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Abstract

Apparently Ex Falso Quodlibet (or Explosion) cannot be isolated within
CL (Classical Logic); if Explosion has to go, then so have other inference
rules, for example either Addition or Disjunctive Syllogism. This cer-
tainly holds according to the standard abstract view on logic. However,
as I shall show, it does not hold if a logic is defined by a procedure—a
set of instructions to obtain a proof (if there is one) of a given conclusion
from a given premise set.

In this paper I present a procedure pCL− that defines a logic CL−—a
function assigning a consequence set to any premise set. Anything deriv-
able by CL from a consistent premise set Γ is derivable from Γ by CL−.
If Γ is (CL-)inconsistent, pCL− enables one to demonstrate this (by de-
riving a contradiction from Γ). The logic CL− validates applications of
Disjunctive Syllogism as well as applications of Addition. Nevertheless,
this logic is paraconsistent as well as (in a specific sense) relevant.

pCL− derives from an intuitively attractive proof search procedure. A
characteristic semantics for CL− will be presented and the central prop-
erties of the logic will be mentioned. CL− shows that (and clarifies how)
adherents of CL may obtain non-trivial consequence sets for inconsistent
theories.

1 The Problem

When non-logicians discover a theory to be inconsistent, they sometimes con-
tinue to apply CL to it. If confronted with the argument that any statement
of the language is just as much a CL-consequence of the theory as any other
statement, they tend to consider this argument as a logicians’ trick, which can
be avoided.

∗Research for this paper was supported by subventions from the Fund for Scientific Re-
search – Flanders and from the Royal Flemish Academy of Belgium for Science and the Arts,
and indirectly by the the Flemish Minister responsible for Science and Technology (contract
BIL01/80). I am indebted to Andrzej Wísniewski for useful comments on a former draft.
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Logicians know that one cannot just eliminate EFQ (Ex Falso Quodlibet)
from CL. Either Addition or Disjunctive Syllogism has also to be given up.
And the trouble does not end there. In the presence of material implication,
the inference of A from ∼A ⊃ (B ∧ ∼B) has to be abandoned, and hence also
either the inference of A from ∼∼A or the inference of ∼A from A ⊃ (B∧∼B).
In sum, EFQ is deeply entrenched in CL. For a long time, I considered all this
as obvious. Then I made a rather stunning discovery.

The proofs of adaptive logics explicate the internal dynamics of reasoning
processes—basically, the fact that inferences are withdrawn as deeper insight
in the premises is gained—by attaching conditions to certain inferences. If the
conditions turn out not to be fulfilled at a later stage of the proof—the addition
of a line brings the proof into a new stage—the inference is withdrawn. These
conditions are defeasible; when the condition turns out not to be fulfilled, the
connected inference is withdrawn. This (and the importance of proof procedures
for adaptive logics) naturally led to the idea of conditions expressing a prospec-
tive dynamics: a formula is derivable if the condition is fulfilled. Research on
the matter resulted in a special kind of goal-directed proofs.

If applied to CL, the prospective dynamics turns out to lead to a very
natural proof search method. This is a specific kind of procedure. The focus of
the enterprise is not on abstract matters (such as models, semantic consequence,
derivability, or the ‘existence’ of a proof) but on a very concrete one: the next
step to be taken in an attempt to find out whether a conclusion A is derivable
from a premise set Γ. A procedure of this kind is followed by people who search
for proofs.

It turned out—and this was the stunning discovery—that, with respect to
such a procedure, EFQ is an isolated, unnatural kind of rule, which is never
applied in searching for a sensible proof for Γ ` A. In other words, EFQ can be
eliminated from a procedural point of view, even if, for example, Addition and
Disjunctive Syllogism are retained.

The proof procedure is introduced in Section 2. In Section 3 the procedure
is shown to be incomplete with respect to CL: EFQ has to be introduced as
a separate (and unnatural) entity in order to obtain a proof procedure for CL.
Precisely this makes the incomplete procedure pCL− and the logic CL− defined
by it interesting. In Section 4, I shall show that pCL− has a sensible semantics.
Some properties of CL− are studied in Section 5; among them is that fact
that, for all consistent Γ, CnCL−(Γ) = CnCL(Γ), whereas a formula of the form
A ∧∼A is CL−-derivable (together with a natural set of further consequences)
from Γ if Γ is inconsistent. Finally, I comment on the relation between CL−

and adaptive logics in Section 7.
Limitations of space prevent me from discussing the predicative case, but

the extension is straightforward. Also, I shall only consider finite premise sets
Γ—see R3 of [6] for the extension to infinite premise sets.

Incidentally, there is nothing to compare my results to (as the organizers re-
quest). All sensible paraconsistent logics known to me are based on the abstract
viewpoint and for example give up either Disjunctive Syllogism or Addition, or,
as in the case of inconsistency-adaptive logics, some applications of one of these
rules—see [8] and [12] for systems giving up all or some applications of Addition.
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2 The Proof Procedure

Some tend to exaggerate the distinction between a proof of Γ ` A and a proof
search procedure for Γ ` A. For example, in [7] (and many other publications by
Hintikka and associates) trying to prove that A is derivable from Γ is compared
to playing a game of chess, and a sharp distinction is drawn between the rules
that define the game, called “rules of inference” in the case of logic, and the
heuristic instructions than enable one to win the game. Omnis comparatio
claudicat and this certainly does. This is not the place to discuss the matter,
but, for one thing, the outcome of a game of chess is (in most cases) a checkmate
king and a couple of other pieces, whereas a proof, the outcome of a proof search
procedure, contains all required premises as well as all steps that lead from those
premises to the conclusion. The basic distinction between a proof and a proof
search procedure is twofold: (i) a proof does not contain the reasoning that led
to deriving the actually displayed formulas and (ii) most proofs do not contain
any traces of dead-end search paths—steps that might have resulted in deriving
the conclusion from the premises but turned out unsuccessful. The reason for
(ii) is that authors are expected to publish convincing proofs, and that dead-end
paths do not contribute to these. The reason for (i) is that people responsible
for the definition of “a proof” (basically Hilbert) took published proofs as the
model, that is: proofs that show in a clear and concise way that the conclusion
follows from the premises.

Part of the proof search procedure may be pushed into the proof itself. A
way to do so is discussed in the present section. Suppose that one wants to find
out whether there is a CL-proof for

t ∨ q, p ⊃ (q ∨ ∼r), r ∧ s, s ⊃ p ` q .

A sensible proof search procedure will proceed more or less as follows. The
conclusion q can only be obtained from the premise t ∨ q or from the premise
p ⊃ (q ∨ ∼r)—q is not a subformula of any other premise. In order to derive q
from t∨ q, one needs ∼t. However, there is no premise from which ∼t might be
obtained. In order to derive q from p ⊃ (q ∨ ∼r), one needs first p and next r.
Clearly r can be obtained from r ∧ s; p can only be obtained from s ⊃ p, and
in order to obtain it one needs s. And s can be obtained from r ∧ s. So q is
derivable from the premises.

This proof search process clarifies why certain steps occur in a proof for
the statement displayed above. Usual proofs do not. Moreover, large parts of
such processes leave no trace in usual proofs—for example, the reasoning about
deriving q from t ∨ q. It is not difficult, however, to devise a kind of proofs
that contain the basic ingredients of the proof search process. I first display the
proof and then offer some explanation.

1 [q]q Goal R14

2 t ∨ q Prem
3 [∼t]q 2; ∨E ∼t|
4 p ⊃ (q ∨ ∼r) Prem
5 [p]q ∨ ∼r 4; ⊃E R11

6 s ⊃ p Prem
7 [s]p 6; ⊃E R10

8 r ∧ s Prem
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9 s 8; ∧E
10 p 7, 9; Trans
11 q ∨ ∼r 5, 10; Trans
12 [r]q 11; ∨E R14

13 r 8; ∧E
14 q 12, 13; Trans

One starts by writing down the Goal of the proof: to derive q (from the
premises). Where Γ is the set of premises, the derivability of [B1, . . . , Bn]A
warrants that Γ ∪ {B1, . . . , Bn} ` A. Line 1 is obviously justified from this
perspective.1 The (prospective) condition of a line, viz. the sequence of the
formulas between brackets,2 obviously indicates that one should search to derive
these formulas. The present proof proceeds by a “depth first” method: as soon
as a condition is introduced, its first member becomes the target. After line 1
has been written, the target is q. As q may be obtained from the premise t∨ q,
this premise is introduced—it obviously has no condition attached to it. As
the target is still q, 2 is analysed, which gives us line 3. This states that q is
derivable if ∼t is derivable. However, ∼t is not derivable from any premise, and
hence line 3 is marked as a dead end: the goal q cannot be derived along this
path. As line 3 is marked, the target is again q. One then introduces another
premise from which the target might be derivable, viz. p ⊃ (q ∨∼r). Analysing
the premise in line 5 makes p the target.3 Lines 6–9 require no further comment.
In line 10 transitivity is applied: if s is derivable, then so is p (line 7) and s
is derivable unconditionally (line 9); so p is derivable unconditionally. At this
stage, line 7 is marked as redundant. Indeed, there is no need to search for s
in order to derive p because p was derived unconditionally. This makes p the
target—the first formula in the condition of the last unmarked line—and as we
have p in line 10, transitivity gives us q ∨ ∼r unconditionally, whence line 5 is
marked as redundant and the target is again q (from line 1). Continuing thus
one arrives at line 14. At this stage the conclusion is derived from the premises,
which may be seen from the fact that line 1 is marked as redundant.

The main elements of prospective proofs occur in the example. Some for-
mulas are derived on a prospective condition. Lines that contain a (non-empty)
condition may be marked—some further useful kinds of marks are illustrated in
[6] and especially in forthcoming work.

There is an algorithm for turning prospective proofs into, for example, Fitch-
style proofs. This is done by (possibly inserting lines,) deleting lines and adjust-
ing the annotation. Starting backwards, the algorithm transforms lines 11–14
as follows—I take it that the names of the Fitch-style rules are self-explanatory.

11 q ∨ ∼r 5, 10; Trans
12 [r]q 11; ∨E R14

13 r 8; Sim
14 q 11, 13; DS

1Obviously Γ ∪ {B1, . . . , Bn} ` A does not warrant the derivability of [B1, . . . , Bn]A as
becomes clear from the subsequent sentence in the text. See [13] for the result of proceeding
in terms of Γ ∪ {B1, . . . , Bn} ` A rather than [B1, . . . , Bn]A.

2I shall introduce some notational abuse to mix such expressions as [∆]A and B ∈ ∆.
3The result of the analysis is a formula, here q ∨ ∼r, from which the target q may be

derived. The formula itself depends on the condition p.
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After the transformation, deleted lines and unused (not referenced) lines are
removed and the line numbers adjusted. The result for the considered example
is:

1 p ⊃ (q ∨ ∼r) Prem
2 s ⊃ p Prem
3 r ∧ s Prem
4 s 3; Sim
5 p 2, 4; MP
6 q ∨ ∼r 1, 5; MP
7 r 3; Sim
8 q 6, 7; Trans

Goal, Prem, Trans, and some “formula analysing rules” were illustrated.
In other cases one needs “condition analysing rules” as well as EM (Excluded
Middle). The following proof for ∼p ∨ q ` p ⊃ q illustrates both. In still other
cases conditions may contain several formulas—see [6] for examples.

1 [p ⊃ q]p ⊃ q Goal R8

2 [q]p ⊃ q 1; C⊃E R8

3 ∼p ∨ q Prem
4 [p]q 3; ∨E p|
5 [∼p]p ⊃ q 1; C⊃E R8

6 [∼q]∼p 3; ∨E ∼q|
7 [p]p ⊃ q 2, 4; Trans p| R8

8 p ⊃ q 5, 7; EM

The (only member of the) condition of 1 is analysed in 2 and 5, and EM is
applied in line 8. Actually a derivable rule allows one to skip 5–7 and to move
straight from 4 to 8; but I have no room to discuss derivable rules here.

If prospective proofs are transformed (in one of several possible ways) to
Fitch-style proofs, the latter may contain applications of Conditional Proof and
Ex Absurdo. The prospective proofs determine which hypothesis has to be
introduced and which formula should be derived from it, even if this formula is
a contradiction (in the case of Ex Absurdo).

In constructing a proof for Γ ` G, the goal and premise rules are:

Goal To introduce [G]G.

Prem To introduce A for any A ∈ Γ.

Two further rules we have already met are:

Trans
[∆ ∪ {B}]A

[∆′]B
[∆ ∪∆′]A

EM
[∆ ∪ {B}]A

[∆′ ∪ {∼B}]A
[∆ ∪∆′]A
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The formula analysing rules and the condition analysing rules may be sum-
marized by distinguishing α-formulas from β-formulas (varying on a theme from
[11]). To each formula two other formulas are assigned according to the following
table:

α α1 α2 β β1 β2

A ∧B A B ∼(A ∧B) ∼A ∼B
A ≡ B A ⊃ B B ⊃ A ∼(A ≡ B) ∼(A ⊃ B) ∼(B ⊃ A)
∼(A ∨B) ∼A ∼B A ∨B A B
∼(A ⊃ B) A ∼B A ⊃ B ∼A B
∼∼A A A

Let ∗A denote the ‘complement’ of A, viz. B if A has the form ∼B and
∼A otherwise. The formula analysing rules for α-formulas and β-formulas are
respectively:4

[∆]α
[∆]α1 [∆]α2

[∆]β
[∆ ∪ {∗β2}]β1 [∆ ∪ {∗β1}]β2

The condition analysing rules for α-formulas and β-formulas are respectively:

[∆ ∪ {α}]A
[∆ ∪ {α1, α2}]A

[∆ ∪ {β}]A
[∆ ∪ {β1}]A [∆ ∪ {β2}]A

Certain instructions are required to characterize the proof search procedure,
and hence the new kind of proof format, in terms of the above rules. Many vari-
ants are possible. I pick one that is easy to understand without much comment.

Every proof starts with an application of the Goal rule, which introduces the
first target. A condition-plus-formula (the second element of a line) is derived
only once in a proof.

The marks are governed by definitions. A line at which [∆]A is derived is
marked as redundant at a stage iff, at that stage, [∆′]A has been derived for
some ∆′ ⊂ ∆. A line at which [A1, . . . , An]B is derived is marked as a dead
end at a stage if, at that stage, A1 is the target and no further step can be
taken in view of it. No rules are applied on marked lines unless the instructions
explicitly state so.

A premise is only introduced if the target is a positive part of it, which means
that the target may be obtained from the premise, possibly on a non-empty
condition. The positive part relation is defined recursively by the following
three clauses:5

1. pp(A,A).

2. pp(A,α) if pp(A, α1) or pp(A, α2).

3. pp(A, β) if pp(A, β1) or pp(A, β2).

4The rule to the left actually summarizes two rules: both [∆]α1 and [∆]α2 may be derived
from [∆]α; similarly for the rule to the right.

5Unlike what is done in [10] and [6], I do not introduce negative parts because this com-
plicates the predicative case.
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Formula analysing rules are only applied to lines that have a premise line in
their path. Moreover, [B1, . . . , Bn]A is only derived by a formula analysing rule
if the target is a positive part of A.

Condition analysing rules are only applied to a member A of some prospec-
tive condition after all premises of which A is a positive part have been intro-
duced in the proof.

As the transformation of prospective proofs into other types of proofs will be
disregarded in the sequel of this paper, the prospective proof procedure is most
easily seen as consisting of two phases. In the first phase, the above instructions
are executed and the Trans rules is applied whenever ∆′ is empty. If the thus
defined procedure halts, one moves to phase 2. Here EM, Trans, and condition
analysing rules are applied to lines that are not R-marked in order to derive the
goal G on a condition ∆ for which [∆]G did not yet occur in the proof. As soon
as the proof is extended in phase 2, one returns to phase 1. When phase 1 halts
again, one moves back to phase 2, etc. The procedure is obviously decidable (at
the propositional level).

Many variants are possible for this proof search procedure and for the re-
sulting prospective proofs. Some of these increase the efficiency of the proofs
or their transparency with respect to certain applications (especially problem
solving procedures). All this cannot be discussed here. The basic point is that
procedures of the kind described here lead to natural and efficient proofs.6

3 What Happened to EFQ?

The procedure described in the previous section assigns a well-defined conse-
quence set to every premise set and hence defines a logic. However, this logic is
not CL: the procedure does not lead to a proof for p,∼p ` q.

Let me put this straight. The procedure leads to proofs for p,∼p ` p ∨ q as
well as for ∼p, p ∨ q ` q, but not to a proof for p,∼p ` q—the goal q is a dead
end with respect to the premise set {p,∼p}.

Given the procedure’s relation to CL, let us call it pCL−. In order to obtain
a procedure pCL that characterizes CL, one needs to add EFQ, for example
by the following rule:

EFQ To introduce [∼A]G for any A ∈ Γ.

The procedure then also needs to be modified. A third phase is introduced.
One moves to it if phase 2 halts, extends the proof with an application of EFQ
and returns to phase 1. pCL is shown in [6] to characterize the propositional
fragment of CL and to be a decision method for it: A1, . . . , An 0CL G iff the
procedure stops after finitely many steps without G being derived (on the empty
condition).

The rule EFQ is clearly unnatural and ad hoc. From a procedural perspective
EFQ is not the unavoidable result of other (apparently acceptable) rules, but has
to be introduced as a separate item. Moreover the EFQ rule cannot be justified
unless by explicitly requiring that A,∼A ` B should hold for all A and B.
Indeed, EFQ stipulates by fiat that the goal G is derivable from the premises
if the negation of a premise is derivable from the premises, in other words if

6A striking difference with tableau methods is that prospective search procedures avoid
that useless formulas are analysed.
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the premises are inconsistent. This illustrates the huge difference between the
traditional abstract view on logic, which proceeds basically in terms of the
semantic consequence relation, and the procedural outlook.

Some readers might be sceptical about the claims made in the previous
paragraph. While it is straightforward that p,∼p 0pCL− q, it is less clear that
no other CL-valid inferences are lost in CL−. This will be shown in Section 5.

4 Semantics

There are many ways to devise a semantics for CL−. Only one possibility will
be explored here. Where W denotes the set of formulas of the propositional
CL-language, consider all partial functions v : W 7→ {0, 1} with the following
properties:

1. if v(A) ∈ {0, 1} and B is a subformula of A, then v(B), v(∼B) ∈ {0, 1}
2. if v(A ∧B) = 1 then v(A) = 1 and v(B) = 1.

3. if v(A ∧B) = 0 then v(A) = 0 or v(B) = 0.

4. if v(A ≡ B) = 1 then v(A ⊃ B) = 1 and v(B ⊃ A) = 1.

5. if v(A ≡ B) = 0 then v(A ⊃ B) = 0 or v(B ⊃ A) = 0.

6. if v(∼(A ∨B)) = 1 then v(∼A) = 1 and v(∼B) = 1.

7. if v(∼(A ∨B)) = 0 then v(∼A) = 0 or v(∼B) = 0.

8. if v(∼(A ⊃ B)) = 1 then v(A) = 1 and v(∼B) = 1.

9. if v(∼(A ⊃ B)) = 0 then v(A) = 0 or v(∼B) = 0.

10. if v(∼∼A) = 1 then v(A) = 1.

11. if v(∼∼A) = 0 then v(A) = 0.

12. if v(A ∨B) = 1 then v(∗A) = 0 or v(B) = 1.

13. if v(A ∨B) = 1 then v(A) = 1 or v(∗B) = 0.

14. if v(A ∨B) = 0 then v(A) = 0 and v(B) = 0.

15. if v(A ⊃ B) = 1 then v(A) = 0 or v(B) = 1.

16. if v(A ⊃ B) = 1 then v(∼A) = 1 or v(∗B) = 0.

17. if v(A ⊃ B) = 0 then v(∼A) = 0 and v(B) = 0.

18. if v(∼(A ∧B)) = 1 then v(A) = 0 or v(∼B) = 1.

19. if v(∼(A ∧B)) = 1 then v(∼A) = 1 or v(B) = 0.

20. if v(∼(A ∧B)) = 0 then v(∼A) = 0 and v(∼B) = 0.

21. if v(∼(A ≡ B)) = 1 then v((A ⊃ B)) = 0 or v(∼(B ⊃ A)) = 1.

22. if v(∼(A ≡ B)) = 1 then v(∼(A ⊃ B)) = 1 or v((B ⊃ A)) = 0.
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23. if v(∼(A ≡ B)) = 0 then v(∼(A ⊃ B)) = 0 and v(∼(B ⊃ A)) = 0.

24. if v(∼A) = 0 then v(A) = 1.

Definition 1 v is a valuation for A1, . . . , An ` B iff v(A1) = . . . = v(An) = 1
and v(B) ∈ {0, 1}.
Definition 2 A1, . . . , An ² B (B is a semantic consequence of A1, . . . , An) iff
all valuations for A1, . . . , An ` B verify B.

The semantics may be transformed into a more usual one, for example a
three-valued one, but space prevents me to discuss this.

The proof procedure is sound and complete with respect to the semantics.
In the present context, an expression [A1, . . . , An]B will be read as “either one
of the Ai is false or B is true”.

Theorem 1 If [A1, . . . , An]B is derived in a pCL−-proof for Γ ` G, then
v(A1) = 0 or . . . or v(An) = 0 or v(B) = 1 for every v that is a valuation
for Γ ` G.
Outline of the proof. Let v be a valuation for Γ ` G. The proof proceeds by an
obvious induction on the length of the prospective proof. The basis is formed
by the rules Goal and Prem. The Goal rule introduces [G]G. As v(G) ∈ {0, 1},
v(G) = 1 or v(G) = 0. The Prem rule introduces a C ∈ Γ, and C ∈ Γ warrants
that v(C) = 1.

For the induction step we have to consider formula analysing rules, condition
analysing rules, Trans and EM. Consider first ∧E. If [∆]A ∧ B occurs in the
proof, then v(C) = 0 for some C ∈ ∆ or v(A ∧ B) = 1. So, in view of clause
2 of the semantics, v(C) = 0 for some C ∈ ∆ or v(A) = 1, which justifies the
derivation of [∆]A, and v(C) = 0 for some C ∈ ∆ or v(B) = 1, which justifies
the derivation of [∆]B. All other formula analysing rules are justified in an
analogous way. Next consider C∧E. If [∆∪{A∧B}]D occurs in the proof, then
v(C) = 0 for some C ∈ ∆ or v(A ∧ B) = 0 or v(D) = 1. In view of clause
3 of the semantics, it follows that v(C) = 0 for some C ∈ ∆ or v(A) = 0 or
v(B) = 0 or v(D) = 1, which justifies the derivation of [∆∪{A,B}]D. All other
condition analysing rules are justified similarly. EM is justified by clause 24 of
the semantics and the justification of Trans is obvious.

Corollary 1 If G is derived in a pCL−-proof for Γ ` G, then Γ ²CL− G.
(Soundness)

A prospective proof is said to halt if no instruction enables one to add a
further line or if its first line is marked (and hence its Goal was derived). Given
that I consider only finite premise sets in this paper, a prospective proof for
Γ ` G obviously halts after finitely many steps. So the following establishes
completeness.

Theorem 2 If a prospective proof for Γ ` G halts without G begin derived, then
Γ 2CL− G. (Completeness)

The proof of this theorem is not difficult to understand but requires some
three pages. The proof is skipped here because it may easily be adapted from the
completeness proof in [6]. The main difference is that Lemma 5, which there
relies on EFQ, is now a direct consequence of the definition of the semantic
consequence relation.
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5 Some Properties and a Comment

The derivability relation defined by pCL− is reflexive (if A ∈ Γ, then G ` A)
and monotonic (if Γ ` A then Γ ∪ ∆ ` A) but non-transitive (possibly Γ ` A
and A ` C but Γ 0 C)—for example p,∼p ` (p ∨ q) ∧∼p, (p ∨ q) ∧∼p ` q, and
p,∼p 0 q.

There is a specific sense in which CL− is relevant. The involved notion of
relevance is not exactly the one propagated by relevant logicians but comes very
close to it (variable sharing, relevance indices in Fitch-style proofs, . . . ). This
deserves attention, but space does not permit.

Let us define that a CL−-valuation v is consistent iff {A | v(A) = 1} is
verified by a CL-valuation, and that Γ is CL−-consistent iff it is verified by a
consistent CL−-valuation. Each of the following are provable:

1. If Γ has CL-valuations and v is one of them (hence v(A) = 1 for all A ∈ Γ),
then, for every A, there is a CL−-valuation v for Γ ` A that agrees with
v where v is defined—if v(B) is defined, then v(B) = v(B).

2. Hence, if Γ has CL-valuations, then, for all A, there are consistent CL−-
valuations for Γ ` A.

3. If Γ has no CL-valuations, then, for every A, all CL−-valuations v for
Γ ` A are inconsistent.

4. Γ is CL−-consistent iff it is CL-consistent.

5. If Γ is inconsistent, then there is an A such that Γ `pCL− A ∧ ∼A

6. For some inconsistent Γ, CnCL−(Γ) is not trivial.

7. If Γ is consistent, then, for all A and for all CL−-valuations v for Γ ` A,
there is a CL-valuation v such that, for all B, if v(B) ∈ {0, 1} and v(B) =
1, then v(B) = 1.

8. If Γ is consistent, then CnCL−(Γ) = CnCL(Γ).

9. If restricted to consistent premise sets, the intended domain of application
of classical logic, pCL−-derivability is transitive.

10. If restricted to consistent premise sets, pCL−-derivability is sound and
complete with respect to the CL-semantics.

The inventors of CL attempted to formulate a logical system that provides
an explication for actually published proofs, mainly in mathematics. Imagine
that the ideology of the time had been different, and that the stress had not been
on abstract aspects (models, a derivability relation fulfilling certain properties,
. . . ) but on describing an inferential procedure. As inconsistent premise sets
were taken to be false, none of the available proofs was intended to apply to
inconsistent premise sets. Whence there was no need for including EFQ in
‘classical logic’. Worse, to include EFQ would have been nonsensical because
it is nonsensical to derive an arbitrary statement from a premise set that is
known to be inconsistent. So, if the ideology of the time had been different, the
inventors of classical logic would have come up with pCL− rather than with CL.
The non-transitivity of pCL−-derivability would not have been objectionable
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because of 9. If, however, a premise set Γ had turned out inconsistent, pCL−

would have located the inconsistencies in Γ, whereas CL fails to do so. In
sum, classical logic would have been paraconsistent as well as relevant (in a
specific sense); EFQ would have been considered invalid; theories that turned
out inconsistent would have been considered false but not necessarily trivial, and
coming across them might have led to a very different view on the properties
of the derivability relation. The history of relevant logic and of paraconsistent
logic would have been completely different, and so on.

6 Tableaux and Deduction Systems

One of the referees complained that it is not clear from the paper whether
pCL− can be defined through a tableau system, an axiomatic system, a natural
deduction system, and the like. Actually many fascinating aspects of pCL−

cannot be spelled out in the present paper, but let me briefly comment on the
referee’s points.

That pCL− is defined by a tableau system is obvious from the semantics. A
signed system is easily outlined as follows. A tableau for A1, . . . , An ²pCL− B
is started by the sequence of signed formulas TA1, . . . , TAn, FB. The tableau
rules are simply ‘translated’ from clauses 2–24 of the semantics. Thus clause 2
and clause 12 are respectively translated by (following conventions from [11]):

TA ∧B
TA
TB

TA ∨B
F∗A | TB

It is easily seen that the tableau for p,∼p ²pCL− ∼q has one branch only, that
it consists of Tp, T∼p, F∼q and Tq, and hence that the branch is open.

On the standard definitions of “theorem” (either ∅ ` A or Γ ` A for all Γ)
pCL− has the same theorems as CL. So theorems do not discriminate between
the two systems. Deductive systems do discriminate between them. However,
given the non-transitivity of pCL−-derivability—see the first paragraph of Sec-
tion 5—deductive systems defining pCL− contain some unusual restrictions.
Let me offer a glance at (what I think to be) the simplest approach to Fitch-
style proofs (on the depth first approach). The required complication is that
one needs a target set for each stage of a proof, where a next stage is obtained
by either adding a new line to the proof or analysing a formula in the target
set—see below. At stage 1 of the proof attempt for Γ ` A, the target set is {A}.
At each stage, a Fitch-style rule can only be applied if a member of the target
set is a positive part of the formula introduced by the rule. If no Fitch-style rule
can be applied, then a β-formula in the proof is ‘analysed’; if no formula can
be analysed, a member of the target set is ‘analysed’. Analysing a β-formula in
the proof means this: if A is in the target set and is a positive part of β1 (β2)
then ∗β2 (∗β1) is added to the target set. Analysing a member of the target set
means that some α is replaced in the target set by α1 and α2 or that some β
is replaced in the target set by β1 and β2. To make such proofs more efficient,
one needs to remove dead-end members from the target set, thus matching the
marking definition in Section 2. From a computational point of view it is sim-
pler to construct a proof by the procedure from Section 2 and to transform it
to a Fitch-style proof as explained in that section.
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Such Fitch-style proof shed light on the freshman’s reluctance to apply Ad-
dition and other ‘non-informative’ rules7 (in which an arbitrary subformula
appears in the conclusion). The reluctance is well known to teachers of logic. It
can easily be overcome in cases where A∨B is derived from A in order to obtain
C by Modus Ponens from (A∨B) ⊃ C and A∨B. However, the freshman will
keep complaining about the proof of B from A and ∼A in which A∨B is derived
from A and next B is derived from A∨B and ∼A. And the freshman’s complain
makes sense: precisely this application of Addition is impossible in view of the
restriction on the Fitch-style proofs for pCL−.

7 Relation to Inconsistency-Adaptive Logics

Is CL− the suitable logic for handling inconsistent premise sets? The answer
will obviously depend on the involved aim. In many cases one wants to interpret
a premise set as consistently as possible—see [1], [3], [4] or [9] for sundry reasons
to do so. This includes the case in which one wants to study the inconsistent
‘theory’ in order to devise a consistent replacement for it. In such cases, one
does not want to derive A from A ∨ B and ∼B in the presence of B, even if
A ∨ B is a premise. So the right approach to such applications is not provided
by CL− but by an inconsistency-adaptive logic—see the same papers.8

One should not conclude that CL− is a useless system. CL− explicates
proofs from the pre-CL era just as good as CL itself. CL− justifies apparently
naive views that do not reduce inconsistency to triviality. All this challenges the
classical logician’s claim that sound reasoning forces one to reduce inconsistency
to triviality.9
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