
A multi-modal type system and its procedural

semantics for safe distributed programming

Giuseppe Primiero∗

Centre for Logic and Philosophy of Science
Ghent University (Belgium)
IEG - Oxford University

Giuseppe.Primiero@UGent.be

Abstract

In this paper we present a multi-modal polymorphic type system for
a computational interpretation of programs with distributed resources.
Polymorphism induces a distinction between programs whose code is safe
at location, and programs whose value is safe overall. We formulate judge-
mental modalities to express such distinction and use their introduction
and elimination rules to express mobility of code and values within a net-
work. The syntactic formulation is completed by a procedural semantics
interpreted over states of an abstract machine for which a standard sound-
ness result is given in the form of a type safety theorem.

Keywords: Modal Type Theory, Distributed Computing, Weak Ter-
mination.

1 Introduction

Modalities are becoming common means for the representation of networks em-
bedding diverse procedures, resources, devices, services. In particular, they
provide an optimal tool to reason about distributed and staged computation,
as proven by the recent large body of work, see e.g. [10, 4, 11, 12, 5]. This is
the case especially by endorsing the interpretation of proofs-as-programs made
possible by the Curry-Howard isomorphism. In fact, constructive modalities
([2, 1]) have been integrated recently in type theories ([16, 14]) to suggest a
new research direction for operational versions of modal logics. In the current
literature, we recognize two major approaches to modal logics for distributed
computing:

∗Fellow of the FWO - Research Foundation Flanders.

1

1. a syntactic approach, endorsed by the type system presented in [4], where
modalities are used to establish global/local temporal validity of proposi-
tions, exploiting the notion of contextual accessibility;

2. a semantic approach, like the one put forward by the intuitionistic modal
logic ML5 for Grid Computing introduced in [11, 12], further enriched
with the concept of location.

Other languages to express heterogeneous resources and locations are given for
example in [3] and [15].

Varying on the first theme, we present a polymorphic type system with
judgemental (rather than propositional) modalities: this is a generalization of
the system developed in [18] which extends Martin-Löf’s Type Theory (MLTT)
with derivability from open assumptions. In the present formulation, we in-
troduce multi-modalities to interpret different kinds of procedure termination
to reason about safe distributed programming. The use of locally terminating
processes to study distributed programming is the major novelty of the present
contribution, the most similar approach being presented in [5].

The basic property that characterizes our type system is the underlying
polymorphism of constructors, by which a formula including a variable xi ex-
presses locally valid code by a weakly terminating process, whereas a formula
with constant ai expresses the globally safe value of the corresponding specifi-
cation. Reduction to normal form will be therefore understood as a procedure
of global validation. In turn, this induces a corresponding polymorphism of
types depending on the distinction between true and valid assumptions: a type-
theoretic judgement Γi ` A typeinf is the claim of bounded validity of a specifi-
cation A in the context of resources and procedures in Γ at address i, containing
at least one true assumption xi :A; a type-theoretic judgement ∆i ` A type is
the claim of global validity of a specification A in the context of resources and
procedures in ∆ at address i, containing all valid assumptions ai :A. To make
full use of such distinctions in the language, we extend it by modal judgements:
a modal judgement ♦i(A true) refers to valid code for specification A, terminat-
ing only at some locations (weak termination); a modal judgement �i(A true)
refers to everywhere executable, safe code for specification A, independent from
additional locations being accessed at run-time by the corresponding program
a.

The polymorphism and the resulting modal type system are used therefore to
explore reasoning about distributed computing, obtaining Code Mobility Rules
from corresponding properties of the modal operators. Significant contributions
of this work are:

1. the strong assumption on the polymorphic nature of codes and values,
understood as locally and globally valid processes;

2. an alternative formulation and interpretation of (multi-)modalities for safe
distributed computing;

2

3. the underlying operational semantics for the interpretation of distributed
programs.

The paper is structured as follows. In §2 the system is introduced, first in §2.1
by referring to the polymorphic type system and then in §2.2 by presenting
the extension to multi-modalities and their interpretation. In §2.3 the proper-
ties of the resulting non-homogeneous modal language are analyzed, focusing
on the rules for code mobility. In §3 we present the syntax of a correspond-
ing programming language, its operational semantics and prove a safety result,
standardly in terms of preservation and progress properties. In §4 we refer to
further applications of this multi-modal type system and other lines of research.

2 A system for code and safe values

Contextual dependency in MLTT provides all that is needed to express syntac-
tically the notion of truth relative to states typical of modal logics. Standardly,
in a dependent judgement of the form Γ ` a :A, the proof a of type A holds
under appropriate substitutions of assumptions [x1/a1 :A1, . . . , xn/an :An] in
Γ. Substitution of variables with proof terms corresponds computationally to
their β-reduction or – under the proofs-as-programs interpretation – to explicit
evaluation at run-time of codes for [A1, . . . , An] from which a program for A
depends. The distinction between normalized and non-normalized contexts is
usually expressed by referring to true and valid assumptions respectively.

The ultimate task of the type system we shall introduce is to formalize the
distinction – crucial for distributed computing – between code that can be eval-
uated only at some location and code that can be evaluated everywhere in a
network. One way of approaching this task is to exploit the difference in deriv-
ability form true and valid assumptions. In our type system, true assumptions
are understood as admitting non-termination at some location(s), so that failure
corresponds to a missing address or wrong access to resources; valid assumptions
are understood as everywhere terminating processes. On that basis, we draw
a syntactic separation between constructors that induce everywhere valid code
(mobile to every address) and locally evaluated code (bounded to address), in a
manner similar to what studied in [15]. Locally evaluated code can be executed
at run-time when required by a main routine; everywhere valid code produces
safe values.1

We refer to a set T built from indexed term constructors ai, bj , . . . and
variable constructors xi, yj , . . . , each for an appropriate type/specification, with
N = {i, j, . . . } an enumerable set of distinct locations in a network. That
a formula containing type A holds under a context Γ means: the program for
specification A is executable by accessing the (list of) address(es) appearing in Γ
and by executing the related code. The constructor for A expresses (implicitely)

1We shall not dwell here specifically into the issue of fault-tolerance, to which further
research will be devoted. Logically, our distinction presents some analogy with complete
versus partial evaluations, see [6].

3

if the code is bounded to a location or can be broadcasted. This is further
refelected both in the type predicated of A and in the corresponding semantic
judgemental form. In particular:

• the formula ai :A says that program a is executed at address i for spec-
ification A. The canonical proof-term a defines the corresponding type
of safe value A type. We further induce an extension of the language
with an appropriate � modality: from ∆i ` ai : A, where every expres-
sion in ∆i is evaluated to normal form, we induce the necessity judgement
�i∈N (A true). This means that the program contains code with complete
instructional informations at run-time, all available at i but valid from
any other location accessible from i, so that it can be safely broadcasted
everywhere.

• the formula xi : A says that a routine x for specification A is validly
executable at – and bounded to – address i by some running program. The
proof-variable xi defines the corresponding type of safe code A typeinf.
We further induce an appropriate ♦ modality: from Γi ` bi : B, where
(xi :A) ∈ Γi, we induce the possibility judgement ♦i∈N (B true).

As shown in detail in [19], the set of formulas derivable in the fragment of our
type system with �i corresponds to the set of all intuitionistic propositional
tautologies, plus the formulas derivable in a multi-modal version of S4; on the
other hand, the set of formulas derivable in the fragment of our type system
with ♦i corresponds to a non-standard fragment thereof, namely a multi-modal
version of contextual KT with appropriate axioms for the ♦ modality. This
equivalence allows further interesting results, such as the embedding of the
relevant formats of Distributed and Common Knowledge in this language, in
line with the standard results from [9] for asynchronous systems.

Our starting point of view is that judgemental assertion conditions can be
translated modally to express information on the internal structure of a running
program.

2.1 Type System

In this section we define kinds, terms and rules for expressions of our type
system.

Definition 1 (Kinds). The set K =: {type, typeinf} contains

• the kind type of all specifications valid by everywhere executable programs,
defined by term constructors C;

• the kind typeinf of specifications valid by locally executable codes, defined
by variable constructors V.

Definition 2 (Terms). The set of terms T = {C,V} is given by:

4

• constructors C := {ai; (ai, bj); ai(bj);λ(ai(bj));<ai, bj>};

• variables V := {xi; (xi(bj)); (xi(bj))(ai)}.

An expression ai : A is the declaration of a safe value for specification A
generated by a program running effectively at location i and valid at any other
accessible address; an expression xi :A is a declaration of validity at location i of
an instruction to execute a program for A, generating valid code bounded to that
address.2 In turn, a term (ai, bj) is a pair of safe values; ai(bj) an application
(composition) thereof; λ(ai(bj)) produces the value of bj as a function of ai;
< ai, bj > is the ordered pair of those values. Constructions for safe code are
used to produce functional constructions only (abstraction and application).

Judgements are generalised to their contextual form:

Γi := ·, xi :Ai,∆i

∆i := ·, ai :Ai

A context Γi is built from a finite sequence of typed variables [x1 :A1, . . . , xi :
Ai] in V, all with distinct subjects in typeinf. These formulas express the locally
executable resources of a network, called upon execution of a program. A judge-
ment [x1/a1 :A1, . . . , xi/ai :Ai] ` A type says that a value for A is extracted
provided each of the routines A1, . . . , Ai is called upon at the appropriate loca-
tion, executed and its value provided. We consider the standard constraint that
requires each element xi :Ai ∈ Γ to depend on the previous one xi−1 :Ai−1 in the
same context: this means that the validity of Γi ` A type requires the ordered
execution of procedures in Γ, or in other words that the communication path
connecting the different locations in Γ is unidirectional. Contextual dynamics
is crucial to represent extension of networks. If Γ = [x1 :A1, . . . , xi :Ai], an ex-
tended context Γ′ = [Γ, xi+1 :Ai+1] is equivalent to Γ′ = [x1 :A1, . . . , xi+1 :Ai+1].
When the formulation of a fresh declaration xi+1 : Ai+1 representing a new
piece of code is meant to be independent of the order in Γi, we use a separator
Γi | xi+1 : Ai+1. As we want to keep apart open variables and their closed
counterparts, we shall refer to the distinction between true and valid assump-
tions, using ∆i to refer to a sequence of closed expressions (evaluated terms,
valid assumptions) when they occur in a context.3 In view of the functional
construction of terms in type by contextual composition with terms in typeinf,
the polymorphism of the language can be seen as expressing respectively a Π
type with the former and a Σ type over constructions with the latter.4

Definition 3 (Rules for type). The kind K := type is governed by the following
rules:

2As our modalities are purely judgemental, T does not contain modal terms, as it is the
case with the systems presented in [13] or [11].

3In the following, to reduce confusion between the index attached to the constructor –
which expresses location – and the index on types – which distinguishes routines, we shall
simply use distinct capital letters A, . . . N as subjects for the latter.

4Notice that introduction rules for quantifiers are formulated below for type, but for these
a specific interpretation holds.

5

ai :A
Type Formation

A type

ai :A bj :B
I∧

(ai, bj) :A ∧B
(ai, bj) :A ∧B

E ∧ (l)
ai :A

ai :A A type ` bj :B
I →

ai(bj) :A→ B

ai(bj) :A→ B ai :A
E →

B type

a1 :A, . . . , an :A bj :B[ai :A] λ((ai(bj))A,B
I∀

(∀ai :Ai)B type

a1 :A, . . . , an :A bj :B[ai :A] (< ai, bj >,A,B)
I∃

(∃ai :A)B type

Global Validity Rule
∆i, aj :A ` A type

∆i ` B type ∆i ` A type
Weakening

∆i, ai :A ` B type

∆i, ai :A, bj :B ` C type ∆i ` bj :B
Contraction

∆i, ai :A ` C type

∆i | ai :A, bj :B ` C type
Exchange

∆i | bj :B, ai :A,` C type

These construction rules with signed terms ai, bj (only) express execution
of programs at run-time and their possible composition. Dependency (which
usually corresponds to functional abstraction) reduces in this fragment to appli-
cation for program composition, i.e. composition of functionally executed code.
The unusual formulation of the quantifiers is explained as follows: generaliza-
tion by ∀-introduction is an abstraction function on a set of equivalent programs
(a1, . . . , an, all of the same type A) to extract one instance ai to be composed
by application with another running program; specification by ∃-introduction
works as a choice function on a similar set of values to pick one value to com-
pose it in a new value: both are hence restricted to enumerable constructors
to express quantification over codes. The Global Validity Rule uses premise
generation to say that if the safe value of a program for A obtains at address j,
its validity is global to the relevant network N accessible from i. This property
makes it possible to validate the other structural rules for expressing modularity:
Weakening for explicit formulation of programs running in the same network;
Contraction for reduction of different instances of running code; Exchange for
irrelevance of ordering on independent codes.

6

Definition 4 (Rules for typeinf). The kind K := typeinf is governed by the
following rules:

∆i ` ¬(A→ ⊥) type xi :A
Typeinf Formation

A typeinf

A typeinf xi :A ` bj :B
Functional abstraction

((xi)bj) :A ⊃ B typeinf

A typeinf xi :A ` bj :B ai :A
β-conversion

(x(bj))(ai) = bj [xi/ai] :B type[xi/ai]

λ(a1(bj))A,B (bj)[ai := aj]
α-conversion

(aj(bj)) :A→ B type

Local Validity Rule
Γi, xj :A,∆i ` A typeinf

Γi ` B typeinf xj :A ` A typeinf
Weakening

Γi | xj :A ` B typeinf

Γi | xj :A, yj :B ` C typeinf Γi ` yj :B
Contraction

Γi | xj :A ` C typeinf

Γi | xj :A | yj :B ` C typeinf
Exchange

Γi | yj :B | xj :A,` C typeinf

Negation introduction, admissible by type-checking on the enumerable con-
structions, expresses a safety constraint on a running specification in a network:
hence the formation rule states legality of code for A in a network, whenever
none of its safety constraints fails. Functional abstraction interprets composi-
tion of valid code at its location with some executable to produce dependently
valid code. The β-conversion rule expresses reduction of the latter to safe value
(computationally, reduction to type); α-conversion expresses substitution, by
the obvious omitted inductive definition, of an instance of a value constructor
in place of a signed variable on a finite domain of equivalent constructors for a
class of dependent codes. The Local Validity Rule says that the execution of a
program for A at address j bounds A to that location in network N accessible
from i (until discharged by β-conversion, then it becomes safe value everywhere
executable). Notice that validity of the structural rules is restricted to assump-
tions that are not in a relation order within a context: this ensures that order
of command execution within a network Γi (where at least one expression is
of the form typeinf), and hence validity of the network itself, is not broken by
execution of additional code.

7

Definition 5 (Semantic Judgements). The kinding K induces truth definitions
as follows:

∆i ` ai :A
Global Truth

A true

Γi,∆j ` xi :A
Local Truth

A true∗

A judgement A true expresses validity for a specification A by program a
generated at address i, without any additional requirement on the network; a
judgement A true∗ says that a specification A is executable and bounded at
location i within a network (even when extended to safe values at j).

2.2 Multi-Modalities

Modalities are introduced to express address-boundedness and broadcastable
code over a network.

Definition 6 (Modal Judgements). The set of modal judgements M for any
i ∈ N is defined by the following modal formation rules:

ai :A
�-Formation

�i(A true)

xi :A
♦-Formation

♦i(A true)

The first rule says that a safe value for A generated at i is admissible at
any network extension from i; the second rule says that a valid code for A
generated at i is admissible only at some network extension preserving address
i; in particular, such network will have to preserve the context Γi−1 of which
xi : A is a valid extension. Context extension mimics accessibility on worlds
from standard modal logic and we can express it by modal contexts. Remember
that context Γi is a context signed for i iff any declaration in Γ has signature i
and all have distinct subjects {A, . . . , N} ∈ typeinf.

Definition 7 (Modal Contexts). For any context with true assumptions Γi :=
{·;xi :A} and valid assumption ∆j := {·; aj :A}, we define their modal coun-
terpart as ♦i,j∈NΣ =: {Γi,∆j} and �i,j∈NΣ =: {·; ai :A,∆j}. Where locations
i, j ∈ N can be safely omitted, we shall abbreviate modal contextual operators to
♦N ,�N .

By each distinctly signed (modal) context ◦NΣ (with ◦ = {�,♦}), an ap-
propriate modal derivability relation is induced:

Definition 8 (Modal Derivability). Modal judgements derivable from multi-
signed contexts are defined as follows:

• �k(A true) iff ∅ | �NΣ ` A true, where N = {1, . . . , k − 1};

• ♦k(A true) iff ♦NΣ ` A true∗, where N = {1, . . . , k − 1}.

8

Given this derivability relation, extension of modal contexts by further modal
judgements expresses the requirement that a context extension of �iΣ by ♦j(A true)
is admissible if �iΣ 0 (A→ ⊥).

Introduction and elimination rules for formulas �NΣ ` �N (A true) and
♦NΣ ` ♦N (A true) express global and local validity of (A true) in view of
code executed at locations i, j, k ∈ N . To this aim, we now extend the lan-
guage allowing multiple indices on modal operators: �i,j expresses validity of
the judgement that follows in the Network accessible from either index; ♦i,j

expresses validity of the judgement that follows in the Network accessible from
both indices.

∆i | xj :A ` A true∗ �i∆, [xj/aj] :A ` A true
multiple I�

�NΣ ` �N (A true)

�i∆, aj :A ` �i,j(A true) �i,j(A true),�k∆′ ` �i,j,k(B true)
multiple E�

∆i, aj :A,∆′k ` B true

The introduction rule for � says that if the only location-bounded code for
the execution of a program for A can be validated elsewhere within network Σ,
then A can be executed everywhere in Σ. The corresponding elimination starts
from a similarly derived �N (B true) to decompose its locations: it induces
an operational interpretation of a remote procedure call (RPC) presented in
extensive format by sending the expression (A true) from i, j to N where it can
be used to evaluate B by accessing k.

Γi | xj :A ` B true∗
multiple I♦

♦i,jΣ ` ♦i,j(B true)

♦iΓ,�j∆ ` ♦i,j(A true) �j∆, xk :A ` ♦j,k(B true)
multiple E♦

Γi | ∆j ` B true∗

The introduction rule for ♦ says that if execution at i of a program for B requires
code bounded to address j, then resources at the intersection of i, j are needed
for any execution. This introduction rule construct a return value that can in
turn be used for RPC, i.e. a value for B executed at i, j. The corresponding
elimination starts from a similarly derivable judgement ♦i,j(A true) to infer its
variable constructor, deriving local validity of B first with and then without the
additional location of A (starting from the result of a return value it can be
used to give further conditions for RPC).

Lemma 1 (Local Soundness and Completeness of Modal Rules). The modal
rules for �N ,♦N are locally sound and complete.

Proof. Proof is by by reductions and expansions on modal judgements.

9

D1

∆i, aj :A ` A true
�I

�i,jΣ ` �i,j(A true)

E

aj :A,∆′k ` B true
�E ⇒Redex

∆i, aj :A,∆′k ` B true
D2

∆i, aj :A,∆′k ` B true

D1 ⇒Exp

∆i,∆
′
k ` A true

D2

∆i,∆
′
k ` A true

Global Truth
∆i, aj :A,∆′k ` A true

�I
�i∆,�j(A true),�k∆′ ` �i,j,k(A true)

�E
∆i,∆

′
k ` A true

D1

Γi, xj :A ` B true∗
♦I

♦i,jΣ ` ♦i,j(B true)
E

Γi,∆k ` A true∗
♦E ⇒Redex

Γi, xj :A,∆k ` B true∗

D2

Γi, xj :A,∆k ` B true∗

D1 ⇒Exp
Γi,∆k ` A true∗

D2

Γi,∆k ` A true∗

Local Truth
Γi, xj :A,∆k ` A true∗

♦I
♦iΓ,♦j(A true),�k∆ ` ♦i,j,k(A true)

♦E
Γi,∆k ` A true∗

Lemma 2 (Substitutions). The following substitutions hold:

1. If Γi | xj :A,∆k ` B true∗ and Γi,∆k ` aj :A, then Γi,∆k ` [xj/aj]B true;

2. If �i∆,♦j(A true),�k∆′ ` ♦i,j,k(B true) and �i∆,�k∆′ ` �i,k(A true),
then �i∆,�k∆′ ` �i,k(B true).

Proof. Proof is by induction on the length of derivations as follows:

1. On D1 = Γi | xj :A,∆k ` B true∗ using Local Truth on xj :A and using
β-conversion on D2 = Γi,∆k ` [xj/aj] :A to infer B type and so B true
by Global Truth.

10

2. On D1 = �i∆,♦j(A true),�k∆′ ` ♦i,j,k(B true): from the second
premise obtain xj :A by E♦ and A true∗ by Local Truth; use β-conversion
with [xj/aj] :A with constant obtained by �j(A true) by E�, followed by
I�. By another instance of I� on D1 obtain �i,k(B true).

2.3 Properties and Code Mobility

In this section we focus on the code mobility rules for the modal type system.
The rule of ♦-Formation from §2.2 expresses the inference from legality of

code for A at i to execution of A for a program in the same network accessible
from i. This allows to induce a Reflexivity property, satisfied in the simplest
case of a single node network. Admitting N = {1, . . . , n}, n > 1, computing is
understood as executed in a strictly ordered way, which enforces Transmission
(or downward only transitivity): if a process for (C true) at k takes the compu-
tational information expressed by (B true) at j, and (B true) uses information
expressed by (A true∗) at i, then the process at k also uses (A true∗) at i (for
(i < j < k ∈ N)). Symmetry is not admitted, as unidirectional communication
mimics the fact that routines for a program are processed according to a logical
order.5

xi :A ` A true∗
Reflexivity

xi :A,∆k ` ♦i(A true)

xi :A ` A true∗ ♦i(A true) ` ♦j(B true) ♦j(B true) ` ♦k(C true)
Transmission

♦i(A true),♦j(B true) ` ♦k(C true)

Broadcasting is used to send an execution command for code valid every-
where on the given network to any given intersection with a specific address.
Global Access is the reverse function: it calls a command from one address j in
the network ∆i to execute program �i,j(B true). Convergence enforces trans-
mission of routines to new accessible locations: if there is a program executed
at i which is called upon at j (for the usual i < j), then the information used at
i is executable at j. Derivability under �NΣ allows admissibility of �k(A true)
by any ∆i,∆

′
j ∈ �NΣ and i < j < k ∈ N , from which Upper Inclusion follows:

if a program is actually executed in a network, then it can be accessed from any
higher location within that network; Lower Inclusion expresses accessibility of
executed programs at any lower admissible location in N (accessibility of the

5Failure of symmetry is due to admitting synchronization operations and mobility of safe
(evaluated) code in ordered networks. This also means one cannot grant a rule for remote
computation as get in [12] for ML5 (IS5), which allows to transfer control and data to reason
across (any) worlds, whereas all other rules act locally. Working with everywhere and some-
where evaluated code allows typing-rules for non-local operations but the imposed ordering
restricts symmetry. Ordered commands are exemplified in an easy example for compiling a
TeX source, DVI outputting and printing in [3].

11

lower point considered is satisfied by Convergence). By the multi-modal version
of �1,2-Formation, we propagate evaluation on safe contexts: by Ascending It-
eration, one can access at k a program for A executed at i, j whenever A can
be executed at k using processes at i, j; by Descending Iteration, one can access
at k a program for A executed at i, j, whenever a program for A is executable
at k with processes at i, j (a sort of code mobility without Seriality, see [13]).
This is easily derivable from Convergence and β-reduction.

�i∆, aj :A ` �i,j(B true) xj :A ` A true∗
Broadcasting

�i∆,♦j(A true) ` ♦i,j(B true)

∆i, xj :A ` B true∗ aj :A ` A true
Global Access

�i∆, aj :A ` �i,j(B true)

�i∆ ` A true xi :A ` ♦j(A true)
Convergence

�i∆, xi :A ` ♦j(A true)

�i∆,�j∆
′ ` �k(A true) �i,jΣ | ak :A ` �i,j,k(A true)

Upper Inclusion
�i,jΣ ` �i,j(A true)

�i∆,�j∆
′ ` �i,j(A true) �i,jΣ ` �k(A true)

Lower Inclusion
�i,jΣ ` �k(A true)

�i∆,�j∆
′ ` �k(A true)

Ascending Iteration
�i,jΣ ` �k(�i,j(A true))

�i∆,�j∆
′ ` �k(A true)

Descending Iteration
�i,jΣ ` �i,j(�k(A true))

3 Abstract Syntax and Procedural Semantics

In this section we consider the abstract syntax underlying our type system and
an operational semantics that defines syntactic transformations on states of the
language, i.e. a sequence of evaluations of machine configurations defined by
rewriting rules. We conclude by showing under which conditions safe code is
expressed, obtaining standard Safety and Preservation results on computations.

Expressions of the language are composed from the syntax in terms of a
ternary relation 7→ (Γi, ti) out of a context Γi, a well-typed term ti and an eval-
uation function 7→. The context is a stack (possibly a singleton) of well-typed
terms that are either globally evaluated (values) or locally evaluated (code); it

12

maps identifiers to (possibly local) values and function definitions; the distinc-
tion between global and local evaluations is preserved by the modalities.6 The
term in an expression is accordingly typed either as an everywhere evaluable
term or as a locally evaluable term by appropriate functions (respectively, exec
and run). Evaluation results from their contextual version coupled with mo-
bility functions (GLOB and BROAD for Remote Procedure Calls; RET and
SEN for Portable Code). To preserve the order of commands we add ordered
intersection i∩ j and union i∪ j at locations: the former expresses the require-
ment that the function to which is applied be executed orderly on the first and
second index of the intersection; the latter expresses the validity of the related
function on the network accessible from either of the indices of the union.7

Definition 9 (Syntax). The syntax is defined by the following alphabet:

Types := {α | α× β | α+ β | α→ β | α ⊃ β}

Terms := {xi | ai, for i ∈ Indices}

Indices := {1, . . . , n}

Functions := {exec(α) | runi(α) | runi∪j(α·β) | runi∩j(α·β) | synchroj(β(exec(α)))},
where · = {+,×}

Contexts := {Γi | ◦iΓ}, where ◦ = {�,♦}

Remote Operations := {GLOB(�i∪jΓ, α) | BROAD(♦i∩jΓ, α)}

Portable Code := {RET (Γi∪j , α) | SEND(Γi∩j , α)}

Syntactic expressions are then evaluated in a model defined by states of the
machine.

Definition 10 (Operational Model). The set States := {S, S′, . . . } contains
states of the machine. A state

S := (C, t.i :α) | C ∈ Contexts; t ∈ Terms; i ∈ Indices;α ∈ Types

is an occurrence of an indexed typed term in context. An operational model of
the procedural semantics for the machine is a model where each S is evaluated
by transition to some S′. An indexed transition system, called a Network

Network := (S, 7→, I)

is a triple with S ⊆ States, I ⊆ Indices and 7→ a ternary relation over indexed
states (S × I × S). If S, S′ ∈ S and i, j ∈ I, then 7→ (S, i, j, S′) is written as
Si 7→ S′j. This means that there is a transition 7→ from state S valid at index i
to state S′ valid at index j defined according to the machine typing rules.

6We avoid here to burden further the notion with distinct letters for set of values and sets
of code terms and entirely rely on modal contexts to express this distinction.

7This additional requirement on the indices replaces the strict ordering on contexts formu-
lated for the type theory.

13

The procedural semantics expresses evaluation of typed expressions in states
by reduction to a terminal one. Formulas in a terminal state produce an otuput
value (valid formulas). In the following we list the rewrite operations from state
to state of the machine.

Definition 11 (Network State). The rewriting of a state machine S into an-
other state machine S′ is established by the following rules:

S 7→ S′

run (Γi, xi :α) 7→ (♦iΓ, runi(α))
exec (Γi, ai :α) 7→ (�iΓ, exec(α))
corun (Γi, runi(α) ` bj :β) 7→ (�iΓ, runi∩j(α(β))
coexec (Γi, exec(α) ` bj :β) 7→ (�iΓ, runi∪j(α(β))
synchro (�iΓ, runi∪j(α(β)) 7→ (�iΓ, synchroj(β(exec(α))))
product (Γi, exec(α), exec(β)) 7→ (�iΓ, runi∩j(α× β))
extraction1 (�iΓ, runi∩j(α× β)) 7→ (�iΓ, exec(α))
extraction2 (�iΓ, runi∩j(α× β)) 7→ (�iΓ, exec(β))
tagunion (Γi, exec(α)) 7→ (�iΓ, runi∪j(α+ β))
patternmatch1 (�iΓ, runi∪j(α+ β) ` ck :γ) 7→ (�iΓ, runi∩k(α(γ)))
patternmatch2 (�iΓ, runi∪j(α+ β) ` ck :γ) 7→ (�iΓ, runj∩k(β(γ)))
�1 (�iΓ, exec(α)) 7→ (GLOB(�i∪jΓ, α))
�2 (�i∪jΓ, α) 7→ (RET (Γi∪j , α))
♦1 (♦iΓ, runj(α)) 7→ (BROAD(♦i∩jΓ, α))
♦2 (♦i∩jΓ, α) 7→ (SEND(Γi∩j , α))

The rewriting rules are defined by typing rules of an analytic proof system:

Definition 12 (Typing Rules). The set of typing rules is:

Global
∆i, ai :α ` exec(α)

Local
Γi, xi :α; ∆i ` runi(α)

ai :α bj :β
I×

runi∩j(α× β)

runi∩j(α× β)
E × (l)

exec(α)

ai :α
I + (1)

runi(α+ β)

bj :β
I + (2)

runj(α+ β)

runi∪j(α+ β) runi(α) ` ck :γ runj(β) ` ck :γ
E+

runi∩k;j∩k(γ)

xi :α runi(α) ` bj :β
I ⊃

runi∩j(α ⊃ β)

ai :α exec(α) ` bj :β
I →

runi∪j(α→ β)

runi∩j(α ⊃ β) ai :α
Synchro

synchroj(β(exec(α)))

14

Γi, xj :α ` runj(α) �iΓ, xj(aj) : α ` exec(α)
RPC1

GLOB(�i∪jΓ, α)

Γi, xj :α ` runj(α) ♦iΓ ` runj(α)
RPC2

BROAD(♦i∩jΓ, α)

�iΓ, aj :α ` exec(α) GLOB(�i∪jΓ, α)
PORT1

RET (Γi∪j , α)

�iΓ, xj :α ` runi∩j(α) BROAD(♦i∩jΓ, α)
PORT2

SEND(Γi∩j , α)

The semantics of these rules, as interpreted by state-rewriting, is composed
by non-terminal and terminal states. The former are those states that always
admit a further mapping to another state of the machine. A terminal state
corresponds to a state containing a typed expression in normal form.

Definition 13 (Semantic Expressions). Evaluation defines strong typing (nor-
malisation) by reduction to states obtained by rules exec, coexec and �1 in the
last step of rewriting. Evaluation defines weak typing by expressions in states
obtained by rewriting rules run, corun and ♦1, which give admissible procedural
steps but may fail to produce a safe value when a wrong address is called upon
by the next state. Normal transitions are those outputting formulas of the form
�iΓ, exec(α) as values.

Transitions according to run, corun, synchro, ♦1/2 all require index preser-
vation. The evaluation on contexts proceeds on the ordering induced by i < j.
A transition S 7→ S′ consists of

• decomposing a state S into an evaluation context (if present) and an
instruction;

• the evaluation of the context and the execution of the instruction;

• the replacement of instruction execution in one of the rules to obtain S′.

Standardly, our operational semantics allows to establish safety for the type
system by telling how the program executes. Our notion of safety is constrained
by normalization to values as by Definition 13. We use the standard way to
prove safety by showing progress and preservation. By progress, one shows
that if a program is well-typed, either at the last step reached there is another
state that follows, or this provides a semantic value as by Definition 13. By
preservation, one shows that if a program t.i is well-typed in α and it reduces to
t.j, then the latter is also typed in α (or its type can be obtained by appropriate
rewriting from α).8

8Standard reference for these results is [17].

15

Theorem 1 (Progress). If S := (Γ, t.i : α), then either S 7→ S′ or exec(α) is
the output value.

Proof. By induction on the last rewriting step to obtain t.i :α.

1. (Γi, ai :α) 7→ (�iΓ, exec(α)) by exec, and so exec(α) is the defined value;

2. (Γi, exec(α)) 7→ (�iΓ, α) by �1 and exec(α) is the defined value;

3. (Γi, xi :α) 7→ (♦iΓ, runi(α)) by run, then the following subcases apply:

3.1 for all i < j: (Γi, run(α)) 7→ (BROAD(♦i∩jΓ, α)); then SEND(Γi∩j , α)
by ♦2 and for each such i, j (Γi, ai :α) 7→ (�iΓ, exec(α)), then pro-
ceeds as by Case 1.

3.2 there is no such j, then immediately apply exec to obtain exec(α)
as value, as by Case 1.

3.3 for some i < j: Γj , run(α ⊃⊥); proceed by 4.1 with ¬α.

4. (Γi, runi(α) ` bj) 7→ (�iΓ, runi∩j(α(β))) by corun: it requires the se-
quential processing of runi(α) ` bj :

4.1 if either of 3.1 and 3.2 apply, obtain exec(α); then by synchro obtain
the parallel processing of exec(α) ` exec(β), hence define the value.

4.2 if 3.3 applies, proceed by 4.1 with ¬α.

5. (Γi, exec(α) ` bj) 7→ (�iΓ, runi∪j(α(β))) by coexec: reduces to 4.1 with
the first step already performed, hence apply synchro and define the value.

6. (Γi, exec(α), exec(β)) 7→ (�iΓ, runi∩j(α× β)) by product: apply sequen-
tially extraction1 and extraction2, define the value.

7. (Γi, exec(α)) 7→ (�iΓ, runi∪j(α+ β)) by tagunion:

7.1 apply patternmatch1 to obtain (�iΓ, runi∩k(α(γ))): apply corun at
4, if 4.1 is successful, value is obtained; otherwise go to next step.

7.2 apply patternmatch2 to obtain (�iΓ, runj∩k(β(γ))): apply corun,
at 4 and define the value.

Theorem 2 (Preservation). If S := (Γ, t.i :α) and S 7→ S′, then S′ := (Γ, t′ :α).

Proof. The proof goes by induction on the derivation step of t′ and the structure
of Γ.

1. The proof holds vacuosly if t′ := exec(α)), which happens if the bottom
rule is one of exec, coexec, �1.

16

2. t′ := runi(α) is obtained if the bottom rule is one of

2.1 run: then S := (·, xi : α) and S′ := (·, runi(α)), so types are pre-
served;

2.2 corun: then S := (runi(α) ` exec(β)) by subderivations of xi :α and
bj :β, and S′ := (runi∩j(α(β))), so types are preserved;

2.3 product: then S := (·, exec(α), exec(β)), i.e. by subderivations of
ai :α; bj :β on gets S′ := (·, runi∪j(α× β)), so types are preserved;

2.4 tagunion: then S := (·, exec(α)) by subderivations of ai : α and
S′ := (·, runi(α+ β)).

3. The proof holds vacuosly for the corresponding analytic rules: synchro,
extraction1/2 and patternmatch1/2.

4. If the bottom rule is �2, then S := (�i∪jΓ, α) and S′ := (RET (Γi∪j , α)),
which is nothing else than an abbreviation for S′′ := (Γi∪j , runi∪j(α)); a
step as in 2.2 applies.

5. If the bottom rule is ♦1, then S := (♦iΓ, runj(α)) and S′ := (BROAD(♦i∩jΓ, α)),
then the following subcases apply:

4.1 for all i < j, S′′ := (BROAD(♦i∩jΓ, α));

4.2 there is no such j and S′′, then halt;

4.3 for some i < j, S′′ := (BROAD(♦i∩jΓ,¬α)); proceed by corun with
¬α.

6. If the bottom rule is ♦2, then S := (♦i∩jΓ, α) and S′ := (SEND(Γi∩j , α)),
which abbreviates S′′ := (Γi∩j , runi∩j(α)); any of the preservation step
according to 2. applies.

Theorem 3 (Type Safety). Safety is satisfied by transformations (according to
the table in Definition 11) or by terminating expression (exec(α)):

1. If S := (t.i :α), and S 7→ S′, then S′ := (t.i :α);

2. If S := (t.i :α), then either exec(α) is the output value or there is α′ for
S′ := (t.i :α′) s.t. S 7→ S′.

Proof. Part (i) is obtained by Theorem 2; Part (ii) by Theorem 1.

17

4 Conclusion

We have presented a modal type system for reasoning about (safe) distributed
computing, with polymorphism reflecting weak and strong typing. According
to its operational interpretation, typing prevents programs from accessing re-
sources at locations where they are unavailable and rules express where code
can be moved. Computationally, values of �N (A true) express everywhere ac-
cessible code; terms in �iΓ refer to computations executed at address i further
broadcastable in the network for the execution at runtime of a program. The
values of ♦N (A type) represent locally accessible code; terms in ♦iΓ refer to
programs bounded to the specified addresses, up to i. Code sources are ordered
as to mimic their functional aspect and modal interaction simulates the validity
of code at distinct locations.

Further lines of research are the simulation of open terms in interactive
theorem proving, as variables that are intended to be bound but whose binders
are not constructed yet (see [8]), and the study of fault-tolerance methods for
distributed computing to produce correct results despite fault addressing of
resources (for an introductory overview, see [7]).

References

[1] N. Alechina, M. Mendler, V. de Paiva, and E. Ritter. Categorical and
Kripke Semantics for Constructive S4 Modal Logic. In Proceedings of the
15th International Workshop on Computer Science Logic, volume 2142 of
Lecture Notes In Computer Science, pages 292 – 307, 2001.

[2] G.M. Bierman and V. de Paiva. On an intuitionistic modal logic. Studia
Logica, (65):383–416, 2000.

[3] T. Borghuis and L.M.G. Feijs. A constructive logic for services and infor-
mation flow in computer networks. The Computer Journal, pp.274–289,
vol.43, n.4, 2000.

[4] R. Davies and F. Pfenning. A modal analysis of staged computation. Jour-
nal of the ACM, 48(3):555–604, 2001.

[5] L. Jia and D. Walker. Modal Proofs as Distributed Programs. In Program-
ming Languages and Systems, ESOP2004, volume 2986 of Lectures Notes
in Computer Science. Springer Verlag, 2004.

[6] N.D. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. International Series in Computer Science. Prentice-
Hall International, 1993.

[7] F.C. Gärtner. Fundamentals of fault-tolerant distributed computing in
asynchronous environments. ACM Computing Surveys, Vol. 31, No. 1, pp.
1-26, March 1999

18

[8] H. Geuvers, G. I. Jojgov. Open proofs and open terms: A basis for in-
teractive logic. In Julian C. Bradfield, editor, Proc. of 16th Int. Wksh. on
Computer Science Logic, CSL 2002 (Edinburgh, UK, 22–25 Sept. 2002),
volume 2471, pages 547–552. Berlin, 2002.

[9] J.Y. Halpern and Y. Moses. Knowledge and common knowledge in a dis-
tributed environment. Journal of the ACM, 37(3):549–587, 1990.

[10] J. Moody. Modal logic as a basis for distributed computation. Techni-
cal Report CMU-CS-03-194, School of Computer Science, Carnegie-Mellon
University, Pittsburgh, PA, USA, 2003.

[11] T. Murphy. Modal Types for Mobile Code. PhD thesis, School of Computer
Science, Carnegie Mellon University, 2008. CMU-CS-08-126.

[12] T. Murphy, K. Crary, and R. Harper. Type-Safe Distributed Programming
with ML5, volume 4912 of Lectures Notes in Computer Science, pages 108–
123. Springer Verlag, 2008.

[13] T. Murphy, K. Crary, R. Harper, and F. Pfenning. A symmetric modal
lambda calculus for distributed computing. In H. Ganzinger, editor, Pro-
ceedings of the 19th Annual Symposium on Logic in Computer Science
(LICS’04), pages 286–295. IEEE Computer Society Press, 2004.

[14] A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal type theory.
ACM Transactions on Computational Logic, 9(3):1–48, 2008.

[15] S. Park. A modal language for the safety of mobile values. In Fourth ASIAN
Symposium on Programming Languages and Systems, 2006, pp.217–233,
Springer.

[16] F. Pfenning and R. Davies. A judgemental reconstruction of modal logic.
Mathematical Structures in Computer Science, 11:511–540, 2001.

[17] B. Pierce. Types and Programming Languages, MIT Press, 2002.

[18] G. Primiero. A contextual type theory with judgemental modalities for
reasoning from open assumptions. Logique & Analyse, vol. 220, 2012 (to
appear).

[19] G. Primiero, M. Taddeo. A modal type theory for formalizing trusted
communications. Journal of Applied Logic, 10, pp.92–114, 2012. DOI:
10.1016/j.jal.2011.12.002.

19

