectively
proof terms and place-holders for admissible proofs; types A,B, . . . are propo-
sitions; for dependent judgements we use the given explanation of a judgement
A true holding under open assumptions x1 :A1, . . . , xn :An collected in context
on the left-hand side of a ` derivability sign, so that from now on our standard
judgement is of the form Γ ` (A true), with its modal variants; we suppose that
all variables in a context are distinct. The modules of verified and refutable
contents are introduced in terms, respectively, of a premise and a hypothesis
rule:

Premise Rule
Γ, a :A,∆ ` A true

Hypothesis Rule
Γ, x :A,∆ ` A true∗

The premise rule introduces explicitly verified contents; the hypothesis rule re-
flects the introduction of contents that are only assumed to be true; both rules
can have Γ,∆ = {∅}. Correspondingly, the true predicate can be understood as
validity (that is truth in every situation) and it corresponds to truth by verifi-
cation; the predicate true∗ corresponds to validity in a context of assumptions,
or local validity. Standard logical connectives apply on construction-assigned
formula, with the extension to hypothetical reasoning (⊃). The identity be-
tween categorical judgement and judgement valid under no context allows the
internalization of the modal operator of necessity at judgemental level, whereas
the hypothesis judgement works in the same way for the internalization of the
possibility operator:22

a :A
�-Formation

�(A true)
x :A ♦-Formation

♦(A true)

We can extend categorical verifications to contextual ones by allowing the use
of formulas a :A in context, so that a :A ` a :A is a valid construction, but this

22In line with the general philosophical characterization of this work, the formation rules
for modalities are intended as applying to any sort of proposition that can be derived as a
theorem within the language; they thus have a logical characterization, but not necessarily a
strict mathematical one.
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remains in the scope of our categorical module of the language, corresponding
to an identity function. Truth formation allows the construction a :A ` A true,
but we shall not allow the derivation from x :A to A true, rather restrict the
inference to truth only where verified (valid) assumptions are used. To this
aim, modalities are extended to contextual judgement. We shall refer to �Γ
as the necessitation of the context Γ, that is a context containing only valid
assumptions; we call these premises:

Definition 1 (Necessitation Context). For any context Γ, �Γ is given by⋃
{�A true | for all A ∈ Γ}.

A judgement valid under assumptions becomes a necessary judgement under
necessitation of its context of assumptions. Expressions in contexts that are not
explicitly verified preserve the notion of refutable truths. We refer now to a
context containing assumptions of the form x :A as follows:

Definition 2 (Normal Context). For any context Γ, ♦Γ is given by
⋃
{◦A true |

◦ = {�,♦} and ♦A true for at least one A ∈ Γ}.

A judgement valid under assumptions becomes a possibility judgement if
its context remains normal, that is at least one of its propositional contents is
true∗.23

Because of the distinction between justified and refutable contents, the in-
troduction of judgemental � is allowed under the verification of judgements in
the related context; its elimination rule induces a valid proposition:

Γ ` A true
I�

�Γ ` �(A true)

�Γ ` �(A true) ∆, a :A ` B true
E�

Γ,∆ ` B true

where �Γ iff [xi/ai] :Ai,∀Ai ∈ Γ, as by Definition 1.24

To express the relation of truth instantiated by an hypothesis x :A, we refer
to validity in a context by introduction and elimination rules for the ♦-operator:

Γ, x :A ` B true∗
I♦

�Γ,♦(A true) ` ♦(B true)

23In various literature in modal logic, Necessitation and Normal Context are usually called
Global and Local Context. This distinction, however it is called, is crucial for preserving
the problem of derivability under assumption in modal languages. I have strengthened here
the reasoning, by obtaining modal judgements (rather than formulas) from the preserva-
tion/verification of assumptions. Cf. [15].

24This rule for the necessity operator is similar the one introduced in [30], where �A is
derived by a valid A, hence this validates ∆; ;` A true ⇒ ∆; Γ ` �A true and requires an
additional assumption A valid in the corresponding elimination. We express the validity by
the necessitation context (which implies its extension to any other context by any B typeinf

judgement) and analytically formulate it in the elimination rule, by adding the additional
premise a :A. In the comparison with the system presented in [14], the obvious similarity is
that the therein contained modality �k satisfies the same principle of our I�, namely it builds-
in the substitutions needed for formulas in contexts. On the other hand, the propositional
format does not require any ♦ operator, its role being syntactically satisfied by standard
contexts.
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�Γ,♦∆ ` ♦(A true) ∆, x :A ` B true∗
E♦

Γ,∆ ` B true∗

where the introduction rule shows the dependency of possible contents from
refutable contents, whereas the corresponding elimination expresses the use of
this information to infer further possible knowledge under the condition ex-
pressed by Definition 2.25

Local soundness and completeness of our modal rules can be proved in the
usual way by local reductions and expansions. Soundness is obtained by local
reduction on �(A true):

D1

Γ ` A true
�I

�Γ ` �(A true)
E

∆, a :A ` b :B
�E ⇒Redex

Γ,∆ ` B true

D2

Γ,∆ ` B true

D2 is obtained from D1 and E by substitution on terms (see Theorem 1 below):
a proof term for A is induced from �Γ in D1, i.e. by reducing all open variables
in Γ by β-conversion, in turn providing a proof term for B in E, hence allowing
the truth judgement. In computational terms, this rule formalizes β-reduction
of B (value) with respect to all occurrences of its procedures (codes) in A.

Completeness is given by local expansion on �(A true):

D1

�Γ,∆ ` �(A true)
⇒Exp

D2

�Γ,∆ ` �(A true)

Prem Rule
Γ, a :A,∆ ` A true

�I
�Γ, a :A,�∆ ` �(A true)

�E
�Γ,∆ ` �(A true)

By this expansion one shows how �E provides all the information needed to
reconstruct �(A true). Computationally, it reconstructs the value on code A.
Notice that by the non-reducibility of x :A to simple truth, one reaches com-
pleteness for the �-rules, which do not violate the meaning of hypotheses, as it
is the case with the rules for necessity in [32]. On the other hand, given Defini-
tion 1, a side condition on multiple simultaneous substitutions is unavoidable,
see [3].

Soundness is given by local reduction on ♦(A true):

D1

Γ, x :A ` B true∗
♦I

�Γ,♦(A true) ` ♦(B true)

E

Γ,∆ ` A true∗
♦E ⇒Redex

Γ,∆ ` B true∗

D2

Γ,∆ ` B true∗

25Also in this case we have an analogy with the corresponding rules from [30]: we require the
possibility judgement to be bounded explicitly to a x :A in context, whereas their approach
infers it directly from contextual truth; the corresponding elimination rule uses the semantic
judgement involving the true∗ predicate, whereas in their case a C poss judgement is inferred
from contextually bounded truth.

13



D2 is justified from D1 and E by the Hypothesis Rule and I♦: by E, Γ,∆ in
reduced form will contain at least one formula of typeinf , which justifies true∗

in D2.26

Finally, completeness by local expansion on ♦(A true):

D1

♦Γ,∆ ` ♦(A true)
⇒Exp

D2

♦Γ,∆ ` ♦(A true)
Hypo Rule

Γ, x :A,∆ ` A true∗
♦E

Γ,∆ ` A true∗
♦I

♦Γ,∆ ` ♦(A true)

This expansion shows how to reconstruct all the information needed to formulate
♦(A true).

The local reductions and expansions are usually completed in terms of stan-
dard β-reduction and η-expansion, where by the former one shows how formulas
terminate presenting their computational content, and by the latter how to ab-
stract variables, implementing the extensionality principle. As our variables are
not abstracted from corresponding terms with computational content, we can-
not implement expansion. Its role is actually played by the Informational Type
Formation rule.27 The standard substitution operation of variables by constants
is as usual indicated by [x/a]B as the substitution of occurrences of x in B by
a; in our system this gives the relation between verification and truth. The cor-
responding modal version shows that term substitution satisfies the inclusion of
♦ in �.

Theorem 1 (Substitution on terms). The following substitutions hold:

1. If Γ, x :A,∆ ` B true∗ and Γ,∆ ` a :A, then Γ,∆ ` [x/a]B true.

2. If �Γ,♦(A true),�∆ ` ♦(B true) and �Γ,�∆ ` �(A true), then �Γ,�∆ `
�(B true).

Proof.

1. by induction on the first given derivation, using the Hypothesis Rule and
the inclusion of B true∗ in B true; from the second premise all occurrences
of A are declared being type, in particular those in Γ,∆ ` B true∗ by β-
conversion, then B true follows as valid in any extension of Γ,∆.

2. again by induction on the first given derivation: by ♦E on the first premise
one obtains an occurrence of x : A, using β-conversion on A true∗ one
obtains B true in the second premise; by I� one finally obtains �(B true).

26Computationally, this reduction formalizes the naming of codes that are presented par-
tially evaluated to program B.

27It is worth remember that this limitation is avoided for any term in typeinf that is actually
β-reduced, as it then induces a corresponding term in type.
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Substitution on the different truth predicates and modal judgements defines
structural rules for the system:

Theorem 2 (Weakening). The inference systems satisfies Weakening:

1. If Γ ` B true, then Γ, a :A ` B true.

2. If Γ ` B true∗, then Γ, x :A ` B true∗.

3. If �Γ ` �(B true), then �Γ,�(A true) ` �(B true).

4. If ♦Γ ` ♦(B true), then ♦Γ,♦(A true) ` ♦(B true).

Proof. By induction on derivations: in 1. uses the Premise Rule; in 2. uses the
Hypothesis Rule; in 3. uses I�, in 4. uses I♦.

Theorem 3 (Contraction). The inference system satisfies Contraction:

1. If Γ, a1 :A, a2 :A ` B true, then Γ, a :A ` [a1 ≈ a2/a]B true.

2. If Γ, x1 :A, x2 :A ` B true∗, then Γ, x :A ` [x1 ≈ x2/x]B true∗.

3. If �Γ, a1 :A, a2 :A ` �(B true), then �Γ,�(A true) ` �(B true).

4. If �Γ, x1 :A, x2 :A ` ♦(B true), then �Γ,♦(A true) ` ♦(B true).

Proof. By induction on derivations: Reflexivity and Symmetry for proof terms
in 1.; uniqueness of proof variables for typeinf in 2.; in addition Truth Definition
and I� for 3.; Hypothetical Truth Definition and I♦ for 4..

Theorem 4 (Exchange). The inference system satisfies Exchange:

1. If Γ, a1 :A, a2 :A ` B true, then Γ, a2 :A, a1 :A ` B true.

2. If Γ, x1 :A, x2 :A ` B true∗, then Γ, x2 :A, x1 :A ` B true∗.

3. If �Γ, a1 :A, a2 :A ` �(B true), then �Γ, a2 :A, a1 :A ` �(B true).

4. If �Γ, x1 :A, x2 :A ` ♦(B true), then �Γ, x2 :A, x1 :A ` ♦(B true).

Proof. By induction and using the same properties on terms and variables as
for Contraction.

4 Conclusions and further work

In this paper we have presented a type system that extends a constructive
syntactic-semantic method inspired by Martin-Löf’s type theory with an ad-
missible treatment of refutable conditions for judgements. We have drawn a
distinction between contents that are categorically justified and contents that
are accepted as meaningful, but whose truth is debatable. The introduction of

15



epistemic modalities allows us to internalize contextual truth in the standard
constructive approach.

The effect of extending a finitistic type-theoretical language by the typeinf
sort basically recalls the switch from extensional to intensional models, well-
known for Martin-Löf’s Type Theory. Such a step, which essentially establishes
the propositions-as-sets identity and the equivalence between truth and inhabi-
tation (Curry-Howard correspondence), notoriously leads to impredicativity by
defining a type of all types.28 In the categorical models of the simple type the-
ory, all types can be interpreted by countable sets: in the contextual format one
obtains the same models as Cartesian closed categories, with objects Γ,∆ and
mapping Γ → ∆ as co-products to introduce dependent types. These are the
standard categorical models for intuitionistic propositional logic.

In the case of our modal contextual type-theory, it is not enough to explain
an appropriate extension of the standard categorical approach to model the
modalities, as it is the case with categorical models of constructive S4, see [1].
This is due to the unusual nature of the underlying polymorphism induced by
typeinf and hence requires non-standard models. Intuitively, the basic extension
provided by the typeinf sort in our language can be thought of as a combination
of a typed terms structure (à la Church), by which terms have unique types,
with a typing assignment procedure (à la Curry), where computation does not
necessarily terminate. The extension of standard models of Constructive Type
Theory by a function that introduces terms in typeinf recalls the partial func-
tion space constructor which is usually lacking in type theories, a well-known
fact from the theories of types such as from Martin-Löf’s, the Calculus of Con-
structions, the Nuprl implementation and the λ-calculus format.29 Typeinf can
be seen as a constructor for partial objects and it modifies the standard models
of type theory with dependent products by allowing terms on which substitu-
tions are not defined. Under the propositions-as-types principle, such objects
should be intended as partial proofs, and the sort of informational expressions
identified under the typeinf sort expresses precisely the notion of a process of
proving that is admitted without a proper constructor, only provided none of
its validity conditions is refuted. The analysis of these categories is reserved to
another occasion. The issue of open proof terms is also receiving attention in
systems of higher-order rewriting.

The extension to multi-modalities as distinctly indexed operators is the next
obvious step for multi-agents and multi-source contextual modal type-theory. A
multi-modal type theory based on the polymorphic setting here introduced is
developed in [34], interpreted in terms of trust relations among agents in a net-
work, where information flows in a strictly ordered way. Trust is defined as
a second-order property and the formalization interprets communication pro-

28This was first resolved by preserving the notion of universe of small types extended by
dependent ones, the basis for an intensional minimal simple type theory of which, for example,
the calculus in [16] is a corresponding λ-calculus of proofs, and which can be translated to an
extensional classical system by the already mentioned negative translation of [20] (together
with other possible extensions).

29See e.g. [4], [11], [13], [12], [10], [9], [28].
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cesses between sources (the prioritized structure generated by contexts of the
dependently typed language) and a receiver (the indexed contextually derived
judgement). The modal operator attached to a set of assumptions is induced
from the priority relation among expressions; the modality prefixing the derived
judgement is meant to represent the epistemic status of the receiver in the com-
munication protocol, strictly determined by introduction and elimination rules
for modalities that are based on canonical verification processes. A different in-
terpretation is provided in [35] for a computational interpretation of programs
equipped with locations for data accessibility in the context of distributed pro-
cessing.
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editor, From Frege to Gödel: a source book in mathematical logic 1879-1931,
pages 414–437. Harvard University Press, 1967.
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