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Abstract. Dependent type theories using a structural notion of context
are largely explored in their applications to programming languages, but
less investigated for knowledge representation purposes. In particular,
types with modalities are already used for distributed and staged compu-
tation. This paper introduces a type system extended with judgmental
modalities internalizing epistemically different modes of correctness to
explore a calculus of provability from refutable assumptions.

1 Introduction

Constructive logics use proofs as first-class citizens to define the notion of truth.
Dependent truth is easily interpreted in a contextual reading of provability, as
in Martin-Löf Type Theory.1 In such a system one distinguishes between propo-
sition A and judgment A true, justified by an appropriate proof term a : A.
Correspondingly, contextual truth allows formulae of the form Γ ` a :A, where
Γ is of the standard form [x1 : A1, . . . , xn : An] and a a proof of A under ap-
propriate substitutions [x1/a1 :A1, . . . , xn/an :An] ` a : A. Hypothetical truth
is thus reduced to dependent closed constructions, hypotheses are obtained by
abstracting on the relevant proofs and ultimately grounded on the primitive
notion of premise (known judgment). This corresponds computationally to the
requirement of β-reduction for proof terms and to the evaluation of codes in a
program; a connected background is the modelling of contexts from AI.2 The
modal formulation of contextual calculi is the next obvious step. Along with the
standard intuitionistic translation of K and the constructive version of S4,3 a
weaker format to accommodate the notion of context is given by the calculus
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CK in [15], which provides a possible-world semantics sound and complete with
respect to the natural deduction interpretation given in [6]. This natural deduc-
tion system is the most basic modal logic of contexts, with formulas ist(k,A)
that read “A is true in context k” and it satisfies a multi-modal K fragment
of a Propositional Logic of Contexts. Recently, contextual modal type theories
for programming languages and further research in linguistics and hardware
verification have been formulated, especially to model staged and distributed
computation.4

In the present paper, a modal type system is used to formalize epistemic pro-
cesses under refutable assumptions. Our starting point is the constructive reading
of the notion of truth as existence of a verification, to design a type-theorethical
format for the epistemic notion of verification under open assumptions. The no-
tion of truth up to refutation recalls a sensible topic for constructive logics, based
on the meaning of intuitionistic negation.5 The present paper dwells on the foun-
dational idea that truth is admissible up to a counter-example.6 The notion of
admissible truth literally satisfies the logical concept of an assumption, a com-
putational term which is not presented together with an appropriate β-redux.
The related constructive modal type system variates on a theme first proposed
in [19] and later expanded in [18]. The structure of the paper is as follows. In
section 2 I provide a variant interpretation of the basic system of constructive
type-theory that links hypotheses and refutable contents; in section 3 a modal
type system is designed that preserves refutability. Conclusive remarks set the
next steps of this research.

2 A system for proven and refutable contents

Describing realistic knowledge processes requires to explain hypotheses as con-
tents whose truth is declared, but whose refutation is not ruled out. It cor-
responds to consider the needed information in a process, without providing
the appropriate computational instructions.7 The corresponding logical notion
is that of an assumption. To integrate it in the constructive definition of truth,
one has to justify assumed propositional contents independently from proven
ones. In the following, a system for a modal type theory is developed to model
such processes, including a validity relation using verification by proof terms
separated from justification by proof variables.

Our syntax is the following:

4 See e.g. [5], [16], [17], [18].
5 For the standard intuitionistic meaning explanation of negation, indirect proofs as

reductio ad absurdum are standardly not admitted, whereas the usual intuitionistic
absurdity rule interprets the classical ex falso quodlibet. See e.g. [26, p. 40].

6 Our system presents some similarity with the notion of ‘pseudo-truth’ introduced in
[10] as double-negated classical formulae considered reducible to intuitionistic ones.

7 Formally, it is the same intuition behind the explanation of partial evaluation, where
a function program considers part of its input code as given. Cf. [4] and [9].



Types := A type;A typeinf ;
Propositions := A;A ∧B;A ∨B;A→ B;A ⊃ B;¬A→ ⊥;
Proof terms := a : A; (a, b); a(b);λ(a(b));<a, b>;
Proof variables := x :A; (x(b)); (x(b))(a);
Contexts := Γ, x :A;Γ, a :A; �Γ ; ♦Γ ;
Judgments := A true;A true∗;Γ ` A true; ♦(A true); �(A true).

The language contains one basic type for categorical judgments, justified by term
constructors a, b; one type for contextual judgments justified by variables x1, x2;
identity of terms hold within type, as usual variables are unique in context for
typeinf . Proof terms can occur both in and outside of a context, proof variables
hold only in contexts. Types are typically propositions, judgments are built by
declaration of truth and truth up to refutation. Semantic notions for this sys-
tem rely entirely on corresponding syntactic formulations, as it is typical of the
procedural semantics of Constructive Type Theory. In the following, we omit for
brevity the identity rules that define Reflexivity, Simmetry and Transitivity on
types.

The set of type judgments includes the standard constructive definition of
logical connectives ∧,∨; implication → from verified formulae is in place of the
usual functional abstraction and it is expressed as application of a construction
of the antecendent to the construction of the consequent.8 Universal predication
abstracts from enumerable sets of equivalent constructions; existential quantifi-
cation is justified by paired constructions; negation ¬ is introduced as implica-
tion from a type to the absurdum: if A true is a known judgment, then one
can infer that a construction for ¬A is an absurdity; we use the λ-operator as
a ∀-constructor on terms combined by application, angled parentheses <,> for
ordered pairs as an ∃-constructor. We list only introduction rules:

a :A Type Formation
A type

a :A Truth Definition
A true

a :A
l(a) :A ∨B true

Left I ∨ b :B
r(b) :A ∨B true

Right I∨

a :A b :B
I∧

(a, b) :A ∧B true
a :A A true ` b :B I → (Implication)
a(b) :A→ B true

a1 :Ai, . . . , an :Ai [Ai true] ` b :B λ((ai(b))A,B)
I∀

(∀ai :Ai)B type

8 A literal interpretation of intuitionistic implication á la Heyting which does not
interpret hypotethical reasoning. The application a(b) for the implication relation
can be seen as a λ-term that is presented along with one of its α-terms, provided
there is a bound construction given in the antecedent. This recalls ideas mentioned
by Martin-Löf and the calculus of types with explicit substituitions presented in [25].



a1 :Ai, . . . , an :Ai [ai :Ai] ` b :B (< ai, b >,A,B)
I∃

(∃ai :Ai)B type

a :A
I⊥¬A→ ⊥

An elimination rule on the ⊥-rule would validate a double-negation elimination,
which is avoided by a non-standard extension to functional expressions. For-
mally, a dependent judgment is nothing else than a functional relation among
expressions: if A type holds, then a construction of a new type B is possible by
considering the latter as a family of sets over some x :A such that [x :A]B type
whenever the substitution [x/a] is performed.9 A new task is to admit no ex-
plicit evaluation on such formulae, extending the system with a new type format
typeinf for information type. Formulas of the information type are introduced by
proof variables; a judgment A typeinf is justified by running a test on previous
derivations such that it checks no construction for ¬A type to be given:

¬(A→ ⊥)
Informational Type formation

A typeinf

A typeinf x :A
Hypothetical Truth Definition

A true∗

The judgment ¬(A → ⊥) in the previous module of the language says that
there exists no pair of constructions < a, b > such that a(b) :A true → ⊥. Its
combination with typeinf formation does not imply that given ¬(A → ⊥) it
follows a :A: the latter justification is kept entirely constructive and therefore
cannot be given by indirect proof. This represents an elimination rule with re-
spect to double elimination, but not the appropriate counterpart of its classical
version. The second rule says that provided A can be admitted as a typeinf ,
a weak truth-predicate true∗ (true up to refutation) is inferred by assuming a
construction for A exists: it can be seen as a place-holder for ungrounded truth.
On this interpretation one defines functional expressions of typeinf :

A typeinf x :A ` B typeinf

x :A ` B true∗

which says that B is true up to a refutation of A. The weak truth predi-
cate induces the standard dependent functional construction by abstraction;
β-conversion provides the appropriate translation to standard dependent type
formation by application:
9 The type checking will require first well-formedness of A, secondly evaluation to a

current environment for extraction of variable terms, thirdly construction for the
variable in that environment, and finally evaluation of the variable and the formu-
lation of the binding expression to a value for that environment. The generalization
to multiple dependence being allowed, terms for [x1 :A1, . . . , xn :An]B type are eval-
uated to normal forms (eventually: weak head normal forms, explicit substitutions,
closures) in order the predication B type to be valid.



A typeinf x :A ` B true∗
Functional Abstraction

((x)b) : A ⊃ B true

A typeinf x :A ` B typeinf a :A
β-conversion

(x(b))(a) = b[a/x] :B type[a/x]

3 Contextual Modal Type Theory for verification and
refutation

The different notions of truth are internalized in our system by the use of
epistemic modalities. Previous modal versions of type theory [19] and [18] use
propositional modalities to speak about dependent truth. In the present system,
modalities are judgmental operators:10 �(A true) says that A is true and has
no refutable conditions (either there are none, or all of them have been secured);
♦(A true) says that A is true in those epistemic states where conditions are
not refuted. The type formulas induce the strict constructive true predicate. If
A true holds, it also holds under refutable data being added, by definition no
declaration ¬A typeinf being allowed if a : A is formulated. This will make A
verified in any extension of the empty context:11

A true⇔ ∅ ` A true⇔ �(A true).

Truth in context relates to expressions in the refutable protocol of the language
and judgmental possibility to truth in some context, namely when conditions
are not refuted:

A true∗ ⇔ Γ ` A true⇔ ♦(A true)

where Γ is inteded as containing propositions of the form Ai true
∗. Where β-

conversion applies, there is an immediate reduction to the previous case of A true
and the necessary judgment. A premise and a hypothesis rule introduce the truth
predicates (both rules can have Γ,∆ = {∅}):

Γ, a :A,∆ ` A true
Premise Rule

Γ, x :A,∆ ` A true∗
Hypothesis Rule

Definition 1 (Definition of (Local) Validity).

1. If A true then A is valid.
2. If A is valid then Γ ` A true, for every Γ .
3. If A true∗ then A is locally valid in view of some Γ ` A true.

10 For more on the philosophical justification of this notion of judgmental modalities,
see [23].

11 Judgmental necessity satisfies the correlation between validity and unconditional
justification, as for the system presented in [19].



Modalities are internalized by appropriate formation rules from categorical and
hypothetical judgments:

a :A
�(A true)

�-Formation
x :A

♦(A true)
♦-Formation

The inference to truth is valid only where verified assumptions are used. To this
aim, modalities are now generalized to contextual formulas. We shall refer to
�Γ as Γ containing only valid assumptions (premises):

Definition 2 (Necessitation Context). For any context Γ , �Γ is given by⋃
{�A true | for all A ∈ Γ}.

Correspondingly, a context is ‘normal’ when not every assumption it contains
has been verified:12

Definition 3 (Normal Context). For any context Γ , ♦Γ is given by
⋃
{◦A true |

◦ = {�,♦} and ♦A true for at least one A ∈ Γ}.

The introduction of judgmental � is allowed under verification of judgments in
context, its elimination rule induces a valid proposition:13

Γ ` A true
�Γ ` �(A true)

I�
�Γ ` �(A true) ∆, a :A ` b :B

Γ,∆ ` B true
E�

where �Γ iff [xi/ai] :Ai,∀Ai ∈ Γ , as by Definition 2. Local validity is in turn
defined by introduction and elimation rules for the ♦-operator:

Γ, x :A ` B true∗

�Γ,♦(A true) ` ♦(B true)
I♦

Γ,∆ ` A true∗ �Γ,♦(A true) ` ♦(B true)
Γ,∆ ` B true∗

E♦

The introduction rule shows the dependency of possible contents from refutable
conditions, the corresponding elimination uses this information to infer further
possible knowledge under the condition expressed by Definition 3.

Substitution of variables by constants is as usual indicated by [x/a]B as the
substitution of occurrences of x in B by a; it is crucial in our system to give
the relation between verification and truth; the modal version shows that term
substitution satisfies the inclusion of ♦ in �:
12 In various literature in modal logic, Necessitation and Normal Context are usually

called Global and Local Context. This distinction is crucial for preserving the prob-
lem of derivability under assumption in modal languages and involve the validity of
the Deduction Theorem, see [8]. I have strenghtened here the reasoning, by obtain-
ing modal judgments (rather than formulae) from the preservation/verification of
assumptions. Cf. [7].

13 This is the crucial difference with the system introduced in [19], where �A expresses
validity but it can be introduced under hypotheses. In the comparison with the sys-
tem in [6], the obvious similarity is that the therein contained modality �k satisfies
the same principle of our I�, namely it builds-in the substituitions needed for for-
mulas in contexts. On the other hand, the propositional format does not require any
♦ operator, its role being syntactically satisfied by standard contexts.



Theorem 1 (Substitution on terms).

1. If Γ, x :A,∆ ` B true∗ and Γ,∆ ` a :A, then Γ,∆ ` [x/a]B true.
2. If �Γ,♦(A true),�∆ ` ♦(B true) and �Γ,�∆ ` �(A true), then �Γ,�∆ `

�(B true).

1. is proven by induction on the first given derivation, using the Hypothesis Rule
and the inclusion of B true∗ in B true by implication from validity to truth in
(any) context: from the second premise all occurrences of A are declared type, in
particular those in B true∗ by β-conversion; provided the latter is derived by Γ,∆
by the Hypothesis Rule with assumption x : A and no additional assumptions
are given, then B true follows as valid in any extension of Γ,∆. 2. is proven by
induction on the first given derivation: it obtains from an occurrence of x :A by
I♦; by the second premise and the equivalence of ♦(A true) and A true∗ as truth
in some context, one obtains B true by β-conversion on A true∗ and replacement
of its occurrences in B via E�; by I� one finally obtains �(B true). ut

β-reduction and η-expansion, i.e. local inversion of modal rules hold; theorem
1 is crucial to this aim together with the structural properties of our system:

Theorem 2 (Weakening). The inference systems satisfies Weakening:

1. If Γ ` B true, then Γ, a :A ` B true.
2. If Γ ` B true∗, then Γ, x :A ` B true∗.
3. If �Γ ` �(B true), then �Γ,�(A true) ` �(B true).
4. If ♦Γ ` ♦(B true), then ♦Γ,♦(A true) ` ♦(B true).

The proofs go by induction on derivations: in 1. uses the Premise Rule; in 2.
uses the Hypothesis Rule; in 3. uses I�, in 4. uses I♦.

Theorem 3 (Contraction). The inference system satisfies Contraction:

1. If Γ, a1 :A, a2 :A ` B true, then Γ, a :A ` [a1 ≈ a2/a]B true.
2. If Γ, x1 :A, x2 :A ` B true∗, then Γ, x :A ` [x1 ≈ x2/x]B true∗.
3. If �Γ, a1 :A, a2 :A ` �(B true), then �Γ,�(A true) ` �(B true).
4. If �Γ, x1 :A, x2 :A ` ♦(B true), then �Γ,♦(A true) ` ♦(B true).

Again by induction on derivations: Refleflexivity and Symmetry for proof terms
in 1.; unicity of proof variables for typeinf in 2.; in addition Truth Definition
and I� for 3.; Hypothetical Truth Definition and I♦ for 4..

Theorem 4 (Exchange). The inference system satisfies Exchange:

1. If Γ, a1 :A, a2 :A ` B true, then Γ, a2 :A, a1 :A ` B true.
2. If Γ, x1 :A, x2 :A ` B true∗, then Γ, x2 :A, x1 :A ` B true∗.
3. If �Γ, a1 :A, a2 :A ` �(B true), then �Γ, a2 :A, a1 :A ` �(B true).
4. If �Γ, x1 :A, x2 :A ` ♦(B true), then �Γ, x2 :A, x1 :A ` ♦(B true).

Again by induction and using the same properties of proof terms and variables
as for Contraction.

Local inversion of modal rules is finally shown. Soundness by local reduction
on �(A true):



D1

Γ ` A true
I�

�Γ ` �(A true)
E

∆, a :A ` b :B
E� ⇒RedexΓ,∆ ` B true

D2

Γ,∆ ` B true

D2 is obtained from D1 and E in terms of the Premise Rule: a proof term
for A is induced from Γ in D1, in turn providing a proof term for B in E. In
computational terms, this rule formalizes β-reduction of B (value) with respect
to all occurrences of its procedures (codes) in A. Completeness by local expansion
on �(A true):

D1

�Γ ` �(A true)

D2

�Γ ` �(A true)

Prem
Γ, a :A ` A true

I�
�Γ, a :A ` �(A true)⇒Exp E�

Γ,` A true

By this expansion one shows how E� provides all the information needed to
reconstruct �(A true). Computationally, it reconstructs the value on code A.14

Soundness by local reduction on ♦(A true):

D1

Γ, x :A ` B true∗
I♦

�Γ,♦(A true) ` ♦(B true)
E

Γ,∆ ` A true∗
E♦⇒RedexΓ,∆ ` B true∗

D2

Γ,∆ ` B true∗

Derivation D2 is justified by the Hypothesis Rule: by E, Γ,∆ in reduced form
will contain at least one formula of typeinf , which justifies the true∗ predicate
in D2. Computationally, this reduction formalizes the naming of codes that are
presented partially evaluated to program B. Finally, completeness by local ex-
pansion on ♦(A true):

D1

♦Γ ` ♦(A true)⇒Exp

D2

♦Γ ` ♦(A true)

Hyp
Γ, x :A ` A true∗

I♦
♦Γ,♦(A true) ` ♦(A true)

E♦
Γ,` A true∗

This expansion shows how to reconstruct all the information needed to formulate
♦(A true), as a partial evaluation of program A.

Model of this dependent types system is a weakening of the truth-values
model.15 Our truth-functional model considers its types as pairs A = [a,→],
14 This formulation of the �-rules does not violate the meaning of hypotheses, as it is

the case with the rules for necessity in [21]. On the other hand, given Definition 2,
a side condition on multiple simultaneous substitutions is unavoidable, see [3].

15 The latter is given by the category of contexts as the poset {1, 0} that satisfies
inhabitness by at most one element and intensional identity types.



where a is the verification term and → the corresponding evaluation function.
This generates the due types:

– A = [a,→] = {1} if x→a = 1 and A : type = 1
– A = [a,→] = ∅ if x→a = undefined and A : typeinf = 1
– A = [a,→] = {0} if x→a = 0 and A : type = 0

Including the models for typeinf the relation on the set of proposition can be
undefined, hence it preserves only symmetricity on the standard models and the
partition is no longer satisfied by not guaranteeing inhabitness.16

4 Conclusions

Our modal type system allows refutable truths in a constructive setting, for
which a main application will be the modeling of knowledge processes with em-
bedded communication processes intended as refutable contents in a distributed
or staged format. By introducing refutable contents one can formalize infor-
mation updates and retraction functions. The comparison with staged and dis-
tributed processing is completed by indexing of local processes. The extension to
multi-modalities and to a multi-conclusion inference relation is the next obvious
step for multi-agents and multi-source contextual modal type-theory.
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