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Abstract

This paper solves an old problem: to devise decent inconsistency-
adaptive logics that have the Cn logics as their lower limit. Two kinds of
logics are presented. Those of the first kind offer a maximally consistent
interpretation of the premise set in as far as this is possible in view of
logical considerations. At the same time, they indicate at which points
further choices may be made on extra-logical grounds. The logics of the
second kind allow one to introduce those choices in a defeasible way and
handle them.

1 Aim of This Paper

Both the structure of the Cn logics and certain statements of da Costa’s seem to
suggest a specific application for those logics, viz. to apply a certain stratagem—
see Section 3—to theories that turned out inconsistent. Even if da Costa did not
have this application in mind, the stratagem is clearly interesting and suggested
by the Cn logics. This makes it worthwhile to develop inconsistency-adaptive
logics that have the Cn systems as their lower limit. Indeed, the adaptive logics
by themselves accomplish most of the task that is served by the stratagem. To be
more precise, they accomplish that part of the task which can be accomplished
in view of logical considerations.

There is a further reason to devise adaptive logics that have Cn logics as
their lower limit—this term is explained in Section 4. It is in principle possible
to do so for any paraconsistent logic. The Cn logics are the oldest paraconsistent
logics that were presented in a direct form, that is by an axiomatic system and
not by a translation. So, as one may expect, to use them as lower limit logics
has been on the agenda of adaptive logicians for a long time now. The delay is
caused by a technical complication.

Cn logics introduce dependencies between inconsistencies. Where this is the
case, the flip-flop danger lurks. As we shall see in Section 5, flip-flop logics
are rather uninteresting adaptive logics. Until recently, no general method was
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available for avoiding flip-flops. Today this problem is solved by semantic means.
The method will be applied to the Cn systems in Section 6. This will enable
me to formulate the inconsistency-adaptive logics in Section 7.

If the suggestion from the first paragraph is right, da Costa had the idea to
allow the person applying the Cn logics to add consistency statements as non-
logical axioms to a theory. Technically, this is made possible by the definability
of classical negation within the logics. The justification for such moves is a
guess, viz. that a certain contradiction is not derivable from the theory. If the
guess is right, the addition seriously enriches the inconsistent theory, bringing
it closer to its original intention. If the guess is wrong, however, the addition
causes disaster, viz. triviality. Where this happens another technical device may
be invoked: the hierarchy of Cn logics.

An approach in terms of adaptive logics has several advantages. First,
inconsistency-adaptive logics by themselves add to a (inconsistent or consis-
tent) theory all consistency statements that can be added on the basis of logical
considerations. On top of this, combined adaptive logics enable one to add
further consistency statements in a defeasible way. This will be discussed in
Section 8. In Section 9, I shall present some further clarifying comments and a
generalization of the result to logics of formal inconsistency.

2 The Cn Logics

The axiomatization, devised by da Costa, consists of the following elements. Cω

is (predicative) positive intuitionistic logic extended with the axioms A ∨ ¬A,
¬¬A ⊃ A, and the rule “if A ≡c B, then ` A ≡ B”, in which A ≡c B denotes
that A and B are congruent in the sense of Kleene or that one formula results phrase added

from the other by deleting vacuous quantifiers—Kleene [18, p. 153] summarizes
his definition as follows: “two formulas are congruent, if they differ only in their
bound variables, and corresponding bound variables are bound by corresponding
quantifiers.”

In order to obtain the Cn logics (1 ≤ n < ω), we need some abbreviations.
Let A◦ abbreviate1 ¬(A ∧ ¬A). Next, let A1 abbreviate A◦, let A2 abbreviate
A◦◦, etc. Finally, let A(n) abbreviate A1∧A2∧. . .∧An. The logic Cn is obtained
by extending Cω with the following axioms

B(n) ⊃ ((A ⊃ B) ⊃ ((A ⊃ ¬B) ⊃ ¬A))

(A(n) ∧B(n)) ⊃ (A †B)(n) where † ∈ {∨,∧,⊃}
∀x(A(x))(n) ⊃ (∀xA(x))(n)

∃x(A(x))(n) ⊃ (∃xA(x))(n)

A formula of the form A(n) will be called a consistency statement in Cn.
It expresses that A behaves consistently—see for example [16]—in the sense
that A(n), A,¬A `Cn B is derivable from the first displayed axiom. The other
displayed axioms spread consistency statements. Incidentally, A(n) ⊃ (¬A)(n)

is a theorem of each Cn. It is also provable that ¬(n)A =df ¬A ∧ A(n) defines
classical negation in Cn.

1While ¬A∧A is C1-equivalent to A∧¬A, ¬(¬A∧A) and ¬(A∧¬A) are not C1-equivalent.
Which of the latter two is taken to express the consistency of A in C1 is a conventional matter.
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It is easily seen that the Cn logics form a hierarchy of logics: if m > n and
Γ `Cm

A, then Γ `Cn
A. The logic Cω forms a limit of this hierarchy, although

not a very natural one. In view of the subsequent sections, it is useful to note
that an equally sensible limit is the logic Cω, which contains predicative positive
CL (Classical Logic) together with with the axioms A∨¬A and ¬¬A ⊃ A and
the rule “if A ≡c B, then ` A ≡ B”.2 Moreover, it will be useful to have
classical negation available even in Cω. So let us extend the language with
the symbol ¬̌ and give it the meaning of classical negation (by introducing
the usual axioms). Note that the standard negation, ¬, is still paraconsistent.
Note also the difference between ¬(n) and ¬̌. The first is definable within the
standard language and behaves like classical negation in Cn or, more precisely,
in the logics C1, . . . , Cn. The second symbol does not belong to the standard
language, and hence does not occur in the premises, but is added to the language
for technical reasons.

Two features of the Cn logics may cause some wonder. First, what is the use
of having classical negation, viz. the symbol ¬(n), definable within paraconsis-
tent logics? Next, what is the use of the hierarchy of Cn logics? The subsequent
section offers a possible answer.

3 A Possible Stratagem in Terms of Cn Logics

Suppose that a theory T has C1 as its underlying logic and contains the consis-
tency statement A(1) (for some specific formula A). As A,¬A,A(1) `C1 B, it is
excluded that both A and ¬A are theorems of T on penalty of triviality—this is
the outlook taken in [14], where the function of A(n) is served by the implicitly
defined ◦A.

The definability of classical negation in the logics Cn (1 ≤ n < ω) is a striking
feature, which distinguishes these logics from most other paraconsistent logics.
Moreover, one may wonder which precise purpose it is supposed to serve. Let
Γ be the non-logical axioms of a theory that was intended as consistent but
turns out to be inconsistent—Frege’s set theory is an obvious example. As Γ
was intended and believed to be consistent, it will not comprise any explicit
consistency statements. So what is the use of consistency statements?

Seen from the perspective of inconsistency-adaptive logics, the answer to
this question seems obvious. Suppose that A∨B and ¬A are C1-derivable from
Γ. As Γ was intended to be consistent, one would expect B to be derivable as
well. But A∨B,¬A 0C1 B. So, if A is not C1-derivable from Γ, one might add
the consistency statement A(1) as a new axiom of the theory. This delivers the
desired result because A∨B,¬A,A(1) `C1 B. Exactly the same situation arises
if B ⊃ A and ¬A are C1-derivable from Γ.

The possibility to extend an inconsistent theory with consistency statements
has dramatic effects: within the paraconsistent context, it leads to a theory that
is drastically richer than the original theory. As a result, the extended theory
approaches the theory as it was originally intended, viz. as fully consistent.

Adding consistency statements involves a danger. If one reformulates an
inconsistent theory T0 in terms of C1 and adds, for one or more specific A,

2An interesting study of limits of the hierarchy is presented in [15]. The logic Cω is there
called Cmin.
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A(1) to T0, it may turn out that triviality results. When this happens, one may
retract the added consistency statements. There is, however, another possibility.

At this point, the use of the other Cn becomes apparent. We have seen
that one may replace CL by C1 in an attempt to save the original ideas behind
T0. By adding consistency statements, the theory is brought closer to T0 as
originally intended. If the resulting theory T1 turns out trivial, one may replace
C1 by C2. By this move, triviality is avoided because the statements of the
form A(1), are not consistency statements in the context of C2. Moreover,
relying on the insights from the failed previous attempt, one may again enrich
T1 by adding consistency statements of the form A(2), which have the desired
effect in the context of C2. This process may be repeated. If Tn has Cn as its
underlying logic, comprises no statements A(m) for which m > n, and is trivial,
replacing Cn by Cn+1 restores non-triviality because no A(m) occurring in Tn

is a consistency statement with respect to Cn+1.
I do now know whether da Costa ever had such stratagem in mind. I can

only note that the structure of the Cn systems and the definability of classical
negation makes the stratagem possible and even suggests it. Some phrases
used by da Costa go in the same direction. Thus he sometimes states that Cn

logics isolate inconsistencies. In Cn-theories he distinguishes between ‘good’
and ‘bad’ theorems, the latter being those whose negation is also a theorem.
Note that, in order to take advantage of the ‘good’ quality of one of the former,
one needs to add a consistency statement to the theory. Also da Costa notes,
[16, p. 501], that NF1, a specific inconsistent variant of Quine’s NF, contains
elementary arithmetic and is apparently arithmetically consistent. Yet, in order
that this contained arithmetic be as strong as elementary arithmetic, consistency
statements will have to be added in some or other way.

It actually is worthwhile to comment on the notions of ‘good’ and ‘bad’
theorems of a theory. Actually, several such notions were introduced over the
years. So let me distinguish between them by adding subscripts. In [16], a
theorem A of a theory 〈Γ,CA〉 is called good1 if A ∈ ConsC1(Γ) and ¬A /∈
ConsC1(Γ) and is called bad1 if A,¬A ∈ ConsC1(Γ).3 In [17], A is called good2

if A(1) ∈ ConsC1(Γ) and bad2 if A(1) /∈ ConsC1(Γ). Consider a premise set
Γ = {¬p ∨ q, p, r ∨ s,¬r, r}. Obviously, p is good1, r is bad1, and both are
bad2. There obviously are still different notions: A is good3 if Γ∪{A(1)} is non-
trivial and A is bad3 if Γ∪{A(1)} is trivial. With respect to the aforementioned
premise set, p is good3, and r is bad3. That neither of all these notions is
as significant as they might seem to be is obvious from the following premise
set: Γ = {q,¬p ∨ ¬q, p, r ∨ s, r}. With respect to this Γ, p, q, and r are all
good1, bad2, and good3. Yet, Γ∪{p(1), r(1)} and Γ∪{q(1), r(1)} are non-trivial,
whereas Γ ∪ {p(1), q(1)} is trivial. So it seems advisable to define good and
bad with respect to sets, and this is exactly the outlook taken by the adaptive
approach, as we shall see below.

4 Adaptive Logics

Several introductions to adaptive logics are available, for example [5, 6, 9, 13].
So I shall be very brief here. Adaptive logics ‘interpret’ a premise set ‘as nor-

3As usual, ConsL(Γ) = {A | Γ `L A}. I write Cons instead of the more common Cn or C
for the sake of readability in the present context.
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mally as possible’ with respect to some standard of normality. In particular,
inconsistency-adaptive logics ‘interpret’ a premise set ‘as consistently as possi-
ble’. It is worth mentioning that, while inconsistencies may be naturally seen
as abnormalities with respect to a classical framework, standard of normality
is a the general notion which is technical in nature, and can only be given a
philosophical interpretation with respect to a specific application context.

If adaptive logics are tailored from the Cn logics, these logics—let us call
them Cn

m—are inconsistency-adaptive. They should have a manifold of prop-
erties, among which the following. First, the adaptive logics should extend the
Cn logics: ConsCn(Γ) ⊆ ConsCn

m(Γ). If Γ is non-trivial, ConsCn
m(Γ) should

be non-trivial and, border cases aside, the extension should be proper. Next,
ConsCn

m(Γ) should be a fixed point, ConsCn
m(Γ) = ConsCn

m(ConsCn
m(Γ)),

and should be closed under Cn, ConsCn
m(Γ) = ConsCn(ConsCn

m(Γ)).
It is worth noting that inconsistency-adaptive logics are seen as corrective

by some and as ampliative by others. If your standard of deduction is CL (or
another explosive logic) and the theory T = 〈Γ,CL〉 was meant as consistent,
but turns out to be inconsistent and hence trivial, you will want to move to a
theory T ′ = 〈Γ,AP〉 that interprets Γ as consistently as possible, viz. as close
as possible to the original intention. This is typically a corrective attitude: the
standard of deduction leads to disaster and, for the time being and possibly in
preparation of an improved consistent theory, one moves on to an approximation
of the original theory that is non-trivial, locates the inconsistencies, but approx-
imates the original theory in as far as possible. The approximation requires that
inconsistencies are taken to be false unless and until proven otherwise. Some
people, for example dialetheists like Graham Priest, take the standard of de-
duction to be some paraconsistent logic P but agree that most inconsistencies
are false and hence can be considered as false unless and until proven true. So
their original theory is T = 〈Γ,P〉, but, relying on the extra-logical considera-
tion that most inconsistencies are false, they upgrade to T ′ = 〈Γ,AP〉, in which
AP is an inconsistency-adaptive logic. This is typically an ampliative attitude:
the inconsistency-adaptive logic delivers a stronger consequence set that the
standard of deduction.

Whatever the position taken, adaptive logics are not competitors for the
standard of deduction. They are formal systems characterizing defeasible rea-
soning forms; they are instruments, formally characterized methods, and the
like. Note, incidentally, that there are also people (like me) who do not believe
in the existence of a (global) standard of deduction.

Let us now briefly look at the technicalities involved in adaptive logics. An
adaptive logic AL (in standard format) is a triple:

• a lower limit logic LLL: a compact Tarski logic

• a set of abnormalities Ω: a set of formulas characterized by a (possibly
restricted) logical form

• a strategy : Reliability, Minimal Abnormality, . . .

Every adaptive logic defines an upper limit logic ULL, which is a Tarski
logic obtained by extending the lower limit logic with an axiom or rule that
trivializes abnormalities. Semantically the ULL models are the LLL models
that verify no abnormality. Note that ULL extends LLL with some further
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rules, requiring that all abnormalities are false, whereas AL extends LLL with
certain applications of ULL-rules, requiring that as many abnormalities are
false as the premises permit.

An example of a specific adaptive logic in standard format is C1
m, viz.

• lower limit logic: C1

• set of abnormalities Ω = {∃(A ∧ ¬A) | A ∈ F}
• strategy : Minimal Abnormality

The need for a strategy is best illustrated by an example. Let the premise set
be {¬p,¬q, p ∨ r, q ∨ s, p ∨ q}. From this (p ∧ ¬p) ∨ (q ∧ ¬q) is C1-derivable. So
we need to decide in which way this disjunction of abnormalities will affect our
maximally normal ‘interpretation’ of the premise set.

The standard format provides the adaptive logic with (i) a dynamic proof
theory—the systematic study of this is available in [10], (ii) a preferential se-
mantics, and (iii) most of the metatheory. The dynamic proofs consist of lines
that have a condition attached to them, are marked or unmarked (in function
of their condition and of formulas derived at other lines), and are governed by
rules (to add lines) and a marking definition (to settle which lines are marked
at a stage of the proof). The preferential semantics selects lower limit models of
the premise set. The metatheory includes soundness, completeness, and many
properties (cautious monotonicity, cautious transitivity, . . . ).

Incidentally, the aim of the adaptive logic program is to characterize all
forms of defeasible reasoning by (combinations of) adaptive logics in standard
format, possibly under a translation.

5 Adaptive Logics and Flip-Flops

The stratagem described in Section 3 requires human interference, viz. adding
consistency statements. Precisely this is avoided by adaptive logics. In the
previous section, I introduced C1

m. What does this logic come to? The C1
m-

consequence set of a premise set Γ offers a maximally consistent interpretation
of Γ. In semantic terms, the C1

m-consequence set of Γ comprises the formulas
that are true in all minimally abnormal C1-models of Γ. Where M is a C1-
model, let Ab(M) be the set of the abnormalities, that is members of Ω, that are
verified by M . A C1-model M of Γ is a minimal abnormal model of Γ iff there
is no C1-model M ′ of Γ for which Ab(M ′) ⊂ Ab(M). If a C1-model M verifies
A ∨B as well as ¬A, and does not verify A ∧ ¬A, then M verifies B. So, if no
minimal abnormal C1-model of Γ verifies A ∧ ¬A, then the C1

m-consequence
set of Γ is identical to the C1

m-consequence set of Γ ∪ {A(1)}. Seen from the
stratagem from Section 3, one might see the C1

m-consequence set of Γ as the
C1-consequence set of Γ∪Γ′, in which Γ′ is the set of all consistency statements
that can be added to Γ without resulting in triviality. This description needs
to be a refined, as we shall see in Section 8, but for the time being it will do.

Although an inconsistency-adaptive logic with a Cn logic as its lower limit
seems to an attractive alternative for the ‘handwork’ required by the stratagem,
there is a problem. The Cn logics introduce dependencies between contradic-
tions. For example, ¬A ∧ ¬¬A entails A ∧ ¬A in view of the axiom ¬¬A ⊃ A.
If there are such dependencies, there is a particular difficulty for defining the
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set of abnormalities. If this set is not defined in a sufficiently restrictive way, a
flip-flop logic results. This demands some explanation.

A flip-flop logic is an adaptive logic, but a rather uninteresting one.4 A flip-
flop L displays the following behaviour. If Γ has models M for which Ab(M) = ∅
(so Γ is ‘normal’), L behaves like its upper limit logic—in the present context
this is CL. If, however, Ab(M) 6= ∅ for all models M of Γ, then L behaves
like its lower limit logic—in the present case C1. Obviously, this is rather
uninteresting. Suppose we apply C1 to the premise set {¬p, p∨ r,¬q ∧ p, q ∨ s}.
The reason for going adaptive is that we want to derive s because q ∧ ¬q is
not C1-derivable from the premises, while avoiding the consequence r because
p ∧ ¬p is C1-derivable from the premises. A flip-flop logic, however, will assign
to that premise set exactly the same consequences as its lower limit, C1, and
hence will not deliver s.

Let us consider some well known examples to illustrate the problem. The
logic CLuN comprises full positive logic together with excluded middle.5 The
suitable set of abnormalities for an adaptive logic that has CLuN as its lower
limit is {∃(A∧¬A) | A ∈ F}, in which F is the set of open and closed formulas
of the standard predicative language and ∃(A ∧ ¬A) is the existential closure
of A ∧ ¬A. The logic CLuNs (see [11]), which actually is the most popular
paraconsistent logic (under sundry names), is obtained from CLuN by adding
both directions of double negation, de Morgan theorems, and similar axioms to
push negation inwards. If an adaptive logic has CLuNs as its lower limit and
the set of abnormalities is defined as {∃(A∧¬A) | A ∈ F}, a flip-flop results. A
decent adaptive logic is obtained by restricting this set to {∃(A∧¬A) | A ∈ Fa}
in which Fa is the set of (open and closed) atomic (or primitive) formulas—those
in which occurs no logical symbol except possibly for identity.

As C1 spreads inconsistencies, one might fear that the logic C1
m from Sec-

tion 4 is a flip-flop. So the question is whether, in order to avoid this, the set
of abnormalities should be restricted if C1 is the lower limit. I failed to obtain
an answer for many years, but today the problem is solved because a general
criterion has been devised. I apply this criterion to C1 in the next section.

6 The Semantic Criterion

The criterion ties up the abnormalities to the occurrence of gluts (and possibly
gaps) in an indeterministic semantics—see [1, 2] on indeterministic semantics.
There are certain restrictions on the indeterministic semantics, but the easiest
approach is to present a semantics for C1 and to explain it. So here we go.

The semantics is provably characteristic for C1. In order to avoid assigning MODIFIED FROM
HEREvalues to open formulas (containing free occurrences of members of the set V of

4Astounding as it may seem, some flip-flops have interesting application contexts, for
example in the context of inductive generalization, in case one wants to completely reject
certain background theories that are contradicted by the data.

5The propositional fragment of CLuN was first studied in [3] (with the name PI). It is a
basic paraconsistent logic, and is taken as the basis for constructing the basic logic of formal
inconsistency, mbC, in [14]. The predicative version was first presented in [4]. Later the
Ghent group standardly extended CLuN with classical negation. Replacement of Identicals
is invalid in CLuN: it does not apply within the scope of a negation. Obviously, CLuN can
be extended with Replacement of Identicals. Replacement of Equivalents is also invalid in
CLuN, as in many other paraconsistent logics.
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variables), I extend the standard predicative language L to a pseudo-language
LO by adding, next to the set of individual constants C, a set O of pseudo-
constants. O should have the cardinality of the largest set, which is the largest
domain of the models considered. Let S be the set of sentential letters, Pr the
set of predicative letters of rank r, W the set of closed formulas of L, WO the
set of closed formulas of LO, and Wa

O the set of atomic formulas in WO.
In a model M = 〈D, v〉, D is the domain and v the assignment function

defined by:

C1 v:WO → {0, 1}
C2 v: C ∪ O → D (where D = {v(α) | α ∈ C ∪ O})
C3 v:Pr → ℘(Dr)

Clause C1 assigns a truth value to every closed formula. Only the values assigned
to sentential letters matter for the present semantics. The other values are
important to turn the indeterministic semantics into a deterministic one, an
exercise that will be skipped in the present paper. The restriction in clause C2
ensures that every member of D is named by a constant or pseudo-constant.6

In C3, Pr is the set of predicative letters of rank r and ℘(Dr) is the power set
of the r-th Cartesian product of D.

The pre-valuation vM : WO → {t, u, f}, with t (true) and u (glut) desig-
nated, is characterized by the following tables:

Where A ∈ S: v(A) A
1 t
0 f

Where α1, . . . , αr ∈ C ∪ O and π ∈ Pr: 〈v(α1), . . . , v(αr)〉, v(π) πα1 . . . αr

∈ t
/∈ f

Where α, β ∈ C ∪ O: v(α), v(β) α = β
= t
6= f

Where A ∈ Wa
O: A ¬A

t [f, u]
f t

Where A ∗B is not of the form C ∧ ¬C: A ∗B A(1) B(1) ¬(A ∗B)
t t t f
t (other) [f, u]
f (any) t

Where Q ∈ {∀, ∃} and α ∈ V: QαA(α) {vM (A(β)(1)) | β ∈ C ∪ O} ¬QαA(α)
t {t} f
t (other) [f, u]
f (any) t

6So some models are ω-incomplete with respect to the standard language, but the extended
language allows for a transparent handling of the quantifiers.
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The other tables apply to all members of WO:

¬A ¬¬A
t f
u [f, u]
f t

¬A A(1)

t t
u f
f t

∧ t u f
t t t f
u t t f
f f f f

∨ t u f
t t t t
u t t t
f t t f

⊃ t u f
t t t f
u t t f
f t t t

≡ t u f
t t t f
u t t f
f f f t

{vM (A(α)) | α ∈ C ∪ O} ∀αA(α) ∃αA(α)
∈ ℘{t, u} t t
{f} f f

(other) f t

A pre-valuation vM is a valuation iff vM (A) = vM (B) whenever A ≡c B (see
Section 2). This means that, at points where the semantics is indeterministic,
the same choice was made for A and B. If some pre-valuation assigns the value
t to all members of a set of formulas, then so does some valuation.

The expression [f, u] indicates that the value may be f or u—this is an
indeterministic semantics. Note that ∅ is not a possible value on the first line
of the table for the quantifiers. The “(other)” on the third line of that table
abbreviates sets that contain a designated as well as an non-designated value.
In the table for ¬(A∗B), “(other)” means that either A(1) or B(1) does not have
the value t (they cannot have the value u); “(any)” indicates that the values
of A(1) or B(1) do not matter—this line summarizes four lines. In the table
for ¬QαA(α), “(other)” means that some A(β)(1) does not have the value t;
“(any)” indicates that the values of the A(β)(1) do not matter. UP TO HERE

The pre-valuation and the valuation assign a value to all closed formulas of
L, which is what we are interested in. Validity and semantic consequence are
defined as usual.

This particular three-valued indeterministic semantics is constructed from
the two-valued one. Typical for this semantics is that the value u is only assigned
where a glut originates (in comparison to CL). Thus if both A and B have a
designated value, the truth of A ∧B agrees with CL at this point and hence is
not a glut. For example, if all of A, ¬A and ¬(A∧¬A) have a designated value,
then vM (¬A) = u, vM (A ∧ ¬A) = t, vM (¬(A ∧ ¬A)) = u, and vM ((A ∧ ¬A) ∧
¬(A ∧ ¬A)) = t.

Transforming the above semantics to any logic Cn (n < ω) is an easy exercise
left to the reader—the formulation of the tables for C1 and the plot described in
the previous paragraph indicate the road. For Cω (see Section 2), one replaces
the tables for negation by the left and middle table below, and adds the table
to the right below for the (added) classical negation:

A ¬A
t [f, u]
f t

¬A ¬¬A
t f
u [f, u]
f t

A ¬̌A
t f
u f
f t
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We have seen that the abnormalities of inconsistency-adaptive logics have
the form ∃(A ∧ ¬A). It can be shown, in terms of this particular type of inde-
terministic three-valued semantics, that an inconsistency-adaptive logic is not
a flip-flop if the abnormalities are restricted to the case where (i) A ∧ ¬A is
an abnormality if its truth requires ¬A to have the value u and (ii) ∃(A ∧ ¬A)
is an abnormality if it requires that there is an instance B ∧ ¬B (obtained by
systematically replacing every free variable in A∧¬A by a constant or pseudo-
constant) for which ¬B has the value u. This solves the flip-flop problem for
the Cn logics: defining the set of abnormalities as Ω = {∃(A ∧ ¬A) | A ∈ F}
does not cause a flip-flop. Some of the abnormalities are logically impossible in
C1, but that does not cause any trouble.

7 The Inconsistency-Adaptive Logics

The result is even simpler than one might expect. The inconsistency-adaptive
logic Cn

m from Section 7 is not a flip-flop. The result may be generalized. The
following adaptive logics are not flip-flops: Cn

m (1 ≤ n ≤ ω) defined as the
triple7 consisting of (i) Cn, (ii) Ω = {∃(A ∧ ¬A) | A ∈ F}, and (iii) Minimal
Abnormality. So there is no need to vary Ω for any Cn

m logic. Given that these
logics are in standard format, their proof theory and semantics are at once
defined, the soundness and completeness of the proof theory with respect to the
semantics is warranted (in view of the soundness and completeness of the lower
limit logics with respect to their semantics), and most metatheoretic properties
of the logics are known (because they follow from the standard format).

A striking specific feature reveals itself. If a theory was meant to be consis-
tent and its underlying logic is explosive, then, as we have seen before, it will not
contain any consistency statement A(n). In this case all Cn

m (n ∈ {1, 2, . . . , ω})
assign the same consequence set to Γ. In general, if Γ is not Ck-trivial, then all
Cn

m (n ∈ {k, k+1, . . . , ω}) assign the same consequence set to Γ. The astonish-
ing result is that Cω

m can be used for all premise sets. So while adaptive logics
involve some complexity problems, they avoid the complication of the hierarchy
of Cn logics that is needed for implementing the stratagem.

For the proof theory, semantics, etc., I refer to [9]. Here I can at best present
a simple propositional Cω

m-proof. Let the premise set be {¬¬p,¬q,¬p, p∨r, q∨
s}.
1 ¬¬p Prem
2 ¬q Prem
3 ¬p Prem
4 p ∨ r Prem
5 q ∨ s Prem
6 r 3, 4; RC {p ∧ ¬p} X8

7 s 2, 5; RC {q ∧ ¬q}
8 p ∧ ¬p 1, 3; RU ∅
The superscripted number 8 on line 6 indicates that the mark is added at stage
8 of the proof, that is immediately after line 8 was added. In whichever way the
proof (from these premises) is extended, the marks of lines 1-8 are stable from

7I only consider the Minimal Abnormality strategy for lack of space; the result generalizes,
for example, to Reliability.
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this point on (the marked line remains marked and the unmarked ones remain
unmarked). So s is a final consequence of the premise set and r is not (because
line 6 is marked).

The adaptive logics solve certain problems that may arise if the stratagem
from Section 3 is applied. Thus even the infinite set of consistency statements
{¬(A ∧ ¬A) | A ∈ F − {p}} is insufficient to obtain by Cn all Cω

m-final
consequences of the original premise set (an example is ∀xPx ⊃ (∃x¬Px ⊃ r)).
If a non-recursive set of minimal disjunctions of contradictions8 is Cn-derivable
from the premise set, no recursive set of consistency statements can be added
to the original premises to obtain by a Cn logic the consequences that Cω

m

delivers from the original premise set.

8 Defeasible Guesses

While the inconsistency-adaptive logics Cn
m do in most respects better than the

stratagem outlined in Section 3, there is one respect in which they do worse. The
Cn

m offer a maximally consistent interpretation of the premises, but only in as
far as logical considerations allow for a justified choice. This may be illustrated
by the premise set {¬p,¬q, p∨r, q∨s, p∨q}. Note that (p∧¬p)∨(q∧¬q) is Cω-
derivable from these premises. The upshot is that r ∨ s is a Cω

m-consequence
of the premises. However, neither p(1) nor q(1) is derivable, which is related to
the fact that no logical considerations enable one to prefer one over the other.

Suppose that (p ∧ ¬p) ∨ (q ∧ ¬q), (p ∧ ¬p) ∨ (r ∧ ¬r), and s ∧ ¬s are Cω-
derivable from a premise set, but that neither p ∧ ¬p nor q ∧ ¬q nor r ∧ ¬r
have been so derived. The premises then apparently inform us that either both
p∧¬p and s∧¬s are true or that all of q ∧¬q, r∧¬r, and s∧¬s are true. The
inconsistency-adaptive logic cannot possibly ‘chose’ between both possibilities.
The person that applies the logic might, however, have a reason to make a
choice. Thus both q and r may concern well-entrenched properties that may be
taken to behave consistently. In this case, the person applying the stratagem
would add the new premises ¬(q ∧ ¬q) and ¬(r ∧ ¬r) in the context of C1. So
she would obtain a theory that is more consistent than the one provided by
Cω

m. The logic cannot make this choice, because the reasons for making it are
extra-logical.

The choice involves a danger. If later q ∧ ¬q would turn out to be C1-
derivable from the premise set, the resulting theory would be C1-trivial and one
would have to move to C2 in order to make another try.

However, there is a way to eat your cake and still have it, viz. by replacing the
adaptive Cω

m by a specific combined adaptive logic. Indeed, this logic retains
all the Cω

m-consequences, allows one to add consistency statements on extra-
logical grounds, but circumvents the danger because the consistency statements
are introduced in a defeasible way. In other words, a combined adaptive logic
allows one to make choices that will have no effect if they would run one into
triviality in the context of Cω.

Two important remarks are in place at this point. First when does it make
sense to defeasibly introduce a consistency statement? Given the result on
Cω, the answer is obvious: where one has reasons to believe that a choice
can be made. If one has derived a disjunction of abnormalities that is, by

8The role played by minimal disjunctions of abnormalities becomes clear in the next section.
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present insights, minimal, it makes sense to eliminate some (obviously not all)
of the disjuncts as not abnormal. In other words, if one has (unconditionally)
derived a disjunction of (existentially quantified) contradictions, and no stronger
disjunction has been derived, then one may posit, preferably on good grounds,
that some of the disjuncts are false. This agrees nicely with Wísniewski’s erotetic
logic—see, for example, [19, 20, 21]. A set of declarative statements generates
a question if the disjunction of the direct answers to the question is derivable
from the statements whereas no direct answer is derivable.

The second remark is that if one wants to consider defeasible consistency
statements, one better introduces them in a prioritized way. So if one has found
that (p∧¬p)∨ (q∧¬q)∨ (r∧¬r) is Cω-derivable from the premise set, one may
want to stipulate that both p ∧ ¬p and r ∧ ¬r are false. Yet, it is possible that
one is more certain about the falsehood of p ∧ ¬p than about that of r ∧ ¬r.
So it is intuitively appealing to defeasibly reject p ∧ ¬p in a stronger way than
r∧¬r. Note that, if it would turn out at a later point that (p∧¬p)∨ (r∧¬r) is
Cω-derivable from the premise set, then p ∧ ¬p would still be taken to be false
whereas r ∧ ¬r would be taken to be true.

Let !A abbreviate ∃(A∧¬A), whence !!A abbreviates ∃(A∧¬A)∧¬∃(A∧¬A),
etc. Next let !nA abbreviate whatever is abbreviated by n exclamation marks
followed by A. Finally, let ¡nA abbreviate ¬!1A ∧ ¬!2A ∧ . . . ∧ ¬!nA.

The guesses that are introduced as new premises have the form ¡nA. The
priority assigned to a guess is directly proportional to n. To handle the guesses,
we consider a combined adaptive logic, viz. a specific combination of a set of
adaptive logics. For each of the latter, the lower limit is Cω and the strategy is
Minimal Abnormality. The sets of abnormalities are defined by Ωi = {!iA | A ∈
F}. Let the resulting adaptive logics be called Cω

mi, in which i determines Ωi.
Note that Cω

m1 is identical to Cω
m from Section 7.

The consequence set of the combined adaptive logic of level n is identical
to CnCω

m1(CnCω
m2(. . . (CnCω

mn(Γ)) . . .)). In semantic terms, the combined
logic is easiest described as follows. From the Cω-models of a premise set Γ,
it first selects the minimal abnormal models with respect to Ωn,9 from these
the minimal abnormal models with respect to Ωn−1, and so on up to Ω1. The
proof theory of the combined logic has an interesting property: the rules of
all combining logics may be applied together. At every stage, the marking
definition of the combined logic proceeds first in terms of minimal disjunctions
of Ωn-abnormalities that have been derived in the proof on the condition ∅, next
in terms of the unmarked minimal disjunctions of Ωn−1-abnormalities that have
been derived in the proof on a condition that comprises at most members of Ωn,
next in terms of the unmarked minimal disjunctions of Ωn−2-abnormalities that
have been derived in the proof on a condition that comprises at most members
of Ωn ∪ Ωn−1, etc.—the marking definition is identical to Definition 13 of [8].

Note that a guess ¡nA may be strengthened by introducing a new premise
¡mA with m > n. This means that guesses may be corrected, where it is
desirable, in view of insights obtained from an ongoing proof.

A small digression is in place at this point. If no free variable occurs in A,
¡nA is identical to A(n). So at the propositional level, the story may be told in
terms of the original consistency statements of the Cn logics. This is a most
astonishing fact. The original construction forged by da Costa contained the

9The value of n is determined by the premises.
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means required, at the propositional level, to handle defeasible guesses and to
overrule them if there are reasons for doing so. According to the stratagem, the
logic has to be replaced, for example Cn has to be replaced by Cn+1 in order
to overrule the earlier guess. The combined adaptive logic, to the contrary, is
the same throughout the whole process. Apart from this and apart from the
absence of the existential closure in da Costa’s A(n), ¡nA and A(n) serve the
same function and are identical where no free variables occur in A.

9 Some Concluding Remarks

All by itself, Cω
m restores consistency where logical reasons permit and indi-

cates the road to obtain further consistency. The combined adaptive logic han-
dles attempts to make the result even more consistent, reveals points at which
choices may be made, and prevents the enterprise from running into triviality.

That the adaptive logics have Cω as their lower limit seems to make classical
negation unavailable. As was described in Section 2, this may be repaired
by introducing classical negation as a symbol, ¬̌, that does not belong to the
standard language and hence does not occur in the premises—actually, this has
been the standard adaptive approach for many years now. The upshot is that,
if only one of A and ¬A is a member of the adaptive consequence set, then so
will be one of ¬̌¬A and ¬̌A.

The adaptive logic Cω
m defines a maximal consistent interpretation of a

premise set Γ. The price to pay is obviously that the Cω
m-consequence set of

Γ is not in general decidable; there even is no positive test for it (the set is not
recursively enumerable). This is unavoidable at the predicate level10 because
there is no positive test for consistency.

There are some consolations. The first is that there are proof procedures
that form criteria for final derivability.11 If the procedure is applied to some
Γ and A and it stops, it answers the question whether A is finally derivable
from Γ. Moreover, if a finite proof establishes that A is finally derivable from
Γ—see [12] for a more precise formulation—then the procedure will stop with
that answer.

A very different consolation is that the introduction of defeasible guesses may
circumvent the problem even where final derivability cannot be established. If
the user feels to have a sufficient insight in the studied theory she will often try
to phrase a consistent replacement. In order to do so, the logic should be able
to isolate inconsistencies and should in principle be able to locate all inconsis-
tencies. But even an incomplete analysis may permit one to attain a consistent
replacement. An illustration is that many (apparently) consistent replacements
for Frege’s set theory were formulated before the Curry paradox was discovered.
This paradox apparently does not affect any of those set theories.

The results presented in this paper may obviously be generalized to all logics
of formal inconsistency in the sense of [14]. Given such a logic L, an adaptive
logic AL is articulated as follows. Take L as the lower limit logic. Formulate a
two-valued indeterministic semantics for L and turn it into a 3-valued or 4-valued

10At the propositional level adaptive logics are decidable in the same sense as CL is. The
same holds for certain fragments of the predicative logic.

11The procedure for Reliability was presented in [7]; that for Minimal Abnormality was
studied by Peter Verdée (paper soon forthcoming).
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indeterministic semantics with the values t, f , u, and a as described in Section 6.
On the basis of the insights gained from this, define Ω = {∃(A∧¬A) | A ∈ Fx},
in which x is the restriction required for avoiding a flip-flop. Finally, chose an
adaptive strategy. The resulting logic restores consistency where this is possible
on the basis of logical considerations; it indicates how further consistency may
be obtained. From this logic, one defined the combined adaptive logic along the
lines followed in Section 8. The combined logic handles attempts to obtain an
even more consistent result.
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