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Abstract

In the present paper a model for information update on propositional
databases is formulated using the standard format of Adaptive Logics.
The core structure of the update procedure is represented by the ab-
normal expressions of the language that formalize received information
contradicting previous contents. The strategy defined to restrict abnor-
malities works by establishing, at each stage of the process, the most re-
cent and reliable information, updating constantly the base and removing
older data.

1 Introduction

The notion of update appeared in the literature of theory change in relation
to the operation of belief revision defined by the AGM paradigm. The dis-
tinction between revision and update was introduced in [17] and it was later
formalized in [15]. It refers to the following intuitive idea: whereas revision for-
malizes changes due to new information in a static world, update refers to the
changes that a knowledge base undergoes when the world of reference changes.
An obvious extension of the notion of update has been given in terms of in-
consistent knowledge bases, i.e. update by addition of inconsistent information.
Processing inconsistent data is a crucial operation, both for knowledge repre-
sentation and for database theory. The update by inconsistent data is typically
a problem for relational databases, where sets of tuples are grouped by having
the same attribute: conflicting information needs to be treated in appropriate
ways to perform a correct grouping of data without loss of any relevant tuple.
This kind of resolution procedures are also required by the integration of single
autonomous propositional databases (heterogeneous databases), where the in-
tegration of different Integrity Constraints (IC) leads to the extraction of data
in order to build consistent datasets.

∗Research for this paper was supported by the Special Research Fund of Ghent University.
The author is indebted to Diderik Batens and Joke Meheus for very helpful discussions at the
initial stage of this research. Thanks to an anonymous referee for various helpful comments
on a previous version of this paper and especially to Dagmar Provijn for important remarks
on the very last draft.
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In the logical literature, the standard approach to update refers to a model-
theoretic interpretation which aims at satisfying Gärdenfors postulates using a
notion of minimality of difference between bases: in this way, one formulates an
order on the updated bases by referring to minimal changes (see e.g. [14], [16],
[4], [12]). A number of logical frameworks have been proposed to resolve the
case of updates with inconsistent data: many-valued systems based on Belnap’s
logic from [5], see e.g. [13]; annotated logics in [10] and [18]; a paraconsistent
logic in [6]; the logic of formal inconsistency in [7] and [8]. The present paper
introduces a novel approach to formalize the process of updates with inconsistent
data using the standard framework of adaptive logics. It provides a consistent
database out of the update process without overload, that is avoiding explosion:
its resolution strategy is based on the principle of preserving the most recent
information.

The logic introduced in this paper is a Prioritized Adaptive Logic in stan-
dard format called AIU, for Adaptive Informational Update. Along with the
paraconsistent flavour of providing a non-explosive treatment of a contradictory
database update processing, the logic AIU has in common with the treatment
from [7] that the update process consists of producing at each stage new integrity
constraints (IC): this is a definitional property for evolutionary databases and
it is preserved in our model by considering the incoming information to be the
most recently updated IC. Inconsistencies arising with respect to the result of
older updates are formally represented in the language and resolved by removing
information already stored in the database. Assuming that updates are more
reliable than the actual stored knowledge, each content within the database
becomes defeasible in view of new incoming information. This means that the
design of the system cannot be fixed up-front,1 it rather evolves through the
various temporal states of the system. In this way, AIU implements the struc-
ture of a system based on evolutionary integrity constraints: the most recent
incoming information constraints at each stage the remaining information in the
database. Because each update is the declaration of new integrity constraints
for the system, AIU does not block the incoming new inconsistent data, rather
it defines a Resolve-selection to determine the oldest data to be removed in
order to restore consistency. This corresponds to the request that no update be
illegal, rather that the theory be modified to accept the change, analogously to
the definition of system with incomplete information in [9]. Such a system would
obviously assume complete reliability on the set of sources for the database at
each new temporal stage.

On the other hand, by each update procedure the informativeness of the
system is extended, inducing a partial order among its stages. The resolution
of inconsistencies is obtained by retracting the minimal number of updates per-
formed, starting from those that are in the less informative states of the system.
In this way, the following principle is satisfied:

Definition 1 (Principle of Information Economy) Keep the loss of infor-
mation to a minimum.

AIU is defined as a multi-modal language with temporally indexed update
operators, valuated as possibility operators in a standard semantics for the logic

1In software engineering, by “fixed up-front design” one understands the full description
and complete explanation of the requirements that need to be implemented in the creation of
a system before its actual construction or execution.
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T. AIU is an adaptive logic in standard format, which means that it is defined
by three elements:

1. a Lower Limit Logic (LLL): a monotonic, compact logic;

2. a set Ω of abnormal formulas characterized by a logical form;

3. an Adaptive Strategy (AS).

The lower limit logic is called IU and it is the stable part of the adaptive logic.
Abnormalities are supposed to be false, “unless and until proven otherwise”.
Each abnormality expresses a non-monotonic information update, which makes
a premise set inconsistent in view of the combination of an update with previ-
ously held contents. The information with the highest index (later information)
has the highest priority; lower indices are ranked in decreasing order. Hence,
in IU sets of such abnormalities are indexed on the basis of the time index and
the prioritized adaptive logic AIU is obtained by the superposition of the vari-
ous abnormal logics defined by the derivability of differently indexed abnormal
formulas. The final knowledge base for AIU is formulated according to the
strategy, which establishes admissible and avoidable updates.

The approach is also novel in that the strategy is formulated both in terms
of a semantics and of a proof theory. Model-theoretically, one proceeds from
the models of a premise set verified by the newer updates to the models of
the older ones. At each step, older updates are considered and one stops at the
first stage at which allowing a non-monotonic update makes the consequence set
inconsistent. Proof-theoretically, this is obtained by determining the persistance
of each update on the basis of later ones: the reliability of the update on A is
depending on the falsity of any update with ∼A obtained at some later stage;
failing this condition, previous updates are rejected.

The paper is structured as follows. In section 2 the needed formal pre-
liminaries are introduced, among them the definition of updated database and
its setup. In section 3 the Lower Limit Logic is presented, followed in section
4 by the formalization of possible non-monotonic updates. In sections 5 and
6 the resolution strategy for updated databases with inconsistent information
is presented respectively in the semantic and proof-theoretical formats, along
with some examples. The conclusive section draws some connections with other
research in the field of adaptive logics.

2 Preliminaries

Let L be the standard language of classical propositional logic (CL), formed
from a finite set of atoms P. The symbol P± will stand for the set of literals,
atoms and negations of atoms. The symbol W stands for the set of well-formed
formulas of L. Latin capital letters A, B, . . . are metavariables for members of
W. A database is a finite subset of W. The letter Γ is used as metavariable
for a database. A CL-model is a function from P to {0, 1}; letters M,M ′, . . .
are metavariables for CL-models, and M denotes the set of all CL-models. A
model M(Γ) is a model of a database Γ if and only if all the members of Γ
are true in it; M � A denotes that M verifies A. Mod(Γ) is used to denote
the set of all models of a database Γ; Cn(Γ) denotes the semantic consequence
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set of Γ. M(Γ) � A corresponds to the selection of valuations for A in all
M ∈ Mod(Γ) of the form vM (A) = 1. The focus on the valuation functions is
useful for mimicking a user performing a query about A in Γ, and it is necessary
for the forthcoming description of the updating of a database; the general case
vM (A) = 1 or vM (A) = 0 is used to formalize the response to a query operation
concerning A which produces no result, meaning that there is no specification
concerning A according to the given database.2

The basis of the logic for Adaptive Informational Update is defined by ex-
tending L to a multi-modal language LI including first-degree update operators.
We call this logic IU and the set of wffs of LI shall be denoted by WI . In the
set of modal operators I = {I1, . . . , In}, each operator is indexed from a set
T = {1, 2 . . . n} of temporal indices. The letters Γ1, Γ2, . . . , Γn are now used as
metavariables for temporally ordered databases: by the attachment of temporal
indices to formulas in LI , a database is temporally characterized. We shall now
call an updated database a database Ψ such that in it every formula is of the
form IiA and there are in Ψ at least two subsets Γi, Γj , each called a stage of
Ψ: Ψ = {Γ1, . . . , Γn | Γi−1 ⊆ Γi} and 1 ≤ i ≤ n ∈ T . Formulas of the form IiA
represent updates of a database at time i− 1; each database Γi will contain all
formulas with temporal operators up to i ∈ T | 1 ≤ i ≤ n. A formula A ∈ WI

contained in Ψ is said to be “at stage i of Ψ” iff it is introduced in Ψ by an
update indexed by i ∈ T . Further notation from the language L is adapted
to LI simply by attaching temporal indices were appropriate. The setup of
an updated database Ψ is given by describing the operations that lead to each
consecutive stage: these operations have an appropriate correspondence to a se-
lection of models at the various stages i, j of the database; hence, V(Γi) denotes
the setup of the database up to stage i, V(Γj) up to stage j and so on; the final
result for Ψ corresponds to the set of all models of that database, Mod(Ψ). A
model MIU (Γi) is a model of a database Γ if and only if all the members of
Γ are true in it at time i and M(Γi) �IU A denotes that there is a model M
of database Γ at stage i that verifies A according to the logic IU. MIU (Ψ)
denotes a model in which all the members of an updated database Ψ are true
and Mod(Ψ) is intended for the set of all IU-models of an updated database
Ψ; the set of all IU-models is in turn denoted by MIU . The set of models of a
database according to the logic IU will correspond to the appropriate classical
models, unless in the setup of that database contradictory information has been
provided; in that case, the dynamics typical of the adaptive logic is used to gain
the appropriate consistent subset of data.

The setup of an updated database is obtained via the update operation and
analysed in view of the differences of the various setups at stages. The intuitive
meaning of a formula of the form IiA contained in an updated database Ψ is
the following: for some updated database Ψ = {Γ1, . . . , Γn}, the stage Γi of the
database contains all propositions held true up to time 1 ≤ i ≤ n; at time i the
stage Γi−1 is updated so that contents holding at that stage are preserved and
moreover a new function vMIU

(IiA) = 1 holds, which correspondingly performs
a selection on models. At time i− 1 either there was no specification concerning
the propositional content A, or Ii−1∼A was valid: in the former case, a normal

2An automated information retrieval process is started by entering a query into the system;
queries are formal statements of information needs; in the propositional system at stake here,
a query is a formal statement for checking the occurrence of a literal in a database; see also
[13].
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restriction on the valid models is performed, in the latter case the update will
be inconsistent (extending again the set of valid models) and one will need
to perform the appropriate consistency-restoring operations provided by the
adaptive machinery. The semantic definition of the Ii operator is given as a
possibility modality, in order to allow that the content A be true at the state
valid at time i− 1, and the content ∼A be true at the state valid at time i (or
viceversa).3 The language LI defining the logic IU is a multi-modal version
of the modal logic T. IU shall be completely defined in the next section,
whereas in section 4 the second element of the standard format of adaptive
logics is introduced,4 namely the form of abnormalities that correspond to non-
monotonic updates.

3 The Lower Limit Logic IU

The first element of the standard format of an adaptive logic is its Lower Limit
Logic (LLL). For the Adaptive Logic of Information Update the corresponding
LLL is called IU, whose language has already been introduced in the prelim-
inaries. A IU-model is obtained in a standard possible-worlds semantics as a
quadruple 〈W, w0,R, v〉, defined as follows: W is a set of possible worlds, in
which formulas from the language LI are valuated; w0 is the actual world; R
is a set of temporal accessibility relations from the actual world to the set of
possible worlds: Ri : w0 → W (i ∈ T ); v is the function valuating formulas in
the worlds: v : P ×W → {1, 0}. The valuation of a model MIU is characterized
in the following way:

C1 where A ∈ P, vMIU
(A, w) = v(A, w)

C2 vMIU
(∼A, w) = 1 iff vMIU

(A, w) = 0
C3 vMIU

(A ∨B, w) = 1 iff vMIU
(A, w) = 1 or vMIU

(B, w) = 1
C4 vMIU

(A ∧B, w) = 1 iff vMIU
(A, w) = 1 and vMIU

(B, w) = 1
C5 vMIU

(A ⊃ B, w) = 1 iff vMIU
(A, w) = 0 or vMIU

(B, w) = 1
C6 vMIU

(IiA, w) = 1 iff vMIU
(A, w′) = 1 for some w′ such that Riww′

A IU-model MIU verifies A iff vMIU
(A, w0) = 1; A is valid in IU (|=IU A)

if it is verified by all its models; and A is a consequence of a premise set Ψ in
IU (Ψ |=IU A) if A is true in every model of Ψ.

In addition to all CL-axioms, the logic IU validates for any i ∈ I

• Necessitation Rule: if `CL A then `IU IiA;

• Distribution: Ii(A ⊃ B) ⊃ (IiA ⊃ IiB);

• Consistency: IiA ⊃ ∼Ii∼A;

• Reflexivity: if `IU IiA then `CL A.
3The interpretation of the update operator by means of a possibility operator is crucial both

from the conceptual and the formal point of view. Formally, it allows to maintain a defeasible
notion of information, which can be rejected at later stage if new contradictory updates are
obtained. Conceptually, it describes a notion of information for a dynamic process of becoming
informed. For more on the debate on the nature of information contents and related epistemic
states, see [11], [19].

4For the standard format for Adaptive Logics see [1] and [2]. For a formal and philosophical
justification of the adaptive logic programme, see [3].
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By Necessitation, for any valid sentence there is an update at some time by that
sentence; and by Reflexivity, any update by a valid sentence provides a content
holding at each information state of the database. Hence, our logic is defined
by the set of all reflexive frames. But in our logic the axiom for transitivity
IiA ⊃ IjA, for all i ≤ j ∈ T , does not hold, that is the information satisfied at
one state is not necessarily still satisfied at all later states.

The analogy with an updated database as introduced in the preliminaries can
be explained as follows. The set W contains all the informational stages that the
updated database can be extended to at various times from the database actual
stage, indicated by w0. Such actual stage w0 is built up by all the different
informational stages already reached at previous times. The set R contains
all the update relations, that is all the possible accessibility relations to newer
informational stages of the system. Hence, there is a correspondence between
the informational states of an updated database Ψ and its temporal stages Γi, Γj

(i < j ∈ T ), because the updates provide new stages of the system at different
times. For the notion of an updated database to be general enough, one needs
to introduce the case of an empty database and empty updates: a formula I1A is
an update performed on an empty stage, i.e. Γ = {∅}, Γ1 = {I1A}; moreover, a
new informational state of an updated database Ψ can also collect all and only
the contents contained at its previous stage, that is an empty update consists
in confirming previous contents at a later stage. The general formulation of an
updated database Ψ = {Γ1, . . . , Γn} can now be given with respect to the set of
valuation functions that build its setup V(Ψ):

Definition 2 (The setup of updated databases) For any updated database
Ψ = {Γi, Γj} and all models MIU (Γi) and M ′IU (Γj):

1. either for any < v, v′ > and any A ∈ P±, vMIU (Γi)(A) = v′M ′
IU (Γj)(A);

2. or for all < v, v′ > and A ∈ P±, vMIU (Γi)(IiA) = 1 or vMIU (Γi)(Ii∼A) = 1
and either v′M ′

IU (Γj)(IjA) = 1 and v′M ′
IU (Γj)(Ij∼A) = 0; or v′M ′

IU (Γj)(IjA) =
0 and v′M ′

IU (Γj)(Ij∼A) = 1;

3. or, for some < v, v′ > and A ∈ P±, either vMIU (Γi)(IiA) = 1 and
v′M ′

IU (Γj)(Ij∼A) = 1 or vMIU (Γi)(Ii∼A) = 1 and v′M ′
IU (Γj)(IjA) = 1.

By the first clause, updates can be empty, that is at a given temporal stage no
new content is provided in view of a previous stage and the set of models valid
according to Γj does not change in view of Γi; by the second clause, an update
to stage Γj brings new consistent information with respect to the previous stage
where both possibilities where still accounted for, that is a further restriction on
the valid models is performed; by the third clause, two valuations conflict giving
contradictory information updates, so that at Γj an update with information
A is provided, where ∼A was the information given at a previous stage Γi, or
viceversa. In this latter case, the setup enlarges again the set of valid models,
in a way that leads classically to triviality. The third clause takes care of what
we shall call conflicting valutations:

Definition 3 (Conflicting Valuations) Given valuations v, v′ ∈ V(Ψ), the
valuation v′ is conflicting w.r.t. v if and only if for some A ∈ P± it holds that
vMIU

(IiA) = 1 and v′M ′
IU

(Ij∼A) = 1, and i 6= j ∈ T .
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Let now V 6=(Ψ) be the subset of V(Ψ) that contains all and only the conflict-
ing valuations contained in an updated database Ψ. Let us call V 6=(Ψ) the
conflicting setup of Ψ. Then the following strict order is defined on V 6=(Ψ):

Definition 4 (Minimal Conflicting Valuation) A valuation v for some
A ∈ P± is said minimal in V 6=(Ψ) if and only if for every valuation v′ such
that < v, v′ >∈ V 6=(Ψ), v is the valuation function at stage Γi of Ψ, and v′ is
a valuation function at some stage Γj of Ψ such that i < j ∈ T .

This means that the minimal conflicting valuation in V 6=(Ψ) corresponds to the
verification function of the oldest non-monotonic update in Ψ. It is possible
now to provide an appropriate definition for the informativeness of stages Γi, Γj

of an updated database Ψ, based on the definition of setup:

Definition 5 (Informativeness of States) For any updated database Ψ =
{Γi, Γj} and corresponding setups V(Γi) and V(Γj), a partial order Γi v Γj

holds iff V(Γj) is obtained by V(Γi) by one of the appropriate operations as by
Definition 2. If a partial order Γi v Γj holds, then Γj is a more informative
stage of Ψ with respect to Γi.

The more informativeness of increasing stages is explained as follows: by an
empty update one allows new models verifying a literal already valid in models
with lower indices (formally, this amounts to the literal becoming more persist-
ing than before; informally, the information is more recent – in both cases this
is a relevant description in a context of defeasible information); by a consistent
udpdate, one makes valid a certain set of models (those for example validating
IjB) and thus eliminates the models that validate the contradictory formula (re-
spectively, Ij∼B), operation that produces hence new information; finally, by a
non-montonic update a certain set of models is restored as valid (for example,
those validating again Ij∼B) which makes again needed a certain (adaptive)
selection that will lead to invalidating models where IiB | i < j hold.

As previously mentioned, transitivity is invalidated in the logic IU, which
allows in section 4 for the formal description of inconsistencies, restricted to the
case of conflicting valuations between older and newer information; this also
means that at each state only consistent information is allowed. The adap-
tive selection of such inconsistencies is presented in the next two sections. For
the semantic formulation of the adaptive selection, the costruction of abnor-
mal formulas in IU on the basis of the notion of conflicting valuations and
their minimality property is introduced. For the syntactic version, a restriction
on the derivability of abnormal formulas is formulated. In sections 5 and 6,
the adaptive strategy nicknamed Resolve is defined respectively semantically
and proof-theoretically. For the first format, the correspondence between the
temporal structure and the informativeness of the system is used to explain a
selection procedure on the models of a given updated database Ψ, eliminating
the models that satisfy a minimal conflicting valuation; consistency is restored
with the minimal loss of informativeness in the system. In the proof-theory,
special rules and few crucial principles are defined, and the adaptive notions
of derivability at stage and final derivability provide corresponding results for
updates valid at a given stage and updates finally valid according to AIU. As
shown in [2], a dynamic proof-theory for any adaptive logic in standard format
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is sound and complete with respect to the static semantics. The strategy nick-
named Resolve is nothing else than an application of the standard Minimal
Abnormality strategy for adaptive logics.

4 Possible non-monotonic updates

Admitting complete monotonicity over updates means to stipulate that any
such operation is consistent with previously obtained contents: for every
vMIU

(A, w0) = 1, there is no Riw0w
′ according to which v′M ′

IU
(∼A, w′) = 1. In

such a system no information update ever contradicts a given content. The logic
AIU is obtained by formulating a procedure to stabilize the IU-consequence
set of some premise set in which this principle does not hold. The localization of
the contents for which it is the case that vMIU

(A, w0) = 1 and there is a Riw0w
′

according to which v′M ′
IU

(∼A, w′) = 1, is given in IU by the formulation of the
set of abnormalities. The restriction of their validity is the aim of the adaptive
strategy in the following sections.

In IU, abnormalities are all formulas whose logical form expresses a non-
monotonic informational update:

Definition 6 (Set of Abnormalities) Ωi = {IiA ∧ ∼A | A ∈ P±}.

By this definition, a formula in Ωi expresses the occurrence at temporal stage i
of a non-monotonic update for some Ψ. This means that for some Ψ = {Γi, Γj},
in their setups V(Γi),V(Γj) there are conflicting valuations v and v′.

The set of all abnormalities for a given Ψ will be denoted simply by Ω and it
is obtained as the union of all indexed sets of abnormalities: Ω1 ∪Ω2, . . . ,∪ Ωk,
where k is the highest i ∈ T for Ψ.

When a database is updated at consecutive stages with updates IiA and
Ij∼A, the resulting inconsistent state can be described by the formulation of
the conflicting valuations in terms of different ordered pairs:

< vMIU
(A, w0) = 1, v′M ′

IU
(∼A, w′) = 1 >;

< v′M ′
IU

(∼A, w′) = 1, vMIU
(A, w0) = 1 > .

Intuitively, this means that one can consider at stage j of the “history” of the
database, the update with ∼A holding at state w′ that is conflicting with A
holding at state w; or, one can consider the update with A (happened at time i)
holding at state w that is now conflicting with the new information ∼A holding
at state w′. This has a nice correspondence in the behaviour of the logic IU:
from a premise set including formulas IiA and Ij∼A, two distinct abnormal
formulas can be formulated, namely IiA ∧∼A and Ij∼A ∧A. Let us call these
the possible non-monotonic updates. Consider for example a database Ψ =
{I1(p ∨ q), I2∼p, I3∼q}: it stands for an empty database updated respectively
at time 1 with the information p∨ q, at time 2 with ∼p, and at time 3 with ∼q.
By this latter step the information conveyed by Ψ is inconsistent. According to
Definition 6, the following indexed sets of abnormalities can be formulated for
Ψ:

Ω1 = {I1p ∧ ∼p; I1q ∧ ∼q};
Ω2 = {I2∼p ∧ p};
Ω3 = {I3∼q ∧ q}.

8



The consequence set CnIU (Ψ) will not contain (at any stage) any of these
possible non-monotonic updates, because none is IU-derivable from Ψ. But
from this updated database the possibility of valid non-monotonic updates is
derivable according to the monotonic logic IU. In other words, disjunctions
of such abnormalities are derivable, whereas the disjuncts are not. This is the
case of the formula (I1p∧∼p)∨ (I1q ∧∼q), derivable according to IU from the
mentioned Ψ.

In the standard format of an adaptive logic one defines Dab(∆) to stand for
the disjunction of members of ∆, where ∆ is a finite subset of Ω:

Definition 7 (Dab-Formula) Dab(∆) stands for
∨

(∆) where ∆ ⊆ Ω.

If ∆ is a singleton, Dab(∆) is simply an abnormality (A∨Dab(∅)), i.e. a member
of Ω; if ∆ is empty, Dab(∆) is empty as well.

It is in view of the validity of Dab-formulas for a given premise set that the
adaptive strategy is needed. The adaptive strategy specifies what it means, in
the case of disjunctions of abnormalities, that the abnormalities are false unless
and until proven otherwise. Given the same lower limit logic and the same
set of abnormalities, there are different ways to interpret a set of premises as
normally as possible. The precise meaning is given by the formal presentation
of the strategy in the following sections.

5 The semantic approach to Resolve

The semantics of AIU consists in a selection on each group of IU-models of a
premise set. We shall nickname this selection Resolve, which is nothing else
than the sandard Reliability Strategy for adaptive logics: this strategy selects
those IU-models of a premise set Ψ that are not more abnormal than what
required by the premises. The standard of abnormality is in this case determined
by the temporal index attached to non-monotonic updates: in general, formulas
in Ωi are less abnormal than formulas in Ωi−1, which means that later non-
monotonic updates are preferred to older ones. The strategy selects only those
models verifying the abnormalities which cannot be avoided by the premise set
(provided that all premises are true).

It was explained in the previous section how a non-monotonic update can be
described by two different ordered pairs, each composed by the related conflict-
ing valuations. Provided the mentioned time-based standard of abnormality, for
any update on a given premise set there will be an admissible and an avoidable
abnormality: the admissible abnormality corresponds to the ordered pair whose
first element is the valuation function for the literal provided by the newest
update (among those referred to by the involved conflicting valuations); the
avoidable abnormality corresponds to the ordered pair whose first element is
the valuation function for the literal provided by the oldest update. Intuitively,
provided abnormalities have decreasing relevance determined by their index, the
selection prefers abnormalities with higher index.

The Dab-formulas valid by IU from a premise set Ψ will be called the Dab-
consequences of Ψ:

Definition 8 (Dab-Consequence) Dab(∆) is a Dab-consequence of a set Ψ
iff Ψ �IU Dab(∆).
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If Dab(∆) is a Dab-consequence of a set Ψ, then so is any Dab(∆′) such that
∆′ ⊃ ∆. This is the case of the example from the previous section: where
Ψ = {I1(p∨q), I2∼p, I3∼q}, one can derive longer disjunctions of abnormalities,
namely (I1p∧∼p)∨(I1q∧∼q)∨(I2∼p∧p) and (I1p∧∼p)∨(I1q∧∼q)∨(I3∼q∧q),
where both include the shorter (I1p ∧ ∼p) ∨ (I1q ∧ ∼q) which is also derivable.
This is why a further definition is needed:

Definition 9 (Minimal Dab-Consequence) A disjunction of abnormalities
Dab(∆) is a minimal Dab-consequence of a premise set Ψ iff Ψ �IU Dab(∆)
and there is no ∆′ ⊂ ∆ such that Ψ �IU Dab(∆′).

For any index i ∈ T contained in an updated database Ψ, a set of non-
monotonic updates will correspond. The various sets of abnormalities from
Ω1 to Ωk – for the highest k ∈ T occurring in Ψ – form the structure of the
prioritized consequence set of Ψ according to IU. Each of these consequence
sets is determined on the basis of the same LLL and they differ precisely with
respect to the set of abnormalities (in terms of the index). The consequence set
of the combined adaptive logic AIU is then obtained by (where k is the highest
index for which Ik occurs in the premise set):

CnAIU (Ψ) = CnIU1(CnIU2(. . . CnIUk
))

where each inclusion within the consequence set with lower index is determined
according to a selection procedure. The set Mod(Ψ) contains then all IU-
models, each verifying some Dab-formula; for any such model, the abnormal
part of degree i of model M is the set of abnormalities of degree i satisfied in
M :

Definition 10 (Abnormal model) Provided M is a IU-model, Abi(M) =
{A ∈ Ωi |M |= A}.

The selection procedure by the Reliability Strategy, requires that the conse-
quence set of a premise set Ψ be formulated assuming that all the abnormalities
in a minimal Dab-formula are unreliable formulas of that premise set. The set
of unreliable formulas is then determined at each degree by the corresponding
indexed set of abnormalities:

Definition 11 (Set of unreliable formulas) Where Dab(∆1), . . . , Dab(∆n)
are all the minimal Dab-consequences of Ψ, U i(Ψ) = ∆1 ∪ . . .∪∆n is the set of
unreliable formulas of degree i, where i ∈ T occurs in Ψ.

A IU-model is said reliable at a given degree if ad only if its abnormal part is
set-theoretically in the set of unreliable formulas for Ψ at that degree:

Definition 12 (Reliable Model of Ψ at degree) A IU-model M is a reli-
able model of a premise set Ψ at degree i iff Abi(M) ⊆ U i(Ψ).

Consider now the various consequence sets of Ψ at the different degrees up
to the highest one k (CnIU1 −CnIUk

). The set of all IU-models of Ψ at
degree k will contain all abnormalities ∆ at the various degrees up to k: ∆ ⊆
Ω1, . . . , ∆ ⊆ Ωk. A reliable model of Ψ at degree k will verify no abnormalities
which are not within Uk(Γ), so that at this stage all the abnormal models which
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are set-theoretical part of the set of unreliable formulas at the highest degree
k are considered, and all the other excluded. The selection proceeds on the
consequence set of Ψ at the next step in view of all the abnormal models that
are set-theoretical part of the set of unreliable formulas at the highest degree k
and at degree k − 1; and so it goes on up to include the abnormalities of the
lower degree:

1. sel0(MIU ) iff Abk(M) ⊆ Uk(Ψ), and there is no index in T greater than
k occurring in Ψ;

2. seli+1(MIU ) iff seli(MIU ) and Abk−(n+1)(M) ⊆ Uk−(n+1)(Ψ).

In this way, at any next step of the selection procedure the abnormal models
of the next lower degree are considered and the selection stops when the first
avoidable abnormality is reached.

Let us consider again our simple example Ψ = {I1(p ∨ q), I2∼p, I3∼q}. The
selection goes as follows:

sel0(MIU ) = Ab3(M);
sel1(MIU ) = Ab3(M) ∪Ab2(M);

by these two steps all IU-models in Mod(Ψ) including those that verify re-
spectively abnormality (I3∼q ∧ q) by the first selection step, and abnormality
(I2∼p ∧ p) by the second step, are included. A further selection step would
include the abnormalities of degree 1, turning the consequence set into incon-
sistency. Having lowest index, abnormalities of degree 1 are considered the
avoidable ones.

A model M is then a reliable model of Ψ if M is in the intersection of models
provided by all the selection steps: MIU1 ∩MIU2 ∩ . . . ∩MIUk

. By this, one
obtains the definition of consequence for AIU:

Definition 13 (AIU-Consequence) Ψ �AIU A iff A is verified by all reliable
models of Ψ.

Among the reliable models of Ψ = {I1(p ∨ q), I2∼p, I3∼q} we count the models
selected by sel0, sel1 from the previous example; it follows that Ψ �AIU ∼p,∼q.

It is now possible to carachterize the result of the adaptive selection proce-
dure in terms of the ordering on the members of V(Ψ) and the ordering on the
informativeness of stages of Ψ.

Theorem 1 Ψ �AIU A iff vMIU
(IiA) is either not conflicting or, if so, then is

not minimal in V 6=(Ψ).

Proof. By Definition of the AIU consequence set and that of the set V 6=(Ψ),
the only interesting case is when there are conflicting valuations such that both
A and ∼A are updates at different stages of Ψ.

1. By Definition 13, Ψ �AIU A iff there is a model MIU s.t. M �IU A
and M is reliable for Ψ, i.e. MIU is reliable at any degree. Hence the
valuation vMIU

(IiA) = 1 holds for some reliable model of Ψ, whereas by
assumption there is a conflicting valuation such that an update with ∼A
holds and the model M ′IU that validates it cannot be reliable. Then by
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the selection steps, the reliable model MIU is chosen and by Definitions
10 and 12, the model MIU will satisfy abnormalities of higher degree
then M ′IU . Hence, the update with ∼A will be the minimal among the
two. On the other hand, by the explanation of abnormalities as ordered
pairs of conflicting valuations, the abnormality with lowest index among
those making the consequence set inconsistent corresponds to the minimal
valuation in V 6=(Ψ). Hence the valuation vMIU

(IiA) = 1 cannot be at the
same time the one selected by AIU and also the minimal in V 6=(Ψ).

2. Consider a valuation vMIU
(IiA) = 1 minimal in V 6=(Ψ), then there is a

conflicting valuation v′M ′
IU

(Ij∼A) = 1 such that i < j ∈ T . Then two
different ordered pairs of valuations are defined, < v, v′ > and < v′, v >:
by construction of these pairs, the pair whose first element is the valu-
ation function for the newest update corresponds to the the admissible
abnormality by AIU-selection; and the ordered pair whose first element
is the valuation function for the literal provided by the oldest update cor-
responds to the avoidable abnormality. Then by Definition 4 if vMIU

(IiA)
is minimal, the conflicting valuation v′M ′

IU
(Ij∼A) has to refer to an ab-

normality with higher index, it is not minimal and it has to occur among
the models selected by the adaptive strategy.

�

Theorem 2 Ψ �AIU A iff Ψ = {Γi, Γj} and M(Γj) �IU A.

Proof. On the basis of Definition 2, we have three cases:

1. for every A ∈ P±, vMIU (Γi)(A, w0) = v′M ′
IU (Γj)(A, w′): by hypothesis,

Mod(Ψ) �AIU A, therefore, provided that M(Γi) ∈ Mod(Ψ), for some
Γj ⊃ Γi in Ψ if M(Γi) �IU A then also M ′(Γj) �IU A, for every Γj ;

2. for some A ∈ P±, vMIU (Γi)(A, w0) = 1 or vMIU (Γi)(∼A, w0) = 1 and either
v′M ′

IU (Γj)(A, w′) = 1 and v′M ′
IU (Γj)(∼A, w′) = 0; or v′M ′

IU (Γj)(A, w′) = 0 and
v′M ′

IU (Γj)(∼A, w′) = 1: similar to 1.;

3. for some A ∈ P±, vMIU (Γi)(A, w0) = 1 and v′M ′
IU (Γj)(∼A, w′) = 1 or

viceversa (i.e. v, v′ are conflicting valuations):

[3a.] if Ψ �AIU A, then vMIU (Γi)(A, w0) cannot be minimal in V 6=(Ψ)
by the previous Theorem and the model in which this valuation holds has
to be M ′(Γj) for some Γj ⊃ Γi stages of Ψ;

[3b.] if M ′(Γj) �IU A and Ψ = {Γi, Γj}, then the model in of valu-
ation v′M ′

IU (Γj)(A, w′) has to have its corresponding model for a minimal
conflicting valuation, and this has to be M(Γi); then M(Γi) �IU ∼A and
by the adaptive selection the models of Γj are the first to be selected,
M(Γi) will not be selected, and thus Ψ �AIU A.

�
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6 The syntactic approach to Resolve

The nature of updates of the knowledge base and their localization on a temporal
(i.e. information-based) order is essential for the formulation of our proof theory.
The standard structure of a line in an adaptive derivation (see e.g. [1]) contains
the following elements:

(i) a line number;

(ii) the derived formula;

(iii) the line numbers of the formulas from which the element in (ii) is derived;

(iv) the name of the rule(s) applied to derive the formula from previous lines;

(v) the condition on which the second element is derived.

The unusal element is represented by the condition. It is the element on the
basis of whose falsity a new content is derived. This means that the adaptive
frame is able to describe in a peculiar way the dynamic of update: if a database
containing A is updated at some new stage with the information that ∼A,
whatever was true at any previous stage on the condition of ∼A being false,
shall now be rejected. The proof theory of AIU formalizes therefore the way in
which updates and their consequences are accepted.

The rules for the logic AIU are the following:

PREM at any stage of a proof, for any A ∈ Ψ, one may add to the proof a line
consisting of:

(i) an appropriate line number;
(ii) A;
(iii) a dash;
(iv) PREM;
(v) ∅;

the premise rule establishes that premises are introduced in a line on the
empty condition;

RU at any stage of a proof, for any B ∈ P, if A1, . . . An `IU B, and ∆1, . . . , ∆n

are the conditions respectively for A1, . . . An, then a line may be added
consisting of:

(i) an appropriate line number;
(ii) B;
(iii) the line numbers of the A1, . . . An;
(iv) RU;
(v) ∆1 ∪ . . . ∪∆n;

the unconditional rule refers to derivability in the LLL: it allows to add a
line containing a formula already occurring in the proof, without any new
condition but (if any) the conditions of the formulas to which the rule is
applied;

RC at any stage of a proof, for any B ∈ P, if A1, . . . An `IU B ∨Dab(∆), and
∆1, . . . , ∆n are the conditions respectively for A1, . . . An, then a line may
be added consisting of:

(i) an appropriate line number;
(ii) B;
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(iii) the line numbers of the A1, . . . An;
(iv) RC;
(v) ∆1 ∪ . . . ∪∆n ∪ (∆);

the last rule refers to the derivability in the LLL of a formula of the form
B∨Dab(∆), which is transformed in the derivation of B on the assumption
that some member of Dab(∆) is false; in the new line such a member will
be introduced as a new condition.

The notion of Dab-formula introduced in the previous section is now formu-
lated for the prioritized procedure of update at stage of a derivation. In this
syntactic version, the notion of degree of a Dab-formula is needed (the syntactic
counterpart to the indexed abnormal model of Definition 10):

Definition 14 (Dab-Formula at degree) Dab(∆) is called a Dab-formula of
degree i of iff it is a disjunction of members of ∆ where ∆ ⊆ Ωi.

The condition to accept a monotonic update in the form of a Dab-formula at a
given degree is given as a regularity condition:

Definition 15 (Regular Dab-formulas) Given a AIU proof, Dab(∆) is a
regular Dab-formula of degree i iff (i) Dab(∆) is derived on condition Θ on an
unmarked line, (ii) ∆ ⊆ Ωi, and (iii) Θ ⊆ Ωi+1, . . . , Ωk.

This definition says that a disjunction of abnormalities is regular at a certain
degree if and only if it is asserted conditionally on the falsity of updates happen-
ing at later stages. This guarantees the priority for updates at any higher index:
on this basis AIU selects the valid IU-consequences of a premise set assuming
that the later the update, the more reliable the information received. The reg-
ularity condition is embedded into the already given principle of minimality for
disjunctions of abnormalities:

Definition 16 (Minimal Dab-formulas) Given a AIU proof, Dab(∆) is a
minimal Dab-formula of degree i iff Dab(∆) is a regular Dab-formula of degree
i and there is no ∆′ ⊂ ∆ for which Dab(∆′) is a regular Dab-formula of degree
i.

The dynamic aspect of the proof theory is based on the ability of the adaptive
frame to derive a formula at a certain stage of a proof, and to mark it at a
later one, i.e. to suspend its derivability, when the falsity of its conditions can
no longer be assumed.5 The dynamics of updates relies therefore on a non-
monotonic update being considered false as long as this is possible. Whenever
such an update turns out to be derivable, the content obtained on the basis of
its falsity shall be retracted.6

The rules holding for the combined logic AIU are given therefore by:

(i) the rules RU and RC defined for the logics IU1 − IUk, for the highest
k ∈ T occurring in a premise set Ψ: the unconditional rule is identical

5The notion of derivability at stage of a proof, formally introduced in this section, has an
obvious intuitive correspondence with the validity of a formula at a stage Γi of an updated
database Ψ, introduced in the semantic formulation of the Resolve-strategy.

6In the final section more is said on a standard Adaptive Logic that explicitely defines a
retraction operator on informational updates.
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for each IUi because depending on the LLL which is the same for any
indexed consequence set; the conditional rule has different applications
for each index, because it depends on the abnormalities at degree;

(ii) the combined marking definitions, which determine the syntactic version
of the Resolve-strategy.

The Marking Definition defines the procedure to establish which contents
at a certain line in a proof are withdrawn, because derived on condition of
the falisity of an update which later turns out to be derivable. In the following
definition, the notion of unreliable formulas at degree from Definition 11 is used:

Definition 17 (Marking for Reliability) A line l is marked at stage s of an
AIU-proof from a premise set Ψ iff:

1. ∆ is the condition at line l with degree i ∈ T = {1, . . . , k} occurring in Ψ;

2. ∆ is part of the set of unreliable formulas of Ψ at degree i; i.e. ∆∩U i(Γ) 6=
∅, or ∆ ∩ Uk−(i+n)(Γ) 6= ∅, . . ., or ∆ ∩ Uk(Γ) 6= ∅.

According to the previous definition, a formula derived at one stage can be
marked at a later one if its condition is derived at that stage. This establishes
an unstable notion of derivability:

Definition 18 (Derivability at stage) A formula A is derived from Ψ at
stage s of an AIU-proof iff A is the second element of a line whose condition
∆ is not part of any set of unreliable formulas for Ψ at stage s.

Correspondingly, a stable notion of derivability is defined, which intuitively
says that a content is unmarked at a certain stage of the proof and it will stay
unmarked at any extension of the proof from the very same premise set:

Definition 19 (Final Derivability) A formula A is finally derived in a AIU-
proof from Ψ iff

1. A is the second element of an unmarked line l at stage s derived at con-
dition ∆ of degree i;

2. and line l stays unmarked with respect to sets of unreliable formulas of
any higher degree U i+1(Ψ).

Under these conditions, the operation of information update for AIU can be
defined as follows:

Definition 20 (Final Update according to AIU) An information update
by IiA | A ∈ P± is finally valid in an AIU-proof from a premise set Ψ iff

1. at stage s of that proof a formula of the form IiA ∧ ∼A is derived at line
l on a condition ∆ of degree i + n;

2. any formula ∼A derived from Ψ at some line l − n on a condition ∆ of
degree i is marked at stage s of the same proof;
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3. and none of the Dab-formulas of degree i+n that are conditions of IiA∧∼A
are derivable at stage s+n of the same proof, which means that line l stays
unmarked.

This definition implies a final form of information update with respect to the
updated database represented by the premise set Ψ. A content is therefore
stable if it persists under any update within a given Ψ. An extension on Ψ
produced by an external dynamics on the basis of new information leads to a
logic IU of higher degree, which also means a different set of unreliable formulas
and therefore a different selection for marking.

6.1 Some Examples

A first simple example runs as follows from the premise set Ψ = {I1(p∨q), I2∼p}:

1 I1(p ∨ q) PREM ∅
2 I2∼p PREM ∅
3 p ∨ q 1; RU {I1p ∧ ∼p, I1q ∧ ∼q}
4 ∼p 2; RC {I2∼p ∧ p}
5 q 3, 4; RC {I1q ∧ ∼q, I2∼p ∧ p, I1p ∧ ∼p}

According to this derivation nothing is marked and lines 3–5 are derivable as
desired. Consider the following premise set Ψ = {I1(p ∨ q), I2∼p, I3∼q}:

1 I1(p ∨ q) PREM ∅
2 I2∼p PREM ∅
3 I3∼q PREM ∅
4 p ∨ q 1; RU {I1p ∧ ∼p, I1q ∧ ∼q}

√9

5 ∼p 2; RC {I2∼p ∧ p}
6 q 4, 5; RC {I1p ∧ ∼p, I1q ∧ ∼q, I2∼p ∧ p}

√9

7 ∼q 3; RC {I3∼q ∧ q}
8 p 4, 7; RU {I1p ∧ ∼p, I1q ∧ ∼q, I3∼q ∧ q}

√9

9 (I1p ∧ ∼p) ∨ (I1q ∧ ∼q) 1, 2, 3; RC {I2∼p ∧ p, I3∼q ∧ q}

lines 5 and 7 stay unmarked, which means that updates with ∼p and ∼q are
accepted; on the other hand, lines 4, 6 and 8 are marked and therefore their
contents rejected. Consider moreover that the derivation could be extended by
deriving the following Dab-formula

10 (I2∼p ∧ p) ∨ (I3∼q ∧ q) 1, 2, 3; RC {I1p ∧ ∼p, I1q ∧ ∼q}

but this is not a regular (and therefore not minimal) Dab-formula of degree 3
according to Definitions 15 and 16, because its condition is of a lower degree;
this means that {I1p∧∼p, I1q∧∼q} are not part of the set of unreliable formulas
of Ψ and they do not allow for any further marking, according to Definition 17.

Modify the previous premise set as Ψ = {I1∼p, I2(p ∨ q), I3∼q}:

1 I1∼p PREM ∅
2 I2(p ∨ q) PREM ∅
3 I3∼q PREM ∅
4 ∼p 1; RU {I1∼p ∧ p}

√10
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5 ∼q 3; RC {I2p ∧ ∼p, I3∼q ∧ q}
6 p ∨ q 2; RC {I2p ∧ ∼p, I3∼q ∧ q}
7 p 5; 6; RC {I2p ∧ ∼p, I3∼q ∧ q}
8 q 4, 6; RC {I1∼p ∧ p, I2p ∧ ∼p, I2q ∧ ∼q}

√10

9 (I1∼p ∧ p) ∨ (I2q ∧ ∼q) 1, 2, 3; RC {I2p ∧ ∼p, I3∼q ∧ q}
10 I1∼p ∧ p 1, 2, 3; 9 RC {I2q ∧ ∼q, I2p ∧ ∼p, I3∼q ∧ q}

according to which the contents at lines 4 and 8 are rejected, which means that
∼q and p (and obviously p ∨ q) are derivable as desired. As for the previous
example, also this derivation can be extended further by the following Dab-
formula:

11 (I2p ∧ ∼p) ∨ (I3∼q ∧ q) 1, 2, 3; RC {I1∼p ∧ p, I2q ∧ ∼q}

which, as in the previous case, is not minimal and therefore does not allow for
any further marking.

Consider now the following derivation from the premise set Ψ = {I1(p ∨
q), I2∼p, I3∼q, I4p}

1 I1(p ∨ q) PREM ∅
2 I2∼p PREM ∅
3 I3∼q PREM ∅
4 I4p PREM ∅
5 p ∨ q 1; RU {I1p ∧ ∼p, I1q ∧ ∼q}
6 ∼p 2; RC {I2∼p ∧ p}

√12

7 q 5, 6; RC {I1p ∧ ∼p, I1q ∧ ∼q, I2∼p ∧ p}
√12

8 ∼q 3; RC {I3∼q ∧ q}
9 p 5, 8; RC {I1p ∧ ∼p, I1q ∧ ∼q, I3∼q ∧ q}
10 (I1p ∧ ∼p) ∨ (I1q ∧ ∼q) 1, 2, 3; RC {I2∼p ∧ p, I3∼q ∧ q}

√12

11 p 4; RC {I4p ∧ ∼p}
12 I2∼p ∧ p 2, 4; RC {I4p ∧ ∼p}

According to this derivation lines 6, 7 and 10 are marked, whereas p and ∼q (and
obviously p∨ q) are derived as desired. Also in this case one more Dab-formula
can be derived:

13 (I2∼p ∧ p) ∨ (I3∼q ∧ q) 1, 2, 3; RC {I1p ∧ ∼p, I1q ∧ ∼q}

which once again is neither regular nor minimal, therefore it does not allow any
further marking.

7 Conclusions

The logic AIU defines an adaptive resolution method for inconsistent updates
on propositional bases. This logic has been formulated with an intuitive appli-
cation to database theory, and it seems a fruitful method for the application
to integrated databases. It can also be thought as an evolutionary system of
constraints for static databases. The adaptive selection restores consistency by
eliminating the older of the non-monotonic updates. By the ordering on the
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stages of the updated database, the removed content is also part of the less in-
formative of such stages, satisfying the Principle of Informational Economy. By
reference to the setups of the various informative/temporal stages of an updated
database, the notion of semantic consequence for AIU is also characterized by
the notion of minimal conflicting valuation.

In [20] an Adaptive Logic called AIUR for the corresponding retraction
function on non-monotonic updates has been introduced. Its procedure restores
consistency on a belief set by bringing it back to the time before the last update
was performed. It models therefore a procedure which is the inverse with re-
spect to Restore. The adaptive retraction satisfies the Inclusion Postulate in a
preferential structure and, assuming logical closure, it also satisfies the Recov-
ery Postulate. As a result, the consistent base will contain the oldest and more
reliable data.

This work on the notion of update represents an alternative view on stan-
dard models of belief change A foreseeable extension of the present framework
can be given in terms of an appropriate generalization to the predicative case, in
order to provide more realistic applications, especially for relational databases.
Such extension is very easy to reach in view of the standard format of Adaptive
logics. An open problem is the formulation of extended integrity constraints for
completeness requirements. Finally, a desirable implementation is the formula-
tion of metadata sets, such as the explicit formulation of a null-answer for a
query operation on missing data.
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