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Abstract. We show that every indeterministic n-agent choice model M i

can be transformed into a deterministic n-agent choice model Md, such
that M i is a bounded morphic image of Md. This generalizes an earlier
result from Van Benthem and Pacuit (16) about finite two-player choice
models. It further strengthens the link between STIT logic and game
theory, because deterministic choice models correspond in a straightfor-
ward way to normal game forms, and choice models are generally used
to interpret STIT logic.

1 Introduction

At least since (9), it has become clear that there are strong links between game
theory and the model theory of STIT logic. In this paper, we focus on the relation
between normal game forms and what we call choice models.

A normal game form is a strategic game without players’ preferences.4 Choice
models will be defined in Section 2; they form a specific class of Kripke models for
a purely agentive STIT logic, i.e. a logic of (individual and collective) agency that
contains no temporal operators. Choice models are e.g. used in (8) to study the
complexity of STIT logic for groups. They closely resemble the choice structures
from (10), the STIT choice scenarios from (16), and the choice Kripke models
from (5).

Normal game forms and choice models are both used to represent the actions
of (group) agents, thus providing a basis for the analysis of rational (individual
and collective) interaction. The notion of effectivity for outcomes is central in
both, where an outcome can be thought of as a (non-empty) set of possible
worlds. Roughly speaking, an agent is effective for a given outcome in the model
if and only if it can ensure that outcome by some action, regardless of what the
other agents do.5

For reasons of space, we cannot provide the full background and history of
STIT logic and its relation to game theory in this paper. We refer to (1; 9) for

4 See e.g. (12) for a solid introduction to the theory of strategic games.
5 This notion is usually referred to as “α-effectivity” in game theory. We provide a

formal definition of it in Section 2.



general introductions to STIT logic. See (8) for a discussion of the axiomatization
and complexity of group STIT interpreted over choice models. (10) appears to
be the first paper that explicitly deals with the relation between strategic game
forms and STIT . Horty’s (9) work in deontic logic, however, was already strongly
inspired by the link between game theory and STIT theory. Publications that
are directly relevant to this paper are (5; 13; 14; 16).

To explain the aim of this paper, let us first focus on models with only two
agents. Like normal game forms, choice models for two agents can be represented
using matrices, where the rows represent choices of agent 1 and columns represent
choices of agent 2. Figure 1 is a simple example. Each cell6 in such a matrix
represents a combination of actions of each agent – also known as action profile
– and the corresponding outcome. For instance, if agent 1 chooses row 1 and
agent 2 chooses column 2, then there is a unique outcome, viz. c. Note that the
action profile (row 1, column 1) allows for two possible worlds, viz. a and b. In
this model, agent 1 is i.a. effective for {a, b, c} and {d, e}, whereas agent 2 is
effective for {a, b, d} and {c, e}.7

a,b c
d e

Fig. 1: A choice model for two agents.

Say two models M1 and M2 – whether normal game forms or choice models –
are equivalent if and only if for any given outcome X and every agent j it holds
that j is effective for X in M1 if and only if j is effective for X in M2. Every
normal game form can be translated into an equivalent choice model, where the
action profiles in the former correspond to the worlds in the latter. This was first
observed by Tamminga in (13, Section 3.1); we will recall the details in Section
2. As is shown in (14), the inverse translation works for a specific class of choice
models. This class is characterized by the condition known as determinism: each
choice of the grand coalition, i.e. each action profile, singles out exactly one
world. Note that in the above example, this condition is not satisfied: if agent 1
chooses row 1 and agent 2 chooses column 1, then either a or b may result.

A common motivation for determinism is that we can get it “for free” just
by moving to a three-agent model, letting “nature” or “the environment” play
the role of the third agent (see e.g. (9, p. 91) and (16, p. 300) where this point
is made). In other words, nature is an agent that makes its own choices, and

6 In the two-agent case, cells correspond to the “innermost squares” in the matrix.
See Section 2 for the general definition of cells in a choice model.

7 The notion of effectivity is monotonic: whenever an agent is effective for X, it is also
effective for every superset of X. In the current example, this means that agent 1 is
e.g. also effective for {a, b, c, d}.



in combination with the choices of the two “real” agents, this determines the
outcome. Applying this idea to the example from Figure 1 yields the model
depicted in Figure 2, where nature gets to choose between the left and right
matrix. In this new choice model, agents 1 and 2 are just as effective as they
were in the original model given by Figure 1, but the choices by the group of all
agents (including nature) always determine a singleton outcome.

a c
d e

b c
d e

Fig. 2: A deterministic choice structure for three agents.

Leaving more philosophical issues aside, one may wonder whether this tech-
nical trick is really necessary, mathematically speaking. This question will be
answered in the present paper: we show that one can indeed do without nature,
as long as one does not consider the effectivity of the grand coalition. We prove
this by generalizing a proof method from (16), which is discussed in Section 3.
We generalize this method, first, to an arbitrary finite number of agents and
all groups of such agents except the grand coalition (Section 4) and second, to
infinite models (Section 5). We finish with a summary and some questions for
future work (Section 6).

2 Preliminaries: Group STIT

The notion of effectivity can be made exact and studied formally, using a well-
known STIT logic for group agents. In this section, we introduce the formal
language of this logic. After that, we give two different semantics for this logic,
using choice models and normal game models, and discuss the relation between
these types of semantics.

2.1 The Language of Group STIT

Throughout this paper, we assume a fixed, finite set N = {1, . . . , n} ⊂ N of
agents. We let j range over members of N and we let G range over non-empty
subgroups of N . P = {p1, p2, . . .} is a (countable) set of propositional variables.
The formal language L is given by the following Backus-Naur form, where p
ranges over P:

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | [G]ϕ | �ϕ

L−N denotes the fragment of L without the operator [N ]. Parentheses, brack-
ets, and braces are omitted if the omission does not give rise to ambiguities. The
operators ∨, →, 3, and 〈G〉 abbreviate the standard constructions.



A formula [G]ϕ expresses that “the group G sees to it that ϕ is the case”,
or alternatively, “given G’s choice, ϕ is necessary”.8 The formula �ϕ expresses
that “ϕ is settled true”, or equivalently, “whatever the agents choose, ϕ is the
case”. In modal logic terminology, � corresponds to the universal (or global)
modality, since it quantifies over all the worlds in a given model.9

2.2 Choice Models

Choice models consist of, on the one hand, a set of possible worlds W , and
on the other hand, for every agent j ∈ N , a partition of W that represents
the choices of j in the model. The only restriction to these partitions is that
they satisfy a specific frame condition, known as independence of agents. This
condition expresses that no group of agents G ⊆ N \ {j} can render any of the
choices that are available to agent j impossible. In other words, if the agent j
has a certain choice, then it can make this choice regardless of what all the other
agents do.

To stay in line with standard modal logic terminology, the choices of each
agent j will be represented by an equivalence relation ∼j on W .

Definition 1. A choice frame F is a tuple 〈W, 〈∼j〉j∈N 〉, where W is a non-
empty set (the domain of F ), each ∼j ⊆W ×W is an equivalence relation, and
the independence of agency condition obtains:

(IOA) for all w1, . . . , wn ∈ W , there is a w′ such that wj ∼j w′ for all
j ∈ N .

For a given choice frame F = 〈W, 〈∼j〉j∈N 〉 and non-empty G ⊆ N , we define
∼G =

⋂
j∈G ∼j.10

A choice model M is a triple 〈W, 〈∼j〉j∈N , V 〉 where 〈W, 〈∼j〉j∈N 〉 is a choice
frame and V : P→ ℘(W ) is a valuation function.

We say that M is deterministic iff ∼N = {(w,w) : w ∈ W}. M is finite iff
W is finite.

For every non-emptyG ⊆ N , the equivalence relation∼G in a choice frame in-
duces a partition of W : ChoiceG(M) =df {{w′ | w′ ∼G w} | w ∈W}. The mem-
bers of ChoiceG(M) are referred to as the choices of the group G in M . Note that
ChoiceN (M) = {X1 ∩ . . .∩Xn | X1 ∈ Choice1(M), . . . , Xn ∈ Choicen(M)}. It is
obvious that a choice model M is deterministic iff every member of ChoiceN (M)
is a singleton. We use the common term cells to refer to the members of a
ChoiceN (M).

8 [G] is also known as the Chellas STIT, after the seminal work in the logic of agency
by Chellas (4).

9 Given our semantics, �ϕ is definable as [i][j]ϕ for i 6= j. We will however treat � as
primitive for reasons of clarity.

10 This property may be called the intersection property. In Section 6 we briefly mention
how it relates to some completeness results.



Definition 2. Where M = 〈W, 〈∼j〉j∈N , V 〉 is a choice model and w ∈W ,

M,w |= p iff w ∈ V (p)
M,w |= ¬φ iff M,w 6|= φ
M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ
M,w |= �φ iff for all w′ ∈W it holds that M,w′ |= φ
M,w |= [G]φ iff for all w′ ∈W with w′ ∼G w it holds that M,w′ |= φ.

As usual, ‖ϕ‖M = {w ∈W |M,w |= ϕ}.

That G is effective for a state of affairs ϕ in the choice model M can be
expressed by means of the formula 3[G]ϕ. This formula expresses that, for some
world w in the model, [G]ϕ is true. Since ChoiceG(M) is a partition of W ,
this is equivalent to saying that there is a choice X ∈ ChoiceG(M) such that
X ⊆ ‖ϕ‖M .

2.3 Normal Game Models

In this section, we briefly spell out the semantics for group STIT using normal
game forms, following (16). Subsequently, we discuss the relation between normal
game forms and deterministic choice models.

Definition 3. A normal game form for the set of agents N = {1, . . . , n} is a
tuple G = 〈Ai〉i∈N , where each Ai is a non-empty set of actions a, a′, . . . available
to agent i. We call ×i∈NAi the set of action profiles of the game, and denote
its members by σ, σ′, etc. Where σ = 〈a1, . . . , an〉 ∈ ×i∈NAi and j ∈ N , let
πj(σ) = aj. Where ∅ 6= G ⊆ N , let πG(σ) denote G’s part in the action profile
σ, i.e., πG(σ) = 〈πj(σ)〉j∈G.

A normal game model is a tuple S = 〈〈Ai〉i∈N , V 〉, where 〈Ai〉i∈N is a normal
game form and V : P→ ℘(×i∈NAi) is a valuation function.

Definition 4. Where S = 〈〈Ai〉i∈N , V 〉 is a normal game model and σ ∈ ×i∈NAi:

S, σ |= p iff σ ∈ V (p)
S, σ |= ¬φ iff S, σ 6|= φ
S, σ |= φ ∧ ψ iff S, σ |= φ and S, σ |= ψ
S, σ |= �φ iff for all σ′ ∈ ×i∈NAi, it holds that S, σ′ |= φ
S, σ |= [G]φ iff for all σ′ ∈W with πG(σ) = πG(σ′) it holds that S, σ′ |= φ.

As was the case for choice models, one can use the language L to formalize
statements concerning the effectivity of a given (group) agent G for a certain
outcome, where outcomes are represented by propositions ϕ. The formula 3[G]ϕ
expresses that there is an action profile σ such that, for all σ′ with πG(σ) =
πG(σ′), S, σ′ |= ϕ. In other words, the group G has a combined choice πG(σ)
such that, whatever the other agents do, ϕ is guaranteed.



2.4 A Correspondence Result

As mentioned in the introduction, there is a well-known correspondence between
deterministic choice models on the one hand, and normal game models on the
other – see e.g. (5; 13; 14).11 To clarify the purpose of our new results, these
correspondence results are explicated here.

Definition 5. Let S = 〈〈Ai〉i∈N , V 〉 be a normal game model. The correspond-
ing choice model MS = 〈W, 〈∼i〉i∈N , V 〉 is defined as follows:

1. W = ×i∈NAi

2. for all i ∈ N and σ, σ′ ∈W , σ ∼i σ
′ iff πi(σ) = πi(σ′).

Theorem 1. Let S = 〈〈Ai〉i∈N , V 〉 be a normal game model. Then (a) MS is
a deterministic choice model. Moreover, (b) where ϕ ∈ L and σ ∈ ×i∈NAi:
S, σ |= ϕ iff MS , σ |= ϕ.

Proof. Suppose the antecedent holds. To obtain (a), note first that each relation
∼i is an equivalence relation. To see why the condition (IOA) holds for MS ,
let σ1, . . . , σn ∈ ×i∈NAi. Let σ = 〈π1(σ1), . . . , πn(σn)〉. It can easily be verified
that, for all j ∈ N , σ ∼j σj . Finally, to see why MS is deterministic, note that
σ ∼N σ′ iff for all j ∈ N , πj(σ) = πj(σ′) iff σ = σ′.

The proof of (b) is by a standard induction on the complexity of ϕ; it suffices
to apply the truth conditions from Definitions 2 and 4. 2

Definition 6. Let M = 〈W, 〈∼i〉i∈N , V 〉 be a deterministic choice model. The
corresponding normal game model SM = 〈〈Ai〉i∈N , V ′〉 is such that the following
holds:

1. for all i ∈ N , Ai = Choicei(M)
2. where σ = 〈X1, . . . , Xn〉 ∈ ×i∈NAi and X1 ∩ . . . ∩Xn = {w}: σ ∈ V ′(p) iff

w ∈ V (p).

Theorem 2. Let M = 〈W, 〈∼i〉i∈N , V 〉 be a deterministic choice model and
ϕ ∈ L. Then (a) SM = 〈〈Ai〉i∈N , V ′〉 is a normal game model. Moreover, where
σ = 〈X1, . . . , Xn〉 ∈ ×i∈NAi, X1 ∩ . . . ∩Xn = {w}, and ϕ ∈ L: SM , σ |= ϕ iff
M,w |= ϕ.

Proof. Suppose the antecedent holds. To obtain (a), it suffices to check that V ′ is
a valuation function. This follows immediately in view of the fact that for every
σ ∈ ×i∈NChoicei(M), there is a world w such that w is the only member of the
intersection of all the choices that make up σ. To prove (b), we again apply a
standard induction on the complexity of ϕ, together with the semantic clauses
from Definitions 2 and 4. 2

11 In (13) and (14), the authors actually establish a correspondence between strategic
games and choice models enriched with preference relations �i for the agents i ∈ N .
Ignoring this extra dimension, one obtains exactly the correspondence that we spell
out in the present section.



Theorems 1 and 2 give us at once:

Corollary 1. Let ϕ ∈ L. Then ϕ is valid in all deterministic choice models if
and only if ϕ is valid in all normal game models.

3 Informal Sketch of the Proof

In the remainder we prove that, relative to the fragment L−N , every (indeter-
ministic) choice model M i is a bounded morphic image of some deterministic
choice model Md (cf. Theorems 4 and 6 below).12 In other words, for every world
w in M i there is a world w′ in Md such that, for every formula ϕ ∈ L−N , ϕ is
true at w in M i iff ϕ is true at w′ in Md. More briefly, M i and Md are pointwise
equivalent, relative to L−N . In view of the preceding, this result implies that the
set of all formulas from L−N that are valid in all choice models coincides with
the set of all formulas from L−N that are valid in all normal game models.13

This way, we fill an important gap in the comparison of normal game models on
the one hand, and choice models (and other traditional semantics of STIT logic)
on the other.

Our proof generalizes a construction by Van Benthem and Pacuit (16) that
only applies to the case where we have two agents and M i is finite. The con-
struction by Van Benthem and Pacuit is in turn based on known methods from
modal product logics.14 To guide the reader’s intuitions and to explain our own
contribution, Van Benthem and Pacuit’s construction is explained in the current
section.

Consider the model M i depicted in Figure 3 – as before, we abstract from the
valuation function in our pictures of the models. Note that the cell that contains
the highest number of possible worlds is the one containing three worlds: h, i,
and j.

a b,c d
e,f g h,i,j

Fig. 3: An indeterministic choice model.

The proof by Van Benthem and Pacuit basically consists of two steps. The
first step is to construct an m×m matrix M(X) for every cell X in M i, where m
is the highest number of worlds that occur in one cell of M i. The points in this

12 See e.g. (2) for an introduction to the notion of bounded morphisms in modal logic.
13 For the grand coalition N , determinism obviously makes a difference. That is, within

the class of all choice frames, determinism is characterized by the axiom [N ]ϕ↔ ϕ,
which is not valid on indeterministic choice frames.

14 See e.g. (7) for an introduction to modal product logics.



matrix are copies of the members of X, and the matrix is constructed in such
a way that every x ∈ X occurs at least once in each row and in each column of
M(X). For instance, the cells in the second row of M i give us the 3× 3 matrices
depicted in Figure 4.

e f e
f e f
e f e

g g g
g g g
g g g

h i j
i j h
j h i

Fig. 4: Some 3× 3 matrices.

To obtain such m×m matrices for every cell X in the model, Van Benthem
and Pacuit apply a simple arithmetical trick. We give a variant of theirs, that
generalizes easily to the case of n > 2 agents.

For every cell X in the model, fix a surjective function gXm : {1, . . . ,m} →
X. Every point in M(X) is identified by its coordinates 〈k, l〉, where k, l ∈
{1, . . . ,m}. The world x ∈ X that corresponds to the point 〈k, l〉 in M(X) is
defined by f : {1, . . . ,m}2 → X as follows:15

f(〈k, l〉) = gXm(((k + l)mod m) + 1)

This way, every row k of M(X) is guaranteed to contain all members of X,
and likewise for every column l of M(X).

The second step in the construction from (16) consists in substituting the
new, “small” matrices for the cells in the matrix that corresponds to the original
model M i. Applied to the above example, this gives us a single 6 × 9 matrix
(Figure 5).

a a a b c b d d d
a a a c b c d d d
a a a b c b d d d

e f e g g g h i j
f e f g g g i j h
e f e g g g j h i

Fig. 5: A deterministic choice model.

This new matrix corresponds to a deterministic choice model: rows are again
the actions of one agent, columns are the actions of the other agent. The crucial

15 Where i, j ∈ N, i mod j is shorthand for “i modulo j”, i.e., the remainder after
division of i by j.



point to note is that, as far as the effectivity of both agents is concerned, M i

and Md are equivalent, that is, they validate exactly the same formulas in L−N .
Only the effectivity of the grand coalition N is affected.

To see how this new matrix can be accurately defined, we first need to explain
how worlds in Md are defined. For the two-agent case, the worlds in Md are
defined by (a) an indexX that refers to a cell inM i, and (b) the coordinates k, l ∈
{1, . . . ,m} that specify a point in M(X). Two worlds 〈X, k, l〉 and 〈X ′, k′, l′〉 are
connected for agent 1, iff (a) the cells X and X ′ are included in a single choice
Y ∈ Choice1(M i), and (b) k = k′. Analogously, the new choices of the second
agent are defined in terms of Choice2(M i) and the indexes l, l′ of the new worlds.

Even though it does the job, the matrix depicted in Figure 5 is somewhat
large for our purposes: e.g. the third row is superfluous, since it is identical to
the first row. Still, the advantage of this construction is that it can easily be
generalized to models with n agents. Just as for 2 agents, every cell X in a game
for n agents can be replaced with a new, n-dimensional matrix. This is exactly
what happens in the proof to which we now turn.

4 Product Construction, Finite Case

In this section and the next one, we prove our main results. In the current section,
we will consider the case where M i is finite and construct an L−N -equivalent,
deterministic and finite model Md from it. In the next section we consider the
case where M i is infinite; using a slightly more complex construction, we con-
struct an L−N -equivalent deterministic model Md from M i. For reasons that
will be explained in Section 5, the second type of construction will always ren-
der an infinite model Md, even when M i is finite. Hence, the proof in the present
section is not just a special case of the one from the next section.

Recall that we hold the number n of agents fixed in this paper; the construc-
tion of Md will depend in part on this number (see Definition 8). We first lift
the equivalence relations ∼i

j to relations ≈i
j between the cells in M i:

Definition 7. Where X,Y ∈ ChoiceN (M i): X ≈i
j Y iff for every x ∈ X and

every y ∈ Y it holds that x ∼i
j y.

Each of the following can be easily verified:

Proposition 1. X ≈i
j Y iff there are x ∈ X and y ∈ Y such that x ∼i

j y.

Proposition 2. ≈i
j is an equivalence relation.

Definition 8. Let M i = 〈W i, 〈∼i
j〉j∈N , V i〉 be a finite indeterministic choice

model. Let m be the number of worlds in the cell in ChoiceN (M i) with the
highest cardinality. For every X ∈ ChoiceN (M i), fix a surjective function gXm :
{1, . . . ,m} → X. Where X ∈ ChoiceN (M i) and k1, . . . , kn ∈ {1, . . . ,m}, let

f(〈X, k1, . . . , kn〉) = gXm(((k1 + . . .+ kn)mod m) + 1)



The model Md = 〈W d, 〈∼d
j 〉j∈N , V d〉 is defined as follows:

W d = {〈X, k1, . . . , kn〉 : X ∈ ChoiceN (M i) and {k1, . . . , kn} ⊆ {1, . . . ,m}}
∼d

j = {(〈X, k1, . . . , kn〉, 〈Y, l1, . . . , ln〉) ∈ (W d)2 : X ≈i
j Y and kj = lj}

V d(p) = {〈X, k1, . . . , kn〉 ∈W d : f(〈X, k1, . . . , kn〉) ∈ V i(p)}.

We first make two basic observations about the set W d as given by Definition
8. The proofs are safely left to the reader.

Proposition 3. f : W d →W i is onto.

If X is a set, let card(X) denote the number of elements in X.16

Proposition 4. card(W d) = mn × card(ChoiceN (M i)). Hence, Md is finite.

Theorem 3. Md is a deterministic choice model.

Proof. We need to prove a number of things:

1. “W d 6= ∅.” Immediate, by Proposition 3 and since W i 6= ∅.
2. “Every ∼d

j is an equivalence relation.” Immediate in view of Proposition 2

and because of the definition of ∼d
j .

3. “Md satisfies Independence of Agents.” Let 〈Xj , k
j
1, . . . , k

j
n〉 ∈ W d for all

j ∈ N . We have to show that there is a 〈Y, l1, . . . , ln〉 ∈ W d such that for
all j ∈ N it holds that 〈Y, l1, . . . , ln〉 ∼d

j 〈Xj , k
j
1, . . . , k

j
n〉. First, set lj = kjj

for all j ∈ N . Second, fix an arbitrary xj ∈ Xj for all j ∈ N . Because of
Independence of Agents for M i, there is a y ∈ W i such that xj ∼i

j y for all

j ∈ N . Let Y be the cell Y ∈ ChoiceN (M i) that contains y. Then, because
of Proposition 1, it must be that Y ≈i

j Xj for all j ∈ N . By the definition

of W d, it must be that 〈Y, l1, . . . , ln〉 ∈W d. By the definition of ∼d
j , it must

be that 〈Y, l1, . . . , ln〉 ∼d
j 〈Xj , k

j
1, . . . , k

j
n〉 for all j ∈ N . Hence, Md satisfies

Independence of Agents.
4. “∼d

N is the identity relation over W d.” Suppose that 〈X, k1, . . . , kn〉 ∼d
N

〈Y, l1, . . . , ln〉. Hence, 〈X, k1, . . . , kn〉 ∼d
j 〈Y, l1, . . . , ln〉 for all j ∈ N . Then

X,Y ∈ ChoiceN (M i) and for all j ∈ N both X ≈i
j Y and kj = lj . Hence it

must be that (a) 〈k1, . . . , kn〉 = 〈l1, . . . , ln〉. Because X ≈i
j Y for all j ∈ N ,

it must be that for all j ∈ N and for all x ∈ X and all y ∈ Y it holds that
x ∼i

j y. Hence, for all x ∈ X and all y ∈ Y it holds that x ∼i
N y. Because

X,Y ∈ ChoiceN (M i), it must be that (b) X = Y . From (a) and (b) we
conclude that 〈X, k1, . . . , kn〉 = 〈Y, l1, . . . , ln〉.

By (i)-(iv), Md is a deterministic choice model. 2

Theorem 4. f is a bounded morphism from Md to M i in L−N , i.e.:

1. f is onto.

16 Note that we apply the card function both to finite and infinite (even uncountable)
sets.



2. For all w,w′ ∈ W d and all non-empty G ⊂ N : if w ∼d
G w′, then f(w) ∼i

G

f(w′)
3. For all u ∈ W d, all non-empty G ⊂ N , and all y ∈ W i: if f(u) ∼i

G y, then
there is a v ∈W d such that f(v) = y and u ∼d

G v.
4. For all w ∈W d and p ∈ P: w ∈ V d(p) iff f(w) ∈ V i(p).

Proof. Ad 1. This is Proposition 3.
Ad 2. Let w = 〈X, k1, . . . , kn〉 and w′ = 〈Y, l1, . . . , ln〉 be arbitrary members of
W d, and suppose that w ∼d

G w′. Let f(w) = x and f(w′) = y. It follows that
x ∈ X, y ∈ Y , and for all j ∈ G, X ≈i

j Y . By Definition 7, for all j ∈ G, x ∼i
j y.

Hence, x ∼i
G y.

Ad 3. Suppose the antecedent holds for u = 〈X, k1, . . . , kn〉. Note that f(u) ∈ X.
Let Y ∈ ChoiceN (M i) be such that y ∈ Y . By Proposition 1 and the supposition,
(†) for all j ∈ G, X ≈i

j Y . Fix a t ∈ N − G. For all j ∈ N − {t}, let lj = kj .

Let lt ∈ {1, . . . ,m} be such that gXm(((l1 + . . . + ln)mod m) + 1) = y. It is a
matter of basic arithmetic to check that there is indeed such an lt. Let now v =
〈Y, l1, . . . , ln〉. It follows that f(v) = y. By (†) and in view of the construction,
u ∼d

j v for all j ∈ G. Hence, u ∼d
G v.

Ad 4. Immediate in view of the definition of V d. 2

It is well-known that, whenever there is a bounded morphism between two
models M and M ′, then these models are pointwise equivalent – see e.g. (2,
Proposition 2.14). Hence, Theorem 4 gives us:

Corollary 2. For all ϕ ∈ L−N and all w ∈W d: Md, w |= ϕ iff M i, f(w) |= ϕ.

5 Product Construction, Infinite Case

The proof in Section 4 makes essential use of the upper bound m on the cardinal-
ity of each X ∈ ChoiceN (M i). As a result, we can apply well-known arithmetic
techniques to construct the n-dimensional matrices that form the core of the
construction of Md. For the infinite case, a slightly different construction is
needed.

The idea behind Definition 9 below can be explained as follows. In every
world u ∈W d, each of the agents gets to choose exactly one world from W i, and
one natural number k ∈ N. The output for this world, given by f , depends on
the one hand on the index X, on the other hand, on which agent t ∈ N chose
the highest number kt ∈ N, and the world wt that this agent t chose.

We first introduce some more notation. Where x = 〈x1, . . . , xk〉 is a k-tuple
and 1 ≤ j ≤ k, let πj(x) = xj . Where X ⊂ N is a finite set of natural numbers,
let max<(X) denote the largest element in X.

Definition 9. Let M i = 〈W i, 〈∼i
j〉j∈N , V i〉 be an infinite indeterministic choice

model. For every X ∈ ChoiceN (M i), fix a surjective function gX : W i → X.17

Where X ∈ ChoiceN (M i), w1, . . . , wn ∈W i, and k1, . . . , kn ∈ N, let

17 Since X ⊆W i, it can be easily verified that there is at least one such function gX .



f(〈X, 〈w1, k1〉, . . . , 〈wn, kn〉〉) = gX(wl)

where l ∈ {1, . . . , n} is the smallest natural number such that kl = max<{k1, . . . , kn}.
The model Md = 〈W d, 〈∼d

j 〉j∈N , V d〉 is defined as follows:

W d = {〈X, 〈w1, k1〉, . . . , 〈wn, kn〉〉 : X ∈ ChoiceN (M i), w1, . . . , wn ∈W i, and
k1, . . . , kn ∈ N}

∼d
j = {(〈X, ε〉, 〈Y, ε′〉) ∈ (W d)2 : X ≈i

j Y and πj(ε) = πj(ε′)}
V d(p) = {w ∈W d : f(w) ∈ V i(p)}.

Note that we use ε, ε′, . . . as metavariables for tuples of the form 〈〈w1, k1〉, . . . ,
〈wn, kn〉〉 that are part of a larger tuple w ∈W d.

Theorem 5. Md is a deterministic choice model.

Proof. We need to prove a number of things:

1. “W d 6= ∅.” Since W i 6= ∅, also ChoiceN (M i) 6= ∅. By Definition 9, W d 6= ∅.
2. “Every ∼d

j is an equivalence relation.” Immediate in view of Proposition 2
and by Definition 9.

3. “Md satisfies Independence of Agents.” Consider arbitrary w1, . . . , wn ∈W d,
where each wj = 〈Xj , 〈wj

1, k
j
1〉, . . . , 〈wj

n, k
j
n〉〉. Fix an arbitrary xj ∈ Xj for

all j ∈ N . Because of Independence of Agents for M i, there is a y ∈ W i

such that xj ∼i
j y for all j ∈ N . Let Y be the cell Y ∈ ChoiceN (M i) that

contains y. Then, because of Proposition 1, it must be that (a) Y ≈i
j Xj

for all j ∈ N . Let w′ = 〈Y, ε〉 = 〈Y, 〈w1
1, k

1
1〉, . . . , 〈wn

n, k
n
n〉〉. By (a) and the

definition of ∼d
j , for all j ∈ N , wj ∼d

j w
′.

4. “∼d
N is the identity relation over W d.” Suppose that 〈X, ε〉 ∼d

N 〈Y, ε′〉. Then,
for all j ∈ N , πj(ε) = πj(ε′) and hence (a) ε = ε′. Because X ≈i

j Y for all
j ∈ N , it must be that for all j ∈ N and for all x ∈ X and all y ∈ Y it
holds that x ∼i

j y. Hence, for all x ∈ X and all y ∈ Y it holds that x ∼i
N y.

Because X,Y ∈ ChoiceN (M i), it must be that (b) X = Y . From (a) and (b)
we conclude that 〈X, ε〉 = 〈Y, ε′〉.

By (i)-(iv), Md is a deterministic choice model. 2

Theorem 6. f is a bounded morphism from Md to M i in L−N , i.e.:

1. f is onto.

2. For all w,w′ ∈ W d and all non-empty G ⊂ N : if w ∼d
G w′, then f(w) ∼i

G

f(w′)

3. Where u ∈ W d, G ⊂ N , and f(u) ∼i
G y for a y ∈ W i: there is a v ∈ W d

such that f(v) = y and u ∼d
G v.

4. For all w ∈W d and p ∈ P: w ∈ V d(p) iff f(w) ∈ V i(p).



Proof. Ad 1. Let x ∈W i be arbitrary. LetX ∈ ChoiceN (M i) be such that x ∈ X.
Let y ∈ W i be such that gX(y) = x. Finally, let u = 〈X, 〈y, 1〉, . . . , 〈y, 1〉〉 be a
sequence of length n+ 1. Note that u ∈W d. Moreover, f(u) = gX(y) = x.
Ad 2. Analogous to the proof of Theorem 4.3.
Ad 3. Suppose the antecedent holds for u = 〈X, 〈w1, k1〉, . . . , 〈wn, kn〉〉. Note
that f(u) ∈ X. Let Y ∈ ChoiceN (M i) be such that y ∈ Y . Note that, by
the supposition, (†) for all j ∈ G, X ≈i

j Y . Fix a t ∈ N − G. For all j ∈
N − {t}, let w′j = wj and lj = kj . Let lt be an arbitrary natural number

such that lt > lj for all j ∈ N − {t}. Fix w′t ∈ Y such that gY (w′t) = y. Let
v = 〈Y, 〈w′1, l1〉, . . . , 〈w′n, ln〉〉. It follows that f(v) = gY (w′t) = y. By (†) and in
view of the construction, u ∼d

j v for all j ∈ G, and hence u ∼d
G v.

Ad 4. Immediate in view of the definition of V d. 2

It is useful, at this point, to check how we can cut down the size of W d

given certain restrictions on M i. One can e.g. easily observe that, if there is a
Y ∈ ChoiceN (M i) such that, for all Z ∈ ChoiceN (M i), card(Y ) ≥ card(Z), then
we can replace W i with Y in the definition of gX and W d.

A natural follow-up question is: what if W i is finite? Can we construct one
proof that works for both finite and infinite models M i, and that guarantees
that the constructed model Md is finite whenever M i is finite? Note that the
change that we proposed in the previous paragraph will not do to obtain such a
proof. That is, all the natural numbers can still be used for the indices k1, . . . , kn,
whence W d is bound to be infinite under the present construction. Moreover,
the complication with double indices 〈kj , wj〉 seems necessary in order to ensure
that, whatever all the other agents do, any given agent j ∈ N can still “enforce”
every world x ∈ X for a given cell X ∈ ChoiceN (M i), by choosing a yet higher
index kj and the world y ∈ Y with gX(y) = x.

6 Concluding Remarks

In this paper, we have shown that one can retrieve determinism without adding
“nature” as an agent. We generalized an earlier result by Van Benthem and
Pacuit (16), and showed that every indeterministic n-agent choice model is point-
wise equivalent to a deterministic n-agent choice model, as long as we ignore the
grand coalition. As a corollary, any (possibly infinite) choice model for n agents
can be translated into an L−N -equivalent normal game form for n agents, where
the latter is finite if the former is finite. Our result thus contributes to connecting
STIT logic and game theory more generally.

A number of questions should be answered in future work. Let us start with
the most technical ones. First, can we rephrase the proof for the infinite case in
such a way that it also covers the finite case, ensuring that Md is finite whenever
M i is? Second, what about STIT logic with infinitely (countably many) agents?
Here, the results appear to be mixed. If we only allow for finite groups in the
language, we can easily generalize the construction from Section 5. However, if
we allow for infinite groups G ⊂ N , this construction no longer does the job.



A different issue concerns the axiomatization of the logic we presented. Draw-
ing on earlier results from (8) and (16), it can be shown that the L−N -fragment
of the logic of deterministic choice models is isomorphic to the modal product
logic S5n. The latter logic is not decidable and cannot be finitely axiomatized
for n > 2, cf. (8). A non-standard axiomatization of S5n has been presented in
(17). It remains to be seen how this axiomatization can be extended to the full
language L which includes [N ].

There are various ways for retrieving (finite) axiomatizability, decidability
and acceptable complexity in the context of group STIT . First, one may restrict
the formal language. For instance, it was proven in (11, Section 3) that when
nesting of STIT operators is not allowed (i) the satisfiability problem becomes
decidable in non-deterministic polynomial time (Corollary 1, p. 821), and (ii)
the restricted logic becomes finitely axiomatizable (Corollary 2, p. 821).

Second, one may use different models to interpret the STIT language. Most
importantly, one may weaken the intersection property, which says that ∼G=⋂

j∈G ∼j , to the requirement of monotonic effectivity: if F ⊆ G, then ∼G⊆∼F .
It has been shown in (3) that complete logics are readily available for these
models, typically using Sahlqvist schemes (2).

A third route that was suggested in (16) is to give up the Independence
of Agency (IOA) condition. If one does not impose (IOA) on the models, one
obtains the non-deterministic counterpart of what Van Benthem and Pacuit call
general game models (15; 16). Let us call such models general choice models.
Note that in a general choice model, the choices of one agent may depend on
the choices of other agents. The logic of general choice models coincides with
the logic of distributed knowledge for arbitrary groups, which is known to be
finitely axiomatizable and decidable (6, Chapter 3). Now, as a matter of fact,
our proofs in the current paper do not rely on (IOA), except where we show
that the newly constructed model Md also satisfies (IOA). Hence, our results
reduce the problem of axiomatization of the logic of general game models to the
axiomatization of the logic of general choice models.
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and Dag Elgesem, editors, Deontic Logic in Computer Science - 11th
International Conference, pages 31–45. Springer, 2012.

[15] Johan van Benthem. Logic in Games. MIT Press, Cambridge, Mas-
sachusetts, 2014.

[16] Johan van Benthem and Eric Pacuit. Connecting Logic of Choice and
Change, volume 2 of Outstanding Contributions to Logic, chapter 14,
pages 291–314. Springer International Publishing, 2014.

[17] Yde Venema. Rectangular games. Journal of Symbolic Logic, 63(4):1549–
1564, 1998.


