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Abstract

Cariani [7] has proposed a semantics for ought that combines two features: (i) it
invalidates Inheritance in a principled manner; (ii) it allows for coarseness, which
means that ought(y) can be true even if there are specific ways of making ¢ true
that are (intuitively speaking) impermissible. We present a family of multi-modal
logics based on Cariani’s proposal and a more recent critique by Bronfmann&Dowell
[4]. We study their formal properties in detail and show how they can be translated
into normal multi-modal logics. Using well-known techniques, we establish a sound
and (strongly) complete axiomatization for each of these and show them to satisfy
the finite model property. In addition, we compare them to existing approaches in
the deontic logic literature — most notably Anglberger et al.’s logic of obligation as
weakest permission and Horty’s deontic stit logic.

Keywords: Deontic logic; contrastivism; modal inheritance; Ross paradox; deontic
STIT logic; coarseness

1 Introduction

Contrastivism about “ought” says that claims using this modality can only be
understood relative to a (usually implicit) contrast class.? So according to this
view, “you ought to take the bus” is shorthand for “given the set of alternatives
A under consideration, you ought to take the bus”. Here A consists of various
ways of the agent in question getting somewhere (say, the university) at a given
moment.

In recent work, Cariani has proposed a formal semantics which starts from
a contrastivist reading of ought [7]. This proposal is interesting for at least

1 This paper is the full version of [30], including all meta-proofs, a translation into normal
modal logic, and complexity results that were not given in that paper. Research for this paper
was funded by the Flemish Research Foundation (FWO-Vlaanderen). We are indebted to
Mathieu Beirlaen and three anonymous referees for incisive comments on previous versions
of that paper. In addition, we thank the audience of DEON2016 and three referees for
AiML2016 for critical suggestions and remarks which helped improve the present paper.

2 See [27, footnote 1] for some key references to contrastivism in deontic logic.
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two reasons. First, it gives a principled account of why Inheritance?® fails in
cases like the Ross paradox, which makes it more insightful than most exist-
ing semantics for non-normal modalities.* Second, it allows for what Cariani
calls coarse ought-claims, which means that ought(y) can be true even if there
are specific ways of making ¢ true that are (intuitively speaking) impermissi-
ble.® This unusual combination — coarseness without Inheritance — is possible
precisely because of the way the alternatives are modeled: rather than single
worlds, they are (mutually exclusive) sets of worlds.

In order to argue for or against Cariani’s proposal, we believe that one has
to study the logics obtained from it. This paper’s aim is to do exactly this.

Outline In Section 2, we present Cariani’s proposal, both informally and in
terms of a possible-worlds semantics. We discuss the most salient properties
of the resulting logic. Next, we consider variants of this semantics that are
defined over the same modal language, with special attention for one variant
which is inspired by a critique from [4] (Section 3).

Sections 4-6 form the technical core of the paper. In these sections we
define the base logic CDL and show how it can be characterized as a normal
modal logic. After that, we axiomatize all the extensions that were discussed
in Section 3 and establish the finite model property for these systems.

In Section 7, we show how the logics relate to existing work in the deontic
logic field, and where one can draw on this link in order to solve existing
problems and puzzles.

Preliminaries We use p,q,... for arbitrary propositional variables. The
boolean connectives are denoted by —, V, A, D, = (only the first two are primi-
tive) and occasionally we will use the falsum and verum constants (L, resp. T).
©, 1, ... are metavariables for formulas and I", A, . .. for sets of formulas. ought
refers to operators proposed as formal counterparts of the natural language
“ought”. Given an expression of the type ought(y), ¢ is the prejacent of this
formula.

2 Cariani’s Semantics

In this section, we introduce and illustrate Cariani’s semantics for ought. We
first present the semantics informally in our own terms, after which we indi-
cate the relation with Cariani’s original presentation (Section 2.1). Next, we
define a full-fledged formal semantics (Section 2.2) and discuss the most salient
properties of the resulting logic (Section 2.3).

3 By Inheritance we mean here: from ought(p) and ¢ b v, to infer ought(v). This property
is also often called monotony.

4 Cariani [7, p. 537] remarks that such semantics are “often purely algebraic”, in the sense
that they just translate rules for ought into conditions on neighbourhood functions. Notable
exceptions are the contrastive semantics for ought from [12,13] and the logic of “obligation
as weakest permission” from [1] which we will discuss in Section 7.

5 We explain and illustrate Cariani’s notion of coarseness in Section 2.1.
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2.1 Cariani’s proposal, informally

Our Version To spell out the main idea behind Cariani’s semantics for ought,
we need to introduce three parameters:

(a) a set of (mutually exclusive) alternatives or options A
(b) aset BC A of “optimal” or “best” options
(¢c) aset Z C A of “impermissible” options

Each of A, B and Z may be thought of as settled by a “deliberative context”
in which an agent o has to choose among a number of different options. In
other words, our normative reasoning always starts from a deliberative ques-
tion: which of the members of A should « choose or carry out? The level
of granularity of A depends on the goals, values, and desires of a within the
context at hand [7, p. 539].

For instance, in a context where someone is deliberating about how Lisa
ought to get to the university, her options may be represented by the following
set:

Aex = {walk, bike, bus, car}

indicating that she may walk to the university, drive her bike, take the bus, or
drive by car. Some of these options may be optimal — e.g. biking or taking the
bus. Driving may well be impermissible (since she may not yet have obtained
her driver’s licence) and walking may be suboptimal (since given the distance,
she risks getting late) but nevertheless permissible. So we have:

Bex = {bike, bus}

Tex = {car}

Each of the options in Ag can be carried out in many different ways; e.g.
Lisa may drive her bike in a blue dress or in a green dress; she may drive her bike
in a hazardous way or very cautiously. In Cariani’s terms: the alternatives are
coarse-grained. This means that they correspond to generic actions or states of
affairs (propositions, sets of worlds in a Kripke-model), in contrast to maximally
specific actions or states of affairs (worlds in a Kripke-model).

In light of this feature, it is tempting to interpret Cariani’s options as action-
types. This interpretation is suggested by Cariani himself [7, pp. 544-545]. Tt
is also pursued in other work on deontic logic; see e.g. [1] for a concrete and
worked-out example. However, one has to be careful here: depending on the
case at hand, the deliberative context may be very specific — it may well be
thought of as a concrete decision problem “here and now”. In such a case, the
actions X € A are not repeatable ones like e.g. ‘closing the door” or “biking
to school”. Also, they are not closed under any operations such as iteration,
intersection, or union, as is the case with the action types in the tradition of
Dynamic Logic.
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Alternatively, one may insist that options are action tokens: concrete, sin-
gular events that can be of one or several types — provided that one is willing
to let one such event take place in several distinct “worlds”, or in combination
with several distinct states of affairs. Such a view of events is made explicit i.a.
by Ming Xu and Mark Brown in their work on the extension of logics of agency
with action types — see e.g. [5] for a gentle introduction. It is also embraced
in recent work by Horty and Pacuit [19], where they describe the choice cells
in a STIT frame as action tokens, to be distinguished from action types (i.e.,
on their view, labels of such cells which allow for comparisons across different
states). We return to the similarities with STIT logic in Section 7.2.6

In the remainder, we shall remain neutral regarding these interpretations;
we will accordingly stick to the more neutral terms “option”, “alternative”, or
“choice” in order to refer to members of A.

Whatever one’s preferred interpretation, the coarseness of options explains
at once how it is possible, in Cariani’s framework, that there are (intuitively)
impermissible instances of an optimal (or permissible) alternative. Even if Lisa
ought to drive her bike or take the bus, this does not imply that every way of
doing so is normatively ok. Indeed, relative to a more fine-grained set of alter-
natives, it may turn out that some ways of driving her bike are impermissible.
Mind that the framework does not explicitly represent the impermissibility of
such more specific options — hence, they are only impermissible “intuitively
speaking”. The point is exactly that, by choosing one specific level of granular-
ity in a certain context, we decide to leave those more specific (impermissible)
options out of the picture. Once we make them explicit, the level of granularity
changes, and with it the truth of any given ought-claim.”

Since options are coarse-grained, they do not fix every property of the world.
Still, some propositions are fixed by taking one option rather than the other.
If Lisa takes her bike, she is definitely not taking the bus or driving her car. In
general, we say that an option X € A guarantees a proposition ¢ iff following
that option ensures that ¢ is the case.

We are now ready to spell out an informal version of Cariani’s proposal.
That is, where ¢ is a proposition, ought(p) is true (relative to A, B,T) iff each
of the following hold:

(i) ¢ is visible, i.e. for all X € A: X guarantees ¢ or X guarantees —p
(ii) ¢ is optimal, i.e. for all X € B: X guarantees ¢
(iii) ¢ is strongly permitted, i.e. for all X € A that guarantee ¢, X ¢ T.

For instance, in our example, it is true that Lisa ought to ride her bike or
take the bus. It is false that she ought to ride her bike, take the bus or take
the car, since taking the car is impermissible. It is equally false that she ought
to ride her bike or take the bus in a green dress, since that proposition is not

6 It is noteworthy that Cariani himself refers to [2] as the main source of inspiration for his
interpretation of his semantics 7, p. 556].

7 This of course raises the question how oughts concerning such more fine-grained A’ relate
to the coarse-grained A — we return to this point in Section 7.
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visible.

This shows us at once that Inheritance is invalid on Cariani’s semantics. It
is in fact blocked in two different ways — see (i) and (iii) above. As a result,
also the Ross paradox is blocked: “you ought to mail the letter” may be true
while “you ought to mail the letter or burn it” is false. This will either be the
case because burning the letter is invisible, or if we do take it to be a visible
option, because it is impermissible.

Ranking and threshold In Cariani’s original proposal, instead of B and Z,
a “ranking” of A is used together with a “threshold” t on that ranking. The
idea is that the “best” options are those that are maximal (according to the
ranking), and the impermissible ones are those that are below the threshold.
Although Cariani is not very explicit about the formal properties of his ranking
and threshold, it seems that his ranking is a modular pre-order, in the sense
that it distinguishes different layers of “ever better” options.? In other words,
it can be defined as a function r : A — R, where intuitively, X is better than
X' (for X, X" € A) iff r(X) > r(X’). The threshold is then simply a t € R,
such that whenever r(X) < ¢, X is impermissible.

It is easy enough to check that, once such an r and t are given, we can
obtain B and Z from them as follows: (i) B={X € A | r(X) = max({r(Y) |
Y € A})}, and (ii) Z is the set of all X € A such that r(X) < t. Hence our
simplified version of Cariani’s semantics is at least as general as his original
version.

Given fairly weak assumptions, we can also show the converse. That is,
consider an arbitrary (A, B,Z) and suppose that each of the following hold:

(D) B#0
(Cn BNZ=40

In other words, there are best options, and every best option is permissible.
Define the function r : A — {1,2, 3} as follows:

(1) if X € B, then r(X) =3
(2) f X eZ thenr(X)=1
(3) if X € A\ (BUZ) then r(X) =2

Let t = 2. It can easily be checked that (i) and (ii) hold. So if we assume (D)
and (CN), the two formats are equivalent (deontically speaking).

In the current section, we will leave restrictions (D) and (CN) aside. In
Section 3.1 we consider variants of our base logic in which these restrictions
are added to the semantics.

8 As the reader may note, “Lisa ought to take her bike, take the bus, or walk to the univer-
sity” is also true in our example, which might strike one as odd. We return to this point in
Section 3.2.

9 At least it is in all the examples he gives. Also, this seems to be presupposed by the way
he uses the notion of a threshold, viz. as a single member X of A such that any option below
X is impermissible.
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2.2 The formal semantics of CDLS®

Our language L is obtained by closing the set of propositional variables
S ={p,q,...} under the Boolean connectives and the modal operators U (nec-
essary/holds in every possible world), A (is guaranteed by the chosen alterna-
tive), B (is best/is guaranteed by all optimal alternatives), and P (is strongly
permitted).

Two comments are in place here. First, Cariani does not explicitly mention
the operators U and A. However, both are fairly natural modalities in this
context. U is just a global (or universal) modality — see [16] for a systematic
study. A expresses the concept of being guaranteed by a given option, which
Cariani uses in the semantic clause of his ought-operator. Moreover, adding
both modalities to the language allows us to obtain a sound and complete
axiomatization of the logic — see Section 4. 1°

Second, rather than taking it as primitive as Cariani does, we treat “is
visible”, V, as a defined operator:

Vo =4 U(Ap V A-p)
Likewise, O (Cariani’s ought) is a defined operator:
Oy =4t Vo ABp APy

The following two definitions make the informal semantics from Section 2.1
exact: 11

Definition 2.1 A CDLE®-frame is a tuple F = (W, A, B,T), where W is a
non-empty set, A € p(p(WW)) is a partition of W, B C A is the set of best
options in A, and Z C A is the set of impermissible options in A.

A CDL®-model M is a CDLC-frame (W, A, B,Z) augmented with a valua-
tion function v : & — p(W).

Since A is a partition of W, all worlds are by definition a member of some
alternative in the contrast class. In other words, we exclude the possibility that
some members of W are simply irrelevant for the deontic claims that are at
stake. We leave the investigation of such a possibility for another occasion.

In line with the preceding, the members of A are interpreted as coarse op-
tions, or as choices between general states of affairs that a given agent faces,
whereas the members of W represent maximally specific states of affairs. For-
mulas are evaluated relative to a given w € W, in accordance with Definition
2.2. This means that in general, whether or not a formula is true may depend
on the option that is chosen and on the specific way it is carried out or ma-
terializes. However, for purely normative claims, this is not the case (see our
discussion of the property of Uniformity in Sections 2.3 and 3.3).

Definition 2.2 Let M = (W, A, B,Z,v) be a CDL®-model and w € W.
Where w € W, let X* denote the X € A such that w € X.

101t remains an open question whether one can obtain such an axiomatization without these
modalities, and with V primitive.

11 CDL is shorthand for “Coarse Deontic Logic”. The superscript c refers to Cariani.
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(SC1) MwEypiff wev(p) forall p €S

(SC2) M,w = —p iff M,w = ¢

(SC3) MwEeVvyiff MjwE v or MywkE 1y

(SC4) M,wkEUpiff M,w' = ¢ for allw’ e W

(SC5) M,w = Ay iff M,w' |= ¢ for all w' € X

(SC6) M,w EBypiff forall X € B, forallve X, M,v = ¢

(SC7) M,w=Pypiff forall X € As.t. (forallve X, M,v=yp), X €T

Note that Vi means (by our definition) that at every world w in the current
model, either ¢ is guaranteed or - is guaranteed. Since A is a partition of W,
this is equivalent to saying that every option either guarantees ¢ or guarantees
—p, which corresponds to Cariani’s original semantics for “is visible”.

The clause for P can also be rephrased in terms of the set P = A\ Z of
permissible options: Py is true at M,w iff every option X € A such that
X C \<p|M , is permissible. In other words, guaranteeing ¢ is sufficient for an
option to be permissible — see [31] for an elaborate study of such constructions
in deontic logic. However, in the remainder we stick to the formulation in terms
of 7 since it will simplify our technical work in Sections 4-6.

As usual, T' lFepre @ iff for all CDL¢-models M and every world w in the
domain of M, if M,w = ¢ for all ) € T, then M, w = .

2.3 Properties of CDL*®

It can be easily verified that each of U, A and B are normal modal operators
in CDLE€. In fact, both U and A are S5-modalities. Second, P is a non-normal
but classical modality (in the sense of Chellas [8]), which means it satisfies at
least replacement of equivalents. As a result, also the defined operators V and
O are classical.

Now for some more distinctive properties. Fach of the following hold for
I = |FCDL°:

Oy I O(p V ¥) (1)
O(p A) I Op (2)

Op, 09 IF O(p A 1)) 3)
Oy, O IF O(p v ¥)) (4)
Oy, Py I O(p v 1)) ()
Op, P V) IF O(p VY) (6)

Op, Py, Vi) IF O(p V 9) (7)
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Vo,V IE V(e V ) (8)

Vo,V - V(e A ) (9)

IFP(o V1) D (Po A PY) (10)

IF Po D P A1) (11)

I (Po APY) D P(pV ) (12)

Ik (P=A-p A P=A—1)) D P(=A=p V =A—)) (13)

Let us comment on these properties one by one. That O does not satisfy
Inheritance — see (1) — was already explained above. Since the logic is closed
under replacement of equivalents, this also means that O does not distribute
over conjunctions, cf. (2).12 More surprisingly, Aggregation (3) holds for O.
In a context where the possibility of deontic conflicts is omitted, this is often
considered a nice feature. It follows from the fact that the three operators B, V,
and P are each aggregative — see (9) for V and (11) for P. For similar reasons,
Weakening (4) also holds in CDL®.

Both Aggregation and Weakening deserve our attention here. As shown in
[6], these properties fail on what is perhaps the most well-known contrastive
semantics for ought, viz. the actualist semantics from [23], which has been
worked out and axiomatized by Goble [12,13].

(5) and (6) tell us that, contrary to what one might expect, neither P nor
P(¢) V ) suffice in order to derive O(¢ V 9) from Og.'® The reason is that
neither of those propositions warrant that ¢ V 1 is visible, which is required
for O(p V ) to hold. Only if we add Vi) do we obtain a restricted form of
Inheritance that is CDLC-valid — see (7).

Together with replacement of equivalents, (10) entails that P is “downward
closed”: whatever is stronger than something that is permitted, is itself also
permitted. To see why this is so, recall that P(p V 1) expresses that guaran-
teeing ¢V 9 implies that one is choosing a permissible option. Hence a fortiori
guaranteeing o (resp. ¢) is sufficient for permissibility. By the definition of O,
this also means that O(p V ¢) IFepre Py, Py: that ¢ V 1 ought to be implies
that ¢ V ¥ is strongly permitted, which in turn implies that both ¢ and v are
strongly permitted. We return to this property in Section 3.2.

12 Cariani motivates the absence of this validity in terms of the famous Professor Procrastinate
case, cf. [7, p. 541].

13 Snedegar [27, pp. 217-218] refers to Goble [14, Note 49] who rejects such a rule. However,
in Goble’s case, the P-operator is one of weak permission, i.e. P =4 —O-. Besides that,
Goble’s main concern is to accommodate deontic conflicts, a target which Cariani explicitly
rules out — as Snedegar acknowledges.
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In view of (12), P is not an operator of “free choice permission” in the
strict sense of [32]. To see why (12) holds, recall our example. Here, “Lisa
takes the car in a green dress” (car A green) is permissible in a vacuous way,
since there is simply no option which guarantees that proposition. Likewise,
“Lisa takes the car, but not in a green dress” (car A —green) is permissible.
However, car (which is equivalent to the disjunction of both propositions) is
not permissible. 14

(13) shows that for the more specific case where ¢ and 1 are of the form
—A-7, we do get the converse of (10). If it is permissible that (a) one leaves open
the possibility that ¢, and it is also permissible that (b) one leaves open the
possibility that ¢, then it is permissible that (¢) one leaves open the possibility
that ¢ or one leaves open the possibility that ¢. Indeed, whenever (c) holds,
either (a) or (b) hold and hence one is definitely taking one of the permissible
options.

Other interesting validities concern the interaction between the alethic
modalities U, A and the deontic modalities B, P, and O. These are of two
types:

where V € {B,P,0} : IF Vo = VAp (14)

where V € {B,P,0}: IF Vp=UVep (15)

Contrast-sensitivity, (14), expresses that the deontic modalities really apply
to alternatives X € A, rather than worlds w € W. For instance, By can only
be true if ¢ is true in all worlds that belong to an optimal alternative; but that
is the same as saying that all optimal alternatives guarantee ¢. This property
is therefore essential for Cariani’s constrastive approach.

Uniformity, (15), expresses that deontic claims are either settled true or
settled false (to borrow terminology from [2]). It follows from the fact that B
and Z are independent of the world w one happens to be at in a model. We
return to this property in Section 3.3.

3 Some Variants

We now consider variants of the CDL®-semantics and motivate each of them
independently. This will be useful in Section 7, where we compare Cariani’s
construction to existing work in deontic logic.

3.1 Conditions (D) and (CnN)

We first return to the conditions mentioned at the end of Section 2.1. (D)
corresponds to the requirement in Standard Deontic Logic that the accessibility
relation is serial, and hence, that there is at least one “ideal” or “optimal”

147y view of this example, P seems to express only part of the meaning of “is permitted”. A
more plausible operator of (strong) permission can be defined by P?¢p =4 PoAVp. Note that
(PYeAPYY) IFepre P (¢ V), but PY(p V) Fepre PP APYy). We leave the investigation
of such definable operators for future work.
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world. Tt can be moreover easily checked that (D) is expressed by the familiar
axiom schema By D —-B-¢ within CDL€. This axiom schema (along with the
failure of the T-schema, By D ¢) is traditionally seen as the distinctive feature
of deontic logics.

Although it is a much debated property in the context of deontic logic
in general, (D) does seem to have some intuitive power in the present context.
After all, the idea is that we start from a fixed set of alternatives, one particular
ranking r, and one threshold ¢. ' Finiteness of A already entails (D). But even
if we allow for a possibly infinite number of options, it seems sensible to say
that we only consider finitely many of those as viable options, such that a
ranking on them will always yield a non-empty set of best alternatives.

(CN) is more difficult to interpret in the present context. It states that
every best option is permissible. Interestingly, this condition is not definable in
the language of CDL®. In fact, imposing it onto the semantics has no impact
on the resulting logic, as we show in Section 5.2. This means in turn that, once
we assume (D), and as far as the logic is concerned, there really is no difference
between Cariani’s original semantics and our reformulation of it.

3.2 Putting the threshold at optimality

Bronfman & Dowell note that Cariani’s use of a set of alternatives (as a set of
sets of worlds) and a ranking on them does not conflict per se with the standard
approach in modal logic [4, p. 6]:

[O]ne sort of value Kratzer’s ordering source can take is one that would rank
each world w in the modal background in terms of what an agent does in w
[...] Such a ranking would have the effect of ranking all worlds in which the
agent performs the same action the same. This would mean that such an
ordering source would, in effect, rank options, in Cariani’s sense. ([4, p. 6].)

This point is further clarified and made exact in the next section of the
present paper, where we develop a simple way to translate the formal semantics
from the previous section into a regular Kripke-semantics.

The distinctive feature of Cariani’s semantics, according to Bronfman &
Dowell, is the use of the permissibility threshold in order to block Inheritance.
It is this feature that they attack.

To understand their argument, we should briefly rehearse the pragmatic
defense of Inheritance for ought. This defense says, roughly speaking, that
although affirming ought(¢ V1) is rather pointless in cases where we also know
ought(yp), the former expression is nevertheless true whenever the latter is.
It is much like affirming “John is either Dutch or Italian” when we actually
know that John is Dutch: not maximally helpful, but also not plainly false or
mistaken. What 4s false is the Gricean implicature that follows when we only
state ought(p V1), viz. that ¢ V 9 is the most specific necessary condition for
optimality.

15 As Cariani notes, one may generalize the entire setting to cases with multiple rankings and
threshold functions; that seems to be his preferred way of allowing for deontic conflicts.
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Cariani rejects this defense of Inheritance, since it cannot account for the
way ought behaves in embeddings [7, pp. 549]. Such behavior, he argues, can
only be explained by the following principle:

(Implicated) ought(¢ V ) communicates that one has two ways of doing as
one ought, viz. by making ¢ true or by making v true.

In contrast, Cariani’s account seems to cover (Implicated) well: as we saw in
Section 2.3, O(¢ V ¥) IFepre Py, Py.

However, Bronfman & Dowell rightly remark that (Implicated) gives coun-
terintuitive results when applied to Cariani’s own semantics. That is, by taking
an option that is suboptimal but permissible, the agent is also doing as (s)he
ought — at least if (Implicated) holds. Let us illustrate this with our running
example. The options bus and bike are the only two optimal ones. However,
since walk is permissible, ought(bus V bike V walk) comes out true. But, given
(Implicated), this means that by walking to the university, Lisa is doing as she
ought.

Bronfman & Dowell suggest that, if one really wants to satisfy Cariani’s
requirement, one should put the threshold at optimality. ' There are, techni-
cally speaking, two ways to implement this suggestion. The first is to change
the semantic clause for P, such that M, w | Py iff, whenever X € A is such
that M,w" | ¢ for all w' € X, then X € B. This means that Z becomes
superfluous in the semantics of the logic.

Secondly, one may leave the semantic clause for P unaltered, but treat 7
simply as the set of all suboptimal alternatives. This means that we impose
the following frame condition on CDL®-models:

(C+) ZT=A\B

The advantage of this second approach — which we will follow in the re-
mainder — is that it allows for a smooth comparison with Cariani’s original
proposal. Note that (C+) is equivalent to the conjunction of condition (CN)
(see Section 2.1) and the following:

(CU) TUB=A

Henceforth, let M be a CDLP9-model iff it is a CDL®-model that satisfies
(C+); we denote the associated consequence relation by IFeppba.

Obviously, CDLP4 is an extension of CDLS. But exactly what additional
validities (in our language £) do we get from imposing this condition? Each
of (1)-(12) from Section 2.3 hold also for IF = IFgpypa, and hence not much
seems to change to the deontic part of the language.

16 There remains a problem though. Suppose that “Lisa ought to go to the supermarket”
is true. Since the semantics satisfies replacement of equivalents, it follows that “Lisa ought
to either go to the supermarket and pay for whatever she buys or go to the supermarket
and steal something.” Given (Implicated), it follows that by going to the supermarket and
stealing something, Lisa is doing as she ought. So whatever refinement one proposes of
Cariani’s (or Kratzer’s) semantics, pragmatic factors will anyway have to be called for at

some point. (This example is a variant of Hansson’s “vegetarian’s free lunch” [17, p. 218].)
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However, once we consider the interaction with U, we do get an important
additional feature: if two ought-claims are both true, their prejacents have the
same truth-set within the model. Following [9], we call this Uniqueness:

IFeprea (00 A OY) D U(p = 1) (16)

This property fails for CDL® — witness our example: both ought(bikeVbus)
and ought(bike V bus V walk) are true, but one is obviously more specific than
the other. Note that since U is a global modality, Uniqueness entails both
Aggregation and Weakening for O. 17

Even if condition (C+) is well-motivated, Uniqueness may be hard to swal-
low from the viewpoint of natural language. One morning, John may have to
ensure that he gets to the office in time (p), but also that his children get to
school in time (¢q). So ought(p) and ought(q) both seem true in this scenario.
But John would be rather lucky if making ¢ true would at once ensure that p
also holds (or vice versa). The only way to avoid this strange conclusion would
be to insist that actually, only ought(p A ¢) is true in this scenario, since e.g.
“getting to the office in time without making sure the children are at school
in time” is impermissible, as is “making sure the children are in time without
getting to the office in time”. But such a reply — even if perfectly consistent —
seems to be at odds with our use of ought in natural language. We often use it
simply to express (non-trivial, but) merely necessary conditions for optimality.

Two comments are in place here. First, this is not just a problem for
proponents of (C+), but it is just as well a problem for any account of ought
that combines a necessity clause (here, By) with a sufficiency clause (here,
Py).'® That is, in many cases we seem to correctly assess ought(p), even if ¢
is not sufficient for permissibility. So it is also a problem for Cariani’s original
proposal, even if Uniqueness fails for it.

Second, it is hard to see how this problem can be avoided, as long as one
models necessity, resp. sufficiency (of a given proposition, for optimality resp.
permissibility) in terms of set-theoretic inclusion. Within any such intensional
semantics, this is the price to pay if we explain the failure of Inheritance in
terms of a sufficiency requirement.

3.3 Rejecting Uniformity

As we just saw, there are reasons for strengthening CDL® in various ways.
There are however also reasons for weakening CDL®, in the sense that it is
no longer assumed that optimality and permissibility are uniform throughout
a model. That is, rather than taking B and Z as sets of alternatives, one
may think of them as functions, taking as their argument worlds w € W (or

17For aggregation: from Oy and Ot we can derive U(p = 1) by Uniqueness. Hence we can
derive U(¢ = (¢Av)) by normal modal logic properties; and hence since U is a global modality,
we can derive O(¢ A 1)). The reasoning for weakening is analogous, using U(p = (¢ V ¥)).
18 This means that it is also a problem for the “logic of obligation as weakest permission”
from [1] — see our discussion in Section 7.1.
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alternatives X € A), and mapping these to sets of alternatives. This means in
turn that the validities mentioned in (15) — see page 9 — are denied.

To motivate such a weakening, we can point to various arguments that have
been put forth in the literature. First, from the viewpoint of game theory, it
has been argued that which option for a given agent « is best, may depend on
the options other agents take; hence, it will also depend on the specific world
one happens to be at. See e.g. [1, Section 4.2] where this point is discussed and
linked to some properties of the deontic operators.

Second, in [33], Wansing attacks specific constructions of deontic logic based
on a branching-time framework, in which the truth of “obligation reports” (say,
claims about what ought to be, what is best, what one ought to do, etc) depend
only on the moment m of evaluation. This means that such claims are either
true at all moment-history pairs m/h, or false at all m/h. In the present,
more abstract framework, moments correspond to the entire set W, whereas
moment /history-pairs correspond to single worlds w € W.

Wansing’s arguments for this claim are of two kinds. On the one hand, he
writes that certain obligations are simply of such a type that they depend on
future contingents. For instance, if “you ought to give the prize to the winner
of this race” is true, then depending on who actually wins (say a or b), it may
be true that “you ought to give the prize to a” — but this will of course not be
settled true. The other argument is more intricate, as it concerns the so-called
Restricted Complement thesis from [2]. As Wansing shows, this thesis together
with Uniformity trivializes nested ought-claims of the type “John ought to see
to it that it is forbidden for Mary to eat the cake.”

Third and last, Uniformity is typically rejected by actualist theories of
ought. In contrast to possibilists, actualists argue that what ought to be de-
pends on what is actually the case (now or in the future), rather than on what
can be (or may become) the case.® The temporal dimension is not explicit in
the simple CDL®-models we considered so far. Nevertheless, the fact that we
abstract from the temporal dimension in our models seems a sufficient reason
to remain neutral about those properties that would become problematic, once
we add time back in.

4 The Base Logic CDL

In this section and the next two, we study the formal properties of the logics
that were discussed in previous sections. We start with the base logic CDL
in this section, and show how it can be translated into a normal multi-modal
logic. Extensions of the logic and complexity results are discussed in Sections
5 and 6 respectively. 2°

19Gee e.g. [21, Section 7.4.3] where the two views are briefly discussed and linked to two
different notions of ought in stit logic. A more unified theory that encompasses both these
notions is presented in [22].
20In this and the next two sections, we assume familiarity with basic notions of modal logic
such as Sahlqvist correspondence, generated submodels, and definability of frame conditions.
See e.g. [3] for background.
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(CL) any complete axiomatization of classical propositional logic
(MP) from ¢, ¢ D 1 to infer ¢
(NECy) from F ¢, to infer F Uy
(Ke)  B(p > v) > (By O BY)
(S54)  all S5-axioms for U

(S5a)  all S5-axioms for A

(Ga)  UpDAp

(Gg) Up DBy

(Ce) By =BAyp

(Gp)  UpD Py

(Cp)  Pp=PAp

(P1)  P(pVy) D (PpAPY)

(P2)  (P=A—p A P-A—1)) D P(=A—p V =A—)
(EQp)  U(p=1v) D (Pp=Py)

Table 1
Axiomatization of CDL.

4.1 Neighbourhood-semantics for CDL

We generalize Definition 2.1 from Section 2.2 as follows:

Definition 4.1 A CDL-frame is a tuple F = (W, A, B,Z), where W is a non-
empty set, A € p(p(W)) is a partition of W, B : W — p(A) maps every w € W
to the set of w-best options in A, and Z : W — p(A) maps every w € W to
the set of w-impermissible options in A.

The definition of a model and the semantic clauses remain the same, with
the exception of the following:

(SC6’) M, w |= By iff for all X € B(w), for allv € X, M,v = ¢
(SCT) M,w = Pyiffforall X € As.t. (forallv e X, M,v =), X € A\Z(w)

Table 2 gives a sound and (strongly) complete axiomatization of CDL. The
first six axioms and rules in this table are standard. The axioms (Ga), (Gg)
and (Gp) follow from the fact that U is a global modality. (Cg), (Cp), (P1) and
(P2) were already discussed in Section 2.3. Finally, (EQp) is a strengthened
version of replacement of equivalents for P.

We define theoremhood (Fepr, ¢) in the usual way; in order to save space,
syntactic consequence is defined as follows: I' Fopr @ iff there are 91, ..., 9, €
I' such that Fepr (W1 A ... Ay,) D w. It is a matter of routine to check that
each of the axioms from Table 1 are valid in all CDL-models, and hence that
the logic is sound. For completeness, we first introduce a translation of CDL
into a normal multi-modal logic.

4.2 Modal Translation of CDL

Let the language L£™ be obtained by replacing P in £ with |. Intuitively,
lo can be read as “is guaranteed by all impermissible alternatives”. We use
W™ to denote the set of well-formed formulas in £™. Formulas from W™ are
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interpreted over a specific type of Kripke-models, which we now define.

Definition 4.2 A CDL™-frame is a quadruple F' = (W, Ra, Rg, R)), where
W is a non-empty set and Ra, Rg, and R, are binary relations on W that
satisfy the following conditions:

(C1) Ra is an equivalence relation on W
(C2) where O € {B,I}, Rgo Ra C Rg

A CDL™-model M = (W, Rp, Rg, R, V) is a CDL™-frame equipped with a
valuation function v : & — p(W).

Definition 4.3 Where M = (W, Ra, Rg, R, V) is a CDL™-model, w € W,
and O € {A,B,1}:

(SC1) M,wEpiff we V(p)

(SC2) M,w = —piff M,w = ¢

(SC3) M,wEeVyiff MywE ¢ or M,w =4
(SC4) M,w | Ugp iff M,w' |= ¢ for all w’ € W
(SC8) M,w | Oy iff for all w’ € Rg(w), M,w'" |E ¢

The semantic consequence relation IFcpym is defined in the standard way.

The idea behind these definitions can be explained as follows. First, the
equivalence relation Ra corresponds to the partition A of W. Second, rather
than speaking about best options in a direct way, we do so via a detour. That
is, we treat B as a normal modality that quantifies over all worlds w that are the
members of a best option. Thus we need to make sure that if w’ is a member
of a best option, and if w” is a member of the same option as w’, then also w"”
is a member of a best option. This is nothing but the exact counterpart of the
idea expressed by Bronfman & Dowell (cf. the quote on p. 10). Technically,
this is done by imposing condition (C2) on the accessibility relation Rg that is
associated with B. Third and last, | quantifies over all worlds that are members
of an impermissible option. As with Rg, this means that R will have to satisfy
condition (C2). Using | and A, we can then express the operator of strong
permission from CDL as follows:

Py =af I=Ap

That is, I-Ag iff, for all impermissible options X, there is at least one point
in that option at which ¢ is false. This is equivalent to saying that if ¢ is
guaranteed by an option Y € A, then Y € A\ T.

Conversely, | can be defined within CDL as follows: lp =4 P-Ap. The

definiens expresses that all options in which ¢ is not guaranteed, are permissi-
ble; equivalently, whenever an option is impermissible, it guarantees (.

4.3 Axiomatization of CDL™

To obtain a sound and (strongly) complete axiomatization for CDL™, we need
to add the axioms from Table 2 to those from the first half of Table 1. Theo-
remhood and the derivability relation (FcprLm=) are defined as before.

Theorem 4.4 T’ FCDL““ %) ZﬁF |FCDLm @Y.
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(Gi) UpDlp
Ki) 1e29) D (e DY)
(C) lp=lAp

Table 2

Axioms for | in CDL™.

Proof. The proof of soundness is safely left to the reader. For (strong) com-
pleteness, note first that all the axioms are members of the Sahlqvist class.
The corresponding frames are like CDL™-frames, with the exception that
the canonical relation Rfj for the operator U is not the total relation but
merely an equivalence relation that satisfies the additional condition that,
where B € {B,|,A}, Rg C Ry (in view of the axioms of the type (Gg). To
obtain a model for a given maximally consistent set I', one thus has to take
the generated submodel ME in the standard way (restrict the domain to all
worlds that are R{j-accessible from I'; restrict all the accessibility relations and
the valuation function accordingly). O

4.4 From CDL to CDL™ and back
We now show that CDL and CDL™ are intertranslatable. First, we define
two translation functions tr™ : W — W™ and tr"™ : W™ — W:
Definition 4.5 Where x € {n,m}:
tre(p) =ar pif g €S
tre(—p) =af ~tre (o)

tre(p V) =g tr7(p) V ir7(y)
tr*(O¢) =q4¢ Otr®(p) where O € {U, A, B}

tr™(Po) =ar 1:A(Er™ ()
tr*(lp) =ar P-A(tr™(¢))

We lift this translation to sets in the usual way, i.e. tr*(A) =q4¢ {tr®(yp) |
¢ € A}. In Appendix A, we prove each of the following:

Theorem 4.6 Where T' U {p} C W: T' Fepw ¢ iff tr™(T) FepLm tr™(p).
Theorem 4.7 Where T'U {p} CW™: T FepLm ¢ iff tr"(T') Fepr tr™ ().
Theorem 4.8 Where I'U {p} C W: T IFepr ¢ iff tr™(T) IFepLm tr™ (o).

Relying on Theorem 4.6, Theorem 4.4 and Theorem 4.8 consecutively, we
immediately obtain:

Corollary 4.9 T Fcpr, ¢ iff T IFepr ©.

In view of the above theorems, we can also easily derive the following coun-
terpart of Theorem 4.8:

Theorem 4.10 Where T'U {¢} C W™: T lFepLm ¢ iff tr"(T) IFepr tr" (p).

Proof. Let T'U {¢} € W™. We have: T' lFepLm ¢ iff [by Theorem 4.4]
I' FepLm= ¢ iff [by Theorem 4.7] tr"(I") FepL tr"(y) iff [by Corollary 4.9]
tr"(F) ”_CDL tr"(<p) O
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5 Extensions of CDL

We now turn to the extensions of CDL that were discussed in Sections 2 and 3.
It will be convenient to divide these extensions in two different groups: those
obtained by imposing definable frame conditions on CDL-frames (Section 5.1),
and the ones obtained by imposing, in addition to the definable conditions, also
non-definable frame conditions (Sections 5.2).

5.1 Definable frame conditions

Table 3 lists the definable conditions on CDL-frames that were considered in
this paper, the corresponding conditions on CDL™-frames, and the axioms in
L™ that correspond to these conditions. To obtain an axiomatization of the
CDL-extensions, it suffices to translate those axioms literally, i.e. replace each
occurrence of | with P—A.
Where (C1), ..., (Cn) are (relational) frame conditions from Table 3, M is
a CDLE;  cp-model iff M is a CDL™-model and M obeys these conditions.
We use H—chg1 _____ o b0 refer to the associated semantic consequence relation.
to denote the syntactic consequence relation

..... Cn
obtained by adding axioms that correspond to (C1), ..., (Cn) to CDL™.
(Us) Yw,w' € W, B(w) = B(w)
Vw,w' € W, Rg(w) = Rg(w’) By = UByp
(U) Yw,w € W, Z(w) = Z(w'
Yw,w' € W, R|(w) = R)(w’) lp = Ulp
(Ag) where X € A and w,w’ € X, B(w) = B(w')
Yw,w' € W, if w € Ra(w ) then Rg(w) = Rg(w') By = ABy
(A) where X € A and w,vw’ € X, Z(w) = Z(w')
Vw,w' € W, if w € Ra(w’), then Rj(w) = Rj(w') lp = Alp
(D) Vw e W, B(w) # 0
Rp is serial By D -B-p
(Cu) Yw e W, Blw)UZ(w) = A
Yw € W, Rg(w) U Rj(w) =W (Bp Alp) D Up
Table 3

Definable frame conditions for CDL/CDL™ and corresponding axioms in £™.

Theorem 5.1 Where C1,...,Cn are frame conditions from Table 3:

&, o ¢ W FopLy, o, @

Proof. Again, we only give a proof sketch. Soundness is again a matter of
routine. For completeness, we use a similar construction as in the proof of
Theorem 4.4, again relying on Sahlqvist correspondence and the well-known
technique of generated submodels. a
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5.2 Non-definable frame conditions

This leaves us with two remaining frame conditions, both of which were dis-
cussed in Section 3. These conditions and their relational counterparts are
given by Table 4.

(C+) | forallweW, Blw)=A\Z(w)
for all w € W, Rg(w) = W\ Rj(w)

(CN) for all w e W, B(w)NZ(w) =0
for all w € W, Rg(w) N Ry(w) =0

Table 4
Non-definable frame conditions for CDL™.

Frame conditions of this type were studied extensively in the context of
Boolean Modal Logics and more generally, modal logics with intersection
and/or complement — see e.g. [15,10,11]. We will apply similar proof tech-
niques in the current paper in order to obtain complete axiomatizations for the
logics based on these conditions.

Note that (C+) is equivalent to the conjunction of (CN) and (CU) (see

Table 3). For technical reasons, we further divide the possible combinations of
conditions in two: on the one hand, those with only (CN) and without (CU);
on the other hand, those with both (CU) and (CN) (and hence (C+)). We
will first show how the logics defined by such combinations of conditions are
axiomatized. After that, we show that neither (CN), nor (C+) is definable
within CDL™.
Extensions with (CN), without (CU) In short, imposing only condition
(CN), or imposing (CN) on top of the other conditions from Table 3 except
(CU), does not change anything to the semantic consequence relation of the
logic. We now make this claim exact and prove it.

For the proof, we will make use of a specific kind of construction, which
we call copy-merge. This technique originates in [10,25] and was generalized
more recently in [31]. It consists in making two disjoint copies of a model M
and merging them into one suitably defined model MT. M is then provably a
bounded morphic image of M.

In the remainder, we let 4, j, k range over {1, 2}.

Definition 5.2 [Simple Copy-merge] Let M = (W, Ra,Rg,R),V) be a
CDL™-model. Let W', W? be disjoint copies of W. For each w € W, de-
note the counterpart of w in W? by w?.

The simple copy-merge of M is the model MT = <W7L,RL,RE7R|T,V‘L>7
where

1. Wh=wltuw?2

2. Rj ={(w',v') | (w,v) € Ra}

3. Rl ={(w',v') | (w,v) € Rg}

4. Rl = {(w',v?) | (w,v) € R}

5. forallp € S, VIi(p) = {w',w? e Wi |we V(p)}
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The following is shown in Appendix B.1:

Theorem 5.3 Let M = (W, Ra, Rg, R, V) be a CDL™-model. Then each of

the following hold:

(i) If W is finite, then so is W

(ii) M is a CDL®-model

(i1i) if M satisfies a given condition (C) from Table 3 except (CU), then so
does MT

(iv) f:WT =W with f(w') = w is a bounded morphism from M' to M

(v) forallwe W, i€ {1,2} and p, M,w = ¢ iff MT,w' = ¢

Theorem 5.4 Where C1,...,Cn are conditions from Table 3 except (CU):
r lFCDLgm,01 ..... Cn ¥ iﬁr H_CDL'éll Cn ®-

Proof. Right to left holds vacuously. For left to right, suppose that
o - Hence, there is an CDL@; g, -model M and a world

w such that M,w = 1 for all » € T but M,w [~ . Let MT be the simple
copy-merge of M. By the previous theorem, we can readily infer that MT is a
CDLE ¢ ... .co-model and M, w! |= ¢ for all ¢ € T but MT,w' [~ . Hence,

r U%CDLEN,Cl cn P =

By Theorem 5.1, this gives us:

,,,,,

Corollary 5.5 Where C1,...,Cn are conditions from Table 3 except (CU):
r '_CDLEH Cn ¥ iﬁr H_CDLrCnﬁ,Cl....,Cn ®-

Extensions with both (CN) and (CU) When we consider classes of frames
for which both (CN) and (CU) — or equivalently, (C+) — hold, it is important to
note that the other frame conditions from Table 3 are no longer independent.
That is, since for these frames, Rg is by definition the complement of R, we
have the following equivalences between frame conditions:

(Us) & (Uh)

(Ag) & (A1)

Hence, the number of logically possible combinations of additional condi-
tions drastically shrinks in the presence of (C+).2! See Table 5 for an overview
of these, and the corresponding combinations of axioms. In the remainder of
this section, we will establish the soundness and completeness of each of the
resulting logics.

We cannot apply the simple copy-merge technique for this purpose, since
that construction does not warrant that (CU) is satisfied for MT whenever it is
for M. So we need a slightly more complicated version of the technique, given
by the following definition.

21 Mind that in all CDL-frames, (Ug) implies (Ag) and (U)) implies (A,).
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(U) | (B =UByp) A (Ip = Ulp)
(A) | (By = AByp) A (Ip = Alp)
(D) By D> -B—yp

Table 5
Frame conditions and axioms for extensions of CDLg, .

Definition 5.6 [Strict Copy-merge] Let M = (W,Ra,Rg,R,V) be a
CDLZ -model. Let W, W?2 be disjoint copies of W. For each w € W, denote
the counterpart of w in W* by w?’.

The strict copy-merge of M is the model Mt = <W1,R¢A,RIB7R|1,V1>7
where
Wt=wluw?
R = {(w',v") | (w,v) € Ra}
RE = {(w',0") | (w,v) € Re} U{(w',0?) | (w,v) € Rs \ Ri}
Rli = {(w?,v?) | (w,v) € R} U{(w',v?) | (w,v) € B\ Rg}
for all p € S, Vi(p) = {w',w? € Wi |w e V(p)}

The proof of the following is now a matter of routine — see Appendix B.2:

Theorem 5.7 Let M = (W, Ra, Rg, Ri, V) be a CDLE -model. Then each of
the following hold:

(i) If W is finite, then so is W

(ii) M* is a CDLE, -model

(iii) if M satisfies a given condition (C) from Table 5, then so does M*

(iv) f: W+ — W with f(w') = w is a bounded morphism from M* to M

(v) forallwe W, i€ {1,2} and ¢, M,w |= ¢ iff M*,w' |= ¢

Theorem 5.8 Where C1,...,Cn are frame conditions from Table 5:

r ||_CDL8+,CI ,,,,, Cn ¥ iﬁr H_CDL’& Cn ®-

Proof. Analogous to the proof of Theorem 5.4. O

Corollary 5.9 Where C1,...,Cn are conditions from Table 5:
r FCDch‘H Cn ¥ ’iﬁF ‘FCDLE‘+,C1 Cn @

,,,,,

Non-definability of (C+) and (CN) Using the copy-merge techniques de-
fined above, we now briefly show that neither (C+) nor (CN) are definable
within CDL™.

Theorem 5.10 There is no ¢ such that ¢ is globally valid on a CDL™-frame
F iff F satisfies (CN).

Proof. Assume, for contradiction, that there is such a ¢. Clearly, not
all CDL™-frames satisfy (CN). Hence, there is a CDL™-model M =
(W, Ra, Rg, R, V) such that M,w [~ ¢ for some w € W. Let F be the frame
associated with M. Where MT is a simple copy-merge of M, let FT be the
frame associated with Mf. By Theorem 5.3.(v), Mt ,w! £ ¢. However, note
that FT satisfies (CN). But this contradicts the assumption that ¢ is globally
valid on CDL™-frames that satisfy (CN). ]

AN S
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Theorem 5.11 There is no ¢ such that ¢ is valid on a CDL™-frame F iff F
satisfies (C+).

Proof. Analogous to the proof of Theorem 5.10; simply replace t with I and
replace Theorem 5.3.(v) with Theorem 5.7.(v). O

6 Finite Model Property and Decidability

In this section, we briefly show that the logics that were introduced in this paper
are all decidable. 22 In view of our axiomatizations and Theorem 5.1, it suffices
to establish the finite model property for all CDL™-extensions mentioned in
that theorem, in order to show that they are decidable. We do this in the usual
way, viz. by filtration. The full proof can be found in Appendix C; here we just
show how the filtration is defined exactly.

Definition 6.1 [Filter Set] Let sf(p) be the set of all subformulas of ¢. Let
F~(p) = sf(p) U{BAY, 1A, Ay | © € sf(p)} and let F(p) be smallest set ¥
such that F~(¢) C ¥ and ¥ is closed under A and —.

Definition 6.2 [Filtration] Let M = (W, Ra,Rg,R|,V) be an arbitrary
CDL™-model and let ¢ € W™. For all w € W, let |w| = {w' € W |
for all € F(p), M,w | ¢ iff M,w' | }. The filtration of M through ¢
is M/ = (W! RL RL Rl V) where
L. W/={|w|l|weW}
2. where O € {A B, I},

RE = {(jw], |u]) | for all Oy € F(p), if M,w = Oy then M,u |= 1}
3a. forall p € S — F(p), VI(p) =W/
3b. forall p € SN F(p), VI(¢) = {|lw| € W/ | M,w |= ¢}

Theorem 6.3 Let M7 be the filtration of M through ¢. Then each of the
following hold:

(i) M7 is a CDL™-model
(i) the domain W1 of MY is finite

(iii) for all ¥ € F(g), M,w 1 iff MY, || |= ¢
(iv) if M satisfies a given condition (C) from Table 3, then so does M/

In view of this theorem, for all the definable frame conditions, we obtain the
finite model property. Applying Theorems 5.3.(i) and 5.7.(i), we can generalize
this to include also the non-definable frame conditions:

Corollary 6.4 (Finite Model Property) Let C1,...,Cn be any of the
frame conditions studied in Section 5. If fcpLzm, . ¢, then there is a finite
CDLE,  cn-model M and w in the domain of M such that M,w [~ .

Corollary 6.5 (Decidability) Let C1,...,Cn be any of the frame conditions
studied in Section 5. Then lFeprw, o, %S decidable.

22 An investigation into more specific lower and upper bounds on their complexity is left for
future work.
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7 Related Work

CDL and its extensions bear close resemblances to existing work in deontic
logic. In fact, leaving some specific modeling choices aside, one could say that
they are just a combination of two well-known constructions in the field. We
only explain both of these here in a nutshell; a more detailed comparison of
the respective logics is left for future work.

7.1 Deontic necessity and sufficiency

Combining a notion of necessity and sufficiency for modeling ought was pro-
posed fairly recently in [1,26] under the name “obligation as weakest permis-
sion”. The idea is that what one ought to do is that which is implied by every
strongly permitted proposition, where a proposition is strongly permitted iff
it is sufficient for optimality. The resulting ought-operator satisfies the same
basic properties as our O in CDL¢ does — Uniqueness, and hence also Aggre-
gation and Weakening. Likewise, it does not satisfy Inheritance, Uniformity,
and the rule of Necessitation.

In [31], richer logics are studied in which both deontic necessity and suffi-
ciency are expressible, which can be traced back to an extended abstract by
van Benthem [29]. As shown in [9, Section 3], the deontic action logic from [28]
is a fragment of van Benthem’s system, and hence belongs to the same family
of logics.

The main difference between the aforementioned logics and the CDL-family
is that in the semantics of the former, we speak about the optimality (permis-
sibility) of single worlds (which are thought of as action-tokens), whereas the
latter speak about sets of worlds or “options” as we called them. As a result, we
can also express the additional condition that ¢ is visible whenever ought(yp) is
true. Also, because of this feature, the logic of obligation as weakest permission
and its relatives do not allow for coarseness.

7.2 Deontic stit logics

Deontic logics for optimal actions, which are conceived as sets of worlds, are at
least as old as Horty’s [20], which he further developed in his influential book
[21].2% Roughly speaking, ought, (¢) is true at a world w in a model of Horty’s
most basic semantics if and only if « sees to it that ¢ whenever it takes one of
its best options at w.

Horty distinguishes between two ways to determine what the best options
are; one is called dominance act utilitarianism and satisfies Uniformity; the
other is called orthodox act utilitarianism and invalidates Uniformity. 2* Both
satisfy the (D)-axiom (see Table 3). Horty’s ought,-operators are hence much

23In Horty’s stit-based semantics, the points of evaluation are moment-history pairs rather
than worlds, and the sets of worlds are rather sets of histories. There is however a one-to-one
correspondence between such models and more regular Kripke-models — see e.g. [18, Section
2.1].

241n [22], Horty proposes a way to unify both accounts and hence overcome semantic ambi-
guity w.r.t. “the right action(s)”.



Frederik Van De Putte 23

like the B-operator of CDLp y, (resp. CDLp), with the obvious difference
that they refer explicitly to an agent or group of agents. Horty’s systems lack
an operator for strong permission (our P).

Apart from the usual benefits — the transfer of insights and results from one
system to the other —, there is one particular sense in which this link can be
highly useful. In [27], Snedegar considers the problem of coarsening inferences,
i.e. inferences that involve sets of alternatives that differ in their degree of
coarseness. Snedegar’s question then is: how do ought-claims relative to A
relate to ought-claims relative to a finer partition A’?

In view of the preceding, this question is analogous to asking how the obli-
gations of a group of agents relate to the obligations of subgroups of that
group, within the framework of deontic stit-logic. ?® Indeed, in the most com-
mon versions of stit-logic that can handle group agency, the alternatives that
are available to the group correspond exactly to a partition that refines the
partition that represents the alternatives available to a subgroup.

8 Summary and Outlook

The main contribution of this paper consisted in the formal study of different
variants of Cariani’s semantics for ought. Spelling out these variants in turn
allowed us to point at links with existing work in deontic logic, most particularly
the logic of obligation as weakest permission and deontic stit logic.

Many issues remain unsettled, such as a more exact comparison of these
systems. As explained, the link with deontic stit logic suggests possible solu-
tions to the problem of coarsening inferences; in future work we want to study
this relation in more detail. Also, it is an open question whether deontic stit
logic can be enriched with an operator for strong permission, and in particular,
how such an operator will behave for group obligations.
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APPENDIX
A The Modal Translation

In the remainder we freely rely on the fact that replacement of equivalents (RE)
is valid in CDL and CDL™. We also rely on the fact that (RE) is derivable
within the axiom systems of both logics. We shall moreover rely on the fact that
the modalities U, A, B and | satisfy the well-known properties of Inheritance and
Aggregation (since they are normal modalities) in both logics:

(Inheritance) From Oy and ¢ F 9, to infer Oy
(Aggregation) From [y and Oy, to infer O(p A )

A.1 Some Lemmas

Before we can prove our main theorems, we need to establish two lemmas that
concern the combination of tr™ and tr™.

Lemma A.1 Each of the following holds:

(i) FepL Py =PAgp
(ZZ) ”_CDL"" |g0 = |Ag0
(ZZZ) ”_CDL P(p = P“A—\AQD
(iv) ”_CDLm |gD = |ﬁAﬁA<p
(v) FepL Pe =P-A-Agp
(Ui) }_CDL“‘ |<p = |—‘A—\Ag0
Proof. Ad (i). Let M be an arbitrary CDL-model. We have: M,w = Py iff
[by (SC7)] for all X € A such that (for all v € X, M,v = ¢), X € Z(w) iff [by
(SC5)] for all X € A such that (for all v € X, M,v = Ayp), X & Z(w) iff [by
(SCT)] M,w |= PAg.

Ad (ii). Immediate in view of frame conditions (C1) and (C2) on CDL™-
models.

Ad (#i) and (iv). Immediate in view of items (i) and (ii), the fact that A is
an S5-modality in both semantics (and hence Ap and —A—-Ayp are equivalent)

and (RE).
Ad (v) and (vi). Immediate in view of the axiom schemas (Cp), resp. (Cy),
(RE), and the fact that A satisfies the S5-axioms in both logics. O

Let ¢tr™*™ be the sequential composition of ¢r™ and tr": tr™+"(p) =g
tr™(tr™(p)) for all . Likewise, let {r"*™ be the sequential composition of 7™
and tr’™.

Fact A.2 FEach of the following holds, where x,y € {n,m} and x # y:

1. tr*t(p)=p ifp e S
2. r*tY (=) = —tr*TY(p)
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eV (o v ) =t () V it (1)
tr*TY(Op) = Otre+¥(p) where 0 € {U, A, B}
trm T (Pyp) = P-A-A(tr™T"(p))

tr* T (lp) = 1=A-A(Er T (@)

Lemma A.3 Where ¢ € W: lrepr ¢ = tr"(tr™(¢)) and FcpL ¢ =
tr (tr™(p)).

Proof. By induction on the complexity of ¢. We show the reasoning for IFcpy,:
Base case: ¢ € S. Then tr"(tr™(¢)) = ¢ and hence the property holds
vacuously.

Induction step: we distinguish three cases:

Case 1: ¢ = 11 V1o By Fact A.2, tr™t"(p) = tr™" (Y1) V tr™"(¢p1). By
the TH, IFepr, tr™™™ (1) = 11 and IFepr tr™ 1™ (1)) = 1)9; hence
IFepL tr™ 1t (¢) = ¢ by CL-properties and (RE).

Case 2: ¢ = [¢p where O € {=,U,A,B}. By Fact A.2, tr™t"(p) =
Dt’l‘m+n(1/1). By the IH, ‘FCDL tTm+n(’l/)) = ’l/) By (]:—{E)7 IFCDL
tr™*7 (o) = (O and hence IFopr tr™ T (p) = .

Case 3: ¢ = Py. By Fact A.2, tr™™"(p) = P=A-A(tr™*"(¢))). By Lemma
A1.(iii), IFepr tr™ ™ (p) = P(tr™*t"(+))). Hence by the IH, IFcpr
trm i (o) = P(¥).

For Fepr, the reasoning is completely analogous; just rely on item (v) of

Lemma A.1 instead of item (iii). O

Lemma A.4 Where ¢ € W™, each of the following hold:

FepLm ¢ = tr™ (tr' ()

lFepLm ¢ = tr™ (tr" ().
Proof. Analogous to the preceding lemma, relying on Fact A.2 and items (iv)
and (vi) of Lemma A.1. O

S Grds o

A.2 The Relation between Fcpr, and Feprm
Lemma A.5 Where ¢ € W: if FepL ¢, then FepLm tr’™(v).

Proof. By an induction on the length of the derivation of ¢ in CDL. Since
CDL and CDL™ use the same rules, it suffices to prove that for every CDL-
axiom @, Feprm tr™(¢). In view of the overlap between both axiom systems,
this further reduces to the claim that every instance in W™ of the following
schemas is a CDL™-theorem:

(Gg')  Up D I-A-p

(CE)  1-Ap = 1-AAp

(P1™)  1-A(e V ¥) D (I-Ap A 1-AY)

(P2™)  (ImA=A=p A 1=A=A—) D 1-A(-A-p V —A—1))

(EQE) Ulp = ) > (-Ap = 17AY)

Ad(GE) Suppose Up. By (Gy), this entails lp. By the (T)-axiom for A,
¢ FepLm —=A—g. Hence by Inheritance for |, we can derive [-A—p.

Ad(CF') Immediate in view of (RE) for | and the fact that A is an S5-modality.
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Ad (P1™): this follows immediately since =A(p V ¢) FepLm —Ap, —A(p V
1Y) Feprm =AY, and by Inheritance for I.

Ad(P2™): Suppose |[-A=A-p A I-A-A—1. By S5-properties and (RE) for I,
we can derive: IA-p AIA—). By aggregation for | and A, we can derive IA(=p A
—1)). Again by (RE), we get IA—=(p V ¢). By S5-properties again, this entails
I-A-A-(p V). By (RE) and modal logic properties, |-A(=A-p V =A-1)).
Ad (EQF): Suppose U(p = 9). It suffices to prove that [-Ap D I-Ay; hence,
suppose moreover that I-Ap. By the first supposition and the (4)-axiom for U,
we can derive UU(¢ = ). Hence, by (Ga) and Inheritance for U; UA(p = ).
Again by Inheritance and S5-properties, this yields U(=Ap D —A¢). By (G))
we can derive |(=Ay D —A), and hence by the (K)-axiom for | and our second
supposition, we can derive |—Aq. a

Lemma A.6 Where ¢ € W™: if FeprLm ¢, then Fopr tr"(p).

Proof. Similar to the proof of the previous lemma. It suffices to show that
each instance in W of the following schemas is a CDL-theorem:

(KP") P-A(p D ¢) D (P-Ap D P-AY)
(GI') Up D P-Ap
(Cl") P-Ap =P-AAp

Ad(K} ): Suppose P=A(¢ D ) and P-Ap. By (RE), we can derive P-A—-—=(¢ D
1) and P-A—-—p. By (P2), this gives us P(-A=—=(¢ D 9)V-A-—¢p). By double
negation elimination, this gives us (x) P(=A(p D ) V -Ap).

Suppose that —=Ay. By normal modal logic properties for A, this entails
-A(p D 9¥) V -Ap. Hence,

FepL (FA(e D 9) V -Ap) = (A(p D 9) V -Ap V —AY)
By (%) and (RE), we can thus derive P(=A(¢ D 9) V -Ap V =Ay). Finally,
by (MP) and (P1), this yields P-Aw.
Ad(G}'): Suppose Up. Hence, UUp and by Inheritance and (Ga), UAp. By
(Gp), this entails P—Aep.
Ad(C): Immediate in view of (RE) for P and the fact that A is an S5-
modality. a

Lemma A.7 Where ¢ € W: FopL ¢ iff Feprm tr™(p).

Proof. The left-right direction is Lemma A.5. For the other direction, suppose
that cpr ¢. By Lemma A.3, Fepr tr"(tr™(¢)). Hence by Lemma A.6,
ZcoLm tr™ (@) 0
Lemma A.8 Where ¢ € W™: FcpL= ¢ iff FepL tr™(@).

Proof. The left-right direction is Lemma A.6. For the other direction, suppose
that eoprLm . By Lemma A.4, oprLm tr™(tr"(¢)). Hence by Lemma A.5,
Fopr tr(e). 0

Proof of Theorem 4.6. T Fcpr ¢ iff [by the definition of Fepy] there are
Y1, ...,y € T'such that Fepr (Y1 A...A,) D @ iff [by Lemma A.7] there are
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¥1,..., ¥, € T such that Feprm tr™ (Y1 A ... Aty,) D o) iff [by the definition
of tr™] there are ¢1,...,1¢, € I such that FeprLm (tr™ (Y1) A.. . Atr™(¥,)) D
tr™(p) iff [by the Definition of Feprm and ¢r™] tr™(I") Feprm tr™(p).

Proof of Theorem 4.7. T' FepLm ¢ iff [by the definition of Fcprm] there are
¥1,..., ¥, € Tsuch that FeprLm (Y1A. . .A,) D @ iff [by Lemma A.8] there are
1, ..., s € T such that Fepr tr™((¥1 A ... A,) D ) iff [by the definition of
tr™] there are ¥, ..., ¢y, € I' such that Fepr (tr" (Y1) A.. . Atr™(¢y)) D tr™ ()
iff [by the Definition of Fepr, and tr™] tr™(I) FepLm tr™ ().

A.3 Proof of Theorem 4.8

In order to prove Theorem 4.8, we first define two operations — one on CDL-
models, another on CDL™-models.

Where M = (W, A,B,Z,V) is a CDL-model, let M™ = (W, Ra, Rg, R, V)
be such that (i) for all w € W, Ra(w) = {w’' € X | X € A and w € X}; (ii) for
all we W, Rg(w) = JB(w); and for all w € W, Rj(w) = JZ(w). We have:

Lemma A.9 If M is a CDL-model, then (i) M™ is an CDL™-model and
(i) for all g € W, M™, w |=tr"™(p) iff M,w = ¢.
Proof. Suppose the antecedent holds. Ad (i). Condition (C1) follows imme-
diately from the fact that A is a partition of W and the definition of M™. For
condition (C2) we only prove the case where J = B (the other one is completely
analogous). Suppose that v’ € Rg(w) and w” € Ra(w’). By the definition of
M™ there is an X € B(w) (and hence X € A) such that w’ € X and there is
aY € A such that w',w” € Y. Since A is a partition, it follows that X =Y
and hence also w” € Rg(w) by the definition of M™.

Ad (ii). We prove this by induction on the complexity of ¢. The base case
(¢ € S) and the induction step for the connectives and ¢ = Ut are safely left
to the reader. This leaves us with three cases:

© =AY We have: M™, w = tr™(Ay) iff [by the definition of tr™] M™, w |=
A(tr™(y)) iff [by (SC8)] for all w’ € Ra(w), M™,w' |= tr™ () iff [by
the IH] for all w’ € Ra(w), M,w’ |= ¢ iff [by the construction of Ra]
where X € A is such that w € X, M,w’ = ¢ for all w’ € X iff [by
(SC5)] M,w = Av.

By We have: M™,w |= tr™(By) iff [by the definition of tr™] M™, w |=
B(tr™(w)) iff [by (SC8)] for all w’' € Rg(w), M™, w' |= tr™(¢) iff [by
the IH] for all w’ € Rg(w), M,w’ = ¢ iff [by the construction of Rg,
and in view of (C2)] for all X € B(w), for all w’ € X, M,w’ = ¢ iff
[by (SC6)] M, w = Be.

© =Py We have: M™, w = tr"™(Py) iff [by the definition of tr™] M™, w |=

I=A(tr™(y)) iff [by (SC8), applied twice] for all w’ € Rj(w), there is
aw” € Ra(w') such that M™, w" (= tr™(y) iff [by the (IH)] for all
w' € Ry(w), there is a w” € Ra(w’) such that M, w” F~ ¢ iff [by the
construction of R and Ra and by (C2)] for all X € Z(w), there is a
w” € X such that M,w"” & iff for all X € A, if (M, w"” |= ¢ for all
w” € X), then X ¢ Z(w) iff [by (SC7)] M,w |= P.

©
I
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d

Where M = (W,Ra,Rg,R,V) is an CDL™-model, let M"™ =
(W, A,B,Z,V) be such that A = {{w’ € Ra(w)} | w € W}, for all w € W,
Bw)={X e A| X C Rg(w)} and for all w e W, Z(w) = {X € A| X C
Ry(w)}.

Lemma A.10 If M is a CDL™-model, then (i) M™ is a CDL-model and (ii)
forallp e W, M™ w = ¢ iff M,w [ tr™(p).

Proof. Suppose the antecedent holds. Ad (i). It suffices to check that A is a
partition of W; this however follows at once from condition (C1).

Ad (i1). We prove this by induction on the complexity of ¢. The base case
(p € S) and the induction step for the connectives and ¢ = Ut are safely left
to the reader. This leaves us with three cases:

v =AY We have: M,w = tr™(Ay) iff [by the definition of tr™] M,w |=
A(tr™(y)) iff [by (SC8)] for all w’ € Ra(w), M,w" = tr'™(¢) iff [by
the IH] for all w' € Ra(w), M™, w’" = ¢ iff [by the construction of A]
where X € A is such that w € X, M, w" |= ¢ for all w” € X iff [by
(SC5)] M"™,w = A.
By We have: M,w [ tr™(Be) iff [by the definition of tr™] M,w |=
B(tr™()) iff [by (SC8)] for all w’ € Rg(w), M,w’ |= tr™(¢) iff [by
the IH] for all w’ € Rg(w), M™, w’ = 4 iff [by the construction of B
and in view of (C2)] for all X € B(w), for all w’ € X, M™, v |= ¢ iff
[by (SC6)] M"™,w = Bip.
¢ =Py We have: M,w | tr™(Py) iff [by the definition of tr™] M,w |=
I=A(tr™(y)) iff [by (SC8), applied twice| for all w’ € Rj(w), there is
a w” € Ra(w') such that M,w"” B tr™(¢) iff [by the (IH)] for all
w’ € Ri(w), there is a w” € Ra(w’) such that M™, w” [ ¢ iff [by the
construction of A and Z] for all X € Z(w), there is a w” € X such
that M™ w” & 4 iff for all X € A, if (M™,w"” £ for all w” € X),
then X ¢ Z(w) iff [by (SCT)] M™, w = Pi.

©
I

d

Proof of Theorem 4.8. (=) Suppose tr"™(I") lfcprm= tr™(p). Hence, there is
an CDL™-model M and a world w such that M, w = ¢r™ () for all ¢ € " and
M,w W~ tr™(p). By Lemma A.10, M, w =4 for all ¢ € T and M™,w (= .
It follows that T’ Fepr . (<) Analogous, just use Lemma A.9 instead of
Lemma A.10.

B Non-Definable Frame Conditions
B.1 Proof of Theorem 5.3

For the sake of readibility, we first restate Theorem 5.3 and the definition that
precedes it.

Let M = (W, Ra, R, R, V) be a CDL™-model. Let W' W? be disjoint
copies of W. For each w € W, denote the counterpart of w in W* by w?. The
simple copy-merge of M is the model Mt = (WT, RL, RTB, R,T, V1), where
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wt=wtuw?

Rl = {(w',v") | (w,v) € Ra}

RL = {(w',v") | (w,v) € Rs}

Rl = {(w',v?) | (w,v) € Ri}

forall p € S, VI(p) = {w!,w? e WT |w e V(p)}

According to the theorem, each of the following hold:

(i) If W is finite, then so is W1

(ii) MT'is a CDLE -model

(iii) if M satisfies a given condition (C) from Table 3 except (CU), then so
does MT

(iv) f:WT = W with f(w') = w is a bounded morphism from M to M

(v) forallwe W,ic{1,2} and p, M,w |= ¢ iff MT,w’ = ¢

ANl .

Proof. Ad (i). Trivial.

Ad (ii). Tt suffices to show that MT satisfies (C1), (C2), and (CN). (C1)
follows immediately from the fact that M satisfies (C1) and the construction.
(CN) also follows immediately by the construction. For (C2), we only consider
the case [ = B (the case for | is completely analogous). Suppose that (w?,v7) €
R;rg and (v/,u”) € RZ. By the construction, j = 1 = k, (w,v) € Rg, and
(v,u) € Ra. Since (C2) holds for M, (w,u) € Rg. Hence, (w',u') € R;;.

Ad (iii). First, suppose that (C) = (Ag) is satisfied by M. Let w', v € W
be such that w' € Ra(v’) and suppose that u* € RJ{S (w?); it suffices to prove
that u* € RTB(vj). By the construction, k¥ = 1 and u € Rg(w). Also by the
construction, w € Ra(v). Since (Ag) is satisfied by M, v € Rg(v). Hence, by
the construction, u! € Rg(vj).

The cases for (C) = (U)), (C) = (Ug) and (C) = (A,) are either analogous
or (for the U-variants) simpler.

For (C) = (D), suppose that w’ € WT. Hence Rg(w) # 0. Let v € Rg(w).
Hence, v! € Rg(wi).

Ad (iv). Tt suffices to prove each of the following:
1. where i € {1,2}, w and w’ verify the same propositional variables
2. for all O € {A,B,1}: if Rg(w, u) then there are i, j such that RTD(wi,uj)
3. forall O € {A,B,I}: if RE(wi,uj), then Ro(w,u)
4. w'w? € WTiff w € W (by definition)
(1.) follows immediately in view of the construction. For (2.), we distinguish
three cases: if D =A, put¢=7;if =B, put j=1; and if O = | put j = 2.
(3.) and (4.) are again immediate in view of the construction.

Ad (v). Immediate in view of (iv). O

B.2 Proof of Theorem 5.7

Again, we start by restating the relevant definition and theorem.
Let M = (W, Ra, Rg, Ri,V) be a CDLE -model. Let W', W? be disjoint
copies of W. For each w € W, denote the counterpart of w in W* by w?. The
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strict copy-merge of M is the model M+ = (W#, Rf\, RE,RF, V*#), where

Rf = {(w',v?) | (w,v) € Ri}U{(uw',?) | (w,v) € R\ Re}

for all p € S, Vi(p) = {w',w? € Wi |w e V(p)}

We need to establish each of the following:

(i) If W is finite, then so is W7

(i) M*is a CDLE, -model

(iii) if M satisfies a given condition (C) from Table 5, then so does M*
(

(

L Wh=w'uw?

2. Ry={(w'v')|(wv)€Ra}

3. Ry ={(w'v") | (w,v) € R} U{(w',0”) | (w,v) € Rg\ R}
4.

3.

~—

ivg f: W+ = W with f(w’) = w is a bounded morphism from M* to M
v) forallwe W,ic {1,2} and ¢, M,w = ¢ iff M} w' =
Proof. Ad (i). Trivial.

Ad (ii). That M?* satisfies (C1) and (C+) is immediate in view of the
construction and the fact that M satisfies (CU). For (C2), we only consider the
case for [J = B (the reasoning for | is analogous). 26 Suppose that (w?,v7) € RiB
and (v, u*) € Ri. By the construction, j = k, (w,v) € Rg and (v,u) € Ra.
Since (C2) holds for M, (w,u) € Rg. Case 1: j = k = 1. Hence also k = 1.
By the construction, (w®, ul) € Ré. Case 2: j = k = 2. By the construction
and the supposition, (w,v) € Rg \ R). Again by (C2) for M, (w,u) € Rg \ R.
Hence by the construction, (w?, u?) € Ré.

Ad (iii). First, suppose that (C) = (Ag) is satisfied by M. Let w, v € W¥
be such that w! € Ra(v’) and suppose that u* € Ré(wi); it suffices to prove
that u* € Ré(vj). By the construction, u € Rg(w) and w € Ra(v). Since (Ag)
is satisfied by M, u € Rg(v). We distinguish two cases:

(k=1) By the construction, u! € Ré(vj).
(k=2) By the construction, u € Rg(w) \ Ri(w). By (Ag) and (C+) for M,
also u € Rg(v) \ Ri(v). By the construction, u> € Rg(v?).

The cases for (C) = (Uj), (C) = (Ug) and (C) = (A,) are either analogous
or (for the U-variants) simpler.

For (C) = (D), suppose that w' € W#. Hence Rg(w) # 0. Let v € Rg(w).
Hence, v! € Ré(wi).

Ad (iv) and (v). Analogous to the proof of Theorem 5.3.(iv). ]

C Filtration Theorem

As in previous appendices, we first restate the relevant definitions:
Let sf(¢) be the set of all subformulas of ¢. Let F~(¢) = sf(¢) U
{BAY, 1Ay, Ay | ¢ € sf(p)} and let F(p) be smallest set ¥ such that

261n fact, given (C+), (C2) for O = B is equivalent to (C2) for 0 = I. That is, since Rg(w)
is a union of cells in the partition induced by Ra, and since Rj(w) = W \ Rg(w), also Rj(w)
is a union of such cells.
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F~(p) C ¥ and ¥ is closed under A and —. F(p) is called the filter set
for ¢.

Let M = (W, Ra, Rg, R, V) be an arbitrary CDL™-model and let ¢ € W™.
For all w € W, let |lw| = {w' € W | forally € F(p),M,w | ¢ iff M,w’ =
¥}. The filtration of M through ¢ is MY = (W7, R,{, Ré,le, V1Y, where

L. Wf={|wl|weW}
2. where O € {A,B, I},
Ré = {(Jw|, Ju|) | for all Oy € F(yp), if M,w = Oy then M,u |= ¢}
3a. forall p € S — F(p), V(o) =W/
3b. forall p € SNF(p), VI(p) = {jw| € W/ | M,w |= ¢}

Let M7 be the filtration of M through a given formula ¢. We need to prove
that each of the following hold:

(i) M/ is a CDL™-model

(ii) the domain W/ of M/ is finite

(iii) for all ¥ € F(yp), M,w = iff M7, |w| =1

(iv) if M satisfies a given condition (C) from Table 3, then so does M/

Proof. Ad (i). We need to prove that (C1) and (C2) are satisfied. For (C1),
we need to prove three things:

1. R/Ji is reflexive. Let Ay € F(p) and suppose that M, w = Ay. Since Ra is
reflexive, M, w |= . Hence, |w| € Ra(Jw]).

2. Rf\ is symmetric. Suppose that (|w|, |u|) € Rﬁ. Hence, there are w' € |w|
and u’ € |u] such that (x) for all Ay € F(p), if M,w’ = Ay then M, v’ = 1.
Let Ay € F(p) be arbitrary such that M, v’ = Ay. Assume that M, w’ = 4.
Hence M,w’ £ Ay and hence (by S5-properties) M,w’ = A-Ay. Since
A-Ayp € F(p), M,u' = —AyY — a contradiction. Hence M, w’ |= ¢ and, since
¥ was arbitrary, (|ul, |w]) € R{\.

3. R}: is transitive. Suppose that (Jwl,|v]), (|v],|u]) € Rf,:. Hence there is a
w' € Jwl|, v, v" € |v|,u" € |u| such that, for all Ay € F(p): (a) if M,w" = Ay
then M,v" | ¢ and (b) if M,v” = Ay then M,v" | 4. Suppose now
that M,w’ | Ay for an arbitrary Ay € F(p). By the transitivity of Ra,
M,w" = AAY. Note that AAY € F(p). So by (a), M,v" | A¢. Since
v, 0" € |v|, M,v" = Ay and hence M,v" = Ay. By (b), M,u” | .

For (C2), suppose that (|w], |v]) € Ré and (v, |u|) € Rﬁ. Hence there is a
w' € |w|,v,v" € |v|,u" € |u| such that, (a) for all By € F(yp): if M,w' = By
then M,v" |= ¢ and (b) for all Ay € F(p), if M,v"” | Ay then M, u" = .
Let By € F(y) be such that M, w’ = By. Note that, in view of the definition
of F(g), By € F~(p).

Casel: ) = At forat € F(p). Hence, M,w’ = BAT and hence M, v |= Ar.
By S5-properties, M,v’ = AAr. Since v',v” € |v| and AAT € F(p), also
M, v" = AAT and so by (b), M,u" = Ar. So M,u" = .

Case 2: 1 is not of the form Ar. By the construction of F'~(¢), BAY €
F~(p) and hence BAy € F(p). Since (C2) holds for M, M,w’ = BAy. Thus,
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we can apply the same reasoning as in the previous case (replacing 7 with 1))
and derive that M, «” = Av, and hence also that M, v = 1.

Ad (#). Immediate in view of the observation that F'(y) contains only
finitely many distinct formulas ¢, ..., 1, that are not CDL™-equivalent. This
follows itself from the fact that F~ (i) is finite and that A is an S5-modality.

Ad (iii). By a standard induction on the complexity of 1. We only give the
induction step for the modal operators: 27

Case 1: ¢ = Or for 0 € {A,B,1}. (=) Suppose that M/, |w| = Or. Hence
there is a |v| € R (lw|) such that M/, |v| & 7. Since 7 € F(gp)
and by the IH, M,v [~ 7. However, by the construction, there is a
v' € |v] and w’ € |w| such that, for all Oe € F(p), if M, w’ |= Oe then
M,v' = e. Since 7 € F(p), M,v" = 7 and hence M, w’ & Or. Hence
since Or € F(p), M,w = Or.

(<) Suppose that M, w [~ Or. Hence there is a v € Rg(w) such

that M,v [~= 7. Note that for all €, if M,w = e, then M,v [ e.
Hence |v]| € Ré(\w|) by the construction. By the IH, M/, |v| & 7 and
hence MY, |w| j£ Or.

Case 2: ¢ = Ur. We have: M, w = Ut iff [by (SC4)] forallw’ € W, M,w' =7
iff [by the IH] for all |w’| € W/, M7 |w'| |= 7 iff [by (SC4)] M7, |w| =
ur.

Ad (iv). We consider four cases: (Ug), (Ag), (D), and (CU); the proofs for
the remaining two conditions are analogous to the first two. For each of these
conditions, we suppose that M satisfies them and prove that Mf does so as
well.

(Ug) Suppose that (Jw], |v]) € Ré. Hence, there are w’ € |w| and v’ € |v| such
that () for all By € F(p), if M,w’ |= By then M, v’ |= . Let |u| € W/
be arbitrary. Suppose that M, |= Bt for a ¢ € F(p). Since M satisfies
(Ug), M,u = UB¢ and hence M,w’ = Biy. By (x) M,v" |= 9. Hence,
(Jul,|v]) € RE.

(Ag) Suppose that (Jwl|,|v]) € R{; and (Jwl|,|u|) € Ri:. So there are
w' o' w” u” such that (a) for all By € F(p), if M,w’ = By then
M,v'" = 4 and (b) for all Ay € F(yp), if M,w"” = Ay then M,u” |= 1.
From (b) we can derive that (b’) for all Ay € F(yp), if M,u" |= Ay then
M, w" |= 1 (see our proof for the symmetry of Rﬁ above).

Let By € F(¢) be arbitrary and suppose that M, u = By Since By €
F(y), also M,u" = Be. Since M satisfies (Ag), M,u” = ABy. By (b’)
and since ABy € F(p), M,w"” = By. Since w’,w” € |w| and By € F(yp),
also M, w’ |E= By and hence by (a), M, v’ |= 1. Since By was arbitrary,
we can infer that (|ul, |v]|) € Ré.

(D) Let |w| € W/ be arbitrary. Since (D) holds for M, Rg(w) # 0. Let v €
Rg(w). Note that, for all By € F(p) such that M,w = By, M,v = 1.

27Here and below, IH abbreviates “induction hypothesis”.
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It follows that |v| € Ré(\w|)
Assume that (CU) fails for M7. Let |w|,|v] € W/ be such that
(lwl, [v]) & Ré and (|w], [v]) & le. Hence (a) there is a Bty € F(p) such
that M,w |= By and M,v [~ ¢ and (b) there is an lips € F(y) such
that M, w = Ity and M, v £ 5. Tt follows that M, w = B(y1 V 42) and
M, w = (11 Vihy) and M, v £ ¢ Ve, But then v € W\ (Rg(w)UR(w)),
which contradicts the supposition that (CU) holds for M.

O
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