
Tracing Unsolvability: A Mathematical,

Historical and Philosophical analysis with a

special focus on Tag Systems.

Liesbeth De Mol

ii

Thank You

Writing down the results of about three years of research has not only been an

intellectual but, maybe even more, an emotional struggle, that resulted in what

is now lying before the eyes of the reader. I would never have been able to do

the research I have been doing without the existence of several people. I would

like to thank all these people here.

First of all, I want to express my respect and gratitude towards my supervisor

prof. dr. E. Weber. I could not have wished a better supervisor. You believed in

me, and offered your help when necessary. Equally important, is the fact that

this research would literally not have been possible were it not for the fact that

you offered me a way out at a given time. The most valuable thing for me is free-

dom of thinking, and I almost lost this freedom and would thus haven given up

on this research, were it not for you.

Anthony, I will not spend many words describing why I mention you here, but

I think generosity was and still is the best way to describe what it is all about.

Thank you, just for being who you are.

My mother and father have been the most wonderful parents for me. Your sup-

port to me has been invaluable. But it is not only your support. More important

for me has been the way you have made me the person I am now. I could not

have wished for better parents! Steven, I know we didn’t make much time for

each other. Still, you have done your best to motivate me in your own typical

ways. I am looking forward to the dinner I owe you.

Tom, we share a rather strange history with each other. Although we have not

spent lots of time with each other the last few years, both working like hell, most

of the moments we were able to talk were, at least for me, very important: talk-

iii

iv THANK YOU

ing, laughing, babbling! I so much enjoy our conversations.

Julian, Renate, Michael, Alberto and all the others who were there: for me Math-

ematik für Kunstler has been such an important event during my research.

I think it only rarely happens that a significantly large group of people with

equally many backgrounds, are able to have so many rather intensive discus-

sions. For me, Hamburg was magic.

Lut, we know each other for so long now. The way you are capable of approach-

ing scientific research in your own creative ways is very inspiring for me! I am

looking forward to our next beer at the “Geitenboer”!

I am very much indebted to the people at the Center for logic and philosophy

of science. Prof. dr. D. Batens and Prof. dr. J. Meheus, together with Prof. dr.

E. Weber, I want to thank all three of you for the way you have welcomed and

accepted me in the research group. Leen and Hans, you supported me when I

had my crash-down during the last weeks of finishing this dissertation. Thank

you for that! Peter, thank you for having taken the time to discuss with me some

matters related to tag systems. Stephan, I think you are actually a great philoso-

pher and our discussions have been valuable to me. Tim and Nel, you helped

me at a time I really needed help. I am still very grateful for your support during

that time.

Daniel, I so much enjoy our conversations late in the night, with a bottle of wine

and lots of cigarettes. Thank you for your support. May the Nietzscheans learn

some realism from your dissertation!

Prof. dr. M. Davis, I don’t think you have been aware of how important a role

you have played for me during the last 1.5 years of my research. After my first

encounters with you, I better understood that one should be extremely careful

in approaching certain parts of mathematics from a more philosophical point

of view. The comments you have given me, showed me that I was actually too

careless about certain things, and in having abstracted from these comments

they have served as a kind of advise I often thought about in writing the disser-

tation.

Prof. dr. K. Kirby, I want to thank you here for our delay-discussions on the

facing the computer topic. I am still glad I pushed the button that one evening

and am very much looking forward to our future correspondences.

v

I also would like to thank the five readers of this dissertation, Prof. dr. D. Batens,

Prof. dr. M. Davis, Prof. dr. M. Margenstern, Prof. dr. J.P. van Bendegem and

Prof. dr. E. Weber, for being prepared to read this “behemoth” of a dissertation.

I really do hope you’ll enjoy it in some way.

I know some people will laugh about it, but I think my cats deserve mention

here. They are fat and lazy, but they managed to distract me for now and then

from my research, in a way no human could.

Maarten, to sum up all the reasons why you are mentioned here, would ask for

a rather lengthy text. Thank you for all the things that would be on this list. All I

can say is that this thing between you and me surpasses any bond I could think

of before meeting you, even that with tag systems (hihihi).

vi THANK YOU

Contents

Thank You iii

1 Introduction 3

1.1 Undecidability everywhere? . 3

1.2 And now for something completely different? 4

1.2.1 Computability and “Computability” 5

1.2.2 Diagonalization and Reducibility 7

1.3 Questioning unsolvability. 8

1.4 General Outline and research Questions 10

1.4.1 Short Description of the chapters. 11

1.5 A small note to the reader. 18

I Re-Tracing 21

2 The Beginnings 25

2.1 General Background . 26

2.2 From solvability to unsolvability . 35

2.2.1 Introduction . 35

2.2.2 Focus on Form . 41

2.2.3 The Problem of “Tag”. 47

2.2.4 Further reductions: From tag systems to Post’s thesis 53

2.2.5 Conclusion . 64

2.3 “To deny what seems intuitively natural” 67

2.3.1 Introduction . 67

vii

viii CONTENTS

2.3.2 Towards variant systems of logic. 70

2.3.3 An Inconsistent Set of Postulates 74

2.3.4 λ - The Ultimate Operator . 78

2.4 From typewriters to universal computing machines 95

2.4.1 Introduction . 95

2.4.2 Typewriters and “Little wonders” 96

2.4.3 The central limit theorem . 97

2.4.4 Newmann’s course on the foundations of mathematics . . 100

2.5 Conclusion . 100

3 1936 103

3.1 Different questions, different answers. 105

3.1.1 “An Unsolvable Problem of Elementary Number Theory” . 105

3.1.2 “On computable numbers, with an application to the Entschei-

dungsproblem” . 112

3.1.3 “Finite Combinatory processes. formulation 1” 126

3.2 On the status of the identification 138

3.2.1 Church’s reviews of Post’s and Turing’s paper 139

3.2.2 On the adequacy of Turing’s identification: From defini-

tion to theorem. 142

3.2.3 The identification as (hypo)thesis or law. 147

3.2.4 Some further developments. 159

3.3 Strategies against intuition. 163

3.3.1 The thesis as a definition. On the significance of using the

right formalism for the development of the theory. 167

3.3.2 Different intuitions, different formalisms 169

3.3.3 “Testing in practice”: Studying formalisms instead of intu-

itions . 170

3.3.4 Can we trust our intuition? 171

4 The computer. 175

4.1 The first computers . 178

4.1.1 The ENIAC and the EDVAC 180

CONTENTS ix

4.1.2 Alan Turing’s work on computers and programming 199

4.1.3 Zuse’s Z1, Z2, Z3, Z4 and Plankalkül 208

4.1.4 Conclusion. 219

4.2 Exploring the “universe of discourse” 222

4.2.1 von Neumann and theoretical physics. 225

4.2.2 Lehmer’s computational work on number theory. 231

4.2.3 Conclusion . 237

4.3 Going beyond or not beyond the Turing limit? 240

4.3.1 On the practical feasibility of the computable: Computa-

tional Complexity Theory. 240

4.3.2 The land of Tor’bled-nam. To solve the unsolvable. 246

4.3.3 Conclusion . 256

4.4 Conclusion. 260

II Tagging 263

5 Why Tag systems? 267

6 Preliminaries 273

6.1 Discussion of published results on tag systems. 274

6.1.1 General Theoretical results 274

6.1.2 “Tag – you are it”: Some concrete research on tag systems. . 292

6.1.3 Conclusion . 304

6.2 General classes of behaviour in tag systems 305

6.2.1 Description of classes of behaviour 305

6.2.2 “Unpredictable iterations.” 308

6.2.3 Classes of behaviour and the two forms of the problem of

“tag”. 310

6.2.4 Conclusion . 312

6.3 Shifting through tags . 313

6.3.1 An example of a solvable tag system. 313

6.3.2 Generalization of the example. 319

x CONTENTS

7 Constraints for intractable behaviour 323

7.1 Introduction . 323

7.2 Notational Conventions . 326

7.3 Description of the Constraints . 326

7.3.1 Constraint 1: Post’s condition 327

7.3.2 Constraint 2: The Wang condition 327

7.3.3 Constraint 3. Proportions between #ai 328

7.3.4 Constraint 4. The table method. 333

7.3.5 Constraint 5. On the number of iterations. 338

7.4 Generating intractable tag systems 342

7.4.1 Algorithm 1: Two-symbolic tag systems, v − lw0 = lw1 − v . . 342

7.4.2 Algorithm 2: Two-symbolic tag systems, v − lw0 6= lw1 − v . . 347

8 Playing with Tag Systems 353

8.1 Purpose of the chapter . 355

8.2 Some further restrictions . 356

8.2.1 On the programming language used. 356

8.2.2 Size of Sample space vs. computation time 357

8.2.3 Focus on 2-symbolic tag systems 358

8.3 Experiment 1 . 361

8.3.1 Set-up of experiment 1 . 361

8.3.2 Discussion of the results . 364

8.4 Experiment 2 . 376

8.4.1 Set-up of experiment 2 . 380

8.4.2 Discussion of the results . 382

8.5 Experiments 3–6: Summary of the results. 404

8.5.1 Experiment 3 . 405

8.5.2 Experiment 4 . 405

8.5.3 Experiment 5 . 406

8.5.4 Experiment 6 . 406

8.6 Conclusion . 407

CONTENTS xi

9 Universality and Unsolvability in Tag Systems 409

9.1 Why are (small) universal machines interesting? 411

9.1.1 Size and definition of universal machines. 412

9.1.2 Small universal machines: an overview. 416

9.2 Why are (small) universal systems not interesting? 418

9.2.1 Minsky’s 4-symbol, 7-state machine. 423

9.2.2 Generating a universal tag system. 434

9.2.3 Conclusion . 449

9.3 Studying the “universe of discourse” 450

9.3.1 The Busy Beaver Game . 451

9.3.2 Busy Beavers and Collatz-like Problems 463

9.3.3 On the “universality” of cellular automaton rule 110. 471

9.3.4 Conclusion . 478

9.4 Solvability and Unsolvability in Tag systems 479

9.4.1 Tag systems and Collatz-like problems 480

9.4.2 Solvability of the class µ= v = 2. 487

9.4.3 Universality in tag systems. 517

9.4.4 Discussion on the limits of solvability and unsolvability in

tag systems . 542

9.5 Conclusion. 547

10 Conclusion. Tracing Unsolvability 549

A. Algorithm 3 for generating Tag Systems: N-ary tag systems. 557

B. Plots from Experiment 1 559

C. Detailed Description of Four experiments on Tag Systems 587

xii CONTENTS

CONTENTS 1

[...] the creativeness of human mathematics has a counterpart inescapable lim-

itation thereof – witness the absolutely unsolvable (combinatory) problems. In-

deed, with the bubble of symbolic logic as universal logical machine finally burst,

a new future dawns for it as the indispensable means for revealing and develop-

ing those limitations. For [...] Symbolic Logic may be said to be Mathematics

become self-conscious.

Emil L. Post, 1920–21.1

Much of modern mathematics is being developed in terms of what can be proved

by general methods rather than in terms os what really exists in the universe of

discourse. Many a young Ph.D. student in mathematics has written his disserta-

tion about a class of objects without ever having seen one of the objects at close

range. There exists a distinct possibility that the new machines will be used in

some cases to explore the terrain that has been staked out so freely and that

something worth proving will be discovered in the rapidly expanding universe

of mathematics.

Derrick H. Lehmer, 1951.2

The entscheidungsproblem does have practical importance in addition to it’s

philosophical significance. Mathematical proof is a codification of more general

human reasoning. An automatic theorem prover would have wide application

within computer science, if it operated efficiently enough. Even though this is

hopeless in general, there may be important special cases which are solvable.

It would be nice if Church’s or Turing’s proofs gave us some information about

where the easier cases might lie. Unfortunately, their arguments rest on “self-

reference,” a contrived phenomenon which never appears spontaneously. This

does not tell us what makes the problem hard in interesting cases.

Michael Sipser, 1992, 1951.3

1From [Pos65], footnote 12, p. 343
2From [Leh51], p. 146
3From [Sip92], p. 603

2 CONTENTS

Chapter 1

Introduction

1.1 Undecidability everywhere?

“es schneit” ist eine wahre Aussage dann und nur dann, wenn es schneit1

When does one state of a problem that it is undecidable? In everyday life one

is undecided if one is not sure about something. You can doubt about the most

divergent things, from what one will eat this evening to the more fundamental

problems of life itself related to jobs, friends,... The reasons for not being able

to make a decision and thus resolve the doubt can be very different. If the more

fundamental decisions of life are involved, one of the main reasons for not be-

ing able to make such a decision is on the one hand a lack of all the relevant

information, and on the other hand, the incapability of foreseeing all the pos-

sible consequences in all their details given a certain decision.

Doubt and the related problem of making decisions, is one of the leading mo-

tives in the history of Western philosophy, with one of the most famous texts

being Descartes’ Méditations Métaphysiques [Des47]. Starting from the prob-

lem of doubt, one of his main conclusions is the fact that mathematics is the

only branch of human knowledge which is undoubtable, containing truths so

obvious in every circumstance you can think of (like the fact that 3 + 2 will al-

ways equal 5) that it cannot be the subject of uncertainty or mistakes, let alone

1[Tar35], p. 453

3

4 CHAPTER 1. INTRODUCTION

undecidability ([Des47], p. 38):

C’est pourquoi peut-être que de là nous ne conclurons pas mal, si nous dis-

ons que la physique, l’astronomie, la médicine, et toutes les autres sciences qui

dépendent de la considération des choses composées, sont fort douteuses et in-

certaines; mais que l’arithmé-tique, la géometrie, et les autres sciences de cette

nature, qui ne traitent que des choses fort simples et fort générales, sans se met-

tre beaucoup en peine si elles sont dans la nature, ou si elles n’y sont pas, con-

tiennent quelque chose de certain et d’indubitable. Car, soit que je veille ou

que je dorme, deux et trois joints ensemble formeront toujours le nombre de

cinq, et le carré n’aura jamais plus de quatre côtés; et il ne semble pas possible

que des vérités si apparantes puissent être soupçonnées d’aucune fausseté ou

d’incertitude.

Since Descartes wrote this beautiful text, mathematics has changed a lot. It is

no longer absolutely true that 3+2 = 5, depending as it does on the mathemat-

ical framework you are working in.2 The grown understanding of a mathemat-

ical truth being defined relative to a certain framework however, is not the only

reason for these words by Descartes to sound rather naive. About four centuries

after the publication of this text it would be proven that there is undecidability

at the very heart of mathematics – its foundations.

Here one of course does not speak of undecidability in terms of its everyday

meaning since exact mathematical results are involved. Instead one uses unde-

cidable propositions and unsolvable decision problems. Contrary to the every-

day use of “doubt” and “undecidedness” these concepts have been defined for-

mally and thus don’t seem to allow for any doubt as far as their meaning is con-

cerned.

1.2 And now for something completely different?

What do we mean exactly in stating that a certain mathematical system is un-

decidable? There are two possible answers: it can be the case that the formal-

ism considered has an unsolvable decision problem or there exist undecidable

2When working with modulo arithmetic, 3 + 2 can e.g. become 1, with a modulus 4.

1.2. AND NOW FOR SOMETHING COMPLETELY DIFFERENT? 5

propositions for the formalism (it is incomplete). Here focus will not be put on

undecidable propositions but on unsolvable decision problems.3

But what exactly is an unsolvable decision problem? Does it mean that for cer-

tain mathematical problems, there is no way to make certain decisions or to

give a definite answer? In a sense yes, although one must be careful here: as

was stated before, we are dealing with mathematics, so in order to make clear

what is intended here, one must give precise and clear definitions of the con-

cepts involved. This was exactly the problem mathematicians were facing in

the late twenties and the early thirties.

In this section we will shortly look at the two pillars that made (and make) it

possible to prove certain decision problems unsolvable. First of all, one needs

a way to formally capture certain intuitive notions. Secondly, on acceptance of

the formalization of these notions, one implements specific methods to actu-

ally prove a certain decision problem unsolvable.

1.2.1 Computability and “Computability”

In their Grundzüge der theoretischen Logik, published in 1928, Hilbert and Ack-

erman gave the classic statement of what is now known as the Entscheidung-

sproblem ([AH28], p. 73):

The Entscheidungsproblem is solved if one knows a procedure which will permit

one to decide, using a finite number of operations, on the validity, respectively

the satisfiability of a given [first-order] logical expression.4

In 1936 Alonzo Church and Alan Turing [Chu36d, Chu36e, Tur37] indepen-

dently of each other proved that there exists no “finite procedure” that decides

3I am indebted to Martin Davis for drawing my attention to the significance of explicitly dif-

ferentiating between unsolvable decision problems and undecidable propositions. In the liter-

ature one often uses the term “undecidability”, where it can both refer to undecidable propo-

sitions or unsolvable decision problems. Since this ‘habit’ can give rise to some confusion, it

should be pointed out here that every time the word “undecidability” is used, the author is

actually pointing at unsolvable decision problems unless stated otherwise.
4“Das Entscheidungsproblem is gelöst, wenn man ein Verfahren kennt, das bei einem

vorgelegten logischen Ausdruck durch endlich viele Operationen die Entscheidung über die All-

gemeingülltigkeit bzw. Erfüllbarkeit erlaubt.” Translation to English from [Gan88].

6 CHAPTER 1. INTRODUCTION

for any given formula in first-order predicate calculus whether it is deducible

within this calculus. This result together with Gödel’s completeness theorem

[Göd30] implies the negative answer to the Entscheidungsproblem in its above

formulation.5 But what does one exactly mean with an “effective finite decision

procedure”? What is meant if one states of a problem that it is “(un)solvable by

finite means”?

In order to prove the Entscheidungsproblem unsolvable, one first had to find a

mathematically satisfying answer to these questions. One needed formalisms

that can be considered as proper formalizations of certain intuitive concepts.

This was done by Church [Chu36c], Post [Pos36]6 and Turing [Tur37]. Each pro-

posed their formal equivalent of intuitive notions such as effective calculability

(due to Church), computability (due to Turing), generated set (due to Post) and

solvability (due to Post) – formalisms which were shown to be equivalent to

each other. The Entscheidungsproblem could now be proven unsolvable since

the identification between the intuitive notion of a procedure solving a prob-

lem in a finite number of steps with certain mathematical forms was considered

satisfactory.

The question posed at the beginning of this section can now be answered: an

unsolvable decision problem is a general mathematical problem for which there

exists no formalism, equivalent to those considered to be able to compute any-

thing which is intuitively computable, that can be used to effectively solve each

case of the problem in a finite number of steps – it is a non-computable prob-

lem. The unsolvability of decision problems like the Entscheidungsproblem

however, is merely valid in as far as one accepts the identification between

the intuitive notions and the respective formalisms, i.e., if one accepts “theses”

such as those proposed by Church, Post and Turing. In the remainder of this

5While the classic formulation of the Entscheidungsproblem indeed refers to validity and

satisfiability, these terms are normally not involved in the statement of other decision prob-

lems. A general form of decision problems is usually something like: Does there exist a finite

procedure to decide for an arbitrary x, whether y is yes/no the case for x within a certain formal

system (e.g. to decide whether an arbitrary formula (x) in first-order predicate logic is yes/no

provable (y)).
6It should be noted however that Post did not prove the Entscheidungsproblem unsolvable

(See Sec. 2.2.4).

1.2. AND NOW FOR SOMETHING COMPLETELY DIFFERENT? 7

text we will use the concept of computability to cover the cluster of intuitive

notions captured by the several different formalisms. Still, the reader should

always be aware that “computability” is merely one of the intuitive notions.

1.2.2 Diagonalization and Reducibility

To prove a certain decision problem unsolvable one needs more than a well-

argued correspondence between an intuitive notion and a formalism. There

are two basic methods used in this context, the first being necessary for the

second to work.

The first proofs by Church, Post and Turing that show certain decision problems

unsolvable (relative to their respective formalisms) all rely on some variant of

a Cantorian diagonalization.7 Basically, this method can be used to prove for

certain infinite lists of letter or number sequences, that there exist sequences

that are not part of the list.

After the first unsolvable decision problems had been proven to exist, the for-

malisms they are rooted in could in their turn be used to prove the unsolvabil-

ity of (further removed) decision problems. This is done by reducing a known

unsolvable decision problem (call it A) to the problem one wants to prove un-

solvable (called B). This comes down to finding a method for translating A into

B, i.e. one must show that any specific instance of A can be reduced to a spe-

cific instance of B. For example, as Turing showed, any Turing machine can be

expressed in first-order predicate calculus. Based on the unsolvability of the

printing problem, i.e., the problem to determine for any given Turing machine

whether it will ever print a given symbol, he could then show that the Entschei-

dungsproblem is unsolvable.

Although diagonalization lies at the basis of the majority of unsolvable decision

problems, reducing one problem to another has become the standard method.

7Diagonalization was first used by Georg Cantor to prove that there are, in a way, differ-

ent kinds of infinite sequences – the infinite sequence of natural numbers being merely a first

step up to the transfinite. While Cantor had already proven in 1874 that there are, in a cer-

tain well-defined way, more real numbers than there are natural numbers [Can74], he gave an

alternative, shorter proof in 1891 [Can91], using diagonalization.

8 CHAPTER 1. INTRODUCTION

Nowadays hundreds of decision problems have been proven unsolvable in sev-

eral branches of mathematics and computer science most of them being (di-

rectly or indirectly) rooted in the problems shown to be unsolvable by Church,

Post and Turing.

1.3 Questioning unsolvability.

As was said, Post, Church and Turing were among the first to prove that there

exist certain unsolvable decision problems. They first defined certain formalisms

considered capable to capture the intuitive notion of a “computation”, and then

used some kind of method of diagonalization to complete the proof. From the

first moments I read those proofs, I felt thrilled and dissatisfied at one and the

same time.

On the one hand I loved almost every aspect of the constructions and methods

leading to the proofs. On the other hand I could not get rid of the idea that the

link between the general unsolvability of a whole class of systems and (the ac-

tual execution of a) specific instance from this general class, is not clear from

the proofs, at least not on an intuitive level. Of course, there is such a link, since

the fact that we are confronted with a class of systems for which their exists no

algorithm to solve every instance of a certain decision problem for that class

implies that there must exist specific instances for which we can in no way find

e.g. a Turing machine that will decide its halting problem. Still, going from

proving a class of systems unsolvable by diagonalization over an infinite list, to

proving a specific instance from that class to have an unsolvable decision prob-

lem or to prove it solvable is a non-trivial step.

The first most obvious way to study this link between the general unsolvability

of a problem and (the execution of) specific instances, is given by the thing we

can hardly live without nowadays: the computer. It is, in the end, a physical

realization of the intuitive notions it is all about here. Furthermore, given the

intractability one is confronted with in executing particular computational sys-

tems, the computer is the perfect tool to study the properties of the systems it

is the physical realization of, on the executional level.

1.3. QUESTIONING UNSOLVABILITY. 9

My first experiences with computers were rather negative, and up to some years

ago I even intensively hated and despised them, trying to avoid them where

possible. But then I started to program. Even the famous first “hello world” ex-

ercise thrilled me, an excitement heavily influenced by my recent explorations

of Martin Heidegger’s philosophy. “From that day on, I became overnight a

supporter of computers.”.8 The thing I liked so much about programming is

that I became much more aware of the reciprocal communication process that

is constantly “running” while I am doing something with my computer. Even

now, is I am writing this text, there is a double translation going on, between me

hitting buttons, and my computer translating them back into a visual output

understandable by me, the method behind these translations being basically

the same as the one mentioned in the previous section, of reducing problem A

to B.

One of the first things I did with my computer when I learned to program, was

to simply test out several kinds of specific instances of classes of computational

systems shown to be equivalent to Turing machines. I explored many of these

systems, by simply changing several parameters, visualizing the output in some

or the other primitive way on my monitor, seeing what effect changing a para-

meter has on the behaviour of the system,... For some reason I began to ex-

periment more and more with one specific class of such systems called tag sys-

tems, due to Emil Post who invented them in 1921 [Pos65]. It are these systems

which, for me, clearly exposed the link between the theory of unsolvable deci-

sion problems and the “discourse” of the systems it is based on. As will become

clear later, they began to dominate my whole research.

One of the typical features of tag systems is that they seem to have no clear link

with our intuitive notion of computability. In this respect tag systems are not at

all “good” formalizations of this intuitive notion. Still, since they can “compute”

anything computable by Turing machines they are, from a theoretical point of

8This is a kind of silly annotation of a quote by Kleene, explaining his first reaction when

Church mentioned his thesis to him: “When Church proposed his thesis, I sat down to disprove

it by diagonalization out of the class of the λ-definable functions. But, quickly realizing that

the diagonalization cannot be done effectively, I became overnight a supporter of the thesis.”

([Kle81a], p. 59)

10 CHAPTER 1. INTRODUCTION

view, equally suitable formalizations. It was this observation, strengthened by

me having worked (a bit) with several different kinds of formalisms, that led me

to the conclusion that, while the identification between “computability” and

computability is basic to any proof of an unsolvable decision problem, one

should be careful in fixing one such identification as being the best one. Al-

though I do not want to doubt Turing’s thesis, or any other equivalent version, it

will be argued here that it is important not to necessarily doubt the formalisms,

but to challenge our intuitions. And it is often in looking at the execution of

such systems that this intuition can be changed.

1.4 General Outline and research Questions

As is clear from the previous, this dissertation never started from one specific

research question, but rather from a general fascination with unsolvable deci-

sion problems, giving rise to many questions. Some of these will be answered

here, others won’t. The general purpose of this dissertation is triple.

First of all, this dissertation wants to trace back the origin of the first proofs

of unsolvable decision problems and the formulation of several (theoretically

equivalent) theses, in the work of Emil Post, Alonzo Church and Alan Turing. It

will then be shown how the theoretical developments induced by these (and of

course some other) authors is related to the rise of the computer, resulting in

new problems.

Besides this more historical analysis this dissertation also wants to offer new

results in the domain of computer science. In this respect an extensive part

will be added on tag systems. We will describe some results on tag systems, fo-

cussing on the significance of studying specific instances of tag systems for the

abstract results of unsolvability and the closely connected theses of identify-

ing the intuitive notion of computability with a given formalism. Although the

second part of this dissertation is rather extensive, we would like to warn the

reader that the research presented there is merely a start. Many of the results

that will be described should be regarded as initial results that are in need of

more research.

1.4. GENERAL OUTLINE AND RESEARCH QUESTIONS 11

The main purpose behind this dissertation though remains a philosophical one,

philosophy being understood here as a method to ask questions which do not

necessarily have a clear and exact answer (yet). The most obvious philosoph-

ical aspect of this dissertation is our questioning of the identification between

an intuitive notion and a mathematical form. Tracing the evolution of the sev-

eral forms of this identification through history, including its transformation

induced by the computer, it will be argued that, although finding a “convinc-

ing” such identification – one that has a “direct appeal to our intuition” – is very

basic, starting from formalisms that challenge the intuition is at least worth

more consideration, both from a mathematical as well as from a philosophical

point of view.

In general, I cannot but understand this research as being rooted in my philo-

sophical background. As was said before, although Heidegger will never be

mentioned here again, I know for myself that in a way his philosophy, or how

I understood it, formed the main trigger for me being fascinated with comput-

ers, computations and unsolvable decision problems.

Although I consider this dissertation as philosophical in nature, it is impor-

tant to stress here that the references to any philosophical literature will be

restricted to a minimum. This might sound contradictory, but it isn’t. From

the first beginning of this research, I made a choice to stay as far away from any

philosophical texts as possible. The ultimate challenge for me is to see how far

I could get philosophically in restricting myself to papers and books written by

logicians, mathematicians and computer scientists, complemented by my own

thoughts in reading these texts, and the implementation of these thoughts into

programs and forms. It is left to the reader whether I failed or succeeded in this

tricky business of combining mathematics with philosophy, in the way I tried

to do it.

1.4.1 Short Description of the chapters.

This dissertation will be subdivided into two main parts. The first part, called

Re-tracing, includes the analysis and discussion of some of the original pa-

pers by Church, Post and Turing in the context of unsolvable decision prob-

12 CHAPTER 1. INTRODUCTION

lems, as well as the connection between these theoretical results and the rise

of the computer. The results from this study will be linked to a more philo-

sophical discussion on the identification between “computability” and certain

formalisms.

The second part, called tagging, is the result of my research on tag systems.

The main purpose of this part is to emphasize the significance of studying spe-

cific (classes of) systems in the context of unsolvability. We will start this part

from the assumption that tag systems are particularly well-suited for this kind

of study because of their focus on form rather than interpretation.

Part I: re-tracing

The first two chapters of part I, focus on the work by Church, Post and Turing.

The third chapter will discuss the rise of the computer, the connection with its

theoretical counterparts, as well as its significance for certain developments in

the context of computability and unsolvability.

Chapter 2: The beginnings. An analysis of Church’s, Post’s and Turing’s work

before 1936. In this first chapter, the following questions will be answered:

How is the work preceding the unsolvability results by Post, Church and Turing

connected to their major results? How did they arrive at their results?

First of all, it should be noted that, although Post published a paper in 1936 in

which a formalism is described that is quasi-identical to Turing machines, he

already arrived at certain unsolvable decision problems in 1921. The analysis

of Turing’s work will be very short with respect to the other two analyses, since

he was only 24 when his 1936 paper [Tur37] was published.

Through the discussion of this earlier work, it will be shown that the way Church,

Post and to a lesser extent Turing arrived at their results, differs significantly.

Despite the ‘confluence of ideas’ in 1936,9 an inquiry into the work resulting

into this confluence shows that the systems and ideas then developed origi-

nated in work in which the equivalences are not that evident. Based on these

analyses, it will be argued that the actual use and execution of the respective

9As it was termed by Gandy in [Gan88].

1.4. GENERAL OUTLINE AND RESEARCH QUESTIONS 13

formalisms developed by Church and Post was an important factor for the for-

mulation of their theses. We will show that, for Church and Post, it was initially

not the theoretical question of finding a proper formalization of computability

to prove certain decision problems unsolvable that actually led them to their

results. Rather it were the results established about the systems they developed

that led them to the idea of such identification. This will be contrasted with

Turing’s work.

Chapter 3: 1936 In this chapter we will discuss the different theses as origi-

nally proposed by Church, Post and Turing. Focus will be put on the fact that,

despite the theoretical equivalences, there are some basic differences between

the theses proposed by each of these authors. In the first section, our start-

ing point will be the 1936 papers by Church, Post and Turing, as well as Post’s

posthumously published manuscript [Pos65]. We will describe and discuss their

several theses as originally put forward, as well as the arguments they each con-

sidered important for supporting their theses. Starting from the reviews Church

wrote on Post’s rsp. Turing’s paper, we will then show in a next section that the

significance one attaches to certain of the arguments underlying the respective

theses is closely connected to the different interpretations of the actual status

of the theses, and discuss in this setting several of the interpretations of the sta-

tus of the theses. In the last (short) section of this chapter we will formulate

some further questions with respect to the status of the theses, drawing from

our results from this and the previous chapter. To be more specific, we will

question in how far it can be interesting philosophically and mathematically to

start from a thesis that is considered to have no serious appeal to intuition, in

contrast with one that does.

Chapter 4: The computer In this chapter we will take into account the physi-

cal realization of computability, the computer. This chapter will be subdivided

into three main sections. In a first section, we will discuss the rise of the com-

puter. Focus here will be on the question in how far the developments sketched

in the previous chapters can be linked to the construction of the first comput-

ers. In a second section, we will argue that already from its first use on, several

14 CHAPTER 1. INTRODUCTION

pioneers understood that computers can be used to perform “experiments” not

only in the context of say physics but also in the context of mathematics. With-

out going into much details here, the most important thing to note here is that

the computer made it possible to access certain aspects of the objects studied

in mathematics hardly accessible before. It allowed the analysis of the behav-

iour of certain functions underlying so many mathematical problems. In this

respect, it will be argued that the computer is a suitable instrument to study

the link between general unsolvability and particular (classes of) systems. In

the last section, we will consider some developments in the context of com-

putability and unsolvability, that are very closely connected to the actual exe-

cution of computations on the computer. To be more specific, we will consider

two developments that are connected to the Turing limit of computability, i.e.,

computational complexity theory and hypercomputability. Our main focus in

this chapter is the ongoing discussion on what is sometimes called the phys-

ical Church-Turing thesis [Gan80] and hypercomputability, a discussion that

directly arises from, on the one hand, the theses as proposed by Church, Post

and Turing (although one focuses in most of the cases on Turing computability)

and, on the other hand, from the fact that, in a way, the computer has under-

mined our intuitions of computability, i.e., the computer has not remained re-

stricted to “pure” calculations. What is at stake here is the question of whether

there exist physical processes that cannot be simulated by a Turing machine,

leading one to the question whether there exists procedures that can be effec-

tively implemented but go “beyond” Turing computability.

Part II: tagging

In this second part we will make a huge jump through history, from Emil Post’s

work from 1920–1921 to our own research on tag systems. It should be noted

that Emil Post’s posthumously published manuscript [Pos65] describing this re-

search, has been basic to the ideas put forward in this part. There are several

reasons for this. I will merely give two of them. First, and most obvious, it was

during this period that Post invented his tag systems. Secondly, one of his goals

1.4. GENERAL OUTLINE AND RESEARCH QUESTIONS 15

was to find the most general form of logic and ultimately mathematics, a fea-

ture that made it possible for him to reduce the presence of any “meaningful”

concept to a minimum. This is exactly the feature that has always attracted me

the most in tag systems. If you just run them on your computer, varying several

parameters, it is terribly hard to superimpose any concrete interpretation on

these systems, let alone, to understand how these systems are capable to com-

pute anything we consider intuitively computable. It is exactly this last feature

that makes tag system well-suited for a study of unsolvability that starts from

an analysis of the behaviour of particular (classes of) systems.

Chapter 6: Why Tag systems? In the first (short) introductory chapter of part

II, we will discuss some general features of tag systems and give an overview of

the several chapters to follow.

Chapter 7: Preliminaries. Some basic aspects of tag systems. In a second

chapter the reader will be made more familiar with tag systems. In a first sec-

tion we will describe most of the existing literature on tag systems. Based on

certain of the results described, we will propose a definition of the size of tag

systems. Furthermore, some of the results will be used to show how hard it ac-

tually is to get a more formal grip on tag systems. In general, this discussion of

the literature on tag systems gives an impression of the kind of approaches and

the problems connected to them, that can be used to study tag systems.

In a second section we will discuss the so-called general classes of behaviour

a tag system can lead to and connect them to the two forms of the problem of

“tag” Post formulated, i.e. two different decision problems for tag systems.

In the next section we will give an example of a solvable tag system, to give a first

idea how one might proceed to prove specific instances of tag systems solvable.

Based on this example, we will prove a certain theorem for tag systems, that

shows for certain tag systems that they can be decomposed in a certain num-

ber of other tag systems, their solvability thus depending on the tag systems

into which they can be decomposed.

16 CHAPTER 1. INTRODUCTION

Chapter 8. Constraints for intractable behaviour. In this chapter, we will

describe several “constraints” which can be used to find examples of tag sys-

tems that might be very hard to prove solvable. Two algorithms implementing

these constraint will be described, and used to generate a whole class of tag

systems. The tag systems generated with the second algorithm are the ones

used in the experiments of chapter 8. Given the tag systems generated through

these two algorithms, we will consider the idea of what will be called tag sys-

tems for which the concatenation of their respective words are rotations of the

same combination. At one time, we believed this approach might result in a

method to define equivalence classes for tag systems. As will be shown how-

ever, there are several problems connected to the approach, and it is in need of

more research.

Chapter 9: Playing with tag systems In this chapter we will describe the re-

sults from 6 computer experiments performed on a class of tag systems gener-

ated by the second algorithm described in the previous chapter. After a short

introduction of the idea of computer experiments in mathematics, we will first

discuss some of the restrictions involved in the computer experiments. These

concern the programming language used, the size of the sample space and the

use of one specific class of tag systems.

The experiments serve several different goals, that will not be discussed here

in any detail. The main purposes behind these experiments are 1. to show

heuristically that the class of tag systems with 2 symbols can at least be called

intractable 2. to get a better idea on what levels this intractability can be ob-

served 3. to search for a method to define classes of tag systems. To spare the

reader at least a little bit, only the first two experiments will be included in the

main text, since they are considered as the most important ones. For the re-

maining four we will merely include the conclusions, the details of the experi-

ments will be described in appendix C. It should be noted that we consider the

result from the second experiment as the most important one. It allows one to

differentiate several tag systems according to the types of periodic structures

that they can generate. Of course, these classes are based on heuristic evidence

and have not been proven, although it seems possible to provide such proofs

1.4. GENERAL OUTLINE AND RESEARCH QUESTIONS 17

(as will be shown through an example).

Chapter 10: Universality and Unsolvability in tag systems: Some questions

concerning the usefulness of small universal systems. In this last chapter,

we will consider the problem of the connection between general unsolvabil-

ity and the discourse of the systems the unsolvability is proven for, by starting

from questions concerning the significance of small universal systems. These

are considered important in this context because, on the one hand, they are

particular instances of systems with an unsolvable decision problem, and, on

the other hand, they are used in research on the limits of solvability and unsolv-

ability. In a first section, a historical account will be given of some of the results

significant in this context, showing why (small) universal systems are interest-

ing. Very important here for a discussion to follow is Martin Davis’s definition

of universality [Dav56].

In a second section we will look at some of the reasons why the known small

universal systems are in fact uninteresting. It will be argued that if one stud-

ies particular computational systems on the level of their behaviour, the known

universal systems are not able to bring us any further than a study of the sys-

tems they are able to represent. In the next section it will be shown, by dis-

cussing several examples from the literature, that a study of the discourse of

particular (classes of) systems is a very valuable approach, giving rise to new

results in the context of studying limits of solvability and unsolvability.

In the last section, we will study limits of solvability and unsolvability in tag sys-

tems. In this section we will first of all prove the solvability of one specific class

of tag systems. It should be noted that while this result was already proven by

Post, the result was never published. A second result concerns the reducibil-

ity of an intricate problem from number theory, the 3n +1-problem, to a very

small tag system. This reduction will then be generalized resulting in the re-

ducibility of any Collatz-like function to a tag system. Finally we will describe

a method that might be used to prove that the class of tag systems with 2 sym-

bols contains a universal tag system. This section will be ended with a general

discussion of the limits of solvability and unsolvability in tag systems. In this

concluding subsection, we will propose two conjectures concerning the limit

18 CHAPTER 1. INTRODUCTION

of unsolvability in tag systems, based on the results from this and the previous

chapter and describe some possible approaches to tag systems that might show

useful to obtain a more complete theory of tag systems.

1.5 A small note to the reader.

As is clear from the outline of this dissertation I have not restricted myself to

one specific research domain or methodology. Because of the fact that I have

not chosen a clear well-cut research subject, there are several problems con-

nected to this dissertation. First of all, the dissertation as a whole is not as co-

herent as it could have been if I would have written a dissertation on say the

history of computers. There is not one clear general research question, that is

answered at the end of the dissertation. Rather there are several results pre-

sented in the different chapters, that, although they have a clear connection

with each other, cannot be summarized under one heading. Secondly, the re-

search presented here is not complete, in two respects. On the one hand, for

each of the chapters, there are some gaps in the literature discussed. This short-

coming was impossible to overcome, given the time limit. On the other hand,

and this is especially valid for part II, this research is still research in progress.

Although I have some results on tag systems, these can only show their merit if

they could be included in a more complete theory of tag systems. Thirdly, the

presentation of the results, and this again especially concerns part II, is still in a

rather informal style. I know for myself that if I had had more time, the formu-

lation would have been more mathematically decent. I really hope that due to

the informality of some parts, we have not given rise to too much ambiguities,

unclear statements or plain mistakes.

I do not intend to safeguard myself here with this note. I do not want to give

bad excuses here for the shortcomings of this dissertation. What I do intend

to make clear with this note is that these shortcomings are a consequence of a

choice I have made when I started with this research, i.e., to combine several

domains and methods. Despite these shortcomings, I do not regret this choice.

The things I have learned during the past three years are invaluable, and I am

1.5. A SMALL NOTE TO THE READER. 19

convinced that I would not have learned as much as I have if I would have cho-

sen to restrict myself more. Even if I do not have the specialized knowledge I

maybe should have on e.g. recursion theory, I know that for me the true value

of this dissertation lies in its combination of philosophy, history and mathe-

matics. During my research these three domains were never separated. The

most striking example of this mix has been for me, my research on tag systems

and my study of Post’s work.

It is a current trend both of the humanities as of the exact sciences that one

needs to specialize into one sub-sub-...-sub domain to get anywhere. This is

even becoming a harder reality for the younger researchers who seem to have

no other choice but to specialize. This evolution I regret. Although I am the

last to say that one should not know his or her subject well-enough, otherwise

one can only make mistakes, I think being able to cross the borderlines of do-

mains, trying to link them up, is at least as important as this specialization. In

my personal opinion, one of the ways to make progress is to have the freedom

to mix up domains. I still do not know for myself whether I have managed to do

this in any decent way. I leave it to the reader to judge whether I have failed or

succeeded in this attempt to combine.

20 CHAPTER 1. INTRODUCTION

Part I

Re-Tracing

21

23

[...] time after time I found that because of my ignorance of these antecedents,

I had not, nor could have, really understood those ideas. All the logical analysis

in the world will not reveal the intentions behind ideas, and without these inten-

tions one all too easily misunderstands and misjudges the ideas and theories of a

writer no longer living. [...] one also finds that current ideas and results can illu-

minate older and crustier ideas. The lesson seems to be this: we cannot fully un-

derstand our own conceptual scheme without plumbing its historical roots, but

in order to appreciate those roots, we may well have to filter them back through

our own ideas.

Judson C. Webb, 1980.10

In the first part of this dissertation we will trace the roots of the first unsolvable

decision problems and the closely connected problem of formalizing the intu-

itive notion of computability. Through an analysis of the work by Emil Post,

Alonzo Church and Alan Turing we will show that the several formal systems

considered by these logicians/mathematicians played a significant role in the

actual formulation of the solutions to these problems and the later interpre-

tation of the several theses proposed. We will then connect these more theo-

retical results to the rise of the computer and show how this physical realiza-

tion of computability and solvability has given rise to new (philosophical and

mathematical) problems and possibilities in the domain of computability and

unsolvability.

10From [Web80], p. xii.

24

Chapter 2

The beginnings: An analysis of

Church’s, Post’s and Turing’s work

before 1936.

In this first chapter we will dig into the early beginnings of unsolvable decision

problems by focussing on the work preceding the publication of the 1936 pa-

pers of the three “masters” of unsolvability: Emil Post, Alonzo Church and Alan

Turing. As is pointed out in [Gan88], p. 55 by Gandy:

It is not uncommon in mathematics – and in the other sciences – for concepts,

methods, and theorems to be discovered independently and almost simultane-

ously [...] There is, so to speak, something in the air which different people catch.

There was definitely something in the air and Church, Post and Turing were the

ones who captured it and wrote it down.1 Before looking at what they exactly

captured, it is fundamental to take a closer look at their earlier work. Especially

Church’s and Post’s work deserve special attention here, since Turing was only

24 when his seminal 1936 paper was published. As was stated in the introduc-

tion the main question to be answered in this chapter is: How is the work pre-

ceding the unsolvability results by Post, Church and Turing connected to these

1It should be pointed out that besides Church, Post and Turing, also Kleene should be men-

tioned here. His contributions will be discussed in a bit more detail in Sections 2.3 and 3.2.3.

25

26 CHAPTER 2. THE BEGINNINGS

major results? How did they arrive at their results? In answering this question,

it will be shown that despite the “confluence of ideas” in 1936, the preliminary

work resulting into this confluence differs to an extent that can help to clarify

the different interpretations and formalizations by Church, Post and Turing of

the intuitive notion of “computability”.

Before starting with an analysis of this earlier work, it is important to give at

least some background on what was going on in the domain each of these

mathematicians/ logicians worked in, i.e. mathematical logic and research on

the foundations of mathematics (Section 2.1). It is impossible to be complete

here. Instead of trying to give a detailed overview we will thus refer the reader to

several papers and books on this subject trying to give at least a feeling of some

of the work started in the 19th century on the foundations of mathematics. In

a next section (Section 2.2.5), we will discuss Emil Post’s work from 1918–1921.

Although there is a rather huge gap between 1921 and 1936 there are clear rea-

sons why the results from this period of research are basic to gain a better un-

derstanding of Post’s 1936 paper [Pos36]. In fact, we consider these results of

more significance than the 1936 paper, since they anticipate much of what was

“in the air” in the thirties.

In section 2.3 we will give a detailed analysis of the work preceding Church’s

[Chu36c] starting from 1924 till 1935. In a next to last section 2.4 we will shortly

discuss some aspects of Turing’s earlier work and occupations that might help

to clarify his 1936 paper [Tur37].

2.1 General Background

For recent times have seen the development of the calculus of logic, as it is called,

or mathematical logic, a theory that has gone far beyond Aristotelian logic. It has

been developed by mathematicians; professional philosophers have taken very

little interest in it, presumably because they found it too mathematical. On the

other hand, most mathematicians, have taken very little interest in it, because

they found it too philosophical.

Thoralf Skolem, 1928.2

2From [Sko28], translated in [vH67], p. 512.

2.1. GENERAL BACKGROUND 27

The developments in mathematics during the second half of the 19th century

and the first quarter of the 20th have been basic to many of the developments

leading to Church’s, Turing’s and Post’s seminal work on unsolvable decision

problems and the closely connected theses they each formulated. In this sec-

tion we will give a brief overview of some of the most significant developments

in this context.3

During the 19th century mathematicians became more aware of the signifi-

cance of axioms and thinking about the foundations of mathematics thus be-

came more explicit. The parallel postulate that had been considered true for

centuries because of its appeal to intuition, and considered to follow as a the-

orem from the axioms of Euclidean geometry, was no longer considered ab-

solutely true and replaced by certain other postulates, leading to the develop-

ment of non-Euclidean geometries. The most famous mathematicians asso-

ciated with these geometries are János Bolyai, Nikolai Ivanovich Lobachevsky

and Carl Friedrich Gauss.4

Given these results it was now clear that no axiomatic system, close as it might

be to intuition, is necessary true. As a consequence one had to develop other

criteria to evaluate a given set of axioms. As is pointed out by Gandy [Gan88],

for Hilbert this criterium was the consistency of a system and, as we will see

in Sec. 2.3, this was also the criterium used by Church. After having described

his 21 axioms for Euclidean geometry in [Hil99], Hilbert proved its consistency

by interpreting the system in the real plane thus reducing the consistency of

Euclidean geometry to the consistency of analysis. A decent axiomatization

3Many names and results such as e.g. Boole’s algebraization will not be mentioned here.

There are probably hundreds of papers and books on the history of the debate on the founda-

tions of mathematics. Grattan-Guinness’s [GG00] gives a very detailed bibliography, and dis-

cusses some of the less well-known contributors. An indispensable source book on the late

19th, early 20th century debate on the foundations of mathematics is Jean van Heijenoort From

Frege to Gödel [vH67] Also Webb’s book [Web80] must be mentioned here. It gives a detailed

historical and philosophical analysis of the development of formalism and its connection with

mechanism. It also includes a very good analysis of the Church-Turing thesis. We should fur-

thermore point out that we will not mention Gödel’s important contributions here.
4After having read Bolyai’s treatise on hyperbolic geometry Carl Friedrich Gauss stated in a

letter that he had already found similar results.

28 CHAPTER 2. THE BEGINNINGS

let alone a consistency proof for analysis, however, was lacking. Hilbert pro-

vided a foundation for analysis but soon understood that proving its consis-

tency would be very hard and depended on the consistency of arithmetic. This

last problem, the consistency of arithmetic, was added as the second problem

of his famous list of 23 problems [Hil01].5 Although Hilbert made a sketch for

such proof [Hil05] “searching for a completely satisfying foundation for the no-

tion of number”,6 it would take some years before Hilbert would again publish

on the foundations of mathematics. There were several reasons for this delay.

Not only had his [Hil05] been seriously criticized by Poincaré, but he also un-

derstood that his foundational research required a more logical formalism, that

would be better suited for the further study of the foundations of mathematics.

In the meantime, Russell had pointed out a serious flaw in Frege’s [Fre79]. In the

second half of the century several mathematicians like Cantor, Dedekind, Frege

and Peano had investigated the proper foundations of the notion of a number

and a set. Cantor is one of the founders of set theory and famous for the con-

struction of transfinite cardinal numbers. He first used the diagonal method to

prove that the set of the natural numbers is “smaller” than the set of the real

numbers [Can91], i.e., ℵ0 < 2ℵ0 , and advanced the continuum hypothesis.7

Dedekind wrote two fundamental papers on the foundations of numbers, one

on the reals and one on the natural numbers. In his [Ded72] he defined, among

other things, the well-known Dedekind cuts. In his [Ded88] he defined finite

and infinite sets of natural numbers, provided an axiomatization for arithmetic

and included a definition of mathematical induction as a method of proof.8

Also Peano worked on the foundations of numbers and gave his famous ax-

iomatization for arithmetic in his [Pea89]. About ten years before Peano’s pa-

5Yandell [Yan02] has written a good survey of the research on Hilbert’s problems.
6[Hil05], p. 131
7A good historical survey on set theory is [Kan96]. A list of references for

further reading on Cantor’s work can be found at: http://www-history.mcs.st-

andrews.ac.uk/References/Cantor.html. The complete collected works by Cantor [Can32]

are available on-line through: gdz.sub.uni-goettingen.de.
8At http://www-groups.dcs.st-and.ac.uk/ history/References/Dedekind.html a list of refer-

ences for Dedekind’s work can be found. The collected works by Dedekind [Ded32] are avail-

able on-line through http://gdz.sub.uni-goettingen.de.

2.1. GENERAL BACKGROUND 29

per, Frege’s Begriffschrift [Fre79] was published.9 He regarded this language as

a kind of lingua characterica for pure thought, that can be used to manipu-

late symbols through definite rules, avoiding any ambiguities that might come

from the natural language. As he states in the introduction to the Begriffschrift

[Fre79], p. 7:

If it is one of the tasks of philosophy to break the domination of the word over the

human spirit by laying bare the misconceptions that through the use of language

often almost unavoidably arise concerning the relations between concepts and

by freeing thought from that with which only the means of expression of ordinary

language, constituted as they are, saddle it, then my ideography, further devel-

oped for these purposes, can become a useful tool for the philosopher.

Cantor, Frege, Peano and Dedekind were major contributors to research on the

foundations of mathematics at the end of the 19th century and were an impor-

tant influence on Hilbert’s work. Another important influence here was Rus-

sel.10

As was said, Russell pointed out a fundamental problem in Frege’s [Fre79]. In

1902, June 16 Russell wrote a letter to Frege [Rus02] in which he formulated

his famous paradox. Together with Burali Forti’s paradox11 this is one of the

famous paradoxes of set theory. These paradoxes made clear that one was in

need of a precise statement of the assumptions made in set theory. As a reac-

tion, Russell developed type theory to exclude the paradox he had pointed out.

He first introduced type theory in his [Rus03], but the theory was worked out in

more details in his [Rus08] and in the famous three-volume work written in col-

laboration with Whitehead, Principia Mathematica [RW13]. This monumental

work was by its authors regarded as the logical formalization of the whole body

of mathematics.

This was exactly the kind of formalization that could further the investigations

on the foundations of mathematics Hilbert was searching for. After Principia’s

9A bibliography of secondary literature on Frege’s work can be found at:

http://www.philosophy.ox.ac.uk/reading_lists/mods_prelims/2000_Frege.PDF
10A paper by Mancosi [Man03] discusses the Russellian influence on Hilbert and his school.
11Formulated in [BF97].

30 CHAPTER 2. THE BEGINNINGS

publication (1910–1913), it was studied by several students of Hilbert. In 1917

Hilbert returned to his study on the foundations of mathematics, again em-

phasizing the significance of consistency proofs for arithmetic and set theory

and was at that time convinced that such proofs might be found through re-

duction to the kind of logical formalism as proposed by Russell and Whitehead.

Besides consistency proofs there were several other open foundational prob-

lems including the problem of the solvability of certain decision problems like

the decision problems for Diophantine equations. Hilbert thus further devoted

himself to a study of the foundations of mathematics through logic. In 1917,

Paul Bernays became his assistant at Göttingen. In a series of lectures during

1917–1921 Hilbert in collaboration with Bernays and Behmann made signifi-

cant contributions to the newly developing domain of what is now known as

mathematical logic. As is pointed out by Sieg [Sie99] and Zach [Zac99, Zac01]

the notes made for this series of lectures contain important material to un-

derstand how Hilbert was led to his finitism and laid the basis for Hilbert and

Ackerman’s textbook Grundzüge der theoretischen Logik [AH28] published in

1928. After Hilbert had supported the logicist programme developed in Prin-

cipia Mathematica for some time, he became more and more critical about it.

As is stated in his [Hil28], p. 473:

My theory is opposed on different grounds by the adherents of Russell and White-

head’s theory of foundations, who regard Principia mathematica as a definitely

satisfying foundation for mathematics. [...] the foundation that it provides for

mathematics rests, first, upon the axiom of infinity and, then, upon what is called

the axiom of reducibility, and both of these axioms are genuine contentual as-

sumptions that are not supported by a consistency proof; they are assumptions

whose validity in fact remains dubious and that, in any case, my theory does not

require.

Instead of starting from type theory, Hilbert proposed a new system for study-

ing the foundations of mathematics, its main purpose being the simultaneous

development of logic and mathematics since he no longer believed that math-

ematics could be founded on logic alone [Hil26, Zac99, Zac01, Sie99].

In the meantime, also Brouwer’s intuitionism had gained ground in the domain

2.1. GENERAL BACKGROUND 31

of research on the foundations of mathematics. Brouwer’s intuitionism leads to

a form of constructive mathematics, rejecting certain principles of mathemat-

ics like the law of excluded middle. Although Hilbert’s finitary programme can-

not be regarded as a mere reaction against the intuitionist programme [Sie99],

their critique was not without influence on Hilbert’s programme.12 He now

started from an explicit finitary point of view to further develop what is now

known as Hilbert’s proof theory. Furthermore, Hilbert wanted to justify the use

of certain principles and modes of reasoning rejected by Brouwer and others,

because they presuppose infinite totalities. In the development of his proof

theory, mathematical proofs and propositions had to be turned into finite ob-

jects, constructed through derivations from axioms according to strict rules.

Metamathematics is then the study of these finitary objects and their relations.

Hilbert’s finitism however did not imply the exclusion of the notion of infinity.

On the contrary, as is stated in one of the most famous quotes by Hilbert from

his beautiful text On the infinite ([Hil26], p. 376):“No one shall be able to drive us

from the paradise that Cantor created for us.” To Hilbert one is allowed to work

with the infinite but only through the kind of finitary framework he proposed

([Hil26], p. 392):

The final result then is: nowhere is the infinite realized; it is neither present in

nature nor admissible as a foundation in our rational thinking – a remarkable

harmony between being and thought. We gain a conviction [...] that if scientific

knowledge is to be possible, certain intuitive conceptions and insights are indis-

pensable; logic alone does not suffice. The right to operate with the infinite can

be secured only be means of the finite. The role that remains to the infinite is,

rather, merely that of an idea – if, in accordance with Kant’s words, we under-

stand by an idea a concept of reason that transcends all experience and through

which the concrete is completed so as to form a totality – an idea, moreover, in

which we may have unhesitating confidence within the framework furnished by

12In [Man98] one can find a collection of 25 papers translated into English of some of the

leading mathematicians from the beginning of the 20th century, focussing on the debate be-

tween Brouwer and Hilbert. Each paper is discussed in detail and placed in its proper historical

context. Furthermore the book gives a detailed bibliography containing both primary as well

as secondary sources.

32 CHAPTER 2. THE BEGINNINGS

the theory [...]

If one wants finitary proofs for any proposition in mathematics a natural ques-

tion to be asked is of course whether every problem in mathematics can be

solved through such finite means.

It is exactly this problem that led to the formulation of the Entscheidungsprob-

lem for first-order predicate calculus, formulated by Ackerman and Hilbert in

their [AH28]. The first use of the word Entscheidungsproblem is most probably

due to Behmann, a student of Hilbert, who explained it as follows ([Beh22], p.

166):

A quite definite generally applicable prescription is required which will allow one

to decide in a finite number of steps the truth or falsity of a given purely logical

assertion; or at least precise limits should be given within which an effective pre-

scription of this kind can be found.13

However, already before Behmann’s use of the notion Entscheidungsproblem

Hilbert had formulated another important decision problem as one of the 23

problems he confronted the mathematical community with at the beginning

of the 20th century, i.e. the decision problem for Diophantine equations. This

long-standing problem was finally solved in the negative by Yuri Matijasevich

[Mat70] in 1970. Hilbert formulated the problem as follows ([Hil01], p. 19):

Given a diophantine equation with any number of unknown quantities and with

rational integral numerical coefficients: to devise a process according to which

it can be determined by a finite number of operations whether the equation is

solvable in rational integers.14

In both the statement of the Entscheidungsproblem as well as the problem now

known as Hilbert’s tenth problem the use of the word finite is basic. Indeed,

13Translated from German in [Gan88], p. 62.
14“Eine Diophanstische Gleichung mit irgend welchen Unbekannten und mit ganzen ratio-

nalen Zahlencoefficienten sei vorgelegt: man soll ein Verfahren angeben, nach welchem sich

mittelst einer endlichen Anzahl von Operationen entscheiden läßt, ob die Gleichung in ganzen

rationalen Zahlen lösbar ist.”. Translated in English by David E. Joyce available through:

http://aleph0.clarku.edu/ djoyce/hilbert/toc.html.

2.1. GENERAL BACKGROUND 33

what one is asking for is to find a general finite method to solve any instance of

the problems involved.

Two other famous decision problems had also already been formulated. In

1911 Max Dehn had formulated the decision problem for groups (and other

related problems). It was solved in the negative by Novikov and Boone in the

sixties [Boo66]. Dehn defined the problem in terms of finding a solution in a

finite number of steps.15 In 1914 then, Axel Thue first stated the word prob-

lem for semi-groups, and also asked for a finite method to solve the problem.

He imposed the extra requirement that one should not only be able to prove

that something is solvable by proving that there exists a general finite method

to solve the problem, but that one should also be able to compute a bound on

the number of steps needed to make the calculation ([Thu14], p. 4):

One can now formulate the general problem: Given any two sequences of sym-

bols A and B, find a method to determine, after a calculable number of opera-

tions, if two arbitrary sequences of symbols are or are not equivalent to the se-

quences A and B.16

As is pointed out by Gandy [Gan88], to calculate a bound on the number of

steps needed to solve a given instance of a decision problem is not a necessary

requirement to prove that a given decision problem is solvable. Although in

practice this bound is a basic requirement, one “only” has to prove that a given

decision procedure will always end in a finite number of steps resulting in a so-

lution, to establish the theoretical result.

The only way to prove any of these problems unsolvable, was to find a good for-

malization of certain intuitive notions such as the notion of computability. In

the twenties however, many mathematicians, including Hilbert, shared the op-

timism that it would be possible to find a solution for any mathematical prob-

15“Man soll einde Methode angeben, um mit einder endlichen Anzahl von Schritten zu

entscheiden [...]”, [Deh11], p. 117.
16 “Man kann sich nun die große allgemeine Aufgabe stellen: Bei beliebiger Wahl der gegebenen

Zeichenreihen A und B einde Methode zo finden, durch welche man nach einer berechenbaren

Anzahl von Operationen immer entscheiden kann, ob zwei beliebig gegebene Zeichenreihen in

Bezug auf die Reihen A und B äquivalent sind oder nicht.” I am indebted to Maarten Bullynck

for his translation of the German quote.

34 CHAPTER 2. THE BEGINNINGS

lem through finite means,17 i.e., they believed that any decision problem could

be proven solvable. This optimism is still best expressed in the famous quote

by Hilbert ([Hil30], p. 387):

The true reason why Comte could not find an unsolvable problem, lies in my

opinion in the assertion that there exists no unsolvable problem. Instead of the

stupid Ignorabimus, our solution should be: We have to know. We will know.18

Others however did not share this optimism and understood the possibility of

such positive solution as the end of mathematics as it existed at that time. This

is e.g. clearly echoed in a quote by Von Neumann ([vN27], 11–12):

So it appears that there is no way of finding a general criterion for deciding whether

or not a well-formed formula is a theorem. (We cannot at the moment prove

this. We have no clue as to how such a proof of undecidability would go.) But

this ignorance does not prevent us from asserting: As of today we cannot in gen-

eral decide whether an arbitrary well-formed formula can or cannot be proved

from the axiom schemata given below. And the contemporary practice of math-

ematics, using as it does heuristic methods, only makes sense because of this

undecidability. When the undecidability fails then mathematics, as we now un-

derstand it, will cease to exist; in its place there will be a mechanical prescription

for deciding whether a given sentence is provable or not.19

17To Gandy this optimism is one of the main reasons why no one belonging to Hilbert’s school

proved the Entscheidungsproblem unsolvable.
18“Der wahre Grund, warum es Comte nicht gelang, ein unlösbares Problem zu finden,

besteht meiner Meinung nach darin, daßes ein unlösbares Problem überhaupt nicht gibt. Statt

des törichten Ingnorabimus heiße im Gegenteil unsere Losung: Wir müssen wissen, Wir wer-

den wissen.” I am indebted to Maarten Bullynck for translating the German quote.
19 “Es scheint also, daß es keinen Weg gibt, um das allgemeine Entscheidungskriterium dafür,

ob eine gegebene Normalform a beweisbar ist, aufzufinden. (Nachweisen können wir freilich

gegenwärtig nichts. Es ist auch gar kein Anhaltspunkt dafür vorhanden, wie ein solcher Un-

entscheidbarkeitsbeweis zu führen wäre.) Diese Ungewißheit hindert uns aber nicht daran,

festzustellen: Heute ist es nicht allgemein zu entscheiden, ob irgendeine gegebene Normal-

form a (bei der in folgenden zu beschreibenden Axiomenregel) beweisbar ist oder nicht. Und

die Unentscheidbarkeit ist sogar die Conditio sina qua non dafür, daß es überhaupt einen Sinn

habe, mit den heutigen heuristischen Methoden Mathematik zu treiben. An dem Tage, an dem

2.2. FROM SOLVABILITY TO UNSOLVABILITY 35

As was shown here, starting in the 19th century, the foundations of mathemat-

ics became the object of study for many mathematicians and logicians. Re-

search on these foundations finally led to the finitary programme of Hilbert’s

school and resulted in a new discipline lying at the borderline between logic

and mathematics, i.e. mathematical logic. In the end, research in this domain

would uncover its own limits.

2.2 From solvability to unsolvability: Emil Post’s frus-

trating problem of “Tag”

2.2.1 Introduction

In 1965 Martin Davis, a student of Emil Post, published an important anthol-

ogy of fundamental papers on unsolvable decision problems and undecidable

propositions, including the seminal papers by Church, Turing and Post. This

collection of papers has been invaluable in many respects for my research, es-

pecially because it includes a paper by Emil Post entitled Absolutely Unsolvable

Problems and Relatively Undecidable Propositions. Account of an Anticipation.

The paper was never published before. It describes the results Post had estab-

lished during his Procter fellowship from 1920-21 in Princeton. Fifteen years

before the publication of Church’s and Turing’s now classic results on the Entschei-

dungsproblem [Chu36c] [Tur37], Post had already found that certain decision

problems closely related to the Entscheidungsproblem are unsolvable and in-

ferred from these results that any finite system of symbolic logic relative to a

certain class of systems, must be incomplete. Post had thus anticipated results

similar to the fundamental results by Gödel, Church and Turing. At that time,

he did not prepare a paper for publication describing these results. Only 20

years later he submitted the paper mentioned above to the American Journal of

die Unentscheidbarkeit aufhörte, würde auch die Mathematik im heutigen Sinne aufhören zu

existieren; an ihre Stelle würde eine absolut mechanische Vorschrift treten, mit deren Hilfe je-

dermann von jeder gegebenen Aussage entscheiden könnte, ob diese bewiesen werden kann

oder nicht.” English translation from [Gan88], p. 67.

36 CHAPTER 2. THE BEGINNINGS

Mathematics but it was rejected by the editor Hermann Weyl. Following the ref-

eree’s recommendation that the normal form theorem included in his [Pos65]

is new and important, and might be used to obtain proofs of unsolvability for

various mathematical problems such as the word problem of groups 20 Post re-

worked the paper and finally a very abbreviated version (to about one third) of

the paper was accepted [Pos43], the historical account being reduced to a long

footnote at the end of the paper.

In his letter of submission of the original version, Post gave several reason why

he did not submit these results back in the twenties.21 First of all, he had al-

ready experienced several problems to publish other of his results, including

his Ph.D. dissertation which was only accepted after its original length was re-

duced to one third. Secondly, his efforts to obtain a full, more detailed proof

of his results, searching for a more complete analysis supporting the thesis he

had to assume, similar to Church’s and Turing’s, for his results to be valid, were

interrupted by a manic-depressive illness he suffered from during his whole ca-

reer.

In his letter explaining why Post’s Account of an anticipation was not accepted,

Hermann Weyl states:22

[...] I have little doubt that twenty years ago your work, partly because of its

then revolutionary character, did not find its due recognition. However, we can-

not turn the clock back; in the meantime Gödel, Church and others have done

what they have done, and the American Journal is no place for historical ac-

counts;. . . (Personally, you may be comforted by the certainty that most of the

leading logicians, at least in this country, know in a general way of your anticipa-

tion.)

Post himself was very well aware of the fact that Gödel, Turing and Church

had already published similar results in the thirties. The question of why he

20See [Dav94] where part of this referee report is quoted.
21The full text of the letter was published in the introduction Martin Davis wrote to Post’s

collected works [Dav94] as well as in [Dav89].
22Herman Weyl, in a letter to Post dated March 2, 1942. Quoted from the introduction of

[Dav94].

2.2. FROM SOLVABILITY TO UNSOLVABILITY 37

nonetheless wanted his results to be published is thus significant. Assuming

that it was self-absorption that led him to this seems to be wrong given the

modesty with which he writes, his care in referring to other sources, and not in

the least, the way in which he acknowledged the fact that Gödel fully deserved

his credit. In a postcard dated October 29, 1938 written after he had met Gödel,

Post writes ([Göd03b], p. 169):

[...] for fifteen years I had carried around the thought of astounding the mathe-

matical world with my unorthodox ideas, and meeting the man chiefly responsi-

ble for the vanishing of that dream rather carried me away. [...] As for any claims

I might make perhaps the best I can say is that I would have proved Gödel’s The-

orem in 1921 - had I been Gödel.

One day later, he wrote a letter to Gödel in which he stated the following hard

words: “[...] after all it is not ideas but the execution of ideas that constitute[s]

a mark of greatness.” ([Göd03b], p. 172). In a way, in 1936 he had bad luck

again. He formulated and formalized a concept of computability [Pos36] which

is almost identical to that formulated and published by Turing at about the

same time [Tur37]. Post’s paper though did not contain the concept of a uni-

versal machine, nor the important theorems on unsolvable decision problems

from Turing’s paper. These misfortunes seem not to have discouraged Post: in

the forties he wrote his important paper on recursion theory [Pos44], he pub-

lished his proof of the unsolvability of the Correspondence Problem [Pos46],

and furthermore proved the unsolvability of the word problem for semi-groups

[Pos47]. A further important contribution was not in mathematical logic but in

group theory, namely his long paper on polyadic groups [Pos40].23

The work of Emil Post has had many influences ranging from mathematical

logic to computer science.24 To give some examples, he is known as one of the

23Another part of the research of Post that should be mentioned here is his work on provabil-

ity and definability. He tried to find an absolute and fundamental explication of these notions

comparable to those already offered in [Tur37, Pos36, Chu36c] for the notion of computability.

There are only two abstracts published on this research [Pos53b, Pos53a], but as mentioned by

Martin Davis in his introduction to the Collected Works of Emil Post [Dav94] his notes in bound

notebooks on this subject are still available.
24A paper surveying Post’s influence on computer science is Davis’s [Dav89].

38 CHAPTER 2. THE BEGINNINGS

co-founders of recursion theory [Dav94, Sti04], he seems to have influenced

John Backus in formulating what came to be called “Backus Normal Form”

[Bac80, Bac81, Dav88], he had an impact on the study of NP-complete lan-

guages in structural complexity theory [Dav94, Sad98], and influenced Chom-

sky’s construction of context-free grammars [CM58] through his systems in canon-

ical form C [Dav88].25 Furthermore Post was one of the first to prove the un-

solvability of certain decision problems further removed from mathematical

logic like the unsolvability of the word problem for semi-groups [Pos47], and

the unsolvability of the Post correspondence problem [Pos46], which has be-

come an important tool to obtain unsolvability results in formal language the-

ory [Dav89]. It should also be mentioned here that there are some indications

that Post’s work on rewriting systems might have had an influence on cryptog-

raphy [AA93].

So why did Post in the end submit his Account of an anticipation? In the in-

troduction to his [Pos65] Post fully acknowledges the fact that there would be

little point in publishing his “anticipation [. . .] merely as a claim to unofficial

priority” to the results of Gödel, Turing and Church. But he also remarks:

[...] with the Principia Mathematica of Whitehead and Russell as a common

25As for the exact extent to which Chomsky was influenced by Emil Post’s work, Chomsky

pointed out to me:“In the days when I was following these topics closely – some years ago –

Post systems were little known, apart from Martin Davis’s book [Dav58], where I learned about

them, then checked some of the papers. I was interested at the time in automata theory and

possible applications to linguistics. I’d studied standard versions of recursive function theory

(Kleene, etc.), but when I came across Post’s work (in Davis) it was obvious that this was a good

framework for systems of the sub-recursive hierarchy that could be adapted to the study of

language, specifically context-sensitive and context free grammars (and as a subcase, finite au-

tomata and Markov sources, mostly in order to show that they couldn’t work for language –

they were all the rage at the time in information sciences, mathematical psychology, and re-

lated areas). But that’s the limit of the influence. My first paper about this was in 1956, at the

IRE (Institute of Radio Engineers), but I also pointed out in that paper that for other reasons

even the richest systems of this kind didn’t have the right properties for natural language, in my

opinion (then, or now).”

2.2. FROM SOLVABILITY TO UNSOLVABILITY 39

starting point, the roads followed towards our common conclusions are so dif-

ferent that much may be gained from a comparison of these parallel evolutions.

He then mentions three reasons why his work can still be of significance. First,

he focuses on the outward form of symbolic expressions and the possible op-

erations thereon – an approach which resulted in a class of very general and, at

first sight, simple systems [Pos65], pp. 341–342:

Perhaps the chief difference in method between the present development and

its more complete successors is its preoccupation with the outward forms of

symbolic expressions, and possible operations thereon, rather than with logical

concepts as clothed in, or reflected by, correspondingly particularized symbolic

expressions, and operations thereon. While this in part is perhaps responsible

for the fragmentary nature of our development, it also allows greater freedom of

method and technique.

Second, he added another equivalent formulation to the list of general recur-

siveness,λ-definability and Turing computability, viz., normal forms. Also, Post

considered not the intuitive idea of a computation (as Turing) or the concept of

effective calculability (as Church), but that of a generated set. In this respect

Post formulated a thesis similar to that by Turing and Church already in 1921. A

third and final reason, for the significance for making available his results from

1920-21 is his conclusion that “mathematical thinking is, and must be, essen-

tially creative” from which he concludes that such “developments will result in

a reversal of the entire axiomatic trend of the late 19th and early 20th centuries,

with a return to meaning and truth”.26

Starting from his Ph.D. dissertation, we will show in this section how Post was

led from the optimistic opinion, that there exists a single algorithm for the

whole of mathematics, to the idea that no such algorithm can ever be found.27

26It should be noted here that this statement should not be confused with those made by Lu-

cas and Penrose [Luc61, Pen94] who concluded, on the basis of Gödel’s incompleteness result,

that mathematical thinking and understanding must be non-computable.
27The analysis presented in this section appeared as Closing the Circle. An analysis of Emil

Post’s early work [Mol06a]. It should also be pointed out here that Martin Davis’s [Dav82] dis-

cusses Post’s [Pos21a, Pos65] where Post’s thesis is mentioned for the first time.

40 CHAPTER 2. THE BEGINNINGS

Focus will be put on the first two reasons pointed out by Post for wanting to

publish his Account of an anticipation. We will return to all three reasons in

our comparison of the respective theses put forward by Post, Church and Tur-

ing and their respective interpretations attached to it (See Ch. 3). We will argue

how it was Post’s focus on outward form rather than on logical concepts that

led him to the construction of his form of “tag” – a form that will play a major

role in part II of this dissertation – and how it were his “experiences” in working

with special cases of this form, that played a basic role in the formulation of his

very important systems in normal form. These last systems finally led him to

a thesis similar to Church’s and Turing’s and a proof of the general unsolvabil-

ity of certain decision problems to these systems in normal form. Through the

analysis of Post’s earlier work we will be able to show how he arrived at the for-

malization of the intuitive notion of a generated set. As will become clear, it was

not an analysis of the intuitive notion and thus the idea of finding such identifi-

cation, but rather the formalisms themselves that resulted in Post’s thesis. The

results from this analysis will avail themselves as important in our recurring

discussions on identifying an intuitive notion with a formal (class of) systems

throughout this dissertation and will contribute to one of our main questions of

trying to understand the link between the proof of the unsolvability of a whole

class of systems, and the actual execution of these systems.

In 1954 Post died from a heart-attack, after one of the electro-shock treatments

he received for the illness that pursued him throughout his entire career. Post

had had a very difficult life, and had to cope with several problems that many

people would not be able to combine with an academic career. This enforces

even more respect for Emil Post both as a mathematician as well as a person.

The following quote by Martin Davis gives an impression of the difficulties Post

had to overcome during his life [Dav94]:

Post’s life was a struggle with adversity. He managed well the handicap he suf-

fered in childhood when he lost an arm in an accident. But in his scientific labors,

he had to overcome obstacles that would have daunted most. He suffered all his

adult life from crippling manic-depressive disease at a time when no drug ther-

apy was available for this malady. Until 1935, he was unable to obtain a regular

2.2. FROM SOLVABILITY TO UNSOLVABILITY 41

academic position, making his living, for the most part, by teaching in the New

York high school system. At City College he worked under conditions that would

seem intolerable nowadays. The standard teaching load was 16 contact hours

per week. There were no individual faculty offices (everyone shared one large

room with a huge table in the center), so Post did his research sitting at a desk in

the living room in his small apartment while his young daughter was required to

maintain silence. There was no secretarial help, and Post had to type his own let-

ters of recommendation for students unless his wife did it for him. His research in

mathematical logic was ahead of its time and very much out of the mainstream of

mathematical research in the United States. Post suffered repeated episodes of

mania which required institutionalization. Electro-shock therapy was believed

by his physicians and his family to be the most efficacious treatment. His tragic

death from a sudden heart attack occurred in a mental institution shortly after

one of these treatments.

2.2.2 Focus on Form

It is a familiar fact to the student of algebra or geometry that many a seemingly

difficult problem may often become remarkably simple when one makes the

right change in variable or the appropriate choice of coordinates. In the same

way a suitable system for representing numbers will sometimes facilitate and

simplify problems in higher arithmetic. Conversely, he who devises a new nu-

merical notation is sure to discover new properties of numbers and to realize

more fully the difference between a symbol for the number and the number it-

self.

Derrick Lehmer, 1935.28

As was explained in the previous section, there was clearly something in the air

in the twenties and thirties of the 20th century. Research on the foundations of

mathematics gave rise to a new discipline called mathematical logic. Post can

be regarded as one of the main and early contributors to this new domain.

28[Leh33], p. 460.

42 CHAPTER 2. THE BEGINNINGS

Towards a general theory of elementary propositions

In 1917 Post got his B.S. at City College, and went to Columbia University where

he wrote his Ph.D. dissertation. It was here that he became acquainted with

Russel’s and Whitehead’s massive three volume work in Kassius J. Keyser’s sem-

inar on Principia Mathematica [RW13]. Another important influence on Post’s

earlier work was the recently published book A survey of Symbolic Logic [Lew18]

by C.I. Lewis, where it is shown how any system of symbolic logic working with

an infinite set of variables, can be transformed into a logic that deals with finite

strings of symbols over a finite alphabet.29

These two influences are visible in Post’s dissertation, published in 1921 as In-

troduction to a general theory of elementary propositions, where he developed

a general form of symbolic logic based on finitary symbol manipulations, to be

studied by mathematical methods, abstracting from meaning.30 At that time

Post was convinced that the whole of mathematics could be formalized into

a system of finitary symbolic logic and that Principia would be shown to be

complete, decidable and consistent, thus sharing the optimism of some other

mathematicians during that period. In his Ph.D. dissertation he isolated the

propositional part of Principia, nowadays called propositional calculus, and

proved that its axioms are complete and consistent. To prove this, he devel-

oped the truth-table method and showed that this method provides a solution

to the decision problem for propositional calculus.31 Basic for Post’s disserta-

29Even in his [Pos43], the very abbreviated version of Post’s [Pos65] that was finally published

in the American Journal of Mathematics Post starts by referring to Lewis’ [Lew18], and makes

explicit that he does not work with “the usual form of symbolic logic with its parenthesis no-

tation and infinite set of variables”, but with the equivalent forms of symbolic logic for which

“the enunciations, i.e., formulas of the system [what we now call w.f.f.’s], are finite sequences of

letters, the different letters constituting a once-and-for-all given finite set.” [Pos43], p. 197
30The paper [Dav95] by Martin Davis and his introduction to the Collected Works [Dav94],

gives a further analysis of Post’s Ph.D. thesis.
31Although Post is known as one of the first to prove propositional calculus decidable and

complete, it should be pointed out that Zach [Zac99] has shown that similar results were al-

ready obtained by Hilbert and Bernays: “These results include: explicit semantics for proposi-

tional logic using truth values, decidability of the set of valid propositional formulas, complete-

ness of the axiom systems considered relative to that semantics, as well as what is now called

2.2. FROM SOLVABILITY TO UNSOLVABILITY 43

tion is that he enunciated the distinction between the theorems of the system

and the theorems about the systems, a differentiation that was at that time far

from evident‘.32 Not making such a distinction is identified by Post as “an in-

curable defect” in many developments of symbolic logic at that time. As Post

points out, Principia appeared not to suffer from this defect, but this does not

mean that he was completely satisfied with the system presented by Russell and

Whitehead.

It is at this point that his dissertation, notwithstanding its affiliations to the

ideas of contemporary logicians and mathematicians, marks the beginning of

the development of a theoretical framework that would remove him from these

common origins. Post wanted to develop the most general form of symbolic

logic and mathematics. As is already clear from the title of his dissertation, he

started this project by doing so for propositional calculus. To Post, Principia

was not the right format to find the most general form of symbolic logic and

ultimately mathematics [Pos21a, pp. 163–164]:

But owing to the particular purpose the authors [Russell & Whitehead] had in

view they decided not to burden their work with more than was absolutely neces-

sary for its achievements, and so gave up the generality of outlook which charac-

terized symbolic logic. [...] we might take cognizance of the fact that the system

of ‘Principia’ is but one particular development of the theory [...] and so [one]

might construct a general theory of such developments.

In his dissertation Post went on to develop more general forms and methods

for symbolic logic, which he wanted to use as “instruments of generalization” to

study more general properties of logic and mathematics like, e.g., decidability

Post completeness, consistency and independence results, general three- and four-valued matri-

ces, and rule-based derivation systems. All these results were obtained independently of logicians

to whom they are usually credited (notably Pierce, Wittgenstein, Post, and Lukasiewicz). Far be

it from me to dispute their priority. After all, Hilbert and Bernays’s work remained unpublished,

and in some respects the work by those other logicians investigates the questions at hand more

deeply or is more precise than Hilbert and Bernays’s.” [Zac99], p. 332
32“We here wish to emphasize that the theorem of this paper are about the logic of propositions

but are not included therein” [Pos21a], pp. 163–164

44 CHAPTER 2. THE BEGINNINGS

and completeness. One such instrument was his truth-table method of which

he states [Pos21a, p. 166]:

Let us denote the truth-value of any proposition by + if it is true and by – if it

is false. This meaning of + and – is convenient to bear in mind as a guide to

thought, but in the actual development that follows they are to be considered

merely as symbols which we manipulate in a certain way.

As is clear from this quote, to Post, systems and methods of symbolic logic have

to rely on finitary symbol manipulation, and should not be bothered with the

specific meanings involved. As was shown in the introduction (2.2.1) this focus

on outward form, rather than on logical concepts is exactly where Post’s work

differs from that by Church and Gödel. Making abstraction from specific logical

concepts and thus focussing on form is one of the main features of Post’s earlier

work and makes it mathematical rather than logical in nature.33 This method

of generalization is made explicit in his dissertation not only through the devel-

opment of the truth-table method but also through the further generalization

of two-valued logics to many-valued logic.

A more important generalization in this context is the proposal of a general

form for systems of symbolic logic. In his dissertation he identifies this fur-

ther generalization as generalization by postulation and later called systems of

this form, systems in canonical form A. Within these systems strings are pro-

duced through finitary symbol manipulation and they can thus be regarded as

combinatorial systems.34 These were at first developed as generalizations for

propositional calculus, but Post later realized that they are far more general.

Without going into the details of systems in canonical form A, it is important

33This method of generalization replacing the more usual semantical approach by logicians

in the twenties was also discussed in [Dav82]. Davis states [Dav82], p. 18: “Whereas Hilbert

and his school went on to approach the decision problem for quantification theory semantically,

Post evidently felt that was not a promising direction because the combinatorial intricacies of

predicate logic were too great to penetrate in that manner, and what he proposed instead was to

simplify by generalization.That is, he proposed to abstract from the kind of rules that occur in

quantification theory to obtain a class of rules which included them.”
34As Davis remarks in his introduction to [Dav94] the strings produced by such systems can

be regarded as being an arbitrary recursively enumerable set of strings on a finite alphabet.

2.2. FROM SOLVABILITY TO UNSOLVABILITY 45

to notice the explicit use of the word “form”. Instead of constructing one spe-

cific system with a specific interpretation, Post constructs a form, a general set

of rules, that includes not one but an infinite number of systems of symbolic

logic. Indeed, starting from this form, it is possible to generate infinitely many

systems of logic – each with its own axiom(s) and production rules – which all

share the same form, i.e., formalization is taken literal here.

Ambitions of a Ph.D. student: Solving the finiteness problem for Principia

After the generalizations developed in his Ph.D., Post wanted to go ahead with

his programme, as he already announced in the introduction of his [Pos21a].

He wanted to extend his results for the propositional calculus to the whole of

Principia and find a positive solution for the decision problem for the entire

Principia and thus also solve the Entscheidungsproblem that had hardly been

formulated as a problem at the time Post considered it. Post used the term

finiteness problem to talk about decision problems, and we will use his termi-

nology in the remainder of this section. This programme of proving the solv-

ability of the whole Principia can at least be called ambitious. As Martin Davis

described it ([Dav94]):

Since Principia was intended to formalize all of existing mathematics, Post was

proposing no less than to find a single algorithm for all of mathematics.

Post did not want to use the formalism of Principia since he believed that the

particular processes used in this framework would hardly allow for such more

general results and thus started from his systems in canonical form A.35

In the abstract [Pos21b] Post presented a solution of the finiteness problem for

a certain subclass of systems in canonical form A. In his Account of an antici-

pation he points out the difference between this solution and the solution for

the finiteness problem for propositional calculus [Pos65, pp. 345-346]:

35E.g., in his dissertation he states that he is convinced that due to these particular processes

it would have been hardly possible to develop a general theory of propositions as well as the

results from his dissertation, if he would have used the formalism presented in Principia (See

[Pos21a], p. 164).

46 CHAPTER 2. THE BEGINNINGS

We shall say that we thus solved the finiteness problem for the (∼, ∨) system.

While this solution was purely formal, nevertheless it was suggested by the intu-

itive interpretation of “∼” and “∨”. For the above generalizations such interpre-

tation are not at hand. Nevertheless (...) the writer solved the finiteness problem

for those of the above systems in which the primitive functions are all functions

of one variable, the resulting relative simplicity of the systems allowing a direct

analysis of the formal processes involved.

As is clear from this quote, Post indeed saw certain advantages in the more ab-

stract class of systems in canonical form A. Indeed, after having noted that his

solution for the finiteness problem for propositional calculus was suggested by

the interpretation of “∼” and “∨”, he immediately adds that such interpretation

is lacking for the subclass of systems in canonical form A he considered, thus

allowing for a more direct analysis of the formal processes involved. He could

study these systems as being pure symbol manipulating systems that generate

logical propositions without having to take notice of the content of what pre-

cisely is deduced.

Being convinced that it would be more straightforward to find a positive solu-

tion to the finiteness problem for systems in canonical form A, he wanted to

prove the solvability of the finiteness problem for restricted functional calculus

(first-order predicate logic) contained in Principia by reducing it to a system

in canonical form A and then solve the finiteness problem for these formally

simpler systems in canonical form A. He proved this through reduction to what

he called a system in canonical form B and then reduced systems in canonical

form A to B.36

By the time he got these results (October 1920), he was already awarded the

prestigious Procter fellowship at Princeton. He now reoriented his research to-

wards a problem that is closely connected to the finiteness problem, namely the

problem of determining for any two expressions of a given system, what sub-

36As he remarks, some slight adjustments of his canonical form A made such a reduction

proof for the functional calculus easier. It are systems in this adjusted canonical form he called

systems in canonical form B. It should be further noticed that about one year later he also

proved the reducibility of canonical form B to A so the equivalence of these two forms was

established.

2.2. FROM SOLVABILITY TO UNSOLVABILITY 47

stitutions would make those expressions identical. This problem would nowa-

days be called the unification problem for the ω order predicate calculus (See

[Dav94]).37 However a solution for this problem for the whole of Principia was

not immediately at hand – “[this] general problem proving intractable”. In trying

to solve it, Post then applied a technique which was at that time already rather

familiar to him, namely simplifying and abstracting from the original problem.

This abstraction process resulted in the problem of “tag”.

2.2.3 The Problem of “Tag”.

Post’s method of generalization, abstracting away from meaning, led him to

a class of symbol manipulating systems for which he formulated a problem

closely connected to the finiteness problem. He arrived at this problem by per-

forming several successive simplifications on the above mentioned unification

problem for Principia. Despite the expected simplicity of the problem in this

reduced form, a solution was considered to be fundamental for the further de-

velopment of his research. It was not only considered relevant for the above

mentioned unification problem, but also for a solution of the finiteness prob-

lem for those systems in canonical form A, which go but a little beyond those

which involve only primitive functions with one argument (and were already

proven to be solvable) [Pos65], p. 361:

The general problem proving intractable, successive simplifications thereof were

considered, one of the last being this problem of “tag”. Again, after the finiteness

problem for systems in canonical form A involving primitive functions of only

one argument was solved, an attempt to solve the problem for systems going, it

seemed, but a little beyond this one argument case, led once more essentially to

the selfsame problem of “tag”. The solution of this problem thus appeared as a

vital stepping stone in any further progress to be made.

Although a solution for this problem of “tag” was considered to be a vital step-

ping stone, Post believed that finding a solution for his problem of “tag” would

37A very trivial example of unification is to make f(x) identical to f(y) by substituting x for y .

48 CHAPTER 2. THE BEGINNINGS

be rather straightforward. However, after about nine months of work he real-

ized that this judgement was seriously in error and he was finally led to a rever-

sal of the direction of his entire program.

A form of “tag”, i.e. a tag system, is defined as follows.38 Given a positive integer

v, and an alphabet Σ = {0, 1, ..., µ− 1} consisting of µ symbols. With each of

these symbols one associates a word over the alphabet:

0 → a0,1a0,2.....a0,v0

1 → a1,1a1,2.....a1,v1

...

µ−1→aµ−1,1aµ−1,2.....aµ−1,vµ−1

Now, given an initial string A over the alphabet, “tag” at the right end of the

string the word associated with the leftmost symbol of A, and remove at the left

end the first v symbols. Apply this tagging and removing operations on the new

resulting string A′, which results in a new string A′′,... Post gives the following

seemingly very simple example: A = {1,0}; 1 → 1101; 0 → 00; v = 3. If the initial

string is “10101001110101111001”, applying the rules of this tag system results

in the following productions:

10101001110101111001

010011101011110011101

01110101111001110100

1010111100111010000

38I am indebted to Martin Davis for calling my attention to the origin of the word “tag”. As

a noun, a “tag” designates a physical object to label something – like the price of an item in

a shop. The respective verb “to tag” then designates this operation of putting such a tag on

something. A derived meaning can be found in the children’s game in which a pursuer tries

to catch the pursued and “tag” her (or him) with a touch. It is this meaning of the verb that

gave the problem of tag its name: in an earlier formulation of the problem, every v-th letter of

the sequence was merely checked off (and not removed) while at the same time the respective

sequence was added to the right end of the sequence. Starting on the left the mark then moves

more and more to the right, “pursuing” the right end of the string.

2.2. FROM SOLVABILITY TO UNSOLVABILITY 49

011110011101000000

.................................

Post formulated two forms of the problem of “Tag”. In its first form the prob-

lem is to obtain for a given basis, a general method to decide for any initial

string I whether the process of tagging and removing letters will ever produce

the empty string and thus come to an end. In its second form – where the initial

sequence I is considered as being part of the basis – the problem for a given ba-

sis is then to find a general method for determining for an arbitrary string and

this basis whether it will ever be generated by the given basis. It is the problem

posed in its second form – as Post remarks – that arose in connection with the

finiteness problem.

At first, Post was very optimistic about finding a solution for solving the prob-

lem of “tag”, given the deceiving simplicity of the general form. Soon, however,

he understood that he was misled. During his research on tag systems, Post

was obliged to apply the more “experimental” practice of working out specific

cases and varying several parameters in order to infer certain properties of tag

systems and identify the different classes of behaviour.39 Despite their seeming

simplicity tag systems are well-known for their intractability. In order to get a

39The notion “experimental” is placed between double quotes here, because it is in no way

whatsoever intended as a kind of special method intervening on the usual methods of math-

ematics. It merely indicates the fact that Post had to test several tag systems to gain more

information about these systems, a method that seems unavoidable for any mathematician

when intractable systems are involved. I would like to thank Martin Davis here, because it was

through his comments that I became more aware of the fact that one should be very careful in

using such terminology. In the first draft for my paper [Mol06a] I all too easy used the word

“experimental” in the context of Post’s work on tag systems without having thought about it

enough. It was through Davis’ comments that I understood that it can be a tricky business to

differentiate an experimental approach from some other kind of method used by the practicing

mathematicians. During my own research on tag systems, presented in part II of this disserta-

tion I for myself began to better understand that in a way it is sometimes hardly possible to

differentiate an “experimental” method from some other method when actually doing math-

ematics, searching for results, and I often remembered the words by Davis. Getting a better

understanding of mathematics, by actually doing it, is probably the most important and valu-

able lesson I learned in doing my research.

50 CHAPTER 2. THE BEGINNINGS

mathematically rigorous grip on these systems, if possible, you first have to find

out how these systems behave under several different conditions. For certain of

these conditions, you don’t need to ‘test’ anything on paper. It is, for example,

trivial to see why the class of tag systems with v = 1 is solvable, you don’t even

have to write anything down to understand this. But what about the class of tag

systems with v = 2,µ= 2? As Post himself remarks, this case already demanded

considerable effort and he considered the proof of the solvability of this class as

the major result of his work as a Procter fellow.40 But how would one start with

such a proof? More generally, how can one start with any mathematical proof

for these systems without having any information about what kind of behav-

iour several initial conditions can lead to, without e.g. knowing about the link

between the length of the words and v, without having a clue about what the

effect is of varying v and µ,...? Or, as Minsky put it in considering the problems

involved when studying the example of a tag system Post gave: “one cannot ex-

pect much help from a computer [...] except for clerical aid in studying examples;

but if the reader tries to study the behavior of 100100100100100100 without such

aid, he will be sorry” ([Min67], pp. 267–268). Some of the problems related to

tag systems can be solved by “pure reasoning”, but most of them can only be

answered – or even posed – theoretically by first having gone through several

“tests”.41 Tag systems simply don’t allow for a “direct theoretical intuition” due

to their abstractness.

Post indeed tested several cases, varying the parameters, and found three classes

40[...] the problem of “tag” was made the major project of the writer’s tenure of a Procter fel-

lowship in mathematics at Princeton during the academic year 1920-1921. [...] And the major

success of that project was the complete solution of the problem for all bases in which µ and v

were both 2. [...] this special case µ= v = 2 involved considerable labor.” ([Pos65], p. 362.). The

proof by Post was never published. In Section 9.4.2 we will give the proof, that consists of sev-

eral classes of cases, and one part of the proof is based on observations of the behaviour of tag

systems, using a computer.
41Since the notion “experimental” was put between double quotes, the same must be done

with the notion “pure reason”. To our mind, it seems sometimes as difficult to differentiate

an “experimental” approach from some other approach as it is difficult to separate a “pure

reasoning approach” from a so-called “experimental” approach.

2.2. FROM SOLVABILITY TO UNSOLVABILITY 51

of behaviour: termination, periodicity and divergence.42 Divergent behaviour

was further divided into two subclasses: tag systems that grow in a predictable

way and tag systems that don’t ([Pos65], p. 362):

Where the process does not terminate, it is readily seen that according as the

lengths of the resulting sequences are bounded, or unbounded, the resulting in-

finite sequence of the sequences will, from some point on, become periodic, or

the length of the n-th sequence will increase indefinitely with n. In the first case

the second form of the problem is again immediately solvable, while in the sec-

ond case the solution would follow if a method were also found for determining

of any given length of sequence a point in the process beyond which all derived

sequences were of length greater than that given length.43

This last possibility of divergent behaviour caused major difficulties Post was

unable to resolve. He furthermore classified classes of cases which are solvable

and which might not be solvable. The classes with µ = 1 or v = 1 or v = µ = 2

were proven solvable. The case with µ = 2, v > 2 he calls intractable, while he

terms the cases µ> 2, v = 2 as being of “bewildering complexity”.

Post had not expected this. Simple though as they may seem, tag systems in-

deed give rise to intractable and complex behaviour. Even the simple exam-

ple given above is still not known to be decidable nor universal (despite the

availability of the computer). About this example Post remarks in a footnote

([Pos65], p. 363):

Numerous initial sequences actually tried led in each case to termination or pe-

riodicity, usually the latter. It might be noted that an easily derived “probability”

prognostication suggested that in this case periodicity was to be expected.44

42In Post’s example the string “010001011” will result in a NILL, while the string

“10111011101000000” will lead to periodic behaviour – period 6.
43After this description Post added the following footnote: “In this analysis we may have gone

somewhat further than is justified by the notes.” ([Pos65], p. 362), a comment that shows how

much time Post spent on the problem.
44It should be remarked here that for small initial conditions, the tag system mentioned by

Post indeed always terminates or becomes periodic. Of course he was not able to test larger

initial conditions, since then one might have to go through millions of iteration steps before

52 CHAPTER 2. THE BEGINNINGS

From this quote it is not only clear that Post indeed tested several cases, e.g., by

trying out “numerous initial conditions”, but that he even developed a certain

probabilistic method to predict the behaviour of the system.

It were his experiences with tag systems that laid the ground for the reversal of

Post’s program: his goal of finding a positive solution for the finiteness problem

for Principia seemed hopeless at that time. It is noteworthy that Post’s search

for the most general form to capture systems of symbolic logic ended up with a

form as simple as that of tag systems and that exactly this led him to the math-

ematical practice of working out special cases, hoping to infer more general

properties from these. It were not the theoretical considerations preceding his

work on tag systems but his struggle with what appeared to be easy problems

that led him to the idea of the finiteness problem possibly being unsolvable

[Pos65, p. 363]:45

While considerable effort was expanded on the caseµ= 2, v > 2, but little progress

resulted, such a simple basis as 0 → 00,1 → 1101, v = 3, proving intractable. For

a while the case v = 2, µ > 2, seemed to be more promising, since it seemed to

offer a greater chance of a finely graded series of problems. But when this possi-

bility was explored in the early summer of 1921, it rather led to an overwhelming

confusion of classes of cases, with the solution of the corresponding problem

depending more and more on problems in ordinary number theory. Since it had

been our hope that the known difficulties of number theory would, as it were, be

dissolved in the particularities of this more primitive form of mathematics, the

solution of the general problem of “tag” appeared hopeless, and with it our entire

program of the solution of finiteness problems. This frustration [my emphasis],

however, was largely based on the assumption that “tag” was but a minor, if es-

sential, stepping stone in this wider program.

As is clear from this quote, these observations really bothered Post – he had not

expected difficulties for such “primitive forms of mathematics”, and it was only

when he was able to prove that canonical form A is reducible to a form which is

the system becomes periodic or terminates (if it ever does) – a task which is hardly possible

with pencil and paper.
45For further arguments concerning this statement, Cfr. Sec. 2.2.4

2.2. FROM SOLVABILITY TO UNSOLVABILITY 53

closely connected to these tag systems, that these difficulties no longer seemed

surprising.46

2.2.4 Further reductions: From tag systems to Post’s thesis

Before Post started his research on tag systems, he had already shown that

canonical form A can be reduced to canonical form B and further proved that

the restricted functional calculus is reducible to a system in canonical form B.

At that time he still believed that the finiteness problem for Principia had a pos-

itive solution – it was the motivation behind these first reductions ([Pos65], p.

346):

[...] impetus was lent to the work by our formally reducing the subsystem of Prin-

cipia Mathematica treated in *10 and *11 thereof to a system of the above type

[canonical form B]. For thereby a solution of the finiteness problem for all of the

above systems would immediately lead to a solution for this important subsys-

tem of Principia Mathematica.

Having understood after his work on tag systems that very simple production

systems can give rise to complex behaviour, Post was now led to a whole series

of reductions to systems in forms, that are formally far simpler than those in

canonical form A or B, let alone Principia.

Systems in canonical form C , normal form and the normal form theorem

The first transformation step he made was the reduction of systems in canoni-

cal form B to a canonical form C . Systems in this last form are nowadays known

as Post production systems. Given a system of which the enunciations, i.e. w.f.f.’s

are all expressed in terms of “finite sequences of letters, the different letters con-

stituting a once-and-for-all given finite set.” ([Pos65], p. 197) such a system is

said to be in canonical form C , when the primitive assertions (i.e. the axioms)

46As was pointed out to me by Martin Davis, Post hoped that someone else would prove the

recursive unsolvability of tag systems. Post himself did not want to work on them again given

his frustrating experience. Finally the conjecture that tag systems are unsolvable, was proven

by Marvin Minsky in his [Min61], after the problem was suggested to him by Martin Davis.

54 CHAPTER 2. THE BEGINNINGS

of the system are a finite set of enunciations in the above form, and the opera-

tions performable in the system are specified by a finite set of production rules

all of the following form:

g11Pi 1
1

g12Pi 1
2

. . . g1m1 Pi 1
m1

g1(m1+1)

g21Pi 2
1

g22Pi 2
2

. . . g2m2 Pi 2
m2

g2(m2+1)

. .

gk1Pi k
1

gk2Pi k
2

. . . gkmk Pi k
mk

gk(mk+1)

produce

g1Pi1 g2Pi2 . . . gmPim g(m+1)

The g ’s are given sequences of letters of the once-and-for-all given finite set of

letters or alphabet and the P ’s the operational variables – they can be any com-

bination of letters from this same alphabet. The further restriction is added that

each P in the conclusion of the production is present in at least one premise of

that production. To understand how such a system in canonical form C works,

it may be helpful to give an example. Suppose that the alphabet is given by the

set of letters {a, b}, and for the sake of simplicity, further suppose that there is

only one initial assertion, namely:

ababbabbabaaaaababbababbbbababbbabbb

Furthermore, suppose there are two production rules:

abaP1abP2b

aP3bbP4b

produces

bbP1aabbaab

and

bP1′baP2′b

bbP3′ab

produces

abaP3′b

2.2. FROM SOLVABILITY TO UNSOLVABILITY 55

Thus the basis of a system in canonical form C has been defined. To be able to

produce a new string, one has to check whether the initial assertion “fits” into

one of the forms given by the production rules. In this case the first production

rule can be applied, but not the second, resulting in the following production:

ababbabbabaaaaababbababbbbababbbabbb

ababbabbabaaaaababbababbbbababbbabbb

produces

bbbbaabbaab

From this new string, another string can be produced by applying the second

production rule:

bbbbaabbaab

bbbbaabbaab

produces

ababbaabbab

Constructing systems in this way, makes it possible to generate a variety of sys-

tems, which, depending on the production rules and the initial assertion(s),

each have their own properties: systems which are monogenic or not47, sys-

tems which produce an infinite or a finite number of strings, systems whose

results are periodic or not,. . . To finish this example, the first strings produced

by the basis given here, are shown:

bbbbaabbaab

ababbaabbab

bbbbaaabbaab

ababbaaabbab

bbbbaaaabbaab

ababbaaaabbab

bbbbaaaaabbab

....................

47A monogenic system is a system for which there is for each assertion in the system one and

only one applicable production.

56 CHAPTER 2. THE BEGINNINGS

Although systems in canonical form C can be interpreted as functional systems,

it is more straightforward to regard them as pure string rewriting systems. This

is partly due to the fact that “the boxes within a box symbolic form of the paren-

thesis notation is replaced merely by finite sequences of letters [...]”48. This re-

sults in a more flexible mechanism that becomes even clearer when actually

constructing such a system and making it work: the arbitrariness with which

such systems can be constructed – manually or programmed – is significant.

A special class of systems in canonical form C consists of systems in normal

form. Systems in normal form have only one primitive assertion (axiom) and

the finite set of production rules are all of the following form:

g P

produces

Pg ′

Except for his tag systems, these systems are the most simple and general sys-

tems Post ever developed and he used them in several influential papers he

wrote in the forties, among them his foundational paper on recursion theory

[Pos44]. Tag systems are in fact a special class of systems in normal form. In-

deed, the production rules of any tag system can be rewritten in normal form

as:

ai wP

produces

Pwai

with the length of w = v −1 and wi being the word corresponding to ai .

Fundamental to Post’s further research was his important normal form theo-

rem, first published in his [Pos43].49 From this theorem it follows that despite

their formal simplicity, systems in normal form are as powerful as systems in

48[Pos65], p. 363.
49The normal form theorem was first proved in the summer of 1921 and published in his

[Pos65]. Marvin Minsky gave a simpler version of the normal form theorem [Min62a, Min67]

2.2. FROM SOLVABILITY TO UNSOLVABILITY 57

canonical forms A,B and C . The theorem states that for every set of assertions

generated by a system in canonical form C over a given alphabet Σ, a system

in normal form over an alphabet including Σ can be set up, such that the as-

sertions from the system in canonical form are exactly those assertions of the

system in normal form which consist of no other letters than those contained

in Σ. Of this theorem, Marvin Minsky stated [Min62a], p. 1:

The theorem proved in this note is the Normal Form Theorem proved in Post’s

1943 paper [...] We have long felt that this result is one of the most beautiful in

mathematics. The fact that any formal system can be reduced to Post canoni-

cal systems with a single axiom and productions of the restricted form σα→ατ

is in itself a remarkable discovery, and even more so when we learn that this

was found in 1921, long before the formalization of metamathematics became

so popular.

Given his normal form theorem, Post was led to the actual reversal of his entire

program: he formulated a thesis similar to that by Church and Turing stated

only 15 years later and proved on the basis of this assumption that the finite-

ness problem for systems in normal form is unsolvable. But before further dis-

cussing these results it is important to argue that it was Post’s research on tag

systems that actually prepared the ground for this reversal.

The problem of “tag” and the reversal of Post’s program

The construction of systems in canonical form C and normal form and the re-

spective reduction proofs, were preceded by Post’s work on tag systems.50 In

the limited existing literature discussing Emil Post’s early work [Dav82, Dav94,

Sti04, Mur98] the fundamental role these tag systems have had in the further

development of this work is underestimated if not neglected. There are sev-

eral arguments that show that tag systems were an essential step towards Post’s

results on systems in normal form.

First of all, it was through his work on tag systems that he realized that such

primitive forms of mathematics can give rise to such bewildering complexity.

50As is clear from the chronology of the sequence of events that led to his results Post sketches

in the introduction of [Pos65] (p. 341).

58 CHAPTER 2. THE BEGINNINGS

On the one hand, this made the positive solution of the finiteness problem ap-

pear hopeless at that time (See Sec. 2.2.3). On the other hand the insight that

simple forms can be as powerful as Principia has been basic to his later re-

sults. The fact that Post discusses his tag systems in [Pos43] of which the main

purpose is the proof of his normal form theorem, adds further strength to the

significance of his work on tag systems for these later reductions.

More convincing are some quotes in which he literally states the dependence

of normal form on tag systems. In the last footnote of his [Pos43] Post writes:

In the summer of 1921, the intervening work on the problem of tag suggested

the reduction of canonical form C to the canonical form of the present paper,

and this reduction was followed by the successive reductions to normal form es-

sentially as given in section 2.

Although this quote seems ambiguous in that it suggests that there was an in-

termediary canonical form between canonical form C and normal form, the

‘canonical form of the present paper’ most probably refers to his normal form.

This interpretation relies on the fact that the only two forms described in the

paper besides the form of “tag” are canonical form C and normal form.51 If

this interpretation is correct, then this quote indeed illustrates that tag systems

led Post to his normal form. The only other sensible interpretation here could

be that Post made a typing error: it is possible that it should not be canonical

form C , but B. Although this seems less obvious given the fact that the reduc-

tion of canonical form B to C is mentioned in this same footnote preceding

this quote, the quote interpreted in this way also gives full support to the above

mentioned statement: given the fact that canonical form C differs significantly

from canonical form B, the fact that tag systems suggested the possibility of this

reduction is then fundamental to the formulation of normal form.

A second less ambiguous quote is from Post’s [Pos65], p. 382:

In fact, at one point later in the work on “tag”, it seemed that the regularity in-

duced by always removing µ elements from the beginning of a sequence was

responsible for the intrusion of number theory in the development, so that it

51Normal form being a special case of systems in canonical form C .

2.2. FROM SOLVABILITY TO UNSOLVABILITY 59

was tentatively suggested that “tag” be generalized to a form, which, indeed, is

exactly that of the later derived normal form.

Here Post states that the normal form was suggested due to a property of tag

systems which links them to number theory. This is a clear illustration of the

significance of tag systems for Post’s construction of systems in normal form.

Moreover, it was a property that showed the intrusion of number theory in his

development. This not only adds support to the significance of tag systems for

normal form, but furthermore to their relevance for Post’s results on unsolv-

ability.52 A last quote that almost literally states the fact that tag systems were

fundamental to the further reductions from canonical form B to C to normal

form is the following ([Pos65], pp. 202–203):

Before turning to the proof of our basic theorem given in the next section [i.e.

Post’s normal form theorem] we wish to [...] state a problem which largely de-

termined the direction taken by the reductions of the next section, and may offer

further opportunities for unsolvability proofs. [...] The problem referred to above

takes two related forms. Both forms employ the following “tag” operations as we

shall call them.

Although being less direct, maybe the most remarkable thing Post notices in

this context, is the fact that once he had constructed the reduction from canoni-

cal form A to normal form, these reductions functioned as a kind of explanation

for the difficulties he had experienced with tag systems [Pos65, p. 386]:

We have observed [...] how the seemingly simple problem of “tag” in fact proved

intractable for µ = 2, v > 2, of bewildering complexity for µ > 2, v = 2. In view of

our reduction of canonical form A to a form as close to that of “tag” as the normal

form, the difficulty of “tag” is no longer surprising.

His work on tag systems was probably the most frustrating research Post did

– struggling on the edge of unsolvability. However, they showed him that the

52The significance of tag systems for the genesis of the idea that the finiteness problem does

have a negative solution is also explicitly stated in the last part of the second quote of section

2.2.3.

60 CHAPTER 2. THE BEGINNINGS

simplicity of the basis of a system does not necessarily imply simplicity of the

behaviour of the system once it is “run”. In the end they were basic for his at

that time revolutionary, but unpublished, results.

Post’s thesis

Once Post had proven his normal form theorem, he completed his work by

“closing the circle” – he showed that systems in normal form are reducible to

canonical form A. All the forms discussed here (except for the form of “tag”)

were thus shown to be equivalent to each other. The fact that he had shown

that systems in a simple form could produce the same assertions deducible

from a more complicated system was now clearly understood. Post had already

proven that the part of Principia corresponding to first-order predicate calculus

could be reduced to a system in canonical form B, and that systems in canoni-

cal form B can be reduced to systems in canonical form C . It was the possibility

of reducing a seemingly more complicated form to a simpler form that was used

as a further argument for the possibility of reducing not only first order predi-

cate calculus but the entire Principia to a system in canonical form B and thus,

through the later reductions, to a normal form [Pos65, p. 384]:

The power of canonical form B was demonstrated [...] by the reduction of ∗10

Principia Mathematica to a single system in that canonical form. From this ex-

perience, and the knowledge of the kind of forms and the kind of operations

appearing in the whole of Principia Mathematica, or could be made to appear

if a complete symbolic development thereof were given, it becomes reasonably

certain that all of Principia Mathematica can in similar fashion be reduced to a

system in canonical form B. In the absence of the forbidding amount of work

needed to actually carry out this reduction, added strength is lent to the above

conclusion by the further reductions carried though (...); for if the meager formal

apparatus of our final normal systems can wipe out all of the additional vastly

greater complexities of canonical form B, the more complicated machinery of

the latter should clearly be able to handle formulations correspondingly more

complicated than itself.

2.2. FROM SOLVABILITY TO UNSOLVABILITY 61

Together with the normal form theorem it followed from these considerations

that the whole of Principia could be reduced to the simple normal form, indeed

a result that can be called remarkable given the time at which it was established.

It was this realization that finally led Post to the actual reversal of his entire

program.

Notwithstanding the fact that his tag systems had shown him the possibility of

certain decision problems being unsolvable it is significant that he still must

have had some slight hope for proving the solvability of the finiteness problem

for systems in normal form. In reducing such systems to still another form, a

solution again seemed within reach ([Pos65], p. 382):

While [...] special cases of “tag” might well be worth consideration as major

problems in themselves, the [...] further reduction of the normal form seemed

more promising.

Despite first successes Post soon realized that he wouldn’t find a solution to

the finiteness problem for systems in normal form. In using this new form for

solving the finiteness problem, he was only able to find solutions for a subclass

of this form, namely for those systems of which the operations consisted of

three of the four operations allowed for in this form. He concluded [Pos65, p.

283]:

The resulting methods held out the possibility of an attack on the finiteness

problem for systems having all four of the above types of operations, though cer-

tain of the difficulties of “tag” even then seemed glimmering in the distance. And

just when hope was thus renewed for a solution of the general finiteness prob-

lem, a fuller realization of the significance of the previous reductions led to a

reversal of our entire program.

This “fuller realization” points at what Martin Davis has called Post’s thesis [Dav82].

Given the generality of Principia it seemed that any method one could think of

to generate a set of strings, could be generated through Principia. Given the

reduction of first order predicate calculus to a system in normal form, by using

the normal form theorem, and the above mentioned considerations that con-

vinced Post of the reducibility of the whole of Principia to normal form led Post

62 CHAPTER 2. THE BEGINNINGS

to the conclusion that whatever set we would consider generated can be gen-

erated by a system in normal form. This is Post’s thesis, and clearly differs from

that proposed by Church and Turing. It is significant to note that Post realized

that the validity of the thesis did not depend on a mere definition of generated

set, but depends on the possibility of a real implementation of an algorithm

for generating such a set. In this sense no diagonalization can be done effec-

tively. After having defined a certain set through diagonalization, Post remarks

([Pos65], p. 386):

[...] in our example we have merely defined a set of a-sequences [i.e. a certain set

defined through diagonalizing out of the class of normal form systems], whereas

to yield a true counter-example, we must show how to generate that set, i.e., set

up a system of “combinatory iteration”

where “combinatory iteration” is described as follows [Pos65, p. 386]:

[...] the method of combinatory iteration [...] eschews all interpretation, and

studies the system merely as a formal system. The operations of the system are

then described as “combinatory” since they largely involve but a reshuffling of

symbols; and it is through the “iteration”, i.e. continued reapplication, of these

combinatory operations that the entire system is obtained.

In understanding the computable character of the notion of generated set, iden-

tifying it with every possible system of symbolic logic, Principia included, the

fuller realization of the power of his normal form finally made him, after appli-

cation of Cantor’s diagonal method, conclude that the finiteness problem for

the entire class of systems in normal form is unsolvable ([Pos65], p. 386):53

We [...] conclude that the finiteness problem for the class of all normal systems is

unsolvable, that is that there is no finite method which would uniformly enable

us to tell of an arbitrary normal system and arbitrary sequence on the letters

thereof whether that sequence is or is not generated by the operations of the

system from the primitive sequence of the system.

53For a more detailed explanation of the diagonal argument Post uses see [Dav94, Sti04].

2.2. FROM SOLVABILITY TO UNSOLVABILITY 63

Of course the validity of this assertion really depended on his thesis: it was only

the assumption that every generated set of sequences can be obtained from a

normal system that enabled this negative conclusion. To Post, his analysis of

the notion of generated set however was not yet completed ([Pos65], p. 387):

The correctness of this result is clearly entirely dependent on the trustworthiness

of the analysis leading to the above generalization [...] it is fundamentally weak

in its reliance on the logic of Principia Mathematica [...] for full generality a com-

plete analysis would have to be given of all the possible ways in which the human

mind could set up finite processes for generating sequences.[...] assuming the

correctness of our characterization of generated set of sequences, a mathemat-

ical derivation of the unsolvability of the finiteness problem for normal systems

as a consequent theorem should be feasible.

The fact that Post understood that a more complete analysis was needed, was

one of the reasons why he delayed publication of his work.

Post further realized that his results implied the incompleteness of all systems

of finitary symbolic logic reducible to a system in normal form [Pos65, p. 216]:54

Having noted the identity of canonical systems and normal sets [...] our last con-

clusion was transformed into the generalization that every generated set of se-

quences on a finite set of letters was a normal set. [...] In the early fall of 1921,

the formal proof of this unsolvability [...] was outlined, and led to the further

conclusion that not only was every (finitary) symbolic logic incomplete relative

to a certain fixed class of propositions (those stating that a given sequence was

or was not an assertion in a given normal system) but that every such logic was

extendible relative to that class of propositions.

Post had thus anticipated basic results found only 10 years later by Gödel, Church

and Turing. Although he had proven the unsolvability of the finiteness prob-

lem for systems in normal form, he never proved the Entscheidungsproblem

unsolvable. While he had reduced first-order predicate calculus to a system in

canonical form B and thus indirectly to a system in normal form, he did not

54For a more detailed exposition of how Post proved incompleteness on the basis of these

results – in comparing this approach to Gödel’s – see [Sti04].

64 CHAPTER 2. THE BEGINNINGS

prove the reverse reduction. Indeed, at the time he reduced first order calculus

to canonical form B he was still convinced that its decision problem would be

solvable and there was thus no need for a reduction in the other direction (from

canonical form B to predicate calculus.) In footnote 79 of [Pos65] he explains:

As to *10 being merely attached to this circle, [an unpublished note] categor-

ically states that a proof of the reducibility of canonical form A to *10 is “nearly

completed,” and as a result even suggests that the solution of the finiteness prob-

lem for *10 would yield the solution of the finiteness problem for all of Principia

Mathematica.

In footnote 90 he further added:

Less certain, however, is our having paused at the time to realize that the comple-

tion of the proof of the reducibility of canonical form A to *10 [...] would yield the

unsolvability of the latter’s finiteness problem. It remains uncertain, therefore,

to what extent the writer participated [sic] Church’s result on the unsolvability of

the deducibility problem for the restricted functional calculus.

2.2.5 Conclusion

In sketching the evolution of Post’s ideas starting from his Ph.D. and ending in

the fall of 1921, it was shown how the direction of this development was mo-

tivated by a method of generalization, reduction to simplified forms and focus

on outward form. As was shown, Post was not interested in the development

of one particular system of symbolic logic, but instead searched for the most

general form and methods to capture any system of symbolic logic. In doing so

he wanted to investigate the more general properties of logic, like decidability

and completeness, and ultimately mathematics.

His method of generalization and abstraction led him to a form called “Tag”

that forced him to a conclusion he had not foreseen: given the complexity and

intractability of the several cases of tag systems he considered, his entire pro-

gram of proving the whole of mathematics solvable, seemed hopeless. His form

of “tag” led the way for his at that time revolutionary results playing a signifi-

cant role in his further reductions to normal form. In the end, his normal form

2.2. FROM SOLVABILITY TO UNSOLVABILITY 65

theorem convinced him that it is possible to reduce the seeming more compli-

cated Principia to the formally simple normal form and he thus formulated his

thesis leading to his results.

As he states in the introduction to his Account of an Anticipation [Pos65], it was

exactly his focus on the outward forms of symbolic logic rather than on the log-

ical concepts involved that marks the difference between his work and that of

his “more complete successors”, and allowed for a greater freedom of method

and technique. This is clearly exemplified in his reduction proofs. There one

sees how step-by-step all meaningfulness is removed. To abstract from the spe-

cific meaning of an assertion he first eliminates the meaningful symbols like

“∨”, and constructs a form which is already then characterized by its abstract-

ness. This became even more explicit once he began his research on tag sys-

tems. For example, there is no syntax or order for a specific assertion because

of the removal of the delimiters (brackets), all symbols being put on the same

level. In that way the concept of a well-formed formula becomes far less im-

portant since there are only sequences of letters without any syntax. Every

arbitrary combination of letters or symbols from the predefined set of letters

or symbols, is well-formed. Furthermore, the concept of an axiom becomes

empty since it was only in varying these “axioms” as parameters, together with

the parameters of the bases, that Post identified different classes of behaviour

and different classes of cases for his tag systems.

Significant in this development, is that through further abstraction, motivated

by a difficult theoretical problem, the only “meaningful” method that could be

implemented to proceed with these abstractions is a typical mathematical one.

In Post’s work the technique of studying systems by working out special cases

seems to be a consequence of precisely this abstraction process. Since the re-

sult of this process were systems in a very simple and “meaningless” form, the

methods and results in a system one normally deduces through the interpreta-

tion of its axioms, production rules and syntax was not available. There is no

specific system, but an infinite group of systems sharing the same form. The

only way left to understand the differing properties of such a class of systems

is to test them, by checking for different kinds of initial conditions, different

values of v keeping for example other parameters constant, testing tag systems

66 CHAPTER 2. THE BEGINNINGS

with a different number of symbols,. . . . Only then was it possible to continue

the theoretical efforts. This approach then pushed Post’s research in a direction

he would most probably not have taken without it.

To summarize, although Post was, from the very beginning, searching for the

most general form of symbolic logic, it was only in effectively constructing such

forms that he was able to conclude for his at that time “unorthodox ideas”.

In the end, his theoretical assumptions were contradicted by his struggle with

what appeared to be easy problems together with the consequent development

of his research towards the beautiful systems in normal form. Only then he was

able to come to the fuller realization that his systems in normal form are able

to generate any set we consider intuitively as being generated. In other words,

Post’s results on unsolvability were not rooted in a search for a right formaliza-

tion of a given intuitive notion such as generated set. This idea only emerged

after he understood that the primitive forms of mathematics he constructed

are in fact far from primitive and powerful enough to formalize very general

intuitive notions.

2.3. “TO DENY WHAT SEEMS INTUITIVELY NATURAL” 67

2.3 “To deny what seems intuitively natural”: Church

and the λ-calculus

2.3.1 Introduction

At about the same time Post found his revolutionary results, Church was just

starting his career.55 He arrived at Princeton as an 18-year old boy after hav-

ing graduated at a preparatory school in Connecticut. In 1924 he graduated

with a B.A. in mathematics. After three years he finished his Ph.D. under the

supervision of Oswald Veblen. Although, as Martin Davis pointed out in the in-

troduction to Post’s Account of an anticipation [Dav65a] the field of symbolic

logic “suffered from virtually total neglect in the United States” Church had not

been working as isolated as Post. This “virtually total neglect” of logic in the

twenties in the U.S. is affirmed by Church, in an interview with Aspray.56 When

Aspray asked him what kind of textbooks on logic there were around in the 20’s,

Church answered [Asp84a]:

There were none that I liked. Lewis and Langford’s Symbolic Logic was around.

No, that may have been later, but certainly the book by C.I. Lewis was available.

But there was nothing about the sort of thing I wanted to teach, logic directed

towards math rather than the philosophical aspects of logic. Well, I am not sure;

there may have been a book of that sort. Of course [David] Hilbert and Wilhelm

Ackermann’s Grundzuege der theoretischen Logik was in existence at that time,

but it was in German. While the grad students were supposed to learn German,

as a practical matter I could not have used it as a textbook. So I used written

notes of my own and things like that.

After he had finished his Ph.D. he was awarded a two year National Research

Fellowship and spent two years visiting first Harvard, then Göttingen and Am-

sterdam. In recounting these visits, Church states in the interview with Aspray

[Asp84a]:

55The biographical information from this introduction mainly comes from [End05] and

[Asp84a].
56It should be noted that Martin Davis wrote an interesting paper [Dav95] on logic in the

twenties in the U.S., focussing on the pioneering work by both Post and Church.

68 CHAPTER 2. THE BEGINNINGS

I had two years on a National Research Fellowship. I spent a year at Harvard and

a year in Europe, half the year at Goettingen, because [David] Hilbert was there

at the time, and half the year in Amsterdam, because I was interested in [L.E.J.]

Brouwer’s work, as were some of those advising me.

In the same interview Church remembers taking the train to Brouwer’s resi-

dence out in the country on several occasions.57 Afterwards, Church returned

to Princeton where he would stay until 1967. In 1967 he left Princeton and

went to UCLA where he was Flint professor of Philosophy and Mathematics

until 1990, when he retired at the age of 87.

Once the thirties started, Princeton became “the place to be” for many logi-

cians. Church was now surrounded by his two famous Ph.D. students Barkley

Rosser and Stephen Kleene. John von Neumann was there, and furthermore

Gödel crossed the ocean. From 1933 to 1934 Gödel visited the Institute for

Advanced Study, where he gave his important lectures58 attended by Church,

Kleene and Rosser. In other words, the situation Church was working in before

he published his important 1936 results can hardly be compared to that of Post.

Not only did he have a rather luxurious position as compared to Post’s but he

was surrounded by several other logicians, so he was able to exchange ideas

with his colleagues.

Church’s contributions to logic and the foundations of mathematics cannot

be underestimated. Besides his research results, he was one of the principal

founders of the Association for Symbolic Logic, the publisher of The Journal

of Symbolic Logic (JSL). Starting from the publication of the first volume of this

well-known journal, Church was not only an editor for contributed papers from

1936 to 1950 but was also the editor of the review section (1936–1979). He

wrote many, often harsh and severe, reviews. His goal of the review section was

twofold. In 1936 in the last number of the first volume of the JSL, Church had

published an almost 100 pages long Bibliography of Symbolic Logic [Chu36a]

covering the period 1666–1935. One of the goals of the review section was to

57In answering who he met in Amsterdam, he says that he didn’t meet with Heyting then.

[End05] mentions that Church met amongst others Bernays and Heyting during these years,

but this happend rather in Göttingen.
58Published as [Göd34]

2.3. “TO DENY WHAT SEEMS INTUITIVELY NATURAL” 69

further extend and update this bibliography, for books and journals published

after 1935. Furthermore, its purpose was to provide commentary to the litera-

ture where necessary ([Chu36b], p. 42:59

It is intended that this section of the Journal shall serve as a complete bibliogra-

phy of current literature in the field of symbolic logic, from January 1, 1936. To

this end an effort will be made to include in it, at least by title, all publications in

this field, both books and articles in journals, and as far as possible these will be

accompanied by signed reviews.

Church’s work not only influenced the domain of logic and mathematics, but

it inspired important contributions to computer science as well. Of course,

Church is best-known because of Church’s thesis, providing a formal definition

of the intuitive notion of effective calculability. In collaboration with Kleene

and Rosser, one of Church’s most important achievements has been the devel-

opment of λ-calculus. This calculus has influenced the domain of computer

science in many different respects. First of all, it lies at the basis of the oldest

functional programming language LISP, developed by John McCarthy and has,

as a theoretical functional programming language, a general significance for

the theory of programming.60 Together with Curry’s [Cur30] and Schönfinkel’s

[Sch24] systems, the λ-calculus is furthermore one of the famous examples of

combinatory logic.61 The λ-calculus nowadays also plays an important role in

the implementation on computers of systems to do mathematics, called com-

puter mathematics. These systems are used to formalize and verify proofs by

59The paper [End98] discusses Church’s role in the review section of the JSL.
60LISP was first described in [McC60]. A paper by McCarthy on the history of Lisp is [McC81].

In recounting the innovative character of LISP, McCarthy says about the influence of the λ-

calculus: “To use functions as arguments, one needs a notation for functions, and it seemed nat-

ural to use the λ-notation of Church [Chu41]. I didn’t understand the rest of the book, so I wasn’t

tempted to try to implement his more general mechanism for defining functions.” ([McC81], p.

176.) A very interesting paper discussing the influence of λ-calculus on functional program-

ming languages is [Tra88]. Rosser’s [Ros82, Ros84] further discusses the role of λ-calculus and

in general of combinatory logic, for computer languages.
61Rosser’s Ph.D. thesis, published as [Ros35] made clear the connection between Curry’s and

Schönfinkel’s combinatory logics and the λ-calculus.

70 CHAPTER 2. THE BEGINNINGS

computers.62

Alonzo Church died at the age of 93 on August 11, 1995.

In this section we will discuss Church’s work preceding the first announcement

of his famous results on 19 April, 1935 to the American Mathematical Soci-

ety [Chu35]. We will show how he was led to the formulation of his thesis

and the proofs of certain unsolvable decision problems, starting from the first

published paper by Church in 1924 on the Lorentz transformation. Since the

period between the publication of this paper and Church’s famous results is

well-documented and marked by a continuity of published work, we are able

to sketch the evolution of Church’s ideas from 1924 till April 1935 without large

interruptions, contrary to our analysis of Post’s earlier work.

2.3.2 Towards variant systems of logic.

As Church tells in an interview with Aspray [Asp84a], he was already interested

in foundational issues as an undergraduate. His first published paper was on

the Lorentz transformation [Chu24], which is at the foundations of (special) rel-

ativity. The object of this paper was to find a set of logically independent pos-

tulates that uniquely determine the Lorentz transformation for one dimension.

One year later he published a more general paper [Chu25] further exploring the

concept of independent sets, in relation to irredundant sets of postulates.63

After graduating, he started his Ph.D. at Princeton in 1924 under Oswald Ve-

blen, who was interested in the foundations of mathematics and thus sharp-

ened Church’s general interest in the subject. He even urged him to read some

of Hilbert’s work:

62A paper surveying the influence of λ-calculus on logic and computer science, including its

significance for computer mathematics is [Bar97].
63It is interesting to note that in describing a method by which any set of independent pos-

tulates can be made irredundant, Church identifies it as a “mechanical method” (“There is a

mechanical method by which any set of postulates can be made irredundant.”([Chu25], p. 321).

2.3. “TO DENY WHAT SEEMS INTUITIVELY NATURAL” 71

It was Veblen who urged me to study Hilbert’s work on the plea, which may or

may not have been fully correct, that he himself did not understand it and he

wished me to explain it to him. At any rate, I tried reading Hilbert. Only his pa-

pers published in mathematical periodicals were available at the time. Anybody

who has tried those knows they are very hard reading. I did not read as much of

them as I should have, but at least I got started that way.

Veblen was also interested in the question if the axiom of choice was indepen-

dent of other axioms, as Church remarks in the same interview, and it became

the subject of his dissertation, published as [Chu27]. As is clear from its title,

Alternatives to Zermelo’s assumption, p. 178:

The object of this paper is to consider the possibility of setting up a logic in which

the axiom of choice is false.

In his Ph.D., Church indeed started from the ‘hypothesis’ that the axiom of

choice could be considered independent from Zermelo-Fraenkel set theory. In

making this assumption, he wanted to investigate the possible consequences

of several alternatives to Zermelo’s ‘assumption’. Church was well aware of the

fact that replacing the axiom of choice by contradictory assumptions was not

evident at that time.64 He even had to convince his supervisor Veblen, due to

the fact that he wanted to contradict that which seemed intuitively more nat-

ural. After having explained in the interview with Aspray that he regarded his

dissertation more as research in mathematics rather than in logic, Church ex-

plains ([Asp84a]):

The only thing that might have annoyed some mathematicians was the presump-

tion of assuming that maybe the axiom of choice could fail, and that we should

look into contrary assumptions.[...] [Veblen] was really the only man supervising

it. I sort of had to convince him about some aspects of the axiom of choice. To

deny what seems intuitively natural is rather difficult. You tend to slip back into

what informally seems more reasonable. I remember from time to time having

to explain things to him, but I convinced him that my arguments were sound.

64In [Dav95] it is discussed in more detail that at the time, Church’s general approach of ex-

ploring variant systems of symbolic logic was indeed far from evident.

72 CHAPTER 2. THE BEGINNINGS

As is noted by Martin Davis ([Dav95], p. 275):

[Church] was acutely aware of set theory together with logic as a foundation of

mathematics [...] [while] [n]oteworthy contributions to logic and foundations of

mathematics were few and far between during the twenties.

His research was indeed explicitly embedded in the context of the foundations

of mathematics. Before actually starting with his investigation into the alterna-

tives to Zermelo’s assumption, he discusses the problem of completeness “to

prepare the way for the suggestion that there may be one or more additional in-

dependent postulates which can be added to the set of postulates 1-5 [...]”.65

Church considers three main postulates A, B and C wanting to “inquire into

their character, and to derive as many of their consequences”66 in order to find

reasonable alternatives for the axiom of choice.

Significant is the fact that Church considers the derivation of as many conse-

quences as possible a valuable way to argue for the independence of the axiom

of choice. If one of the postulates would involve a contradiction, this process of

deriving as many consequences as possible, should reveal it at a given time.67 If

not, this fact can be regarded as “presumptive evidence” for the independence

of the axiom of choice ([Chu27], p. 187):

If any one of these involve a contradiction it is reasonable to expect that a sys-

tematic examination of its properties will ultimately reveal this contradiction.

But if a considerable body of theory can be developed on the basis of one of

these postulates without obtaining inconsistent results, then this body of theory,

when developed, could be used as presumptive evidence that no contradiction

exists. If there be two of these postulates neither of which leads to contradic-

tion, then there are corresponding to them two distinct self-consistent second

ordinal classes, just as Euclidian and Lobachevskian geometry are distinct self-

consistent geometries [...]

65[Chu27], p.186
66[Chu27], p.178
67This approach is very similar to, e.g., J.H. Lambert’s work (published posthumously 1786)

on the parallel postulate that precedes later work by Gauss, Bolyai and Lobachevski (See

[Lam86, SE95]).

2.3. “TO DENY WHAT SEEMS INTUITIVELY NATURAL” 73

Starting from the idea that if a set of postulates is inconsistent, a systematic

examination of its properties should ultimately reveal a contradiction, Church

concludes that if one is able to develop a considerable amount of theory starting

from the assumption, without finding a contradiction, one can presumptively

conclude that the theory developed might be consistent. This evidence in its

turn then adds strength to the hypothesis of the independence of the axiom of

choice.

Later on in his dissertation, Church identifies this attitude as an experimental

one. After having deduced many of the consequences of the three postulates,

Church proposes two more postulates F and G, inconsistent with each other,

but “apparently consistent” with postulates 1-5 and C. After the statement of

the postulates, Church announces how he wants to proceed ([Chu27], p. 205):

We shall examine briefly the consequences of each of the postulates just stated

when taken in conjunction with Postulates 1-5 and C, taking the same experi-

mental attitude as that which we took in the case of Postulates A, B and C.

One year later another paper by Church was published On the law of the ex-

cluded middle [Chu28] of which the purpose is clearly in line with the ideas

sketched in his Ph.D.:

[The purpose of this paper is] to discuss the possibility of a system of logic in

which the law of the excluded middle is not assumed [...]

Again it is clear that Church was not interested in the study of one ultimate

system of logic. On the contrary, he wanted to consider variant systems of sym-

bolic logic, the underlying idea being that there is not one absolute system of

logic.

If one no longer holds on to the idea of preferring one set of axioms over an-

other one, because it is closer to intuition, i.e. if one wants to deny what seems

intuitively natural, one has to find other ways to evaluate the different systems

one is considering. In Sec. 2.1 we already discussed that for Hilbert this new

criterium was the system’s consistency. Also for Church, already in these ear-

lier papers, consistency is the main criterium to judge a given system of sym-

bolic logic. Proving the consistency of a given system can be very hard. It can

74 CHAPTER 2. THE BEGINNINGS

take years before a proof is found, if ever. Church must have been aware of the

problems that might be involved in proving a system consistent since he was

familiar with Hilbert’s work and the German language. His “empirical” attitude

towards a systems’ consistency is thus very reasonable and nowadays shared

by several other mathematicians. As, e.g., Martin Davis remarked in discussing

the problem of consistency proofs [Dav90]:

[...] great logicians (Frege, Curry, Church, Quine, Rosser) have managed to pro-

pose quite serious systems of logic which later have turned out to be inconsis-

tent. “Insight” didn’t help. New axioms are just as problematical as new physical

theories, and their eventual acceptance is on not dissimilar grounds.

This point of view became only more explicit in the results to follows.

Four years after the publication of [Chu28] Church published the first of two

major papers in which the ideas and methods already present in his earlier

work become even more apparent. It were these papers which finally led to

λ-calculus and ultimately Church’s thesis.

2.3.3 An Inconsistent Set of Postulates

In [Chu32] Church developed a system of postulates to serve as a foundation

for logic and mathematics – a system of logic adequate for the development of

mathematics in which the notion of a function plays a fundamental role. This

set of postulates however had to be “free of some of the complications entailed

by Bertrand Russell’s theory of types, and [at the same time had to avoid] the well

known paradoxes [...]”68.

Basic to Church’s set of postulates and in fact to the subsystem included therein

now known as the λ-calculus, is the notion of a function. As he states in the

introduction of his nice little orange book published in 1941 and still known

as a good introduction to λ-calculus, called The calculi of lambda-conversion

[Chu41], p. 1:

Underlying the formal calculi which we shall develop is the concept of a func-

tion, as it appears in various branches of mathematics [...]. The study of the gen-

68[Chu33], p. 839

2.3. “TO DENY WHAT SEEMS INTUITIVELY NATURAL” 75

eral properties of functions, independently of their appearance in any particular

mathematical (or other) domain, belongs to formal logic, or lies on the boundary

line between logic and mathematics. This study is the original motivation for the

calculi [...]

Church’s set of postulates was thus developed to study the properties of func-

tions, independently of their appearance in a specific domain. As is also pointed

out in Kleene’s excellent paper on the history of recursive functions and the λ-

calculus [Kle81a], one of the main ingredients of Church’s set of postulates is

that he got rid of the ambiguous use of expressions that can either denote a

function or an expression, containing a variable, that ambiguously denotes a

value of the function. Church gives the following example of such an expres-

sion: (x2 +x)2. He proceeds [Chu41], p. 6:

If we say “(x2+x)2 is greater than 1,000, ” we make a statement which depends on

x and actually has no meaning unless x is determined as some particular natural

number. On the other hand, if we say “(x2+x)2 is a primitive recursive function,”

we make a definite statement whose meaning in no way depends on a determi-

nation of the variable x (so that in this case x plays the role of an apparent, or

bound, variable).

This ambiguity was resolved by using the so-called abstraction operator λ. In

the example, the ambiguity is banished by using λx[(x2 + x)2] as notation, x

now being bound by λ. In this respect, Church’s set of postulates abandoned

ambiguous uses of the free variable, the reason being that he required ([Chu32],

p. 346):

[...] that every combination of symbols belonging to our system, if it represents a

proposition at all, shall represent a particular proposition, unambiguously, and

without the addition of verbal explanations.

Church’s set of postulates thus had the ambition to provide foundations for

logic and mathematics in which the notion of a function plays a basic role.

Unlike the authors of Principia, Church did not claim any absoluteness for

his proposed set of postulates, an attitude clearly inspired by his former work

([Chu32], p. 348):

76 CHAPTER 2. THE BEGINNINGS

We do not attach any character of uniqueness or absolute truth to any particular

system of logic.

While he did not give explicit reasons for this kind of attitude towards logic in

his former work, Church now adds strength to his approach by making state-

ments about the connections between an abstract theory and the reasons why

it is developed – its ‘application’. In this context he links up, by analogy, the

existence of alternative geometries with the existence of alternative systems of

symbolic logic ([Chu32], 348–349):

The entities of formal logic are abstractions, invented because of their use in

describing and systematizing facts of experience or observation, and their prop-

erties, determined in rough outline by this intended use, depend for their exact

character on the arbitrary choice of the inventor. We may draw the analogy of

a three dimensional geometry used in describing physical space [...] In building

the geometry, the proposed application to physical space serves as a rough guide

in determining what properties the abstract entities shall have, but does not as-

sign these properties completely. Consequently there may be, and actually are,

more than one geometry whose use is feasible in describing physical space. Sim-

ilarly, there exist, undoubtedly, more than one formal system whose use as a logic

is feasible, and of these systems one may be more pleasing or more convenient

than another, but it cannot be said that one is right and the other wrong.

Indeed, the fact that any system of formal logic is determined by its use in order

to describe certain experiences and observations, implies that there cannot be

one ultimate system of logic. This does not mean that the logic is completely

determined by its application. On the contrary ([Chu32], p. 349):

In consequence of this abstract character of the system which we are about to

formulate, it is not admissible, in proving theorems of the system, to make use

of the meaning of any of the symbols, although in the application which is in-

tended the symbols do acquire meanings. The initial set of postulates must of

themselves define the system as a formal structure, and in developing this for-

mal structure reference to the proposed application must be held irrelevant. [m.i.]

There may, indeed, be other applications of the system than its use as a logic.

2.3. “TO DENY WHAT SEEMS INTUITIVELY NATURAL” 77

As was said, given this attitude towards variant systems of logic, there remained

for Church only one criterion to reject or accept (be it on a presumptive basis)

a given system of logic: its consistency. Given the non-existence of a general

method to prove consistency the only reasonable attitude left to apply this cri-

terion to a given system of logic, is an ‘empirical’ one, for as long as no consis-

tency proof is found ([Chu32], p. 348):

Whether the system of logic which results from our postulates is adequate for the

development of mathematics, and whether it is wholly free from contradiction,

are questions which we cannot answer except by conjecture. Our proposal is

to seek at least an empirical answer to these questions by carrying out in some

detail a derivation of the consequences of our postulates, and it is hoped either

that the system will turn out to satisfy the conditions of adequacy and freedom

from contradiction or that it can be made to do so by modifications or additions.

This attitude is repeated by Church in a reply to a letter to Gödel, dated july

27, 1932.69 In answering the question posed by Gödel of whether there is any

other way to prove the consistency of Church’s set of postulates besides proving

it consistent relative to type or set theory, Church answers:70

In fact, the only evidence for the freedom from contradiction of Principia Math-

ematica is the empirical evidence arising from the fact that the system has been

in use for some time, many of its consequences have been drawn, and no one

has found a contradiction. If my system be really free from contradiction, then

an equal amount of work in deriving its consequences should provide an equal

69It should be noted here that Church later admitted that he was among those at that time

who believed that “Gödel’s incompleteness theorem might be found to depend on peculiarities

of type theory [...] in a way that would show this results to have less universal significance than

he was claiming for them.” (Church in a letter to John Dawson, dated July 25, 1983, reprinted

in [Sie97]). This is already clear from this reply to Gödel, in which he states amongst other

things, that he “has been unable to see, however, that your conclusions in §4 [Gödel’s second

incompleteness theorem] of this paper apply to my system.”, [Göd03a], p. 369
70The exact question posed by Gödel is: “In case the system is consistent, won’t it then be pos-

sible to interpret the fundamental concepts in a system with type theory, or in the axiom system

of set theory, and can one make the consistency plausible at all in any other way than through

such an interpretation?” , 17 June, 1932, [Göd03a], p. 367

78 CHAPTER 2. THE BEGINNINGS

weight of empirical evidence for its freedom from contradiction.([Göd03a], p.

368)

This ‘empirical’ attitude was further pursued in [Chu33]. Having learned in the

meantime that some of his postulates lead to a contradiction, the list was re-

vised. Furthermore 42 new theorems were proven to follow from this new set of

postulates and a basis to develop a theory of positive integers in the set of pos-

tulates was added. In this paper Church beautifully summarizes his ‘empirical’

approach to logic and mathematics ([Chu33], p. 842):

Our present project is to develop the consequences of the foregoing set of pos-

tulates, until a contradiction is obtained from them, or until the development

has been carried so far consistently as to make it empirically probable that no

contradiction can be obtained from them. And in this connection it is to be re-

membered that just such empirical evidence, although admittedly inconclusive,

is the only existing evidence of the freedom from contradiction of any system of

mathematical logic which has a claim to adequacy.

However, soon after the publication of this paper it would be shown by Kleene

and Rosser – Church’s Ph.D. students – that he had not inferred enough con-

sequences out of the system: they showed that Church’s set of postulates is in-

consistent [KR35]71 – a result that clearly illustrates the problematic character

of Church’s, or any other, ‘empirical’ attitude, and “not exactly what one dreams

of having one’s graduate students accomplish” as Martin Davis stated ([Dav82],

p. 4).

2.3.4 λ - The Ultimate Operator

In the meantime Kleene’s attention had shifted to a subpart of Church’s set of

postulates, now known as the λ-calculus. He was working on his Ph.D. replying

to the program Church proposed at the end of [Chu33] , p. 864:

Our program is to develop the theory of positive integers on the basis which we

have just been describing, and then, by known methods or appropriate modifi-

71The proof itself is from early 1934

2.3. “TO DENY WHAT SEEMS INTUITIVELY NATURAL” 79

cations of them, to proceed to a theory of rational numbers and a theory of real

numbers.

Kleene’s original Ph.D. topic was indeed to develop a theory of positive integers

in Church’s set of postulates.72 It was published in two parts in 1935 ([Kle35a]

[Kle35b]) and contained the development of such a theory in the λ-calculus.73

A quick introduction to λ-calculus.74 In λ-calculus there are two types of sym-

bols. The three primitive symbols λ, (,) also called the improper symbols by

Church, and an infinite list of variables. There are three rules to define the well-

formed formulas of λ-calculus, called λ-formulas.

1. The λ-formulas are first of all the variables themselves.

2. If P is a λ-formula already constructed, containing x as a free variable then

λx[P] is also a λ-formula. The λ-operator is used to bind variables and

it thus converts an expression containing free variables into one that de-

notes a function (cfr. supra, Sec. 2.3.3).75

3. If M and N are λ-formulas then so is {M}(N), where {M}(N) is to be under-

stood as the application of the function M to N.

The λ-formulas, or well-formed formulas of λ-calculus are all and only those

formulas that results by (repeated) application of these three rules. There are

three operations or rules of conversion. Let us define Sx
NM| as standing for the

formula that results by substitution of N for x in M. For each of the rules we will

give one explanatory example. the expression we will use are not in the pure

language of λ-calculus and are merely added to make clear the rules.

72In [Asp84b], Kleene says: “Church, in the last paragraph or the last page of his second paper

on the foundation of logic, proposed the problem of developing the theory of positive integers

on the basis of his system. There was a ready-made Ph.D. thesis problem. With my very limited

knowledge of the area at that time, I don’t think I could have dreamed up a problem for myself.

It proved to be a challenging problem, and I did it.”
73After Kleene and Rosser had shown that Church’s set of postulates was inconsistent, Kleene

rewrote his dissertation taking into account this result, although his Ph.D. had already been

accepted in September 1933.
74This exposition is based on [Chu41] and [Kle81a].
75“We think of λx[P] as denoting that function of x whose value (if defined), for each value

taken by x, is the value then taken by P.” [Kle81a], p. 54

80 CHAPTER 2. THE BEGINNINGS

1. Reduction. To replace any part ((λx M) N) of a formula by Sx
NM| provided

that the bound variables of M are distinct both from x and from the free

variables of N. For example to change {λx[x2]}(2) reduces to 22

2. Expansion To replace any part Sx
NM| of a formula by ((λx M) N) provided

that ((λx M) N) is well-formed and the bound variables of M are distinct

both from x and from the free variables in N . For example, 22 can be ex-

panded to {λx[x2]}(2)

3. Change of bound variable To replace any part M of a formula by Sx
y M| pro-

vided that x is not a free variable of M and y does not occur in M. For

example changing {λx[x2]} to {λy[y2]}

Church then introduced an encoding for the natural numbers, where he con-

sidered the numeral in Arabic notation as abbreviations for an infinite set of λ-

formulas. I.e., he gave the following definitions:

1 →λy x.y x,

2 →λy x.y(y x),

3 →λy x.y(y(y x)),

...

where it should be noted that the λ-definition of the natural numbers uses not

the original notation of λ-calculus, but an abbreviated notation using, amongst

others dots as brackets as a kind of shorthand. Using these definitions of the

natural numbers it is possible to λ-define functions over the positive integers.

A function F of one positive integer is λ-definable if we can find a λ-formula F,

such that if F (m) = n and m and n are λ-formulas encoding the integers m and

n (according to the above given encoding scheme), then the λ-formula {F} (m)

can be converted to r by applying the conversion rules of λ-calculus. Thus, for

example the successor function S, first introduced by Church, can be λ-defined

as follows:

S →λabc.b(abc)

To give an example, applying S to the λ-formula standing for 2, we get:(
λabc.b(abc)

)(
λy x.y(y x)

)→λbc.b
((
λy x.y(y x)

)
bc

)
→λbc.b

((
λx.b(bx)

)
c
)→λbc.b(b(bc))

It is also important here to explain the normal form in λ-calculus. A formula is

said to be in normal form if it is well-formed and contains no part of the form

{λx[M]}(N). A formula is said to be in principal normal form if it is in normal

form and no variable occurs in it both as a free and as a bound variable, and the

2.3. “TO DENY WHAT SEEMS INTUITIVELY NATURAL” 81

variables which occur in it immediately following the symbol λ are, when taken

in the order in which they occur in the formula, in natural order, without repeti-

tions, beginning with a and omitting only such variables as occur in the formula

as free variables. For example the formula λab.b(a) is in principal normal form,

λac.c(a) is in normal form but not in principal normal form.

Already from the first paragraph of his dissertation it is clear what Kleene had

learned, or at least inherited, from Church ([Kle35a], p. 153):

Our object is to demonstrate empirically that the system is adequate for the the-

ory of positive integers, by exhibiting a construction of a significant portion of

the theory within the system. By carrying out the construction on the basis of

a certain subset of Church’s formal axioms, we show that this portion at least of

the theory of positive integers can be deduced from logic without the use of the

notions of negation, class, and description.

While Church’s empirical approach might have been disappointing when his

set of postulates turned out to be inconsistent, it would show very fruitful dur-

ing further research on the λ-calculus.

As is stated by Rosser in his [Ros84], Church first mentioned (or even had)

the idea that every effectively calculable function from positive integers is λ-

definable in a conversation in late 1933, after Rosser had told him about his

latest function in λ-calculus ([Ros84], p. 345):76

One time, in late 1933, I was telling him [Church] about my latest function in the

LC. He remarked that perhaps every effectively calculable function from positive

integers to positive integers is definable in LC. He did not say it with any firm

conviction. Indeed, I had the impression that it had just come into his mind

from hearing about my latest function. With the results of Kleene’s thesis and the

investigations I had been making that fall, I did not see how Church’s suggestion

could possibly fail to be true. in fact, I immediately berated myself (silently) for

76A more detailed account of the events preceding the first official statement of Church’s the-

sis can be found in [Kle81a, Ros84, Dav82, Sie97]

82 CHAPTER 2. THE BEGINNINGS

not having seen the obvious a month or two before, so that I would have made

that proposition to Church before he made it to me.

According to both Rosser and Kleene, Church was convinced about the equiv-

alence between λ-definability and effective calculability in early 1934.77 This

idea however was far from evident given the, at first, counterintuitive way one

can compute functions in λ-calculus ([Kle81a], p. 54):

Before research was done, no one guessed the richness of this subsystem. Who

would have guessed that this formulation, generated as I have described to clar-

ify the notation for functions, has implicit in it the notion (not known in math-

ematics in 1931 in a precise version) of all functions on the positive integers (or

on the natural numbers) for which there are algorithms?

Indeed, Kleene himself had not expected that λ-calculus would have been so

powerful, and it was not he nor Rosser but Church who first came up with this

idea of identifying λ-definability with calculability. As is told by Barendregt

([Bar97], p. 186):

Many years later – it was at the occasion of Robin Gandy’s 70-th birthday, I be-

lieve – I heard Kleene say: “I would like to be able to say that, at the moment

of discovering how to lambda define the predecessor function, I got the idea of

Church’s thesis. But I did not, Church did.”

A very important trigger for Church’s idea was indeed Kleene’s definition of the

predecessor function in λ-calculus ([Kle81a] p. 57):78

When I brought this result to Church, he told me that he had just about con-

vinced himself that there is no λ-definition of the predecessor function. The dis-

covery that the predecessor function is after allλ-definable excited our interest in

what functions are not just definable in the full system but actually λ-definable.

The exploration of this became a major subproject for my Ph.D. thesis. Of course,

77The exact time at which Church made a more definite proposal of his thesis should be situ-

ated between February 7, 1934 and March 1934. See [Dav82], p. 8
78In [Kle81a] he explains that he got the idea of how to λ-define the predecessor function at

the dentist in late January or early in February 1932

2.3. “TO DENY WHAT SEEMS INTUITIVELY NATURAL” 83

I did develop a great deal of theory of positive integers in Church’s formalism, us-

ing many λ-definitions in the process.

From that moment on, the search for effectively calculable functions which are

λ-definable became a more explicit research goal. Kleene gradually unravelled

the amazing computational power of the λ-calculus, in being able to show that

each example of an effective calculable function he and Church could think of,

was indeed λ-definable ([Kle81a] p. 57):

We [Church and Kleene] kept thinking of specific such functions, and of specific

operations for proceeding from such functions to others. I kept establishing the

functions to be λ-definable and the operations to preserve λ-definability.

However, as was stated before, it was not Kleene but Church who first thought

about an explicit identification between λ-calculus and effective calculability.

In fact, when Church first proposed his ‘thesis’ to Kleene ([Kle81a], p. 59):

[I, Kleene] sat down to disprove it by diagonalizing out of the class of the λ-

definable functions. But, quickly realizing that the diagonalization cannot be

done effectively, I became overnight a supporter of the thesis.

Significant is the fact that it was not “the concept [of λ-definability] itself but

rather [the] results established about it” ([Kle81b], p. 49) that led Church to his

‘conjecture’. As is pointed out by Sieg [Sie97], the main reason for proposing

the identification was, what Sieg calls, the ‘quasi-empirical’ fact expressed by

Church in a letter to Bernays, dated January 23, 1935 (Quoted in [Sie97], p. 155):

The most important results of Kleene’s thesis concern the problem of finding a

formula to represent a given intuitively defined function of positive integers (it

is required that the formula shall contain no other symbol than λ, variables, and

parentheses). The results of Kleene are so general and the possibilities of extend-

ing them apparently so unlimited that one is led to the conjecture that a formula

can be found to represent any particular constructively defined function of pos-

itive integers whatever.

Although several sources report that Church had already formulated his thesis

in terms ofλ-definability in early 1934 he only communicated the result in April

84 CHAPTER 2. THE BEGINNINGS

1935. Not in terms of λ-definability however, but in terms of Herbrand-Gödel

general recursiveness.

Indeed, in the meantime, Gödel had already published his seminal 1931-paper

containing the two incompleteness theorems [Göd31] and, after a suggestion

by Herbrand,79 extended the notion of primitive recursiveness to general recur-

siveness. From February to May 1934 Gödel gave a series of lectures attended

by Kleene, Rosser and Church.80 As is discussed by Davis [Dav82], given the

definition of general recursiveness and a footnote added in [Göd34], the notes

from these lectures suggest that Gödel formulated a thesis similar to Church’s.
81 When Davis was preparing his [Dav65b] he submitted his first draft of the

introduction to the lecture notes to Gödel for his comments, suggesting that

Gödel had indeed stated such a thesis similar to Church’s during his lectures.

As Davis writes ([Dav82], p. 8), “Gödel took strong exception to my suggestion”,

as is clear from his reply (Quoted in [Dav82], p. 8):

[...] it is not true that footnote 3 is a statement of Church’s Thesis. The conjecture

stated there only refers to the equivalence of “finite (computation) procedure”

and “recursive procedure.” However, I was, at the time of these lectures, not at all

convinced that my concept of recursion comprises all possible recursions [...]

In a letter to Kleene dated November 29, 1935 Church gave an account of a

discussion on effective calculability with Gödel, presumably to be situated in

early 1934. Kleene supplied a copy of the letter to Martin Davis who quoted it

in his [Dav82], p. 9:

In regard to Gödel and the notions of recursiveness and effective calculability, the

history is the following. In discussion with him the notion of lambda-definability,

79See [Sie05] for a detailed account of the correspondence between Gödel and Herbrand.
80A series of lecture notes taken by Rosser and Kleene have been preserved and published in

a corrected and amplified version in [Dav65b].
81After having noted in the main text that primitive recursive functions “have the important

property that, for each given set of values of the arguments, the value of the function can be com-

puted by a finite procedure” the following footnote was added: “The converse seems to be true,

if, besides [primitive] recursions [...] recursions of other forms (e.g., with respect to two variables

simultaneously) are admitted. This cannot be proved, since the notion of finite computation is

not defined, but it serves as a heuristic principle.” [Göd34], p. 44

2.3. “TO DENY WHAT SEEMS INTUITIVELY NATURAL” 85

it developed that there was no good definition of effective calculability. My pro-

posal that lambda-definability be taken as a definition of it he regarded as thor-

oughly unsatisfactory. I replied that if he would propose any definition of effec-

tive calculability which seemed even partially satisfactory I would undertake to

prove that it was included in lambda-definability. His only idea at the time was

that it might be possible, in terms of effective calculability as an undefined no-

tion, to state a set of axioms which would embody the generally accepted prop-

erties of this notion, and to do something on that basis. Evidently, it occurred

to him later that Herbrand’s definition of recursiveness [...] could be modified in

the direction of effective calculability, and he made this proposal in his lectures.

At that time he did specifically raise the question of the connection between re-

cursiveness in this new sense and effective calculability, but said he did not think

that the two ideas could be satisfactorily identified “except heuristically”.82

Gödel thus regarded Church’s proposal as “thoroughly unsatisfactory” and was

convinced that recursiveness cannot be identified with computability, “except

heuristically”.83

Despite Gödel’s criticism, who was at that time already a respected authority

given his [Göd31], Church publicly announced his thesis in a talk to the Ameri-

can Mathematical Society, 19 April, 1935. Not in terms ofλ-definability though,

but in terms of general recursiveness. As he writes in the abstract of the talk

[Chu35], submitted 22 March, 1935:

[...] it is maintained that the notion of an effectively calculable function of pos-

itive integers should be identified with that of a recursive function, since other

plausible definitions of effective calculability turn out to yield notions which are

either equivalent to or weaker than recursiveness.

As is clear from this quote, λ-definability has been completely replaced by re-

cursiveness, so one wonders why Church made this substitution and why he

waited about one year to publicly announce this variant of the thesis he had

82A shorter excerpt of this letter was also published by Kleene [Kle81a].
83Davis’ [Dav82, Dav05] gives a more detailed account of Gödel’s opinion in this context, and

its evolution over time.

86 CHAPTER 2. THE BEGINNINGS

talked about with Kleene, Rosser and Gödel already in early 1934.

According to Davis, the fact that Church only implicitly refers to λ-definability

is due to his being uncertain at that time about the equivalence between λ-

definability and general recursiveness.84 But Davis does not provide a real ex-

planation for the fact that Church waited so long before publicly announc-

ing his thesis, and, especially, the fact that λ-definability was now replaced by

recursiveness. Still, given Gödel’s reluctance to accept Church’s thesis, while

Church already proposed his thesis informally in 1934 and publicly (in its vari-

ant version) in 1935, Davis concludes for a clear contrast between both logi-

cians [Dav82], p. 12–13:

[...] Gödel was not convinced by the available evidence, and remained unwilling

to endorse the equivalence of effective calculability, either with recursiveness or

with λ-definability. [...] Thus while Gödel hung back because of his reluctance

to accept the evidence for Church’s thesis available in 1935 as decisive, Church

(who after all was right) was willing to go ahead, and thereby to launch the field

of recursive function theory.

In [Sie97], Sieg provides his interpretation of the fact that Church waited so

long before publicly announcing his thesis, now stated in terms of recursive-

ness instead of λ-definability, and concludes that Davis’s interpretation is not

completely correct. Basic in the argumentation supporting Sieg’s interpreta-

tion, is the fact that, according to him, the equivalence between general recur-

siveness and λ-definability had already been established before March 1935

when Church submitted his abstract. Sieg uses this to argue that “Church’s

and Gödel’s developed views actually turn out to be much closer than [their]

early opposition might lead one to suspect.” ([Sie97], p. 157) and thus criticizes

Davis’s account. Sieg then explains Church’s so-called reluctance by the fact

that Church himself was not completely convinced of his λ-calculus as being

a good identification for calculability. In arguing that the equivalence between

84“It is interesting that λ-definability occurs only by implication in the reference to “other plau-

sible definitions of effective calculability ... either equivalent to or weaker than recursiveness.”

The wording leaves the impression that in the early spring of 1935 Church was not yet certain

that λ-definability and Herbrand-Gödel general recursiveness were equivalent.” ([Dav82], p. 10)

2.3. “TO DENY WHAT SEEMS INTUITIVELY NATURAL” 87

λ-definability and recursiveness was already established before Church sub-

mitted his abstract, Sieg claims ([Sie97], p. 157):

I claim, and will support through the subsequent considerations, that Church

was reluctant to put forward the thesis in writing – until the equivalence of λ-

definability and general recursiveness had been established. The fact that the

thesis was formulated in terms of recursiveness indicates also that λ-definability

was at first, even by Church, not viewed as one among equally natural definitions

of effective calculability: the notion just did not arise from an analysis of the in-

tuitive understanding of effective calculability[m.i.]. I conclude that Church was

cautious in a similar way as Gödel.

Later on in his [Sie97], Sieg goes on to argue not only that Church did not view

λ-definability as one among equally natural definitions of effective calculabil-

ity, but that recursiveness itself was in fact regarded as a more natural definition

of calculability ([Sie97], p. 157):

That the thesis was formulated for general recursiveness is not surprising when

Rosser remark in his [Ros84] about this period is seriously taken into account:

“Church, Kleene, and I each thought that general recursiveness seemed to em-

body the idea of effective calculability, and so each wished to show it equiva-

lent to λ-definability”.85 (p. 345) There was no independent motivation for λ-

definability to serve as a concept to capture effective calculability, as the histor-

ical record seems to show: consider the surprise that the predecessor function

is actually λ-definable and the continued work in 1933/4 by Kleene and Rosser

to establish the λ-definability of more and more constructive functions. In addi-

tion, Church argued for the correctness of the thesis when completing the 1936

paper (before July 15, 1935); his argument took the form of an explanation of

effective calculability with a central appeal to “recursivity”.

While it is indeed a fact that λ-definability does not have a direct appeal to

our intuition of calculability – in the end, Church did not start from the intu-

itive notion itself, but only came to the conclusion of his thesis through a seri-

ous study of λ-calculus – there are some very clear arguments which show that

85It should be noted that despite this remark by Rosser, he expresses Church’s thesis in terms

of λ-definability, not in terms of recursiveness in the same paper Sieg refers to in this quote.

88 CHAPTER 2. THE BEGINNINGS

Sieg’s interpretation here is not that well-argued. Indeed, as we will show, it can

be seriously doubted that Church’s reason to use recursiveness instead of λ-

definability is rooted in the fact that, on the one hand, Church himself was not

completely convinced of λ-calculus’s computational power, and, on the other

hand, Church believed recursiveness to be a more suitable formalization of cal-

culability than λ-definability.

From footnotes 3 and 16 from Church’s [Chu36c], it is clear that the proof that

any recursive function is λ-definable is due to Kleene and Rosser. A proof of

the theorem can be found, as is stated by Church, by applying the methods

presented in Kleene’s [Kle35a, Kle35b]. The result that every λ-definable func-

tion is recursive, “was obtained independently by the present author [Church]

and S.C. Kleene at about the same time.”86 and published as [Kle36b]. However,

no mention is made of the exact date at which these results were established.

The paper by Kleene proving the equivalence, as well as Church’s [Chu36c] con-

taining the footnotes, were submitted only some months after Church publicly

announced the thesis. Despite this lack of the exact dates, Sieg has provided

arguments on the basis of which he concludes that the equivalence between

λ-definability and recursiveness had already been established before Church

submitted his abstract, and he uses this result as an argument for his explana-

tion of why Church waited some time before publicly announcing the thesis,

and replaced recursiveness by λ-definability. The arguments however given by

Sieg to show that this equivalence was already established before March 22,

1935 are not convincing. We will not discuss this in the main text, but the in-

terested reader is referred to the long footnote.87 Notwithstanding the fact that,

86[Chu36c], footnote 17
87The arguments Sieg gives for the equivalence betweenλ-definability and general recursive-

ness being proven before March 1935 are based on two letters from Church to Bernays, the first

dated January 23, 1935 the second dated July 15, 1935 as well as the fact that Church used recur-

siveness instead ofλ-definability in the talk from April 19 1935: “if the inclusion ofλ-definability

in recursiveness had not also been known by then, the thesis could not have been formulated co-

herently in terms of recursiveness”. Now, from [Kle35b, Chu36c] and the letter Church wrote

to Bernays dated January 23, 1935 it is clear that the reducibility of general recursiveness to

λ-definability had indeed already been established before March 1935. There is however no

definite support given by Sieg that the converse direction, that every λ-definable function is re-

2.3. “TO DENY WHAT SEEMS INTUITIVELY NATURAL” 89

for now, we can only guess whether this equivalence was proven before or after

Church submitted his abstract in March, 1935 it is important to further discuss

Sieg’s conclusions in this context.

As was said, the fact that Church only submitted his abstract after this equiv-

cursive, had already been proven by then. Sieg uses the letter Church wrote to Bernays but does

not make clear what letter is meant: the letter dated July 15, 1935 or that dated July 23, 1935. In

this last letter Church explicitly refers to his abstract from March and mentions his 1936 paper

[Chu36c] as “in the process of being typewritten” (quoted from [Sie97], p. 163) He furthermore

mentions that Kleene’s paper on the equivalence was forthcoming. Sieg then concludes: “[...]

neither from Kleene’s or Rosser’s historical accounts nor from Church’s remarks it is clear, when

the equivalence was actually established. In view of the letter to Bernays and the submission date

for the abstract, March 22, 1935, the proof of the converse must have been found after January 23,

1935, but before March 22, 1935. So one can assume with good reason that this result provided

to Church the additional bit of evidence for actually publishing the thesis.” ([Sie97], p. 163). As

was said, either Sieg is pointing at the letter to Bernays from January 1935 or that from July. If

he refers to the earlier letter, this does not add any strength to the conclusion, since Sieg does

not give any quote or annotation from this letter supporting this conclusion. If the second let-

ter is intended this neither supports the conclusion since it was dated in July, about 4 months

after Church had submitted his abstract and presented his thesis. Now, Kleene only submitted

an abstract of his equivalence proof at the end of June 1935 (the abstract was received July 1,

1935 by the American Mathematical Society). The question then of course is, supposing that

Kleene and Church had established this result before March 1935, why Kleene waited 4 months

to submit an abstract of this result. Furthermore, Church’s [Chu36c] mentioning this equiv-

alence result, was at that time in the process of being typewritten, again 4 months after the

abstract was submitted. The argument given by Sieg that Church used recursiveness instead

of λ-definability in the talk neither adds strength to this argument. As was already pointed out

by Davis, the fact that λ-definability occurs only by implication in the reference to “other plau-

sible definitions of effective calculability ... either equivalent to or weaker than recursiveness.”

rather leaves the impression that Church, at that time, was still uncertain about the equiva-

lence. It should also be mentioned here that Rosser [Ros82] in his account of the history of the

λ-calculus states Church’s thesis not in terms of recursiveness but in terms of λ-definability,

and understood the equivalence proof as a support for this form of the thesis. To summarize,

until now there is no definite evidence for the fact that the reduction from λ-definability to re-

cursiveness had been completed before or after Church submitted his abstract in March. And,

as will become clear from the remaining discussion, even if this result would have been estab-

lished before March 1935, this still does not imply that Church was almost as reluctant as Gödel

to formulate his thesis, nor the idea that Church, Rosser and Kleene believed recursiveness to

be more well-suited and intuitive than λ-definability.

90 CHAPTER 2. THE BEGINNINGS

alence was proven (although we can doubt this) and, in the abstract, defined

effective calculability in terms of recursiveness instead of λ-definability, shows,

according to Sieg, that Church was reluctant to put forward his thesis in terms

of λ-definability and that Church did not count λ-definability as a natural de-

finition for effective calculability since the notion “just did not arise from an

analysis of the intuitive understanding of effective calculability”.

We are not specialists as far as the λ-calculus is concerned, but we are famil-

iar with its basic mechanism and how to define and compute a computable

function in λ-calculus. Now, when you first start working with λ-calculus, e.g.

performing an addition, the least one can say is that it is rather counterintu-

itive to perform computations in λ-calculus. Following the definition of addi-

tion as given in [Chu41] – the nice little orange book – performing the rules of

conversion of the calculus, one is almost surprised to see that after some con-

versions one has performed an addition. This was my own experience, and I

had the occasion to check this with a group of other people. During a small col-

loquium called Mathematik für Künstler (mathematics for artists) at the Kun-

sthochschule in Hamburg, I gave a kind of strange workshop on λ-calculus.

Some people came to me at the blackboard, after I had performed some calcu-

lations in the calculus saying that they didn’t see how e.g. an addition was per-

formed, although the result was there on the blackboard. I gave them a chalk

and let them do the operations by themselves. Each of them was as surprised

as I was at first, to see that after some conversions, they had indeed performed

an addition, looking back at the several steps to understand at what moment

exactly the addition “happened”.

This small story illustrates how counterintuitive it is, at first to compute with

λ-calculus and in this respect Sieg is certainly right in stating that, if one starts

from an analysis of the notion of effective calculability, one will most probably

not end up with something like the λ-calculus. In the end, the calculus was

never intended to be the result of such an analysis when it was first conceived.

It was only after Church, Kleene and Rosser understood what λ-calculus is ca-

pable of that Church proposed his thesis. As was said before, it was not the

concept of λ-definability itself that led to the thesis, but rather the results es-

tablished about it, to use Kleene’s words [Kle81b].

2.3. “TO DENY WHAT SEEMS INTUITIVELY NATURAL” 91

Although we completely agree with Sieg that λ-definability does not naturally

arise from an analysis from our intuition of effective calculability, we cannot ne-

glect that it was λ-calculus and not general recursiveness that led Church to his

thesis (and was convincing enough at least for Rosser and Kleene). Even though

he was already familiar with general recursiveness during Gödel’s lectures he

did not use the notion of recursiveness but hung on to his own λ-definability in

his discussions with Gödel. As he states in footnote 18 of [Chu36c] it was Gödel

who first brought up the question of the relationship between effective calcu-

lability and general recursiveness, not Church.88 To Sieg, the fact that Church

waited to submit his abstract, although he had already formulated the thesis,

indicates that he understood recursiveness as a more natural definition for ef-

fective calculability as compared to λ-definability, adding strength to his point

of view by mentioning the surprise of the possibility to λ-define the predeces-

sor function. However, other explanations can be given here.

First of all, Church must have been impressed by Gödel’s criticism. Given his

very negative reaction towards λ-definability as a definition for effective calcu-

lability, while he seems to have been slightly less negative about general recur-

siveness, Gödel’s reaction might have been one of the reasons for Church to be

a bit hesitant and to use recursiveness instead of λ-definability in his first pub-

lic announcement of the thesis.

Another explanation is indirectly given by Kleene([Kle81a], p. 62):

The earliest notion, λ-definability, has [...] the remarkable feature that it is all

contained in a very simple and almost inevitable formulation, arising in a nat-

ural connection with no prethought of the result. And a given λ-formula en-

genders the computation procedure for the function it defines. Of course, the

λ-formula may be complicated. Under Herbrand-Gödel general recursiveness,

88As to the extent Gödel’s work influenced Church’s, Kleene has noted ([Kle87], p. 491): One

sometimes encounters statements asserting that Gödel’s work laid the foundation for Church’s

and Turing’s results [...]. It seems to me that the truth is that Church’s approach through λ-

definability and Turing’s through his machine concept had quite independent roots (motiva-

tions), and would have led them to their main results even if Gödel’s paper [Göd31] had not

already appeared.” This claim is supported even more by Emil Post’s early work, which was

done at a time that Gödel was only 15 years old.

92 CHAPTER 2. THE BEGINNINGS

and my partial recursiveness adapted from it, one works with systems E of equa-

tions that can be very unwieldy. Under Turing computability one may have very

long machine tables. Indeed Turing [...] spoke of the λ-definitions as “more con-

venient”.89 (As I see it, convenience for one or another purpose requires test-

ing in practice.) I myself, perhaps unduly influenced by rather chilly receptions

from audiences around 1933–1935 to disquisitions on λ-definability, chose, af-

ter general recursiveness had appeared, to put my work in that format. [...] I

thought general recursiveness came the closest to traditional mathematics. It

spoke a language familiar to mathematicians, extending the theory of special

recursiveness, which derived from formulations of Dedekind and Peano in the

mainstream of mathematics. I cannot complain about my audiences after 1935,

although whether the improvement came from switching I do not know. In ret-

rospect, I now feel it was too bad I did not keep active in λ-definability as well.

As is clear from this quote, after his experience with his audience during lec-

tures or courses on λ-definability during 1933–1935, Kleene shifted to general

recursiveness because it is closer to “traditional mathematics”. To convince

an audience at that time that the λ-definable functions – without reference

to intuition of course – are exactly those that are effectively computable must

have been very hard, given the non-familiarity of the public with λ-calculus.

To Kleene, it must thus have been more “convenient” to use the more acces-

sible general recursive functions instead of the difficult λ-calculus taking into

account the public. We are inclined to apply this same reasoning to Church’s

“reluctance” to put forward his thesis in terms of λ-definability.

We are not convinced by Sieg’s conclusion that Church used recursiveness in-

stead of λ-definability in his first announcement of the thesis, because he con-

sidered recursiveness as a more natural definition for computability. Rather

we believe that Church used recursiveness because the mathematical public

would be more open to this identification, since they were more familiar with

89“The identification of effective calculable functions with computable functions is possibly

more convincing than an identification with the λ-definable or general recursive functions. For

those who take this view the formal proof of equivalence provides a justification for Church’s

calculus, and allows the ‘machines’ which generate computable functions to be replaced by the

more convenient λ-definitions.” ([Tur37], p. 153)

2.3. “TO DENY WHAT SEEMS INTUITIVELY NATURAL” 93

the idea of recursion, Gödel’s reaction only adding strength to this considera-

tion.90

There is indeed no definite reason to suppose that Church (or Kleene, or Rosser)

understood recursiveness as a more natural definition. In this context, it should

be emphasized that Gödel had made clear to Church that he regarded neither

λ-definability nor general recursion, as good formalizations for effective calcu-

lability. It was only after he had read Turing’s paper [Tur37] – which starts from

an analysis of the intuitive notion of computability to find a suitable formaliza-

tion – that Gödel became convinced.91 This illustrates that there is no reason

to suppose that recursiveness would better serve its goal. Furthermore Church

was well aware of the fact that, as he mentions in footnote 3 of his [Chu36c], his

analysis of effective calculability could be “carried through entirely in terms of

λ-definability, without making use of the notion of recursiveness”. Following this

quote, and this is the most convincing argument, Church also explicitly stated

that as far as his opinion is concerned, recursiveness and λ-definability are to

be considered as equally natural definitions of effective calculability, a remark

not mentioned by Sieg.92

In discussing the possible influence of Gödel’s results on Church’s and Turing’s,

Kleene ([Kle87], p. 491) states:

One sometimes encounters statements asserting that Gödel’s work laid the foun-

dation for Church’s and Turing’s results [...] It seems to me that the truth is that

Church’s approach throughλ-definability and Turing’s through his machine con-

cept had quite independent roots (motivations) and would have led them to their

main results even if Gödel’s paper [Göd31] had not already appeared.

According to Kleene, Gödel’s impact on Church’s results should not be overes-

timated. The fact that he sees the originality of Church’s approach in his use

of λ-calculus (and not his later use of general recursiveness) again emphasizes

90One could maybe put this a bit stronger and state that the mathematician’s and logician’s

intuition of computability was more open to recursiveness at that time, because the latter was

already much more integrated into the general knowledge of the mathematicians.
91Cfr. the postscript added to [Göd34] in Davis’s [Dav65b] where Gödel makes this explicit.
92“The fact, however, that two such widely different and (in the opinion of the author) equally

natural definitions of effective calculability turn out to be equivalent [...]” [Chu36c], p. 346.

94 CHAPTER 2. THE BEGINNINGS

the significance of λ-definability for Church’s thesis. Furthermore, after hav-

ing acknowledged that one important influence from Gödel might have been

his encoding system, Kleene discusses in a footnote Church’s use of general

recursiveness, but immediately mentions Church’s footnote quoted above (i.e.

[Chu36c], p. 346, footnote 3). This suggests that Kleene did not regard gen-

eral recursiveness as a fundamental influence on Church’s results. Also, in his

review of Turing’s 1936 paper [Tur37], Church says [Chu37b]:

[computability by a Turing machine] has the advantage of making the identifica-

tion with effectiveness in the ordinary (not explicitly defined) sense evident im-

mediately – i.e. without the necessity of proving preliminary theorems. [General

recursiveness and λ-definability] have the advantage of suitability for embodi-

ment in a system of symbolic logic.

From this quote it is clear that Church understood Turing computability as a

more intuitively appealing definition of effective calculability, as compared to

both general recursiveness as well as λ-definability, but makes no qualitative

differentiation between recursiveness and λ-definability.

In the end, we cannot come to a definite conclusion concerning Church’s use of

recursiveness instead of λ-definability in first announcing his thesis in public.

Still, it remains a fact that Church did not start from an analysis of the intuitive

concept of effective calculability. It was the non-expected power of λ-calculus

that made him state the thesis. In this sense, Sieg’s emphasize on the signifi-

cance ofλ-definability being not intuitively appealing, is slightly anachronistic,

since the significance of the “direct appeal to intuition” argument only became

clear to Church, after he had read Turing’s paper. The fact that it were the re-

sults established about the formalism of λ-calculus itself, rather than the idea

of finding an adequate formalization of the intuition, is not only important as

a historical fact, but also, from a more philosophical point of view: the fact that

a formalism that is further removed from intuition, is capable to capture the

intuition, at least if one accepts Church’s thesis, shows that our intuition is very

much restricted, i.e., in confronting it with other ways of computing, like e.g.

doing an addition inλ-calculus, one can only learn the rich variety of processes

covered by computability.

2.4. FROM TYPEWRITERS TO UNIVERSAL COMPUTING MACHINES 95

2.4 From typewriters to universal computing machines

2.4.1 Introduction

While Post and Church were already in their thirties when they wrote their 1936

papers, Turing was still very young. He was only 24 years old when he sub-

mitted his paper to the London Mathematical Society. As a consequence it is

impossible to give the kind of analyses of Turing’s earlier work here as we did

for Church and Post, since there is hardly any earlier work.

Turing was born on 23 June 1912 in an upper-middle class family. The best

book we believe ever written on Turing’s life and work is Andrew Hodges’ won-

derful biography of Turing [Hod83]. Most of the information used here comes

from or is inspired by this book. To give a summary of Turing’s influence on

computer science, philosophy of computer science, mathematical logic, math-

ematics and possibly even world history is very difficult and we will only give

an impression here.93 Turing did research in a large variety of domains. As we

will discuss immediately, he started his career with a dissertation in probability

theory. The influence of Turing’s machines can hardly be underestimated. His

analysis of computability that resulted in his Turing machines is still regarded

as being the most convincing one, compared to those given by Church and Post,

it is also the best-known of these three. The Turing machine concept is still a

paradigm n many theoretical branches of computer science. For example, it is

still the framework to define the complexity of certain algorithms in the context

of computational complexity theory.

Turing constructed the theoretical foundations of a universal computing ma-

chine, but also actually contributed to the design of one of the first comput-

ers, called the ACE [Tur47]. He wrote several more philosophical papers on

intelligent machinery, that laid the basis for the so-called Turing test (See e.g.

[Tur69, Tur50]). Together with Post, he is one of the founders of recursion the-

ory through his dissertation Systems of logic based on ordinals [Tur39] written

93The volume edited by Herken, The universal Turing machine [Her88] as well as the recently

published Alan Turing: Life and Legacy of a Great Thinker [Teu04] give a clear overview of the

impact of Turing’s work.

96 CHAPTER 2. THE BEGINNINGS

under the supervision of Church. He was one of the first to do computer exper-

iments (See Sec. 4.2), and made contributions to the theory of morphogenesis

with his The chemical basis for Morphogenesis [Tur52b] as well as some other

papers.94

One of his most valuable contributions not to mathematics but to world his-

tory is his involvement in the work at Bletchley Park, where he made significant

contributions to breaking the Enigma code used by the Germans.95 He also

contributed to breaking the Fish material,96 In this function, Turing went to the

U.S. for highest-level communications. Later he became the “all-purpose con-

sultant” at Bletchley park. After the war, he continued working for GCHQ, the

post-war successor to Bletchley Park. Turing knew many high-level secrets and

this might have played a role in his later conviction for homosexuality and the

consequent punishment of chemical castration with injections of oestrogen,

since homosexuality was not only forbidden by law in conservative Britain, but

also considered a security risk (a potential source of blackmail). Turing died on

7 June, 1954. The coroner’s verdict was suicide from eating an apple laced with

cyanide.

2.4.2 Typewriters and “Little wonders”

As is pointed by Hodges ([Hod83], pp. 7–8), Turing

[...] was one of those many people without a natural sense of left and right, and

he made a little red spot on his left thumb, which he called the ‘knowing spot. [...]

94In the recently published volume of Turing’s life and legacy [Teu04], there is one paper dis-

cussing this later work of Turing [Swi04].
95He generalized the Bombe developed by Polish crypto-analysts, into a powerful device that

in fact mechanized certain logical deductions, searching for as many conclusions as possible

until a contradiction was found. Hodges makes a nice link here with an extended argument

Turing had some years earlier with Wittgenstein. Wittgenstein was doubting the significance

of contradictions, and Turing reacted by saying that as long as one does not have a consistency

proof one cannot completely trust the system one is working in and if there is a hidden contra-

diction in a given system this might lead to disastrous consequences when applying the system.

(See [Hod83], pp. 153–154, pp. 183–185)
96Messages encyphered on a different system, used for Hitler’s strategic communications.

2.4. FROM TYPEWRITERS TO UNIVERSAL COMPUTING MACHINES 97

he had great difficulty in writing. His brain seemed barely coordinated with his

hand. A whole decade of fighting with scratchy nibs and leaking fountain-pens

was to begin, in which nothing he wrote was free from crossing-outs, blots and

irregular script which veered from stilted to depraved.

Given his problems with writing Turing began to invent his own “machines”

to improve his writing abilities. There are two letters from 1923 mentioned by

Hodges ([Hod83], p. 14) in which the young Turing describes two such ma-

chines, the one being a ‘fountain pen’, the other describing a crude idea for a

typewriter. Turing never stopped inventing machines, later he even designed a

special-purpose machine to study the Riemann-Zeta function. As is described

in Hodges’s biography, Turing has a fascination with automatization through-

out his whole life and this probably played an important role in Turing’s analy-

sis of computability, resulting in his machines that share certain features with

typewriters ([Hod83], p. 96–97).

Several fascinations, besides those for machines, influenced Turing’s descrip-

tion of Turing machines. One such fascination was the idea to regard a mechan-

ical procedure as a concrete physical process in nature (i.e. the human brain)

and culture (i.e. machines). This interest that was kindled by the book Little

wonders every child should know, that Turing receivedd in 1922 from some un-

known benefactor. Regarding this book, Hodges states (p. 11): “If anything at

all can be said to have influenced [Turing], it was this book [...]”. The book gives

a naive mechanistic picture of life and the mind and must have made a strong

impression on the young Turing.

2.4.3 The central limit theorem

After he graduated from Sherborne school in Dorset, Turing was awarded a

scholarship at King’s College where he started upon the mathematics degree

courses, as a schedule B candidate in 1931.97 In the autumn of 1933, Turing

attended a course of lectures on the methodology of science by Arthur Edding-

97A schedule B candidate would offer for examination the Schedule A courses together with

an additional number of more advanced courses.

98 CHAPTER 2. THE BEGINNINGS

ton. One of the subjects Eddington discussed was the observation that sci-

entific measurements, when plotted on a graph, tend to be distributed on a

Gaussian or normal curve. However, Eddington merely outlined why this was

to be expected, instead of giving a rigorous mathematical explanation.98 Tur-

ing was not satisfied with this sketch, so he set himself the goal to find an exact

proof. By the end of February 1934, he had succeeded to prove what is known

as the Central Limit Theorem. Only afterwards he was told that this theorem

had already been proved by Jarl Waldemar Lindeberg in 1922. Despite this, he

was advised that his work might still be acceptable as original work for a King’s

fellowship dissertation. In November 1934 he completed and submitted his dis-

sertation and in the spring of 1935 he was elected, as the first of his year, as one

of the forty-six Fellows. After his paper had entered the Cambridge mathemat-

ical essay competition, he was one year later awarded the prestigious Smith’s

prize for this work.99

Although the subject of his dissertation clearly differs from the paper that would

be published only two years later in 1936, there are two features of his disser-

tation that would also characterize his 1936 paper and in fact most of his later

work. First of all, as is acknowledged by several authors [Goo80, Hod83, Zab95],

Turing often worked in a self-contained way, with limited knowledge of the ex-

isting literature on the subject and thus starting from first principles. In the

interesting paper [Zab95], in which Turing’s work on the central limit theorem

is analyzed, Zabel remarks (p. 490):

Coming to the subject as an undergraduate, his knowledge of mathematical

probability was apparently limited to some of the older textbooks (. . .) it is clear

that Turing had penetrated almost immediately to the heart of a problem whose

solution had long eluded many mathematicians far better versed in the subject

than he.

Indeed, when Turing started working on his dissertation he had hardly any

knowledge of the field at that time, he simply got triggered by the problem and

98See [Hod83], p. 87.
99Turing never published his dissertation, since its major result had already been anticipated.

However as is argued in [Zab95], it contained other results that were interesting and novel at

that time. It can still be found in the archive of King’s college library, see [Tur34].

2.4. FROM TYPEWRITERS TO UNIVERSAL COMPUTING MACHINES 99

started to work on it in his own way. This was also the case for his 1936 pa-

per. Again he started from scratch, working in his own way. As Hodges (p. 96)

remarks:

[...] he attacked the problem in a peculiarly naive way, undaunted by the im-

mensity and complexity of mathematics. He started from nothing, and tried to

envisage a machine that could tackle Hilbert’s problem, that of deciding the prov-

ability of any mathematical assertion presented to it.

As a result of this isolated way of working, he was again not the first to arrive

at his main result. When Turing developed his ideas for the paper,100 Alonzo

Church had already officially announced some of his main results and it was

only when he had already written the paper that he first heard of Church’s re-

sult. Still, Church was very positive about Turing’s paper as we will discuss in

Ch. 3.

Besides this ‘isolated’ way of working, using his own symbolism and terminol-

ogy, another feature already present in his dissertation reappears in his 1936 pa-

per, connecting certain physical processes with abstract mathematical think-

ing. As was already pointed out, Turing had a sheer fascination for the connec-

tion between the seeming erratic natural processes and the (possibly) deter-

ministic processes underlying it. With the central limit theorem he had proven

how one can obtain order out of the most basic kind of erratic processes ob-

served during scientific measurements. In his 1936 paper, he would again make

such a connection, by showing how abstract logic can be connected to the

processes of computing.101

100According to Turing himself, it was during an afternoon in the early summer of 1935, lying

in the meadow at Grantchester, that he first understood how to answer the Entscheidungsprob-

lem
101It should be noted here that besides his proof of the central limit theorem Turing had al-

ready made another “small-scale discovery” as he called it ([Hod83], p. 94) and led to his first

publication [Tur35]. The results was a small improvement on a paper by John von Neumann,

developing the theory of almost periodic functions, defining them in connection to group the-

ory. Since we are not specialists in the domain neither of group theory nor of almost periodic

functions and no paper has been published that discusses this paper by Turing, we have ex-

cluded it here.

100 CHAPTER 2. THE BEGINNINGS

2.4.4 Newmann’s course on the foundations of mathematics

In the spring of 1935 Turing attended Newmann’s part III course on the foun-

dations of mathematics, of which the last part was the proof of Gödel’s incom-

pleteness theorems. It was here that he first heard of the Entscheidungsprob-

lem. According to [Hod83] it was the notion of a “mechanical procedure” that

must have catched Turing’s ear. Newman used the words ‘mechanical proce-

dure’ when explaining that one needed a definite method to decide for every

well-formed formula defined over the language of first-order predicate calcu-

lus, whether or not it can be derived within this calculus. It was the idea of

a mechanical procedure that had to be formalized properly before one could

start with a proof of the Entscheidungsproblem and it was Turing who gave a

very physical version of such a formalism, based on an analysis of how we hu-

mans calculate. This analysis led to Turing’s description of Turing machines,

finite-state machines operating on an infinite tape that, contrary to Post’s nor-

mal form, Church’s λ-calculus and the Herbrand-Gödel definition of recursive

functions, resulted from a direct analysis of the intuitive notion of computabil-

ity itself. In studying the ‘general’ features of human computing, he showed

how such properties lead to a definite class of functions. As is pointed out in

[Dav82] this was exactly what Church expressed in his letter to Kleene to be

Gödel’s idea of how one might proceed to find a satisfactory identification be-

tween the intuitive concept of computability and a given formalism, i.e. to con-

struct a set of axioms that embody the generally accepted properties of the no-

tion. Although Turing did not use axioms, it thus does not come as a surprise

that it was only after having read Turing’s paper that Gödel became convinced

of a thesis stating such identifications.

2.5 Conclusion

In this chapter we have shown through an analysis of Church’s, Post’s and, to

a lesser extent, Turing’s earlier work, how each of these mathematicians/ logi-

cians arrived at their respective theses. An important result of our argumen-

tations is the fact that neither Church nor Post started with the explicit goal of

2.5. CONCLUSION 101

proving certain decision problems unsolvable, nor from the idea of finding a

proper formalization of the intuitive notion of computability, when they first

formulated their respective theses.

Post started from exactly the opposite of proving certain decision problems un-

solvable. His main method was to develop more general forms of logic, instead

of one specific system of logic, resulting in simpler and more abstract forms of

logic. By working with these forms, he hoped that it would be more straightfor-

ward to prove the Entscheidungsproblem solvable. It was only after his expe-

rience with tag systems that he first considered the possibility that there might

exist unsolvable decision problems and they laid the ground for his important

normal systems. After this research on tag systems, Post constructed systems

in canonical form C and systems in normal form, and proved the important

normal form theorem. On the basis of these results he then concluded for his

thesis, identifying the intuitive notion of generated set with sets of assertions

that can be produced through systems in normal form. Given this assumption,

he proved the unsolvability of the decision problem for normal systems. To

Post’s mind however, “a complete analysis would have to be made of all the pos-

sible ways in which the human mind could set up finite processes for generating

sequences” in order for his thesis to be more general.

It was thus only after he had already formulated his thesis and proven certain

decision problems unsolvable, that Post set himself the goal of giving an analy-

sis of what we humans understand under “generated set”. His thesis and the

resulting unsolvability of the finiteness problem for normal systems, however,

are rooted in Post’s study of the formalisms themselves, rather than in an analy-

sis of the intuitive notion considered formalized in normal systems.

Church on the other hand started from a study of alternative systems of logic

and considered consistency as the basic criterium for evaluating systems of

logic. Given the difficulties of proving a system consistent, he understood that

a more empirical approach is the best one available to build up confidence in

a given system of symbolic logic, as long as a consistency proof is missing. Af-

ter his Ph.D. students Kleene and Rosser had proven that the set of postulates

Church considered adequate for the development of mathematics where func-

tions play an important role, attention shifted to λ-calculus. It was the fact that

102 CHAPTER 2. THE BEGINNINGS

Church, Kleene and Rosser could λ-define any function over the integers they

could think of, that led Church to the first formulation of his thesis, identify-

ing effective calculability with λ-definability. On the basis of this thesis, and

its reformulation in terms of recursive functions, Church was able to prove cer-

tain decision problems unsolvable. Thus, also in Church’s case, one cannot but

conclude that it was not an analysis of the intuitive notion of effective calcula-

bility that led to his important results. Rather it was a study of λ-calculus that

led him to his first formulation of his thesis. Contrary to Post however, Church

clearly did not come to the conclusion that he first had to provide an analysis of

all the processes the human mind can set up to effectively calculate a function

to make his thesis more general, since he announced and published it before

having read Turing’s paper, or having gone through such an analysis.

As far as Turing is concerned, it is important to take into account that he was

still very young in 1936. As a consequence his thesis, identifying the notion

computability with Turing machines, can hardly be traced back to his limited

amount of work preceding his On computable numbers [Tur37]. Basic here is

that, contrary to Church and Post, Turing’s thesis did result from a direct analy-

sis of the vague notion of computability itself, considering the general proper-

ties of the process of human computing. Turing machines then resulted from

this analysis.

Chapter 3

1936

In the previous chapter we showed that there are important differences but

also, to a certain extent, similarities, between the way Church, Post and Turing

each arrived at their theses and the related unsolvability results. In this chapter

we will further explore some of the basic differences and similarities between

their work, starting from their 1936 papers, focussing on the theses they each

proposed.

In a first more descriptive section (Sec. 3.1), we will take a closer look at the

exact statements of the theses starting from the 1936 papers [Chu36c, Tur37,

Pos36], and, in Post’s case, also his Account of an anticipation [Pos65]. Focus

here, will be put on the actual formulation of the several theses, as well as the

supporting arguments present in the work by Church, Post and Turing. We will

also provide arguments showing that one can deduce a thesis from Post’s 1936

paper, different from his original thesis.

On the basis of this analysis, we will then discuss the problem of identifying the

intuitive notion of “computability” with a given formalism, starting from the

two reviews written by Church on Post’s and Turing’s 1936 papers (Sec. 3.2). It

will be shown that already at the time of the original formulations, there were

important discussions on the actual status of such theses: should they be re-

garded as theorems, as (hypo)theses or as definitions? It will be argued that

one’s preference with respect to the status of these “theses”, has a close connec-

tion with the kind of arguments one considers as the most important. In this

103

104 CHAPTER 3. 1936

respect, it will become clear why Turing’s thesis is very often considered as the

most adequate one, and by some, even as the only really convincing thesis. In

discussing several possible interpretations of the theses we would like to rela-

tivize the “dominance” of Turing’s thesis.

In a last, shorter, section (Sec. 3.3) we will offer our own more philosophical

thoughts on the subject, drawing from our historical results of this and the

previous chapter. We will argue here that although it seems that one has very

quickly come to the consensus that Turing’s thesis is, in a way, the most con-

vincing, one should be very careful in coming too quickly to any conclusion

in this respect. In fact, we will argue that it is not only of historical but also

of philosophical significance to not restrict one’s attention to that which is the

most intuitively appealing.

It is important to note here, that we will not take into account (yet) the ongoing

debate on the physical Church-Turing thesis and the idea of beating it, at least

not in any detail. This will be done in Sec. 4.3. It should also be mentioned that,

although the title of the chapter is 1936, we cannot but include a further discus-

sion of Post’s earlier work, since he already formulated his thesis and concluded

for the unsolvability of certain decision problems in 1921.

It is also important to point out that several other mathematicians and logicians

have formulated theses comparable to those by Church, Post and Turing and

made important contributions in this context, but these will not be discussed

here in much detail. For example, Kleene’s work should not be underestimated

in this context, and we will discuss it to some extent.1 Although Gödel’s work

on incompleteness and his more philosophical thoughts on the subject are also

very important here, we do not have the space to discuss them in depth.2

1The paper [Sho96] discusses Kleene’s work, and its invaluable role for the constitution of

recursion or computability theory. Webb’s book [Web80], gives a central role to some of Kleene’s

results as support for the validity of the Church-Turing thesis.
2Several papers and books have been written on Gödel’s work and his more philosophical

ideas and it is impossible to give an exhaustive overview here. Biographical information can be

found in [Daw97, Wan87, Wan96]. The last two books contain lots of material on Gödel’s more

philosophical thoughts. We should also mention the special issue on Gödel of the Bulletin of

symbolic Logic, vol. 11, nr. 2, 2005, as well as a special issue of Philosophia Mathematica, vol.

3.1. DIFFERENT QUESTIONS, DIFFERENT ANSWERS. 105

3.1 Different questions, different answers.

In this section we will discuss the general content of each of the 1936 papers,

some of the methods used, as well as the exact formulation of the respective

theses and the arguments – if provided – supporting them. It should be pointed

out to the reader that part of this section is descriptive. I.e., some paragraphs

will contain material that is merely summarizing the results as originally de-

scribed by Church, Post and Turing. In order to minimize these descriptive

parts, we have used as many intermezzo’s as possible, which might be skipped

by the reader who is familiar with the results summarized.

3.1.1 “An Unsolvable Problem of Elementary Number Theory”

As is clear from its title, Church’s paper [Chu36c] does not start from the notion

of effective calculability but from unsolvable decision problems. This is also

clear from the introduction of this paper. Its first sentences are ([Chu36c], p.

345):

There is class of problems of elementary number theory which can be stated in

the form that it is required to find an effectively calculable function f of n pos-

itive integers, such that f (x1, x2, ..., xn) = 2 is a necessary and sufficient condi-

tion for the truth of a certain proposition of elementary number theory involving

x1, x2, ..., xn as free variables.

After having given one of two examples of such problems – involving Fermat’s

last theorem – Church writes:

Clearly, the condition that the function f be effective calculable is an essential

part of the problem, since without it the problem becomes trivial.

The purpose of the paper thus becomes:

[...] to propose a definition of effective calculability which is thought to corre-

spond satisfactorily to the somewhat vague intuitive notion in terms of which

14, nr. 2, 2006.

106 CHAPTER 3. 1936

problems of this class are often stated, and to show that not every problem of

this class is solvable.

From 2.3, we already know the history preceding the publication of this paper

and it was neither an analysis of the notion effective calculability nor the idea

of proving certain problems unsolvable, but the computational power of λ-

calculus that lay the basis for this paper. Still we think it important to note that,

notwithstanding our knowledge of the events preceding this paper, Church starts

from the problem of proving specific problems solvable or unsolvable to tackle

the problem of formally defining the vague notion of effective calculability.

Of more significance here is the fact that Church interpreted the identification

of effective calculability with general recursiveness and λ-definability as a de-

finition. As we will see in 3.1.3 and discuss in 3.2, this interpretation stands in

sharp contrast with Post’s ideas in this context.

In the sections following the introduction, Church introduces the λ-calculus,

the Gödel representation of formulae and recursive functions. Church proves

or mentions several theorems with respect to λ-definability and recursiveness,

including the two theorems stating he equivalence between λ-definability and

recursive functions.

Church’s statement of the thesis

After this exposition Church again considers the problem of identifying the in-

tuitive notion of effective calculability with a certain formalism and proposes

the following “definition” ([Chu36c], p. 356):

We now define the notion [...] of an effectively calculable function of positive in-

tegers by identifying it with the notion of a recursive function of positive integers

(or of a λ-definable function of positive integers.)

He immediately adds (p. 356):

This definition is thought to be justified by the considerations which follow, so far

as positive justification can ever be obtained for the selection of a formal definition

to correspond to an intuitive notion. [m.i.]

3.1. DIFFERENT QUESTIONS, DIFFERENT ANSWERS. 107

As is clear from these two quotes, Church indeed regarded the identification

he made, as a definition, not as a thesis. Despite his calling the identification

a definition, he understood that it is far from unproblematic to offer a positive

justification for his definition, i.e. it cannot be proven to be absolutely true.

Church’s thesis can be stated as:

Church’s Thesis. Every effectively calculable function is general re-

cursive (λ-definable) and conversely.

We will now discuss the justification provided by Church in his paper, relying

on Gandy’s analysis of and critique on Church’s arguments [Gan88] in this con-

text. In discussing Church’s paper [Chu36c], Gandy points out four different

arguments supporting Church’s thesis, relying on Kleene’s [Kle52]. These argu-

ments are:

(A1) The argument by Example. This is the argument that led Church to the

first formulation of his thesis in terms of λ-definability, i.e., the fact that

one can represent any function one can think of in the formalism one

is working with, as was the case for λ-calculus in Church’s work. In his

1936 paper however [Chu36c], no mention is made of this argument. This

argument was also used by Turing in his 1936 paper.

(A2) The Step-by-Step Argument. Church considered this argument as the main

justification for his thesis in [Chu36c]. He announces this arumengt in

the quote given above. He considers two possible methods that can be

used to evaluate or compute a function f (x), two methods one might

identify on an intuitive level with the notion of effective calculability. These

are: the application of an algorithm that computes the value of f (x) and

the derivation of f (x) = y from a set of axioms, after application of a cer-

tain number of operations or rules of procedure. For each of these two

methods, the computation is done in a series of steps. Church then in-

terprets this step-by-step procedure as a recursive process, i.e. each step

performed is a recursive step. Then, since each step is recursive, f must

also be recursive. For Church there is no more general definition of ef-

fective calculability than the one he proposed, that can be obtained by

108 CHAPTER 3. 1936

analyzing either of the two methods (computations through algorithms

or in a logic). I.e. there is no more general way to describe the step-by-

step processes underlying these two methods than to describe them in

terms of recursive steps.

(A3) The Argument by Confluence. The argument by confluence concerns the

fact that very different formalisms that are each considered capable to

capture the intuitive notion of effective calculability, are proven to be

equivalent. This argument is used by Church in his 1936 paper [Chu36c],

in a footnote (p. 346, footnote 3):

The fact, however, that two such widely different and (in the opinion of the

author) equally natural definitions of effective calculability turn out to be

equivalent adds to the strength of the reasons adduced below for believing

that they constitute as general a characterization of this notion as is consis-

tent with the usual intuitive understanding of it.

This argument was also used by Post, Kleene and Turing.

(A4) The Criterion of the Failure of the Diagonal Argument. Although this ar-

gument was not mentioned by Church in the paper proposing the thesis

[Chu36c], it is clear that it played a role. This argument was also used by

Post in his [Pos65], as was shown in Sec. 2.2.4. He used the fact that the

diagonalization cannot be done effectively to argue that the sequence de-

fined through the diagonalization does not contradict his thesis. Also for

Kleene this argument played a basic role in his acceptance of the thesis.3

Turing also considered this argument, as we will see in Sec. 3.1.2.

Gandy gave several objections to (A1)–(A3). Sieg [Sie97] also criticized (A2),

and has called Church’s interpretation of the steps of any effective procedure as

recursive steps, Church’s central thesis.

As far as (A1) is concerned, Gandy notes that although this argument can be

3The reader is referred to Sec.2.3.4, for the quote by Kleene in which he states that he became

an overnight supporter of the thesis, in having realized that the diagonalization cannot be done

effectively.

3.1. DIFFERENT QUESTIONS, DIFFERENT ANSWERS. 109

used to justify the heuristic value of the thesis, it cannot be used to settle the

philosophical or foundational question, in the sense that it does not exclude

the possibility that some day someone might establish an entirely new kind

of calculation that is not covered by Church’s thesis. This is in fact a general

problem of any argument supporting a thesis equivalent to Church’s, in that no

argument can be found that excludes this possibility. Indeed, one cannot give

a proof for the thesis, since one is working with intuitive concepts.

Another objection with respect to (A1) might be to give an example of some-

thing we would consider effectively calculable by intuition, but we cannot “en-

code” it in any formalism equivalent to λ-calculus like Turing machines or tag

systems. I.e., even if one has e.g. λ-defined thousands of functions, one can

never be sure whether there will not be some special kind of function left, we

consider as effectively computable, that cannot be λ-defined. But again, this

problem is inherent to the problem the thesis wants to tackle, i.e., the formal-

ization of an intuition, rather than to the argument.

Similar objections can be made with respect to (A2), (A3) and (A4), and we will

thus not discuss them here. As far as (A2) is concerned, personally I find it hard

to accept this argument as a real argument, since the only way I can under-

stand it, is that Church himself simply did not see a more general way than to

interpret any “step-by-step” procedure as a “step-by-recursive-step” procedure.

Although I for myself neither see any other more general way than to under-

stand computability in terms of recursion or any other equivalent formalism, it

is not an argument one can use with respect to the sceptical person who wants

to beat the so-called Turing limit. Also Gandy [Gan88], Sieg [Sie94, Sie97] and

Soare [Soa96] pointed out the problems related to (A2).4

Unsolvable decision problems in λ-calculus

After Church discussed his definition of effective calculability in terms of gen-

eral recursive functions, he could pass on to the proofs of the existence of cer-

4Soare for examples notes: “The fatal weakness in Church’s argument was the core assump-

tion that the atomic steps were stepwise recursive, something he did not justify.” ([Soa96], p.

290).

110 CHAPTER 3. 1936

tain unsolvable decision problems. These proofs depend on the following the-

orem:

Theorem 3.1.1 There is no recursive function of a λ-formula C, whose value is 2

or 1 according as C has a normal form or not.

In other words, the property of a λ-formula having a normal form is not recur-

sively solvable and thus not-computable.5 We will not enter into the details of

the proof of the theorem, since it involves explaining the λ-definition of several

different functions. However, it is important to at least point out that Church λ-

defined a rather involved function, composed out of several differentλ-defined

functions of which many were defined by Kleene [Kle35a, Kle35b], that can be

interpreted as a kind of procedure that should be able to evaluate whether a

given formula is convertible to formulas 1, 2, 3,... (which are all in principle

normal form).6 This λ-formula e is defined as follows:

e→λn.d(h(b(a(n),z(n))),b(a(n),z(n)))

As was said, we will not give a detailed explanation of this function, but merely

indicate how e works. If n is one of the formulas 1, 2, 3,... then e(n) is convertible

into one of the formulas 1, 2, 3,....as follows:

1. if (a(n),z(n)) can be converted to a formula that stands for the Gödel rep-

resentation of a formula which has no normal form, then e(n) conv 1.

2. If (a(n),z(n)) converts to a formula that stands for the Gödel representa-

tion of a formula having a (principal) normal form which is not one of the

formulas 1, 2, 3,.... then also e(n) conv 1.

3. If (a(n),z(n)) is converted to the Gödel representation g of a formula that

has a (principal) normal form which is one of the formulas 1, 2, 3,... then

e(n) is converted to the next formula g +1 in the list 1, 2, 3,....

5For the definition of normal form with respect toλ-definability, the reader is referred to Sec.

2.3.4.
6Remember that Church used the integers as abbreviations for certain λ-formula. See Sec.

2.3.4.

3.1. DIFFERENT QUESTIONS, DIFFERENT ANSWERS. 111

I will not give the proof based on e, but will merely point out some of the essen-

tial ideas behind the proof. Since we follow Church’s exposition, we decided to

add this sketch of the proof in an intermezzo.

Starting from the assumption that it can be determined for every λ-formula that

it has a normal form, Church deduced a contradiction. If the assumption holds,

then clearly one should be able to determine whether every λ-formula is con-

vertible into one of the formulas 1, 2, 3,...Indeed, given a formula R one can first

determine whether it has a normal form, and if it has, one can obtain its principal

normal form by enumerating all the formulas into which R is convertible, picking

out the first formula in principal normal form, determining whether it is in the

form 1, 2, 3,...7 Then, let A1,A2,A3, ... be an effective enumeration of the formulas

that have a normal form 8, and let E be a function of one positive integer such

that E(n) = 1 if {An}(n) is not convertible into one of the formulas 1, 2, 3,... and

E(n) = m +1 if {An}(n) is convertible to m and m is one of the formulas 1, 2, 3,...9

The function is effectively calculable and is therefore λ-definable by a formula e.

This formula has a normal form since e(1) has a normal form. However, e cannot

be any of the formulas A1,A2,A3, ... because for every n, e(n) is a formula not con-

vertible to {An}(n). This contradicts the property of the enumeration A1,A2,A3, ...

containing every λ-formula that has a normal form, since e cannot be part of it,

and we have thus deduced a contradiction.

Basic to the proof is the assumption that a function (e) can be λ-defined deter-

mining for any given λ-formula whether it is convertible to one of the formulae

7This result follows from the following theorem: It is possible to associate simultaneously with

every λ-formula an enumeration of the formulas obtainable from it by conversion, in such a way

that the function of two variables, whose value, when taken of a λ-formula A and a positive in-

teger n, is the n-th formula in the enumeration of the formulas obtainable from A by conversion,

is recursive.
8It was proven that the set of λ-formula that have a normal form is recursively enumerable.
9Note that {An}(n) is the λ-formula, corresponding to the recursive function that is used to

determine for every formula An , the n-th formula in the enumeration of the formulas obtain-

able from An .

112 CHAPTER 3. 1936

1, 2, 3,... On the basis of this assumption a contradiction can be deduced by ap-

plying a kind of diagonalization (the use of formulas of the form {An}(n)). One

can thus conclude that one cannotλ-define a function that is able to determine

whether a given λ-formula has a normal form.

On the basis of this theorem, Church furthermore proved that there is no recur-

sive function of two formulas A and B whose value is 2 or 1 according as A conv

B.

3.1.2 “On computable numbers, with an application to the Entschei-

dungsproblem”

As is clear from its title, Turing’s focus is on computable numbers. To be more

exact, Turing’s paper wants to deal with ([Tur37], p. 230):

the real numbers whose expressions as a decimal are calculable by finite means.

On the first page of the paper, Turing announces how he will define the com-

putable number (p.230):

According to my definition, a number is computable if its decimal expansion can

be written down by a machine.

As was shown in Sec. 2.4, contrary to both Church and Post, who first formu-

lated their thesis after having convinced themselves of certain properties of the

formal systems they were studying, Turing did not start from a given formalism,

but deduced one on the basis of his analysis of the process of human comput-

ing. Indeed, one could say he constructed his Turing machines by taking to-

gether some of the generally accepted properties he deduced from his analysis

of such processes. In this respect, it is important to emphasize that for Turing

the real question at stake is:

What are the possible processes that can be carried out in computing a number?

As we already know from Sec. 2.2.4 it was a similar question Post wanted to

solve in order for his thesis to be generally valid, i.e. “for full generality a com-

plete analysis would have to be given of all the possible ways in which the human

3.1. DIFFERENT QUESTIONS, DIFFERENT ANSWERS. 113

mind could set up finite processes for generating sequences.” ([Pos65], p. 387).

In the next section we will see that the kind of analysis Post is pointing at in the

quote, in the end resulted in a formalism almost identical to Turing’s.

In the remainder of this text we will use the notion computor to indicate a hu-

man computer, and the usual term computer, when machines are concerned,

following Gandy [Gan80].

Turing’s machines: Universal computing and the halting problem.

In the beginning of his paper, Turing starts to describe some properties of his

machines, by making the comparison with a man in the process of computing a

real number. As he points out, the more detailed justification for the definition

of computability in terms of machines will follow after he has proven some of

his basic results. The only justification he already mentions is that since man’s

memory is limited, the machine’s should also be limited in certain ways. First

of all, the machine is supplied with a finite number of conditions q1, q2, ..., qR ,

called m-configurations. The machine is supplied with a tape which Turing

compares with the paper a computor uses. The tape is divided into squares,

each capable of bearing a symbol. At any moment i , there is just one square

bearing a symbol a j that is in the machine. Turing calls this square the scanned

square, and the symbol on it, the scanned symbol. This scanned symbol “is

the only one of which the machine is, so to speak, “directly aware”” ([Tur37],

p. 231). If an m-configuration is altered the machine is considered to be ca-

pable of remembering the symbol it has “seen” previously. The possible be-

haviour of the machine at any moment is completely determined by the m-

configuration it is in, as well as the symbol scanned. The symbol scanned and

the m-configuration the machine is in at a given time is called the configura-

tion of the machine. The machine is capable of several operations: if the square

it is scanning is blank, it can print a symbol and if it is not blank, it can erase it.

The machine can also move one square to the left or to the right. As should be

clear to the reader, these features are basic to the description of what we now

know as a Turing machine.

114 CHAPTER 3. 1936

In the following intermezzo, we will give a standardized description of Turing

machines. The kind of description we are using here is in no way fundamental,

but it is important to pick one out. We choose this description, because it is the

one most often used in some of the papers we will discuss in part II.10

A Turing machine is considered here to consist of a two-way infinite tape, sub-

divided into squares. Each square can contain one and only one symbol. The

machine is capable only of a finite number of states (m-configurations). It can

perform the following kind of operations: move one square to the left (indicated

as L), move one square to the right (indicated as R), print a symbol Si from a fi-

nite alphabet Σ= {S1,S2, ...,Sµ}. It should be noted that we do not use an erasure

operation, but rather an overwriting operation, i.e. if a square contains a given

symbol, it is overwritten by the new symbol printed. In this respect an empty

square is from now on identified as a square containing the symbol 0 (S0). The

machine is also capable of recognizing the symbol in the square it is scanning,

and to change its state. A quintuple is an expression of the form qi S j : Sk Ml qm ,

where Ml can be equal to L or R. A quintuple completely determines what the

machine should do in state qi scanning the symbol S j . A Turing machine can

then be defined by a finite set of quintuples that contains no two quintuples for

which the first two symbols are identical.11 Later on, we will represent a Tur-

ing machines, defined though a finite set of quintuples, by transition tables. For

example the following table:

q1

0 1Rq1

1 0Rq1

describes a Turing machine defined through a set of two quintuples {q10 : 1Rq1, q10Rq1}.

The state of a Turing machine at a given time, is given by its instantaneous de-

scription (I.D.) at that time, an expression of the form Pqi s jQ, where qi is the

state the machine is in, s j the symbol it is scanning, P the content of the tape to

the left of s j and Q the content of the tape to the right of s j . Using I.D.’s one can

describe the dynamics of a Turing machines.

10For this description, see e.g. [Min61].
11It should be pointed out that Post [Pos47] introduced the use of quadruples instead of quin-

tuples.

3.1. DIFFERENT QUESTIONS, DIFFERENT ANSWERS. 115

Despite the rather simple mechanism behind Turing machines, Turing consid-

ered them as being capable to carry out any process to compute a number we

humans can carry out. But before further discussing Turing’s thesis, it is impor-

tant to point out some of the other results contained in the paper.

First of all, we must mention the differentiation between circular and circle-free

machines, which is basic to Turing’s proof of the halting problem. It should be

noted though that Turing never used this last term. This is due to Martin Davis

[Dav58].

A machine is considered circular if it never writes down more than a finite num-

ber of symbols, i.e. if it reaches a configuration from which there is no move

possible, or gets into a loop. In all other cases, when the machine is actually

computing a real number or an infinite sequence of symbols, it is said to be

circle-free. Contrary to Church, Turing did not use Gödel coding but used his

own coding system which is far more efficient if one actually implements it. We

will not give the details of this coding, since the readers are probably already

familiar with it, but it is important to point out that Turing differentiates be-

tween the description number (D.N.) and the standard description (S.D.) of a

Turing machine. The D.N. can be constructed from the S.D. by replacing letters

by numbers.

Since Turing’s coding system is far more efficient than Gödel coding, it is eas-

ier to really implement it on a machine. Although Turing, at that time, did not

build or design a real physical computer, he did provide a construction of a

Turing machine capable to compute anything computable by any other Turing

machine, that later influenced his design of a real computer, as well as, most

probably, von Neumann’s (See Sec. 4.1). The encoding of this machine heavily

relies on the S.D. of Turing machines.

I will not give the description of Turing’s original universal machine here.12 It is

rather intricate and contains some mistakes (See Post’s [Pos47]). Still, I want to

at least notice here that, having gone through the operations of this universal

machine, noticing the mistakes its instruction table contains, trying to under-

12In part II we will deal with other universal Turing machines, which are far simpler in their

description.

116 CHAPTER 3. 1936

stand how such a machine might work, has been an experience for me I will

never forget. The insight that a universal machine is in a way nothing more than

a kind of complicated cut-copy-paste machine, that is nonetheless capable to

interpret and execute the operations of any other Turing machine, has been

rather important for me. It has resulted, at least for me, in a first change of my

own intuitive notion of computations and computers. In a way the processes

that can be used to translate machine language to a user-friendlier language,

and vice versa, is very much related to this kind of theoretical construction.

Fundamental here is that instructions and data are put on one and the same

level, and the instructions can thus be manipulated as data.

This universal machine was used by Turing in his famous proof of the unsolv-

ability of the halting problem. Before giving the proof, Turing emphasizes that it

should be understood that the diagonalization cannot be done effectively, thus

pointing out the same kind of fallacy Post describes, that might be involved

in searching for counter examples through the diagonalization process contra-

dicting the thesis. I.e., the fact that one can define a given sequence through

diagonalization that cannot be computed by a normal form, does not imply

that one has given a real counter example. This would only be valid if the se-

quence could be effectively computed. Turing summarized the argument and

the fallacy underlying it as follows ([Tur37], p. 246):

It may be thought that arguments which prove that the real numbers are not enu-

merable would also prove that the computable numbers and sequences cannot

be enumerable. It might, for instance, be thought that the limit of a sequence

of computable numbers must be computable. This is clearly only true if the se-

quence of computable numbers is defined by some rule. Or we might apply the

diagonal process. “If the computable sequences are enumerable, let an be the

n-th computable sequence, and let φn(m) be the m-the figure in an . Let β be

the sequence with 1−φn(n) as its n-th figure. Since β is computable, there ex-

ists a number K such that 1−φn(n) = φK (n) for all n. Putting n = K , we have

1 = 2φk (K), i.e. 1 is even. This is impossible. The computable sequences are

therefore not enumerable”. The fallacy in this argument lies in the assumption

that β is computable.[m.i.] It would be true if we would enumerate the com-

3.1. DIFFERENT QUESTIONS, DIFFERENT ANSWERS. 117

putable sequences by finite means, but the problem of enumerating computable

sequences is equivalent to the problem of finding out whether a given number is

the D.N. of a circle-free machine, and we have no general process for doing this

in a finite number of steps. In fact, we can show that there cannot be any such

general process.

This argument is indeed similar to Post’s, i.e. the diagonalization cannot be

done effectively! This is only possible if one would be able to solve by finite

means the problem mentioned at the end of the quote, now reformulated as

the halting problem.

As is pointed out by Turing, there is a very direct proof of the unsolvability of

this problem based on the assumption of the correctness of his identification

between computability and Turing machines: if such general process would ex-

ist, than there should indeed exist a machine that computes β. But such proof

might leave the reader with a feeling that something is missing, and Turing pro-

vided another proof. Let us now turn to a description of the original proof by

Turing. The proof depends not on the computability of β but on β′ whose n-

the figure isφn(n). We give the proof in an intermezzo since, as was the case for

Church, we merely follow Turing’s description of the proof.

Turing starts from the assumption that there exists a Turing machine that de-

cides for any given number whether it is the D.N. of a circle-free machine, and

deduces a contradiction from the assumption. Let us suppose we could invent a

machine D that, when supplied with the D.N. of another machine M , tests this

machine through its D.N .. If D concludes that M is circular it prints the symbol

u, and if it is circle-free it prints s. We can then combine D with the universal

Turing machine U to construct a new machine H to compute β′.

H’s tape can be subdivided into several sections. Let us suppose that in the first

N −1 sections, among other things, the integers 1,2, ...,N −1 have been printed

and are already tested by H . A certain number of these integers, R(N −1) have

been found to be the D.N. of circle-free machines. In its N-th section H now has

to test the N . If N is the D.N. of a circle-free machine (N is satisfactory) then

R(N) = R(N −1)+1 and the first R(N) figures of the sequence calculated by the

118 CHAPTER 3. 1936

machine with its D.N. = N are computed. The R(N)-th figure is then written down

as the R(N)-the figure of the sequence β′ which can thus in this way be com-

puted by H . If N is the D.N. of a circular machine, (N is not satisfactory) then

R(N) = R(N −1) and the machine goes to the (N +1)-th section.

Now, from its construction it is clear that H itself should be circle-free. Each

section of the motion comes to an end in a finite number of steps, given the as-

sumption that the machine D, part of H , is capable to decide in a finite number

of steps whether a given number N is the D.N. of a circle-free machine. If N is

satisfactory, the machine MN , whose D.N. is N , is circle-free so we can use the

universal machine U , part of H , to compute its R(N)-th figure in a finite number

of steps. When this figure is calculated as the R(N)-th figure of β′, the machines

moves to N +1. If N is the D.N. of a circular machine, H also finished in a finite

number of steps, and moves to N +1. Thus, H is circle-free.

Now suppose N is the D.N. of H itself. H must now test whether its own D.N.

is satisfactory. It is at this point that a contradiction arises. Indeed, since N is

the D.N. of a circle-free machine, H’s verdict cannot be that N is not satisfactory.

However, neither can H’s verdict be that N is satisfactory. If this would be the

case, then H should compute in its N-the section, the first R(N − 1)+ 1 = R(N)

figures of the sequence computed by H , and write down the R(N)-th figure as a

figure of the sequence β′ computed by H . There are no problems as far as the

computation of its first R(K)−1 figures is concerned. However, computing the

R(N)-th figure would amount to “calculate the first R(N) figures computed by H

and write down the R(N)-th.”, this of course is impossible, since, in a way, the

machine should be ahead of its own computations to do this. Thus the R(N)-th

figure could never be computed and H must thus be circular. In other words, if

H is applied to itself, it can never give rise to the right verdict, it cannot decide for

itself whether it is circular or circle-free. We can thus conclude that no machine

H can be constructed, of course, on the assumption of Turing’s thesis.

Basic to the proof is that, on the assumption that one can construct a Turing

machine H that decides for any Turing machine whether it is circle-free, Turing

is able to deduce a contradiction through diagonalization.

3.1. DIFFERENT QUESTIONS, DIFFERENT ANSWERS. 119

After this proof, Turing proved that there can be no machine P which, when

supplied with the D.N. of an arbitrary machine M , determines whether M will

ever print a given symbol, i.e., he proved that the printing problem is unsolvable

[Dav58].

Turing’s statement of his thesis

After the proof of the unsolvability of the printing problem, Turing starts his

discussion of the identification he had to assume to be valid in order to prove

the halting problem unsolvable ([Tur37], p. 348):

The expression “there is a general process for determining...” has been used

throughout this section as equivalent to “there is a machine which will deter-

mine...”. This usage can be justified if and only if we can justify our definition of

“computable”. For each of these “general process” problems can be expressed as

a problem concerning a general process for determining whether a given inte-

ger n has a property G(n) [e.g. G(n) might mean “n is satisfactory” or “n is the

Gödel representation of a provable formula”], and this is equivalent to comput-

ing a number whose n-th figure is 1 if G(n) is true and 0 if it is false.

As was the case for Church, also Turing was very clearly aware of the fact that

no argument supporting the thesis can be used as a mathematical proof of the

thesis ([Tur37], p. 349):

All arguments which can be given are bound to be, fundamentally, appeals to in-

tuition, and for this reason rather unsatisfactory mathematically. The real ques-

tion at issue is “What are the possible processes which can be carried out in com-

puting a number?”

Turing gives three different kinds of arguments. The first two are (A1), the ar-

gument by example and (A3), the argument by confluence. As far as (A1) is

concerned, Turing gives several examples of classes of numbers and functions

that can be computed by Turing machines. The argument (A3) is the proof of

the equivalence between Turing machines and restricted predicate calculus. It

is this proof that leads to the unsolvability of the Entscheidungsproblem for this

120 CHAPTER 3. 1936

calculus. To be more specific, Turing showed that the printing problem can be

reduced to the Entscheidungsproblem.

After he had already submitted the manuscript of the paper, Turing received an

offprint of Church’s [Chu36c] via Newmann. After having made himself more

familiar with λ-definability, he proved the equivalence between his formaliza-

tion of computatability and λ-definability, and added the proof as an appendix

to his [Tur37]. He was thus able to add more strength to the argument by con-

fluence. A more detailed proof was published as [Tur37].

The significance of a third argument (A2), described by Turing as a direct ap-

peal to intuition, can hardly be overestimated. It is exactly this argument that

convinced many people, including Gödel, of the validity of Turing’s thesis, and

is nowadays still considered by many as the fundamental argument supporting

the thesis. Some even regard it is a proof of “Turing’s theorem” (instead of Tur-

ing’s thesis). As a consequence Turing’s identification is often regarded as the

best or most convincing one available, since the argument only works for Tur-

ing machines or similar kinds of formalizations, i.e., formalizations that start

from an analysis of the vague intuitive notion. Before further discussing the

significance of this argument, we will now summarize the main ideas behind it,

based on Gandy’s [Gan88] and Sieg’s [Sie94, SB96, Sie97] analyses.

The argumentation that is used as a direct appeal to intuition, is in fact Tur-

ing’s analysis of a man in the process of calculating something, a computor, and

his deduction of certain properties that are inherent to this process. It is this

kind of analysis (See Sec. 2.4) that Gödel thought to be the best way to find a

satisfactory identification between the intuitive concept of computability and

a given formalism, i.e. to determine a formalism based on generally accepted

properties of the intuitive notion. I still consider this part of Turing’s paper as

a very strong and beautiful philosophical analysis, making clear how one can

proceed to formalize certain non-mathematical notions.

Turing starts from the idea that “[c]omputing is normally done by writing cer-

tain symbols on paper. We may suppose this paper is divided into squares like a

child’s arithmetic book” ([Tur37], p. 349). Since the two-dimensional character

is not essential to computation according to Turing, he assumes that the com-

putor works on a 1-dimensional tape divided into squares. By considering the

3.1. DIFFERENT QUESTIONS, DIFFERENT ANSWERS. 121

limitations of us humans, with respect both to perceptional as well as mental

abilities, while in the process of computing something, Turing deduces several

restrictions on the actions of a computor and describes on the basis of this de-

duction an abstract computor. The actions of this abstract computor are then

considered replaceable by the actions of a computer, i.e., the actions of a com-

putor can be formalized in a kind of computers which are in fact reducible to

Turing machines.

Both Gandy [Gan88] and Sieg [Sie94, SB96, Sie97] correctly deduced the several

restrictions Turing concluded for on the basis of his analysis. We will here sum-

marize these restrictions and indicate the reasons Turing mentioned for adding

them.

B.1 Boundedness condition on the number of symbols that can be printed, i.e.

finiteness of the alphabet. There is a fixed upper bound to the number

of distinct symbols that can be printed. As Turing remarks: “If we were

to allow an infinity of symbols, then there would be symbols differing to

an arbitrarily small extent.” ([Tur37], p. 249). Furthermore, if we do not

add this restriction, it becomes impossible to recognize a symbols at one

glance.

B.2. Boundedness condition on the number of cells or symbols scanned. There

is a fixed bound on the number of contiguous cells (or their contents) the

computor can take in when he is deciding what to do. This restriction

is added, since there is a limit for us humans for directly recognizing a

given sequence of symbols. Turing gives the example that we cannot de-

termine at a glance whether 9999999999999999 and 9999999999999999

are identical. There is also a further reason for this restriction not explic-

itly mentioned by Turing: we humans can only perceive a finite space at

one and the same moment. If we are reading a text, we have to move our

eyes to reach certain points of the text.

B.3. Boundedness condition on the number of states. There is a fixed bound

on the number of “states of mind” of the computor. Turing’s reason for

adding this restriction is: “If we admitted an infinity of states of mind,

122 CHAPTER 3. 1936

some of them will be “arbitrarily close” and will be confused.” This argu-

ment is thus similar to that for B.1..13

L.1. Locality condition on the number of symbols that can be changed. Only

symbols of observed configurations can be changed, and only one at a

time. Turing does not provide a real reason here, but it seems only normal

that we only change one thing at a time when calculating on a piece of

paper.

L.2. Locality condition on the size of the move to left or right. Each of the ob-

served squares must be within a bounded distance of an immediately

previously observed square, i.e. there is a bound on the number of squares

you can move over in one step. Turing provides no argument, but it is a

very reasonable condition, since one will most probably never jump from

page 50 to page 100 in making a calculation. Furthermore, if this locality

condition would not be made, one could make a move to infinity.

For Turing it was very important that the operations of the computor “are so

elementary that it is not easy to imagine them further divided.” ([Tur37], p. 250).

In this respect the operations of the computor can be considered as atomic acts.

On the basis of this analysis of a human computor, Turing deduces an abstract

computor, which should be capable of two basic operations: (1) it must be able

to change a symbol in one of the observed squares, and (2) must be able to

move from one of the squares observed to another square, within a certain

number of squares of the previously observed squares. Since this machine must

also be able to change its state of mind, the most general simple operations Tur-

ing concludes for is the combination of (1) rsp. (2) with the operation of chang-

ing the state of mind. Finally, Turing adds that every such operation performed

is completely determined by the the state of mind and the observed symbols.

Sieg [Sie94, SB96, Sie97] calls this the determinacy condition (D).

Given the restrictions one must take into account in observing the process of a

man calculating, and the abstract computor deduced on the basis of these re-

strictions, the idea of identifying human computing with machine computing

13Discussions on the “finite-states” hypothesis can e.g. be found in [Web80] and [Kle87].

3.1. DIFFERENT QUESTIONS, DIFFERENT ANSWERS. 123

almost naturally follows. As Turing writes ([Tur37], p. 251):

We may now construct a machine to do the work of this computer [the abstract

computor]. To each state of mind of the computer corresponds an “m-configuration”

of the machine. The machine scans B squares corresponding to the B squares

observed by the computer. In any move the machine can change a symbol on a

scanned square or can change any one of the scanned squares to another square

distant not more than L squares from one of the other scanned squares. The

move which is done, and the succeeding configuration, are determined by the

scanned symbol and the m-configuration. The machines just described do not

differ very essentially from computing machines as defined [earlier in the paper,

i.e., Turing machines], and corresponding to any machine of this type a comput-

ing machine can be constructed to compute the same sequence, that is to say the

sequence computed by the computer.

In having constructed an abstract computor on the basis of the several restric-

tions deduced, and having argued how this abstract computor can in fact be re-

placed by a computer, which is basically identical to a Turing machine,14 Turing

has thus provided a very direct and convincing argumentation for the following

thesis:

Turing’s Thesis. Anything that can be calculated by a human being,

can be computed by a Turing machine (and conversely)

Turing’s thesis has been posed in several different forms in the literature, by

separating between the several steps in Turing’s reasoning. For example, both

Sieg and Soare give a different form of Turing’s thesis. To Sieg [SB96], Turing’s

central thesis is:

Turing’s Central Thesis [Sieg]. Any mechanical procedure can be

carried out by a computor satisfying conditions B.2., B.3., L.1., L.2.,

D.

14Unlike the simplification from computor to abstract computor, and from abstract com-

putor to computer, this simplification (from computer to Turing machine) can be proven.

124 CHAPTER 3. 1936

On the basis of this thesis, Sieg then concludes for what he calls Turing’s theo-

rem:

Turing’s Theorem [Sieg]. Any number theoretic function that can be

calculated by a mechanical computor can be computed by a Turing

machine.

Soare [Soa96] accepts Sieg’s statement of “Turing’s theorem‘” and concluded

that Turing’s thesis can be reduced to the thesis Sieg called “Turing’s central the-

sis, although he slightly reformulated it by replacing “mechanical procedure” by

“functions that are considered intuitively to be calculable”.

In his [Gan88], Gandy gives three different forms of Turing’s thesis, but does not

identify them as theses, but as theorems. The first statement of the “theorem”

is very similar to our statement of Turing’s thesis:

Turing’s theorem I [Gandy]. Any function that can be calculated by

a human being can be computed by a Turing machine.

Turing’s theorem II [Gandy]. Any function which can be calculated

by a human being following a fixed routine is computable.15

Turing’s theorem III [Gandy]. Any function which is effectively cal-

culable by an abstract human being following a fixed routine is ef-

fectively calculable by a Turing machine – or equivalently, effectively

calculable in the sense defined by Church – and conversely.

It is remarkable that, although Turing machines were shown to be equivalent to

general recursive functions and λ-definability, it is Turing’s thesis, not Church’s

(nor any thesis based on a formalism shown to be equivalent to one of these

formalisms) that has given rise to a variety of different statements.16

As we will see in Sec. 4.3 it has been Turing’s thesis that lies at the basis of what

15It is important to point out that when Gandy uses the word “computable” it refers to any of

the notions equivalent to Turing computability, like e.g. λ-definability.
16As for the several formulations of Turing’s thesis in terms of Turing’s theorem given here,

they will be discussed in more detail in Sec. 3.2

3.1. DIFFERENT QUESTIONS, DIFFERENT ANSWERS. 125

is now known as the physical Church-Turing thesis, and forms the main target

of many a scientist trying to go beyond the Turing limit. In a way, it is not sur-

prising that one usually talks about going beyond the Turing limit instead of say

the Post or Church limit. Neither Post’s nor Church’s thesis, makes a connection

with something as “worldly” as a machine. This is rather logical since neither

of them started from a direct analysis of the idea of computing, but only for-

mulated their theses on the basis of formalisms that already existed and used

in a different context, i.e., it were the formalisms themselves that convinced

them. Turing’s machines on the other hand, were constructed by starting from

an analysis of the process of a man calculating. In this sense, there is a direct

link between Turing machines and the physical world we compute in. But this

is not the only connection. The fact that Turing uses the word “machine”, in-

stead of calculus or form, makes this connection even stronger. Although at

that time there were no computers as we know them now, the notion of a ma-

chine was very well known. Even if Turing machines are a very special kind of

abstract machines, their description is very physical, using a tape, a head that

moves over the tape, writes and recognizes symbols, and furthermore works with

states of mind describing what the machine should do. In this respect, Turing

machines are much more connected to the notion of effectiveness interpreted

in the more physical sense of mechanizable.

Given its close connection to our everyday life, especially now in the era of com-

puters, it should thus not come as a surprise that Turing’s thesis is regarded as

the most convincing one, and thus also as the one that should be beaten. Tur-

ing was right in describing his analysis as an argument making a direct appeal

to intuition. This is only affirmed by the hundreds of philosophical papers and

books that make Turing machines the central concept. However, now that we

have a formalism considered to capture the intuition, it might be fruitful to turn

the argumentation upside down and to ask how formalisms further removed

from intuition can help to alter our intuitions. We will develop this idea in Sec.

3.3.

126 CHAPTER 3. 1936

3.1.3 “Finite Combinatory processes. formulation 1”

In Sec. 2.2.5 it was shown that Post had already formulated his thesis and proven

certain decision problems unsolvable relative to this thesis in 1921. We will first

discuss these results in more detail. Starting from Post’s critique with respect to

his own thesis, we will then finally be ready to discuss Post’s 1936 paper [Pos36].

We already know how Post came to the realization of the generality of his nor-

mal form and we will not repeat the significance of, on the one hand, tag sys-

tems and, on the other hand, the normal form theorem, for his at that time

“unorthodox” ideas.

Contrary to Church and Turing, Post does not refer to the intuitive notion of

effective calculability or computability in his thesis, but that of a generated

set. Clearly, this notion is further removed from everyday life and thus, in it-

self, far less intuitively appealing than the notion of a computation. Indeed,

while everybody is used to the idea of a calculation – it was and still is part of

elementary education – far from everybody has a concrete notion of sets, let

alone, generated sets.17 Still, graduate students in mathematics at that time

(up to today) and, especially, the logicians who were (and are) acquainted with

formalisms like Principia or Cantor’s work, must have had a more concrete in-

tuition of the notion of a generated set.

Post’s statement of his thesis

In Post’s case, the fact that he stated his thesis in terms of generated sets rather

than calculability, is not surprising since, basically, he had been working with

systems generating sets of sequences of letters. Given the mathematical gen-

erality of Principia, it was the realization that Principia might be reducible to a

system in normal form that formed the decisive step for him to formulate his

thesis ([Pos65], p. 385):

In view of the generality of Principia Mathematica, and its seeming inability to

17The generation I belong to has a more concrete notion of set, since introductory courses on

sets were included in the elementary and secondary school curriculum, under the influence of

Bourbaki. In the meantime it is no longer a standard part of most curricula (at least as far as I

know, here in Europe).

3.1. DIFFERENT QUESTIONS, DIFFERENT ANSWERS. 127

lead to any other generated sets of sequences on a given set of letters than those

given by our normal systems, we are led to the following generalization.

The generalization pointed at in the quote, was first called Post’s thesis by Mar-

tin Davis [Dav82]. Post has given the following statement of his thesis:

Post’s Thesis. Every generated set of sequences on a given set of let-

ters a1, a2, ..., aµ is a subset of the set of assertions of a system in nor-

mal form with primitive letters a1, a2, ..., aµ, a′
1, a′

2, ..., a′
µ, i.e., the sub-

set consisting of those assertions of the normal system involving the

letters a1, a2, ..., aµ.

Fundamental for the formulation of this thesis in terms of normal form was

Post’s normal form theorem, through which any canonical form could be re-

duced to a special canonical form, i.e., a system in normal form.

Unsolvable decision problems for normal systems

Having started from the idea to develop the most general form of logic and ul-

timately mathematics, in order to prove that the whole body of mathematics

is solvable, Post had now found such general form of logic and mathematics.

However, having realized, after his experience with tag systems, that such de-

cision procedure might not exist, together with the realization of the generality

of his normal form, which was very closely connected to his form of tag, and

the insight that he could apply a diagonalization procedure, Post now decided

for the reversal of his entire program and concluded that the decision prob-

lem for the class of normal system is unsolvable, in that there exists “no finite

method which would uniformly enable us to tell of an arbitrary normal system

and arbitrary sequence on the letters thereof whether that sequence is or is not

generated by the operations of the system from the primitive sequence of the sys-

tem.” ([Pos65], pp. 386–387).

In his Account of an anticipation Post added an Outline of a minimum math-

ematical development, in which he proves the unsolvability of the finiteness

problem for systems in normal form through diagonalization. In this outline,

Post proved through diagonalization on an enumeration of all normal systems,

128 CHAPTER 3. 1936

that there exists a set of “a-sequences”, strings on the alphabet {a}, called the

N-set, that cannot be generated by a normal system, and is thus a set that can-

not be generated in general. To put it in different terms, it is a non-computable

set. The following intermezzo explains the proof.

Let us first recall the definition of a system in normal form. Let Σ= {a1, a2, ...aµ}.

A system in normal form is then defined by one initial sequence A = ai1 ai2 ...aiλ

(the axiom) over the alphabet Σ, and a finite set of production rules of the form:

gi P produces Pg ′
i

where gi and g ′
i are finite sequences over Σ. A normal system is the set of se-

quences resulting from the iterated application of these operations starting with

the initial sequence. Post makes no differentiation between normal systems which

only differ from each other in the letters used. In this respect, these letters can

always be the first µ symbols of an infinite sequence of letters, like e.g. the first µ

positive integers.

Post then goes on to show that the set of all normal systems can itself be ordered

in an infinite sequence, i.e., it can be enumerated. This is done by ordering the

set of all possible bases, the initial sequence and the production rules, of nor-

mal systems. Post then defines a kind of coding, comparable to Gödel coding or

Turing’s coding through the D.N. and the S.D. Essential to Post’s coding here is

the complexity of a basis of a normal system. The complexity of a given basis is

the total number of symbols appearing in the alphabet Σ, the initial sequence

and the production rules, where each P is counted as a separate symbol. The

different bases are then divided into classes according to their complexities, in

order of increasing complexity. Each class is then further divided into subclasses

according to the number of symbols of the alphabet, and correspondingly or-

dered. In the same way, each of these subclasses is divided into subclasses and

ordered, according to the number of operations. Each of these subclasses is then

divided again and ordered according to the ranks of C = Ag1g ′
1...gk g ′

k , the rank of

a sequence being its length, with the resulting classes ordered according to the

rank of the first of the sequences that differ in rank for two classes. In each of

the resulting classes two bases are identical iff. their respective sequences C are

3.1. DIFFERENT QUESTIONS, DIFFERENT ANSWERS. 129

identical.

C is then interpreted as a number, by setting each letter to an integer, i.e. a1 =
1, a2 = 2, ..., aµ = µ. Since the number of letters in the alphabet is the same for

all bases in the same class, the bases within a given class can finally be ordered

within each class according tot the number C represents. Using this ordering, it is

possible to order the whole set of bases. Post called this ordering the σ-ordering.

Given the convention that two normal systems that differ from each other only

in the specific alphabet used, are considered identical, so that for any base, the

letters from the alphabet are the first µ letters, it is clear that all normal systems

have the same letter a1 which is replaced by a. Then, consider the following set of

sequences, involving only the letter a: The string a...a, with n a’s (of rank n), is or

is not in the set depending on whether it is not or is in the n-th normal system in

the σ-ordering. This set is called the N-set. Then, there exists no normal system

with the property that if its first letter is replaced by a, then the set of resulting

sequences involving only the letter a is the N-set, i.e., there exists no formal sys-

tem that can generate the N-set. This is true, since suppose there would be such

a normal system in the σ-ordering, e.g. the m-th. This normal system, however,

must differ from the N-set in at least one sequence, i.e., the sequence aa...a with

m a’s, since, by definition, if this sequence is present in the normal system it

cannot be in the N-set, and vice versa.

After having proven this result, Post states: “As stated this theorem would be

trivial were it not for the all embraciveness of normal systems.” ‘([Pos65], p. 389).

Indeed, this proof is only valid in as far as Post’s thesis is valid. Earlier in the

paper, Post already pointed out the significance of the non-effectiveness of the

diagonalization: although it is possible to define the set N of a-sequences, this

does not result in a counter-example, since one can only yield a true counter-

example if one can set up a system of combinatory generation that effectively

generates the set.18

Post then deduces several other “(theorems)”, putting them between brackets

because he did not provide the details of the proofs. These (theorems) concern:

18For the exact quotes, the reader is referred to Sec. 2.2.4.

130 CHAPTER 3. 1936

1. A (theorem) stating that there exists a complete normal system K and a

correspondence (encoding) C such that for each normal system and enun-

ciation thereof, there is one and only one enunciation in K by correspon-

dence C , such that an enunciation in K is asserted (generated) iff. the

corresponding normal system is such that the enunciation is an asser-

tion of that normal system. The normal system K is thus a normal sys-

tem that generates all and only those assertions generated by any other

normal system. Post later added in a footnote that this normal system K

corresponds to Turing’s universal machine.

2. A (theorem) stating that there exists no finite-normal-test for the com-

plete normal system K. Given a normal system M . Then there exists a

finite-normal-test for M if there exists a normal system M’ such that among

the letters of M’ are all the letters of M , and in addition, among possibly

others, a primitive letter b, such that if P is an assertion of M , P is also an

assertion of M’, while bP is an assertion of M’ if P is not an assertion of

M . Although Post of course did not use the terminology then, we can re-

formulate the existence of a finite-normal-test for a given normal system

M , by stating that M is recursive. The (theorem) of the non-existence of

a finite-normal-test for the complete system K would later be proven in

more detail, and stated in more exact terms, by Post [Pos44]. He proved

that there exists a complete set C , which is very similar to the normal sys-

tem K , proving that the set C is a recursively enumerable set that is non-

recursive, i.e. the complement of the set is not recursively enumerable.

3. A (theorem) stating that no normal-deductive-system is complete, there

always existing a normal system S and enunciation P thereof such that P

is not in S while b(S, P) is not in the normal-deductive-system. A normal-

deductive-system L is a normal system that is such that for any normal

system S, if P is an assertion of S, (S, P) is in L, while if P is not in S, b(S,P)

is in L. In [Pos44], Post would prove what he called a Gödel in miniature

theorem, by using a reasoning that seems to go back to this (theorem).

4. A (theorem) stating that for any given normal-deductive-system there

3.1. DIFFERENT QUESTIONS, DIFFERENT ANSWERS. 131

exists another one which proves more theorems than the first (to put it

roughly, Post added). Also this (theorem) was stated in more exact form

in Post’s [Pos44].

After his Procter fellowship Post further investigated the results he considered

to be unfinished. This is very clear from several of the footnotes of his Account

of an anticipation. However, he was in a far from perfect situation to do his

research. As is pointed out by Davis [Dav94]:

Until 1935, he was unable to obtain a regular academic position, making his liv-

ing, for the most part, by teaching in the New York high school system.

Post could not devote his whole time to research, not only because he did not

have a secure academic position, but also due to his manic-depressive illness.

This situation did not stop him from doing further research, on the contrary.

One of the goals he set himself after his Procter fellowship was to provide a

more complete analysis of the intuitive notion of generated sets. As we already

know, to Post for his thesis to obtain its full generality, “an analysis should be

made of all the possible ways the human mind can set up finite processes to gen-

erate sequences.” ([Pos65], p. 387) This quote is very similar to what Turing had

pointed out as the real question to be asked in searching for the right formalism

to capture the intuition.

The first traces of such analysis can be found in the appendix Post added to his

Account of an anticipation, containing fragments from his notes and diary. The

last entry of the appendix is dated February 4, 1922. We do not want to discuss

the content of the appendix here, given its fragmentary character. It should be

noted though that it mentions some of the restrictions Turing deduced out of

his analysis of the process of a man computing, like the use of a finite number

of states and symbols. That Post indeed made a start with such an analysis is

clear from some quotes from his Account of an anticipation. We must men-

tion some of them here, since they show that Post indeed started with such an

analysis and, as a consequence, that his formulation 1 did not simply come out

of the blue. We will only give two quotes here. The quote already mentioned,

emphasizing the significance of such analysis, can be regarded as a third such

132 CHAPTER 3. 1936

quote.

After having stated the significance of the analysis, Post writes ([Pos65], p. 387):

The beginning of such an attempt [the analysis] will be found in the Appendix.

In the introduction to the Appendix Post explains ([Pos65], pp. 394–395):

While the formal reductions of Part I [the reduction from canonical form A to B

to C to normal form] should make it a relatively simple matter to supply the de-

tails of the development outlined [i.e. the (theorems)] that development owes its

significance entirely to the universal character of our characterization of an arbi-

trary generated set of sequences [...] Establishing this universality is not a mat-

ter for mathematical proof, but of psychological analysis of the mental processes

involved in combinatory mathematical processes [m.i.]. [...] Actually, we can

present but fragments of the proposed analysis of finite processes [m.i.]. [...] This

theme [the idea that there exist problems we humans cannot solve] will pro-

trude itself ever so often in our immediate task of obtaining an analysis of finite

processes [m.i.].

As is clear, Post understood that his thesis was the fundamental result underly-

ing his (theorems), and it was thus necessary to further establish the “universal-

ity” of this thesis through a deeper analysis of all the possible ways the human

mind can set up finite processes. He clearly made a start with such an analysis.

In fact, it would have been surprising if he would not have made an attempt for

such an analysis, since he understood its fundamental significance.

formulation 1

Fifteen years later Post’s paper Finite Combinatory processes. formulation 1

[Pos36] was published. By then, Gödel had already published his fundamental

1931 paper. Post knew of Church’s results, but was unaware of Turing’s paper.

Maybe the most remarkable thing about the formalism described in this paper,

a formalism which must have been influenced to some extent by Post’s earlier

analysis announced in the Appendix of all the possible finite processes the hu-

man mind can set up to generate sets, in the end resulted in a formalism that is

3.1. DIFFERENT QUESTIONS, DIFFERENT ANSWERS. 133

almost identical to Turing’s description of his machines. Post’s paper however

did not contain a proof of an unsolvable decision problem nor the description

of a universal machine. Neither does it contain any explicit argumentation in

the sense of Turing’s: the paper is only three pages long. As a consequence, the

paper is often only mentioned in a footnote, if it is mentioned at all, and has, to

our mind, been handled in a stepmotherly way in many of the literature.

Still, the results from the paper are very important in several different ways.

First of all, the fact that Post’s analysis resulted in a formalism that is very simi-

lar to Turing machines adds strength to the idea that if one starts from an analy-

sis of a an intuitive notion similar to the one considered by Turing, one indeed

ends up with something like Turing machines. Secondly, as we will argue here,

although Post never really makes very explicit what kind of intuitive notion ex-

actly he wants to capture with his formulation 1, it is clear from the paper that

he intends to formalize the notion of solvability. Thirdly, and this is the reason

why the paper is most often mentioned, Post did not regard any such identifi-

cation as a definition, and explicitly criticized Church’s calling his identification

between effective calculability and general recursiveness (λ-definability) a de-

finition.

We will now first describe formulation 1, or, as it is also sometimes called, Post

machines, in an intermezzo. 19

There are two basic concepts involved in formulation 1: the symbol space in

which the work leading to a solution is to be carried out and the set of directions

which direct operations in the symbol space and determine the order in which

the directions have to be performed. The symbol space is a two way infinite se-

quence of boxes. The worker or problem solver can move and work in the symbol

space, and is capable of being in, and operating in but one box at a time. A box

can have two possible conditions: empty or marked with one symbol, e.g. “|”.
One of the boxes is called the starting point.

Now what can our worker do, what is he capable of? The worker’s work is limited

to the following primitive acts:

19See for example the booklet by Uspensky called Post’s machine [Usp83], where Uspensky

describes how these machines can be used in elementary and secondary school to make school

children familiar with some of the basics of computers and programming.

134 CHAPTER 3. 1936

(1) Marking the box he is in (assumed empty).

(2) Erasing the mark in the box he is in (assumed marked).

(3) Moving to the box on his right.

(4) Moving to the box on his left.

(5) Determining whether the box he is in, is or is not marked.

The worker’s acts are ordered through a set of directions, to remain unaltered

once the worker has started with his work, i.e., the set of instructions is fixed.

Every set of directions is headed by:

• Start at the starting point and follow direction 1.

The set always consists of a finite number of directions numbered 1,2,3, ..., n.

The i -th direction (i ∈N+) always has one of the three following forms:

(A) Perform operation Oi (Oi = (1), (2), (3) or (4)) and then follow direction ji .

(B) Perform operation 5, and according as the box is marked or not marked fol-

low direction ji ′ or ji ′′ .

(C) Stop.

Post’s formulation 1 has a very clear resemblance to Turing machines. There

is, however, one significant difference. Whereas Turing uses the concept of an

abstract computing machine, and is thus closer to physical computers, Post’s

description is in terms of a list of instructions in a formal language, and is thus

closer to computer programs. So to say, Turing machines are closer to hard-

ware, Post machines are closer to software. Despite this difference, the fact that

both Post’s and Turing’s formulations are very similar to each other, in having

started from the analysis of an intuitive concept, rather than from an existing

formalism, shows that such analyses gives rise to formulations which are far

closer to computers and computer languages than say normal systems or λ-

calculus.

As is pointed out in [Dav94], Post was not satisfied with the analysis of an algo-

rithmic process in terms of general recursiveness or λ-definability:

3.1. DIFFERENT QUESTIONS, DIFFERENT ANSWERS. 135

Believing that the Herbrand-Gödel notion of general recursiveness and the Church-

Kleene notion of λ- definability were both lacking in that neither constituted a

“fundamental” analysis of the notion of algorithmic process, Post proposed as

suitably “fundamental” the operations of marking an empty “box” or erasing the

mark in a marked box.

In his [Pos36] however, the notion of an algorithmic process, or other similar

notions such as “algorithmic procedure”, “calculability” or “computability”, are

never mentioned by Post in relation to his formulation 1. The notion “effective

calculability” is mentioned only once, at the end of the paper, but only with re-

spect to Church’s thesis. The notion Post does refer to quite often in the context

of formulation 1 is solvability. The goal of formulation 1 indeed seems to have

been to formally capture what exactly is meant with a general method to solve

any decision problem which is intuitively considered solvable ([Pos36],p. 103):

We have in mind a general problem consisting of a class of specific problems. A

solution of the general problem will then be one which furnishes an answer to

each specific problem.

After the description of such a solution [i.e. formulation 1], Post defined a whole

set of notions in terms of solvability of a decision problem, thus making more

explicit the identification between solvability and his formalism by adding sev-

eral definitions. These notions are:

Applicability A set of directions is called applicable to a general problem, if in

applying it to any specific case of the problem, instruction (1) is never

ordered when the box the worker is in is already marked, and (2) is never

ordered when the box is unmarked.

Finite 1-process A set of directions is considered as setting up a finite 1-process

relative to a given general problem if it is applicable to the problem and if

the process it sets up terminates for each specific case of the problem.

1-solution A finite 1-process is a 1-solution of a general problem if the answer

it gives to each specific case of the problem is always correct.

136 CHAPTER 3. 1936

1-given A problem is 1-given if a finite 1-process can be set-up which, when

applied to the class of positive integers symbolized in a certain way in the

symbol space, yields in a one-to-one fashion the class of specific prob-

lems constituting the general problem. This 1-givenness can be com-

pared to Gödelnumbering: the possibility to translate a problem to num-

bers and vice versa.

Given Post’s purpose of the note stated at the beginning of the paper, i.e., to

formulate a generalized form of what is meant with a solution to a given deci-

sion problem, his description of formulation 1, and the further explication of

the identification through the terms defined above, we have deduced the fol-

lowing, second thesis, by Post:

Post’s thesis II. A decision problem is considered intuitively solv-

able iff. the problem is 1-given and one can set-up a finite 1-process

which is a 1-solution to the problem.

That Post not only considered the problem of formalizing the intuitive notion

of generated set, or, in later work, of effective calculability and computability is

also reflected in some of his later papers. For example, in the paper in which

one finds the statement of what is now known as the Post Correspondence Prob-

lem and a proof of its recursively unsolvability, he writes: ([Pos46], p. 364)

We proceed to prove [...] that in its full generality the correspondence decision

problem is recursively unsolvable, and hence, no doubt, unsolvable in the intu-

itive sense.

In his seminal paper on recursively enumerable sets of positive integers he fur-

thermore notes ([Pos44], p. 289):

[...] whether those [decision] problems are, or are not, solvable in the intuitive

sense would be equivalent to their being, or not being, recursively solvable in the

precise technical sense.

Recursively unsolvability however is no longer defined in terms of his formula-

tion 1, but in terms of his normal form.

3.1. DIFFERENT QUESTIONS, DIFFERENT ANSWERS. 137

Post’s paper ends with a paragraph in which he criticizes Church’s statement of

his identification in the form of a definition. After having stated that he expects

formulation 1 to turn out equivalent to general recursiveness – an expectation

soon to be proven true by Turing through the equivalence between Turing com-

putability and λ-definability – Post immediately adds that its purpose is not

simply to ([Pos36], p. 105):

[...] present a system of a certain logical potency but also, in its restricted field, of

psychological fidelity. In the latter sense wider and wider formulations are con-

templated. On the other hand, our aim will be to show that all such are logically

reducible to formulation 1. We offer this conclusion at the present moment as a

working hypothesis. And to our mind such is Church’s identification of effective

calculability with recursiveness. [...] The success of the above program would,

for us, change this hypothesis not so much to a definition or to an axiom but to a

natural law. Only so, it seems to the writer, can Gödel’s theorem concerning the

incompleteness of symbolic logics of a certain general type and Church’s results

on the recursive unsolvability of certain problems be transformed into conclu-

sions concerning all symbolic logics and methods of solvability [m.i.].

Post considered his formulation 1 as a system of psychological fidelity: gener-

alizing Gödel’s incompleteness theorem or Church’s proof of the unsolvability

of certain decision problems to conclusions concerning all symbolic logics and

methods of solvability depends on the “faith” one can have in identifications

such as that proposed by Post. In that sense, he suggests to contemplate as

wide a variety of formulations as possible, each of which should be shown to be

reducible to formulation 1. Indeed, at the time Post wrote this paper he con-

sidered his conclusions concerning the ‘power’ of formulation 1, merely as a

working hypothesis. It is only if the method of finding wider and wider formu-

lations reducible to formulation 1 has proven its worth, that the hypothesis can

be considered as a natural law.

It is exactly at this point that Post criticizes Church’s “definitional identifica-

tion”. After having noticed in footnote 8 that Church’s, Kleene’s and Rosser’s

work already carries the identification beyond the working hypothesis stage, in

having shown thatλ-definability and general recursiveness are equivalent, Post

138 CHAPTER 3. 1936

continues ([Pos36], p. 105):

But to mask this identification under a definition hides the fact that a fundamen-

tal discovery in the limitations of the mathematicizing power of Homo Sapiens

has been made and blinds us to the need of its continual verification.

Indeed, Post does not accept Church’s definitional identification as the correct

interpretation of such an identification. Rather it should be regarded as a hy-

pothesis or law of nature, to be continually verified, and is thus subject to in-

ductive reasoning. In a letter to Gödel, dated October 30, 1938 Post again em-

phasizes the significance of the hypothetical character of e.g. Church’s thesis

([Göd03b], p. 171):

the absolute unsolvability of [a] problem has but a basis in the nature of physical

induction at least in my work and I still think in any work.

Considering identifications, such as those proposed by Post, as a hypothesis,

indeed implies that an unsolvable decision problem can only presumptively be

considered absolute: it is true only in supposing the validity of the identifica-

tion. In the quote Post also underlines the fact that, to his mind, this is not only

true for his but also for the work of others. But why did he add this small com-

ment? To understand this we must have a closer look at how Church reacted on

Post’s criticism.

3.2 On the status of the identification. Definition,

(Hypo)Thesis, Law, or Theorem?

In this section we will see how Church reacted on Post’s criticism by writing a

rather harsh review of Post’s paper. Starting from this review and the review

Church wrote of Turing’s paper, we will discuss several possible interpretations

and evaluations of the proposed identifications, starting from Church’s, Tur-

ing’s and Post’s own ideas in this context.

3.2. ON THE STATUS OF THE IDENTIFICATION 139

3.2.1 Church’s reviews of Post’s and Turing’s paper

In volume 2, number 1, 1937 of the newly founded the Journal of Symbolic Logic

Church wrote two reviews, one of Turing’s paper and one of Post’s paper.

About Turing’s paper Church stated [Chu37b]:

[Turing] proposes as a criterion that an infinite sequence of digits 0 and 1 be

“computable” that it shall be possible to devise a computing machine, occupy-

ing a finite space and with working parts of finite size, which will write down the

sequence to any desired number of terms if allowed to run for a sufficiently long

time. As a matter of convenience, certain further restrictions are imposed on the

character of the machine, but these are of such a nature as obviously to cause no

loss of generality – in particular, a human calculator, provided with pencil and

paper and explicit instructions can be regarded as a kind of Turing machine. It

is thus immediately clear that computability, so defined, can be identified with

(especially, is no less general than) the notion of effectiveness as it appears in

certain mathematical problems (various forms of the Entscheidungsproblem,

various problems to find complete sets of invariants in topology, group theory,

etc., and in general any problem which concerns the discovery of an algorithm).

[...] As a matter of fact, there is involved here the equivalence of three differ-

ent notions: computability by a Turing machine, general recursiveness in the

sense of Herbrand-Gödel-Kleene, and λ-definability in the sense of Kleene and

the present reviewer. Of these, the first has the advantage of making the identi-

fication with effectiveness in the ordinary (not explicitly defined) sense evident

immediately – i.e. without the necessity of proving preliminary theorems. The

second and third have the advantage of suitability for embodiment in a system

of symbolic logic.

Before discussing this review, it is interesting to contrast it with Church’s review

of Post’s paper [Chu37a]:

[Post] proposes a definition of “finite 1-process” which is similar in formulation,

and in fact equivalent, to computation by a Turing machine (see the preceding

review). He does not, however, regard his formulation as certainly to be iden-

tified with effectiveness in the ordinary sense, but takes this identification as

140 CHAPTER 3. 1936

a “working hypothesis” in need of continual verification. To this the reviewer

would object that effectiveness in the ordinary sense has not been given an exact

definition, and hence the working hypothesis in question has not an exact mean-

ing. To define effectiveness as computability by an arbitrary machine, subject to

restrictions of finiteness, would seem to be an adequate representation of the or-

dinary notion, and if this is done the need for a working hypothesis disappears.

As is clear from reading both reviews, Church is very positive about Turing’s

paper and rather sharp with respect to Post’s paper. Why is this the case, espe-

cially given the fact that the formalisms presented by Turing and Post are very

similar?

Church evaluated Turing’s thesis very positively. To his mind, it has the advan-

tage over his thesis, “of making the identification with effectiveness in the ordi-

nary (not explicitly defined) sense evident immediately.” The reason for this has

to do with Turing’s above discussed analysis of the process of a man calculating,

i.e., the argument making a direct appeal to intuition, leading to the identifica-

tion of human computing with Turing machines. As Church states: “It is thus

immediately clear that computability, so defined, can be identified with [...] the

notion of effectiveness as it appears in certain mathematical problems.”

Church was and is not the only one who found Turing’s thesis the most ade-

quate one, in the sense that his analysis of the process of a man computing al-

most naturally leads to Turing machines, while e.g. the identification between

λ-definability or general recursiveness with effective calculability, is not as nat-

ural. But before further discussing these matters, it is important to compare

this opinion with Church’s criticisms on Post’s paper.

Church’s main critique is, very clearly, a reaction on Post’s criticism, and op-

poses the possibility of calling his definition a working hypothesis. He gives two

main objections to this. First of all he finds that Post has not given an exact de-

finition of the ordinary notion of effectiveness so that the ‘working hypothesis’

is ambiguous. Secondly, if one does provide an adequate representation for the

notion of effectiveness it should simply not be regarded as a working hypothe-

sis but as a definition.

As far as the first critique is concerned, Church is either pointing at the inex-

3.2. ON THE STATUS OF THE IDENTIFICATION 141

actness of formulation 1 itself, or, the fact that Post indeed did not make very

explicit the kind of identification he intended. Given the similarities between

formulation 1 and Turing machines, it is improbable that Church is pointing

at the inexactness of the formulation, so we think that Church is criticizing the

vagueness of the identification. This criticism is, to a certain extent, under-

standable, but clearly cannot count as any serious objection to Post’s calling the

identification a working hypothesis, since for Post this not only applies for the

identification he proposed, but for any other such identification. The second

objection, that there is no need for a ‘working hypothesis’ once one has given

an adequate definition of effectiveness, and here Church refers to Turing’s not

to his own, only seems to mean that Church preferred definition to further ar-

gument as is stated in [Gan88].20

This small “quarrel” between Church and Post becomes the more remarkable in

the light of the significance Church attached to “presumptive evidence” in his

work preceding his 1936 paper. As we know from Sec. 2.3 he frequently under-

lined the significance of “empirical evidence” for supporting the consistency of

a given system of symbolic logic, in case one has no proof of the system’s con-

sistency. Although Kleene and Rosser had shown the fundamental problems

that are always involved in using more heuristic arguments, by showing that

Church’s set of postulates is inconsistent, it was again the more empirical fact

that any function Church, Kleene and Rosser could think of could beλ-defined,

that led Church to the formulation of his original thesis of identifying effective

calculability with λ-definability.

It is not completely clear how important the proof of the equivalence between

λ-definability and general recursiveness has been for Church’s first public an-

nouncement of his thesis (see Sec. 2.3), but, as is clear from his above discussed

1936 paper [Chu36c], he considered this equivalence as an argument further

supporting the validity of his thesis in terms of general recursiveness and λ-

definability. It was exactly this argument by confluence Post had in mind in

order to get the identification beyond the working hypothesis stage, this argu-

20After having mentioned Church’s review on Turing’s paper, Gandy notes: “But Church is

slightly less dogmatic in his review of Post’s paper, preferring, apparently, definition to further

argument, and defending this move against Post’s criticism.” ([Gan88], p. 85)

142 CHAPTER 3. 1936

ment being understood as ‘presumptive evidence’, to use Church’s words, for

the validity of the identification. Did Church indeed interpret the evidence of-

fered by the equivalence proof in the sense Post understood it (and in the sense

Church used such evidence in his earlier work), or was it merely a theoretically

important fact, used to state a more natural definition, having no link what-

soever with his needing more evidence for λ-calculus’ computational powers?

Whatever the right answer might be, Church’s rather strong reaction against

Post’s critique remains to our mind rather strange in the light of the work pre-

ceding this review.

As is clear from the two reviews, Church did not want to regard any identifica-

tion, such as the one he proposed, as a working hypothesis. To Church it was

more appropriate to talk about such identification in terms of definition, where

Turing’s “definition” was considered as the most adequate because the analysis

of a man computing almost naturally leads to the formulation of Turing ma-

chines. As was said, Church is certainly not the only one who regards Turing’s

identification as the most adequate one.

3.2.2 On the adequacy of Turing’s identification: From defini-

tion to theorem.

In Sec. 2.3 we quoted from a letter Church wrote to Kleene, describing a conver-

sation between Church and Gödel (presumably to be situated in early 1934). In

this letter, Church describes that Gödel regarded Church’s proposal to identify

effective calculability with λ-definability as “thoroughly unsatisfactory”, while,

to Gödel’s mind, the identification with recursion could not be made satisfac-

torily, “except heuristically”. In this sense, Gödel’s opinion at that time was not

that far removed from Post’s some years later.

It was only after having read Turing’s paper, that Gödel became convinced of

the possibility of an adequate identification. As he writes in a Postscriptum

to “On undecidable propositions of formal mathematical systems” ([Göd65], p.

72):

In consequence of later advances, in particular of the fact that, due to A.M. Tur-

3.2. ON THE STATUS OF THE IDENTIFICATION 143

ing’s work, a precise and unquestionably adequate definition [m.i.] of the general

concept of formal system can now be given [...] Turing’s work gives an analysis of

the concept of “mechanical procedure” (alias “algorithm” or “computation pro-

cedure” or “finite combinatorial procedure”). This concept is shown to be equiv-

alent with that of a “Turing machine”. A formal system can simply be defined to

be any mechanical procedure for producing formulas, called provable formulas

(and likewise vice versa), provided the term “finite procedure” [...] is understood

to mean “mechanical procedure”. This meaning, however, is required by the con-

cept of formal system, whose essence it is that reasoning is completely replaced

by mechanical operations on formulas.

It was Turing’s analysis of the concept of a mechanical procedure, as a means to

define a formal system in terms of a mechanical procedure proving formulas,

and the fact that, as Gödel has it, mechanical procedure is shown to be equiva-

lent to Turing machines, that results in a precise and unquestionably adequate

definition for (finitary) formal systems.

He remained rather negative however with respect to identifying calculability

with recursiveness or λ-definability ([Göd65], p. 72):

As for previous equivalent definitions of computability, which however, are much

less suitable for our purpose, see A. Church [Chu36c] [...].

To Gödel, it is only on the basis of the definition of “finite procedure” in terms of

“mechanical procedure” that the identification between effective calculability

and general recursiveness can be regarded adequate.21

As was the case for Church, Gödel also regarded the identification made by Tur-

ing as a definition – not as a hypothesis or a law – the adequacy of which is un-

questionable. Again, this is due to Turing’s argument making a direct appeal to

intuition, through his analysis of the process of a man computing, leading to

the Turing machine concept.

This result must have greatly impressed Gödel. In his contribution to the Prince-

21This is expressed in the Postscriptum: “[...] if “finite procedure” is understood to mean “me-

chanical procedure”, the question raised in footnote 3 [i.e. that any function computed by finite

procedure, is recursive] can be answered affirmatively for recursiveness [...]” ([Göd65], p. 73)

144 CHAPTER 3. 1936

ton bicentennial conference, he expressed the “great importance” of both gen-

eral recursiveness and Turing computability, since, these concepts have made it

possible to provide absolute definitions for a significant epistemological notion

([Göd46], p. 84):

Tarski has stressed in his lecture (and I think justly) the great importance of the

concept of general recursiveness (or Turing’s computability). It seems to me that

this importance is largely due to the fact that with this concept one has for the

first time succeeded in giving an absolute definition of an interesting epistemo-

logical notion, i.e., one not depending on the formalism chosen. In all other cases

treated previously, such as demonstrability and definability, one has been able to

define them only relative to a given language, and for each individual language

it is clear that the one thus obtained is not the one looked for. For the concept of

computability however, although it is merely a special kind of demonstrability or

decidability the situation is different. By a kind of miracle it is not necessary to

distinguish orders, and the diagonal procedure does not lead outside the defined

notion.

Indeed, the absoluteness of the definition lies in its independence of the spe-

cific formalism used. This not only concerns the fact that so many different

formalism had been shown to be equivalent, but, even more, also concerns the

fact that for any formal system S of order or type i , what is computable in that

system is already computable by e.g. Turing machines. This was more explicitly

expressed in Gödel’s [Göd36], p.83:

It may also be shown that a function which is computable in one of the systems

Si or even in a system of transfinite type, is already computable in S1. Thus, the

concept “computable” is in a certain definite sense “absolute”, while practically

all other familiar metamathematical concepts (e.g. provable, definable, etc.) de-

pend quite essentially on the system with respect to which they are defined.

The fact that both Church and Gödel accepted Turing’s analysis as an unques-

tionably adequate definition for effectiveness shows how powerful Turing’s ar-

gumentation actually is. In Section 3.1.2 we showed how several authors have

interpreted several forms of Turing’s identification as theorems. This further

illustrates the cogency of Turing’s analysis. As Gandy states ([Gan88], p. 82):

3.2. ON THE STATUS OF THE IDENTIFICATION 145

Turing’s analysis does much more than provide an argument for Church’s thesis;

it proves a theorem.

Gandy gave several versions of “Turing’s theorem”, and considers the proof of

the “theorem” to be given by Turing’s analysis. Sieg and Soare also claim Turing

to have proven a theorem, however one rooted in what Sieg has called Turing’s

central thesis. Comparing both interpretations, Gandy’s identification of Tur-

ing’s thesis as a theorem is the strongest claim.

To Gandy’s mind, Turing’s “proof” of the identification between what can be

computed by a human being and what can be computed by a Turing machine

“is quite as rigorous as many accepted mathematical proofs – it is the subject

matter, not the process of proof, which is unfamiliar” ([Gan88], p. 82). Although

Gandy admits there are some gaps in Turing’s “proof”, they are not insurmount-

able. However, to state this identification as a theorem is, to our mind, far from

unproblematic. Turing himself did not regard his analysis as a valid proof, but,

on the contrary, stated that all arguments that can be given, are bound to be

appeals to intuition. We think Turing is completely right here, since the iden-

tification concerns a formalization of an intuition. Indeed, one must ask here:

how can one state that one has proven that there is a valid identification be-

tween an intuition and a formalism, what does it mean that one has proven

that a given intuition is formalized? In a way this seems to imply that an intu-

ition is something quite stable and universal.

It should also be noted that Gandy gave three different formulations of “Tur-

ing’s theorem” he considers equivalent, without giving any clear argumentation

for this equivalence. The last of these formulations, considered by Gandy as a

restatement of Church’s thesis, is in fact identical to the “theorem” Sieg (and

Soare) deduced out of Turing’s analysis, i.e., the identification between a com-

putor satisfying several conditions and Turing machines. To make this claim

more convincing Sieg interprets the conditions L, B and D as axioms. Still, in-

terpreting the identification between computor and Turing machine as a theo-

rem, remains, to our mind, as problematic as Gandy’s first formulation of “Tur-

ing’s theorem”. The division between Turing’s central thesis and the theorem, is

based on the fact that Turing’s analysis proceeds in three basic steps, of which

146 CHAPTER 3. 1936

only the last can be considered as a proof. As we know from Sec. 3.1.2 Turing

first deduces an abstract computor, satisfying several conditions, starting from

the analysis of the process of a man computing. Based on the several condi-

tions, he then identifies the abstract computor with a machine, that should be

capable to do the work of this computor. Since the description of this machine

is basically that of a Turing machine, Turing concludes for the identification of

“a man in the process of computing [with] a [Turing] machine”.

However, the second step, identifying the computor with a machine has not

been proven, at least, not as far as our notion of proof is concerned. It is true

that the identification between a computor satisfying the several conditions

and a computing machine is very convincing, and we think Sieg (and Soare)

have correctly pointed out the significance of the identification between a man

in the process of computing and an abstract computor satisfying the several

conditions. Still we think both steps, the identification between a man com-

puting and a computor, and, between a computor and a computing machine,

are simply two basic aspects of Turing’s direct appeal to intuition supporting

his thesis. There is no reason in Turing’s paper to assume the first identifica-

tion as a thesis and the second as a theorem. In the end, identifying “state of

mind” with “m-configuration” is a non-trivial step, except if one defines “state

of mind” as “m-configuration”. Nowadays we are so much used to the idea of

Turing machines that this second identification seems more “obvious” than the

first. This, however, does not give us a reason to regard it as a theorem, since a

theorem needs proof.

Even if one identifies the several conditions as axioms, as Sieg does, these re-

main restricted to the description of the computor, not the machine, and the

identification “computor = machine” does not follow as a theorem from these

axioms, in the way 3+2 = 5 follows from Peano’s axioms of arithmetic.

To call Turing’s analysis a proof of a given statement only makes sense if one

understands proof rhetorically: the arguments given by Turing are indeed very

convincing, in the sense that Turing managed to very correctly abstract several

properties that are typical to the process of a man computing something on a

piece of paper, almost naturally leading to the automatization of this process in

a machine. But to make the claim that Turing’s analysis results in a mathemat-

3.2. ON THE STATUS OF THE IDENTIFICATION 147

ical proof of a theorem, needs more argumentation and formalization.

Church and Gödel each regarded Turing’s identification as an (unquestionably)

adequate definition of effectiveness (or finite process, or computability, or any

other similar intuitive notion). Turing himself also regarded his identification

as a definition, as is clear from one of the quotes from Sec. 3.1.2.22 To accept

this (or any other similar) identification as a definition is, to our mind, a very

reasonable point of view, since it allows us to prove certain theorems, like the

unsolvability of the Entscheidungsproblem. It is indeed common to any branch

of mathematics that one needs definitions, which can then help to further de-

velop the theory.

Posing the identification as a definition, to a certain extent, allows to see the

non-trivial character of introducing it: it is because one has given certain argu-

ments that its introduction as a definition is made plausible. If, however, we in-

terpret it as a theorem, one masks the non-trivial character of making the iden-

tification. Considering it as a theorem diverts attention from the fundamental

aspect of the identification – the formalization of an epistemological notion –

and, even more, its consequences both on a mathematical and a philosophical

level.

3.2.3 The identification as (hypo)thesis or law.

Both Church, Gödel and Turing regarded the several identifications proposed

in the thirties as definitions, accepted on the basis of certain arguments. Espe-

cially in Church’s and Gödel’s case, it is clear that the “direct appeal to intuition”

argument, has been basic to consider Turing’s thesis as the most adequate iden-

tification. It is this argument that furthermore led Gandy, Sieg and Soare to

the conclusion that Turing’s thesis can be (partly) stated in terms of a theorem.

Nowadays, it seems to be general consensus that Turing’s thesis offers the best

identification, and it has become the dominant framework to discuss the more

22“This usage [replacing “there is a general process for” by “there is a machine that will deter-

mine”] can be justified if and only if we can justify our definition of computability.” ([Tur37], p.

134)

148 CHAPTER 3. 1936

philosophical issues in this context.

Post and Kleene have both emphasized the hypothetical character of the sev-

eral identifications. In this respect – although they each consider the kind of

analysis as done by Turing, starting from a vague idea to deduce a formalism

that captures it, as very important – they have each emphasized the signifi-

cance of the other arguments supporting the several identifications, Turing’s

only being one of them.

We already know that Post opposed Church’s interpretation of the thesis as a de-

finition, since, to his mind, this definitional identification “hides the fact that a

fundamental discovery in the limitations of the mathematicizing power of Homo

Sapiens has been made and blinds us to the need of its continual verification.”.

Church’s criticism did not change Post’s mind. Sec. 3.1.3 was ended with a

quote from a letter Post wrote to Gödel in 1938 in which he explicitly states that

the absoluteness of unsolvable decision problems has an inductive basis, i.e.,

the results are only valid in as far as the identifications they are based on are

valid, identifications which can never be proven, but only be made more con-

vincing the more evidence one finds for their general validity. To Post, this not

only concerns his own work, but also that of others. This illustrates that for

Post, Church’s nor Turing’s arguments, were convincing enough to regard any

such identification as a definition, let alone a theorem.

As is explicitly stated by Post in his 1936 paper, the purpose of his formulation is

not only to present a system of a certain logical potency, but also of psycholog-

ical fidelity. In this sense, it is basic to consider wider and wider formulations,

that should be shown to be logically reducible to his formulation 1. It is only

if one can indeed find such wider and wider formulations reducible to formu-

lation 1, that the identification can be carried beyond the working hypothesis

stage, and become a natural law. This is indeed how Post later interpreted the

several identifications that had already been established in the forties. In his

[Pos44] he remarks in footnote 4:

We still feel that ultimately “Law” will best describe the situation.

Sieg has contrasted Post’s “method” of considering wider and wider formula-

tions with Turing’s ([Sie06], p. 60):

3.2. ON THE STATUS OF THE IDENTIFICATION 149

It is methodologically remarkable that Turing proceeded in exactly the opposite

way when trying to support the claim that all computable numbers are machine

computable or, in our way of speaking, that all effectively calculable functions

are Turing computable. He did not try to extend a narrow notion reducibly and

obtain in this way additional quasi-empirical support; rather, he attempted to

analyze the intended broad concept and reduce it to the narrow one – once and

for all. I would like to emphasize this, as it is claimed over and over that Post pro-

vided in his 1936 paper “much the same analysis as Turing”. As a matter of fact,

Post hardly offers an analysis of effective calculations or combinatory processes

in this paper; it may be that Post took the context of his own work, published only

much later, too much for granted.

To state that Post’s approach fundamentally differs from Turing’s in that he did

not reduce the broader notion to a narrow one, once and for all, is to our mind

a misrepresentation of the facts. Besides the fact that Turing nowhere states

that his “reduction” should have this “once and for all”-character, it should also

be noted that, although Post very much emphasized the significance of con-

sidering wider and wider formulations, and of regarding the identification as a

hypothesis or a natural law, this does not mean that he did not perform a simi-

lar kind of analysis as Turing, of “all the possible ways in which the human mind

[can] set up finite processes for generating sequences.”

As we showed in Sec. 3.1.3, through several quotes, Post at least made a start

with such an analysis in the twenties, and, it thus seems very reasonable that he

indeed approached the problem in a similar way as Turing did. In fact, it was

such analysis he considered basic in order to show the general validity of his

original thesis, and understood the significance of his (theorems) only relative

to the universality of such thesis. It would thus be rather surprising if Post did

not regard his formulation 1 as a satisfactory result of such analysis.23

The fact that the purpose of his 1936 paper was exactly to offer not only a sys-

tem of logical potency but also of psychological fidelity, only further strength-

ens this, especially in linking this with Post’s remarks in his Account of an an-

ticipation on the significance of providing a psychological analysis, rather than

23The reader is referred to the quotes from Sec. 3.1.3, ending the section on Post’s first thesis.

150 CHAPTER 3. 1936

a mathematical proof, to support the validity of his first thesis.24 If Post did

not intend his formulation 1 as the result of an analysis of the relevant intuitive

notions, thus narrowing down the broader notion to a formalism, one should

also ask: why else would he have submitted the paper anyway, after having read

Church’s? Besides, what other reasonable explanation can one give for the sim-

ilarity between Post’s and Turing’s formalisms? We have assumed earlier that

Post’s 1936 paper resulted from such an analysis, and understood this as one

of the reasons why Post’s paper is very significant: it shows that if one starts

from the analysis of the relevant intuitive notions to construct a formalism that

should be able to capture the intuitive notion, one ends up with something like

Turing machines or formulation 1.

It is true that Post did not provide such analysis in his paper, in the sense that

he did not explicitly describe the deduction itself of several abstract conditions

or properties of the mental processes involved in solving certain mathematical

problems, but this does not imply that he did not start from such analysis.25 In

fact, we do not see any other explanation for Post having arrived at formulation

1.

Post did not extend a narrow notion reducibly in this paper, but rather stated

the significance of making such extensions, starting from the restricted formal-

ism he described in the paper. The basic difference between Turing and Post is

that Turing talked about definitions, whereas Post emphasized the significance

of not “hiding” the true philosophical character of the identification by calling

it a definition, and thus the significance of making explicit its hypothetical or

lawlike character.26

24Again, the reader is referred to the quotes mentioned above from Sec. 3.1.3.
25It is interesting to note that whereas Turing analyzed the process of a man calculating on a

piece of paper, Post started from the mental processes underlying this activity. This difference

might offer an explanation for the above mentioned difference between Post’s and Turing’s for-

mulation.
26One could of course ask: But why did Post “make such a fuss” about these issues? Although

we cannot provide real arguments here, we believe there is a close connection between Post’s

interpretation of these identifications as hypotheses or laws and his earlier work. As was shown

in Sec. 2.2.5 Post only wanted to make a beginning with an analysis of all the possible finite

processes the human mind can set up to generate a set, after his work on tag systems and the

3.2. ON THE STATUS OF THE IDENTIFICATION 151

To Post, the several identifications were more than a mere mathematical issue

to be used to prove certain results: the results proven on the basis of the iden-

tifications are not only limitations for the formalisms considered, but, are in

fact, limitations man himself cannot overcome. This was also stated explicitly

in Post’s introduction to the Appendix of his Account of an anticipation ([Pos65],

p. 395):

The unsolvability of the finiteness problem for all normal systems, and the essen-

tial incompleteness of all symbolic logics, are evidences of limitations in man’s

mathematical powers, creative though these be. They suggest that in the realms

of proof, as in the realms of process, a problem may be posed whose difficulties

we may never overcome; that is that we may be able to find a definite proposition

which can never be proved or disproved.

From this perspective, calling such identifications natural laws, rather than de-

finitions, is very reasonable, since they concern limitations of something phys-

ical or natural, i.e., the human mind. Of course, this only makes sense in as far

as one accepts that man is indeed as limited as a Turing machine when trying to

e.g. solve the halting problem for a given machine. But this is exactly where the

identification’s hypothetical character lies: not everybody seems to be willing

to accept this limitation, a limitation that should not be misinterpreted as the

statement of a computationalist world view, stating that the human mind is an

algorithm. The limitation only concerns a specific class of problems connected

to computing itself, and does not say a thing about e.g. creative processes or

human consciousness.

insight that Principia is reducible to a normal system, i.e., it were his “analyses” of certain for-

malisms that led him to the statement of his first thesis and the reversal of his entire program.

Thus, Post himself had gone through the process of considering wider and wider formulations

of what was assumed to be capable to capture the whole of mathematics, i.e., Principia, and it

were these generalizations that showed him what was really going on. We are aware that the

possible connection between Post’s earlier work and his emphasizing the inductive character

of the identification is a mere speculation from our side, but we still wanted to add it here as a

(speculative) footnote.

152 CHAPTER 3. 1936

Post was not the only one who was involved in the developments of the thir-

ties and pointed out the hypothetical character of the several identifications. It

was Kleene – whose contributions to the development of not only λ-calculus

but also the theory of recursive functions cannot be underestimated – who first

called Church’s identification a Thesis in a paper published in 1943. After the

statement of Church’s identification as Thesis 1, i.e.,“Every effectively calcula-

ble function (effectively decidable predicate) is general recursive”, Kleene writes

([Kle43], p. 274):

Since a precise mathematical definition of the term effectively calculable (effec-

tively decidable) has been wanting, we can take this thesis, together with the

principle already accepted to which it is converse, as a definition of it for the

purpose of developing a mathematical theory about the term. To the extent that

we have already an intuitive notion of effective calculability (effective decidabil-

ity), the thesis has the character of an hypothesis – a point emphasized by Post

and by Church. If we consider the thesis and its converse as definition, then the

hypothesis is an hypothesis about the application of a mathematical theory de-

veloped from the definition. For the acceptance of the hypothesis, there are, as

we have suggested, quite compelling grounds.

Kleene makes a differentiation between the thesis regarded as a definition or as

a hypothesis, depending on the kind of context one is working in. If the purpose

is to further develop a mathematical theory centered around effectiveness, the

thesis can be included as a definition. However, looking at what the thesis itself

actually is, i.e., a statement about the identification between an intuitive no-

tion, to the extent that we have already an intuitive notion of effective calcula-

bility, and a given formalism, it has the character of an hypothesis. Thus, even

if one includes the thesis as a definition in the body of a given mathematical

theory, then the hypothetical character of the thesis, turns into an hypothesis

of the applications of the mathematical theory developed from the inclusion of

the thesis as a definition. In other words, although including the thesis as a de-

finition into a theory is a very reasonable practice, the results from the theory

themselves are rooted in the hypothetical character of the thesis. For example,

the thesis as hypothesis, is a hypothesis concerning the statement of the ab-

3.2. ON THE STATUS OF THE IDENTIFICATION 153

solute character of unsolvable decision problems.

In understanding the thesis as a hypothesis Kleene, surprisingly, not only refers

to Post’s [Pos36], but also to a paper by Church from 1938 on the construc-

tive second number class [Chu38]. Now, we already know about the signifi-

cance certain heuristic arguments have played in the developments leading to

Church’s 1936 paper [Chu36c], but, he clearly rejected the idea of calling the

thesis a hypothesis, although, especially in Church’s case, its original formula-

tion goes back to certain heuristic arguments.

In the paper Kleene refers to, Church proposes a definition which makes it pos-

sible to distinguish between the constructive and the non-constructive ordinals

of the second number class ([Chu38], p. 224):

The existence of at least a vague distinction between what I shall call the con-

structive and the non-constructive ordinals of the second number class, that is,

between the ordinals which can in some sense be effectively built up to step by

step from below and those for which this cannot be done (although there may be

existence proofs), is, I believe, somewhat generally recognized. My purpose here

is to propose an exact definition of this distinction and of the related distinction

between constructive and non-constructive functions of ordinals in the second

number class [...]

We have gone through the paper by Church but we have not found any ex-

plicit mention by Church of calling the identification a hypothesis or a the-

sis. In discussing the several characterizations of effective calculability, i.e. λ-

definability, general recursiveness and Turing machines, Church emphasizes

the vagueness of the notion itself, but, as one should expect, considers the sev-

eral characterizations as definitions ([Chu38], pp. 226–227):

This notion of an effective process occurs frequently in connection with math-

ematical problems, where it is apparently felt to have a clear meaning, but this

meaning is commonly taken for granted without explanation. For our present

purpose it is desirable to give an explicit definition.

From this quote it is again clear that Church’s reason for interpreting the several

identifications as definitions, has to do with their usage in a mathematical the-

ory. I.e., if one uses the notion to prove certain mathematical results, it should

154 CHAPTER 3. 1936

be taken as a definition, not as a hypothesis.

There are, however, two passages in the paper from which one could deduce

that Church admits the hypothetical character of such definitions. In the be-

ginning of the paper, Church makes statements about the absolute character

of the definition he proposes in the paper, but admits that this is merely a be-

lief from his side and describes ways to counter the belief for those who do not

accept it ([Chu38], p. 224):

Much of the interest of the proposed definition lies, of course, in its absoluteness,

and would be lost if it could be shown that it was in any essential sense relative

to a particular scheme of notation or a particular formal system of logic. It is

my present belief that the definition is absolute in this way – towards those who

do not find this convincing the definition may perhaps be allowed to stand as

a challenge to find either a less inclusive definition which cannot be shown to

exclude some ordinal which ought reasonably to be allowed as constructive, or a

more inclusive definition which cannot be shown to include some ordinal of the

second class which cannot be seen to be constructive.

Later on in the paper, Church proposes as a formal definition of the notion of a

constructive function of ordinals in the second number class, the λ-definable

functions of ordinals in the second number class and argues ([Chu38], p. 231):

As a definition of the notion of a constructive function of ordinals in the sec-

ond number class, it is proposed simply to identify this notion with that of a

λ-definable function of ordinals in the second number class. This is rendered

plausible by the known properties of the λ-formalism, and no definition with a

more direct appeal suggests itself. It has been proved by Church and Kleene that

a large class of functions of ordinals are λ-definable, including addition, multi-

plication, exponentiation, [...], the predecessor function of ordinals, and others.

Church assumes λ-definability to offer the best definition of the notion, and

relies, not on the arguments that so much convinced him of Turing machines

offering “the most convincing form” of the definition for effective calculability,

as he states in the paper ([Chu38], p. 227), but on properties inherent to the

λ-formalism itself, implicitly referring to the heuristic argument that originally

3.2. ON THE STATUS OF THE IDENTIFICATION 155

led him to the first (unofficial) statement of his thesis in terms of λ-definability.

The fact that Kleene refers not only to Post but also to Church in the context

of calling the thesis a hypothesis, together with the quotes (shortly) discussed

here, and our conclusions from Sec. 2.3, suggest that Church’s reaction on Post

is not completely in line with his own beliefs. However, we cannot simply ne-

glect the rather strong reaction by Church on Post’s 1936 paper, so, for now, it

is not completely clear to us what Church’s exact opinion really was. We think

that a study of the correspondence between Church and Post might throw some

new light on this issue.

Returning to Kleene, contrary to his supervisor, he did explicitly recognize the

hypothetical character of the thesis, although, if one is actually developing a

mathematical theory, it is more reasonable to take it as a definition. In Sec.

2.3 we showed the significance Kleene attached to heuristic arguments, and

it was Kleene, together with Church, who λ-defined as many functions over

the integers he and Church could think of, in order to develop the theory of λ-

definability as a theory of functions over the positive integers.

The “quite compelling grounds” Kleene refers to in the quote given above, in-

deed include heuristic arguments. The arguments are summarized, as he notes,

in footnote 2 in Kleene’s [Kle38]:

This notion of effectiveness appears, on the following evidence, to be general.

A variety of particular effective functions and classes of effective functions (se-

lected with the intention of exhausting known types) have been found to be re-

cursive. Two other notions with the same heuristic property have been proved

equivalent to the present one, viz., Church-Kleeneλ-definability and Turing com-

putability. [...] Functions determined by algorithms and by the derivation in

symbolic logics of equations giving their values (provided the individual steps

have an effectiveness property which may be expressed in terms of recursive-

ness) are recursive.

In other words, the arguments supporting the thesis as hypothesis, considered

by Kleene in this footnote, are the argument by confluence, the argument by

example and the step-by-step argument, thus including two more heuristic ar-

guments. Also Post refers to this footnote in a footnote to the following quote

156 CHAPTER 3. 1936

([Pos44], p. 285):

The importance of the technical concept recursive function derives from the

overwhelming evidence that it is coextensive with the intuitive concept effec-

tively calculable function.

In Kleene’s Introduction to metamathematics [Kle52], he devotes two chapters

to present the evidence for Church’s thesis. Here Kleene emphasizes that one

cannot prove the thesis, due to its reliance on a vague notion ([Kle52], p. 317):

Since our original notion of effective calculability of a function (or of effective

decidability of a predicate is a somewhat vague intuitive one, the thesis cannot

be proved. The intuitive notion however is real, in that it vouchsafes as effec-

tively calculable functions, and on the other hand enables us to recognize that

our knowledge about many other functions is insufficient to place them in the

category of effective calculable functions.

Kleene differentiates here between four different classes of arguments. It should

be noted that he did not consider the argument by confluence as heuristic evi-

dence, but as an argument in itself. These four classes are:

I Heuristic evidence

II Equivalence of diverse formalisms

III Turing’s concept of a computing machine

IV Symbolic Logics and Symbolic Algorithms

For each of these classes, except for III, Kleene further differentiates between

several further arguments. As for the heuristic support, Kleene not only men-

tions the argument by example, but adds two more. First of all, he mentions the

fact that the methods for showing effectively calculable functions to be general

recursive have been developed to a degree which virtually excludes doubt that

one could describe an effective process for determining a function that cannot

be transformed by one of these methods in a general recursive function. Sec-

ondly, and this is very interesting, Kleene adds the following argument ([Kle52],

pp. 319–320):

3.2. ON THE STATUS OF THE IDENTIFICATION 157

The exploration of various methods which might be expected to lead to a func-

tion outside the class of the general recursive functions has in every case shown

either that the method does not actually lead outside or that the new function

obtained cannot be considered as effectively defined, i.e. its definition provides

no effective process of calculation. In particular, the latter is the case for the Can-

tor diagonal method.

As was the case for Post, Turing and Church also Kleene regarded the impos-

sibility of doing the diagonalization effectively as an important argument sup-

porting the thesis, an argument which he explicitly classified as heuristic in na-

ture!

As far as II is concerned, Kleene mentions the significance not only of the equiv-

alence between several different characterizations of effective calculability, which,

as he mentions, have all the same heuristic property I, but also that several of

these characterizations have a certain stability, i.e., there exist many variants of

the same formalism that are all equivalent. Argument III concerns Turing’s ma-

chines and, more specifically, the fact that it directly arose from an analysis of

the intuitive notion, contrary to the other characterizations, and is thus an in-

dependent statement of a thesis equivalent to Church’s ([Kle52], pp. 321–322):

Turing’s notion is the result of a direct attempt to formulate mathematically the

notion of effective calculability, while the other notions arose differently and

were afterwards identified with effective calculability. Turing’s formulation hence

constitutes an independent statement of Church’s thesis (in equivalent terms).

Post [Pos36] gave a similar formulation.

The class IV arguments concern a detailing out of Church’s step-by-step argu-

ment ([Kle52], p. 323):

In brief [IV] show[s] that if the individual operations or rules of a formal system

or symbolic algorithm used to define a function are general recursive, then the

whole is general recursive.

As is clear, as was the case for Post, Turing, and, actually, also for Church, Kleene

attached great value to providing several different arguments supporting the

158 CHAPTER 3. 1936

thesis.

It has been (correctly) emphasized by Webb [Web80] that Kleene made major

contributions to the domain of recursive function theory that are basic to add

further support to Church’s thesis. We will not discuss these contributions here

in any detail. For more details the reader is referred to Webb’s analysis [Web80],

especially pp. 203–219, showing how several of Kleene’s results give a kind of

formal protection to Church’s thesis. In this sense, Church’s thesis is protected

from the inside out, i.e., it is through results developed within the theory, that

one finds new arguments supporting the thesis. The same goes for all argu-

ments of type I.

Basic here is Kleene’s 1938 paper [Kle38] in which he introduces the notion of

partial recursive functions, functions that are not defined for all possible values

([Kle38], p. 151):

If we omit the requirement that the computation process always terminate, we

obtain a more general class of functions, each function of which is defined over a

subset (possibly null or total) of the n-tuples of natural numbers, and possesses

the property of effectiveness when defined. These functions we call partial re-

cursive.

As is noted by Kleene [Kle87], introducing partial recursive functions has made

it possible to separate the question of effectiveness from questions for given ar-

guments whether the function being computed is defined.

In emphasizing the significance of partial recursive functions, Webb has intro-

duced Kleene’s thesis:

Kleene’s Thesis. Every partial effectively computable function is par-

tial recursive.

On the basis of partial recursive functions Kleene was able to prove the im-

portant recursion or fixed-point theorem that gives in several different respects

important support for Church’s thesis. To be more specific, it can be used as an

argument of class I, and has played a basic role in the proof of the equivalence

between λ-definability and recursiveness [Kle36b], and is thus also important

3.2. ON THE STATUS OF THE IDENTIFICATION 159

for arguments of type II. 27

A last argument supporting Church’s thesis, or the other variants, that should

be mentioned here is the protection offered by Gödel’s incompleteness theo-

rem and has been emphasized by Webb [Web80]. Indeed, it can be shown that:

not-(Gödel’s incompleteness theorem for F) → not-(Church’s the-

sis)

where F is a system such as Gödel considered. As Kleene notes, if logicians

would have been ignorant of Gödel’s incompleteness theorem, one could have

proposed that Church’s thesis leads to Gödel’s theorem. In fact, as is noted by

Kleene, he used Church’s thesis to give proofs of Gödel’s incompleteness theo-

rem [Kle36a], [Kle43]. What Kleene does not note is that Post in fact had already

understood this relation in 1921, although it was not made explicit nor proven

in any detail. In his [Pos44] this connection would be made more explicit by his

so-called “Gödel in miniature” theorem, based on his proof of the existence of

a recursively enumerable set that is not recursive.

3.2.4 Some further developments.

In this section we have discussed some of the possible interpretations of the

status of the identifications proposed in the thirties. As is clear, there are sev-

eral different possibilities. One can regard the identifications as definition, the-

orem, hypothesis, thesis or natural law. Important to note is that, given Kleene’s

and Post’s interpretation of the identifications as hypo(theses) or laws, they do

not seem to consider the kind of analysis as done by Turing (but also by Post) as

the decisive argument. Instead, it is just one of the several arguments, that help

to support the hypothesis. In this sense, although Turing’s analysis gives basic

27In Kleene’s paper the recursion theorem is called a circular definition, and is stated in terms

ofλ-calculus. The recursion theorem indeed includes a kind of circularity, i.e. it formalizes self-

reference. As is noted by Webb, a special form of the theorem is that for any partial function ψ

there is an index r such thatφr (x) =ψ(r, x), whereφr is the r-th partial recursive function in the

enumerations (resulting from Kleene’s enumeration theorem) of the partial recursive functions

φi (x), with φi (x) =U(µyT (i , x, y). If we then define ψ(r, x) =φ f (r)(y) we get φr (y) =φ f (r)(y).

160 CHAPTER 3. 1936

support, its significance relative to the other arguments should not be overes-

timated. In fact, one might well wonder how the several identifications would

have been perceived, if one would e.g. not have been able to show that Turing

computability is equivalent to e.g. λ-definability, but would have merely been

able to reduce it to λ-definability (but not vice versa).

Nowadays one normally understands or designates the identifications as the-

ses. In fact, it seems to be common practice to talk about either Church’s, Tur-

ing’s or the Church-Turing thesis and one often neglects the existence of several

other identifications that have been made in the meantime. Indeed, besides

Post’s theses, several other identifications have been proposed.

We already mentioned Kleene’s thesis, but should also include Markov’s the-

sis here. Markov developed his own kind of formalism known as normal al-

gorithms. This was described in Markov’s book [Mar54]. The contribution by

Markov is only rarely mentioned, let alone studied. It would be particularly

interesting to further study Markov’s contribution in relation to Post’s work,

since Markov devotes several sections on Post’s canonical forms. The reason

for Markov to provide yet another (equivalent) identification is the fact that to

his mind, the identifications proposed in the 1936 papers by Church, Post and

Turing ([Mar54], pp. 2–3):

[...] lead to a sharpening of the precision of the concept of algorithm in an in-

direct matter [m.i.] [...] In view of the foregoing, the author has considered it

expedient to have the concept of algorithm rigorously established from the out-

set and to work out a general theory of algorithms on this rigorous basis. [...] The

author considers, that he has succeeded in solving satisfactorily the problem for-

mulated and that the theory of algorithms expounded here proceeds from a suf-

ficiently simple and yet convenient definition of a “normal algorithm”. In what

measure this claim is justified, is left to the judgement of the reader.

Several other identifications were mentioned in a paper by Maslov which, be-

sides Post’s [Pos43], make precise the notion of a generated set [Mas67]. We

cannot describe these results here and didn’t have the chance yet to study these

papers, but we think it important to at least mention their existence. These are

Lorenzen’s [Lor55], Curry’s [Cur58], Smullyan’s [Smu61] and Uspensky’s [Usp53].

3.2. ON THE STATUS OF THE IDENTIFICATION 161

The several possible identifications that have been proposed in the meantime,

and which are all equivalent, illustrate the rich variety of formalisms covered

by for example Turing’s thesis and makes the argument by confluence much

stronger. Furthermore, these identifications illustrate that the dominance of

Turing’s thesis becomes even more relative in the light of the fact that other for-

malisms can be more suitable depending on the kind of intuitive notion one

has in mind, even if in the end all the formalisms considered are equivalent.

Although, as we have shown, there are several arguments supporting the identi-

fications, not everybody accepts them. In Sec. 4.3 we will discuss the (rather re-

cent) attempts to get beyond the Turing limit. Before one wanted to go beyond

the Turing limit, several other criticisms had already been formulated. We will

not discuss these in any detail here, since these criticisms have been countered

on many different occasion. Some critiques on the theses have been formu-

lated in the following papers [Pét59], [Kal59], [Por60], [Pen89], [Pen94], [Luc61],

where the last three are only indirect criticisms, in that they start from Gödel’s

incompleteness theorem. These critiques have been countered by several au-

thors, see for example [Dav82], [Dav90], [Dav93], [Fef95], [Kle87], [Men63], [Web80].

Nowadays there are several developments that are closely connected to the

philosophical significance of the identifications discussed here. We will only

mention some of them here.

First of all, some researchers have developed new formalisms to deepen, expli-

cate or make more general (certain aspects of) especially Turing’s thesis, pos-

sibly to tackle certain objections. For example Gandy [Gan80] has proposed

a class of machines, now known as Gandy machines. These were invented by

Gandy because Turing’s analysis of computability cannot be applied directly to

discrete physical mechanical devices. Gandy’s main purpose was to analyze the

notion of mechanical process in order to add strength to what he called Thesis

M, i.e., what can be calculated by a machine, i.e., a discrete mechanical device,

can be computed by a Turing machine. This paper thus contains one of the first

statements of a more physical version of the Church-Turing thesis. More will be

said about this in Sec. 4.3.

Sieg and Byrnes developed K-graph machines to give a detailed mathematical

162 CHAPTER 3. 1936

explication of what Sieg identified as Turing’s theorem together with the con-

ditions L and B. These K-graph machines are considered more “general” than

Turing machines, i.e., they are based on planar computations. K-graph ma-

chines are then considered as providing “a significant strengthening of Turing’s

arguments for his central thesis.” ([SB96], p. 98).

In an, at this time, unpublished paper [Sie07], available on-line, Sieg formu-

lated axioms for discrete dynamical systems which “should be viewed as deter-

mining classes of “algebraic structures” of which particular models of computa-

tion are instantiations.” ([Sie07], p. 12), starting from the several conditions he

deduced from Turing’s analysis. The purpose of these axioms is to gain “eine

Tieferlegung der Fundamente” (a deepening of the foundations) and are sug-

gested to be an answer to what Gödel considered to be the best approach to

find a good identification, as he expressed in a conversation with Church al-

ready mentioned, i.e., to state a set of axioms embodying the generally accepted

properties of effective calculability.

A second development that is often connected with the Church-Turing thesis

are computational models of certain (aspects of) physical or biological processes,

like e.g. cellular automata – first conceived by Von Neumann in developing an

abstract model for self-reproduction of biological systems [vN66] – and neural

networks. The idea of neural nets has many historical roots, but one of the

most important historical papers here are the two papers by McCullough and

Pitts [MP43, MP47]. They showed the equivalence between a finite network of

formalized neurons and offered models for designing nervous nets that recog-

nize visual input. Nowadays there are hundreds of researchers who work in

this domain. Some of the more philosophical research in this context has been

connected to especially Turing’s thesis (if the theoretical models considered

are simulated on a computer). The fact that so many biological or physical

processes can be simulated by a computer, is sometimes interpreted as an in-

dication that the Turing limit as a universal limit, i.e., nothing that is in our

world could not be computed by a universal Turing machine (see for example

Wolfram’s [Wol02]). However, it should be emphasized again here that Turing’s

thesis does not necessarily imply this point of view.

A last development that should be mentioned here, and stands in sharp con-

3.3. STRATEGIES AGAINST INTUITION. 163

trast with the previous, is the domain of hypercomputability. This will be dis-

cussed in more detail in Sec. 4.3. Within this context, several researchers have

proposed models they consider to be able to “compute” the non Turing com-

putable.

The developments (cruelly) summarized here are all concerned with the general-

theoretical statement of the Church-Turing thesis, trying to generalize it or show

its limitations. In other words, if one discusses Turing’s thesis in this more

philosophical setting, it is in most of the cases about the general class of Turing

machines, or the general idea behind it, not about specific cases of machines.

Indeed the question posed in the introduction, i.e., the connection between, on

the one hand, the general statement of the thesis and the unsolvability results

that can be proven by using it, and, on the other hand, particular machines and

their decision problems, is only seldom taken into consideration in this con-

text.

A further observation to be made here is that one only rarely takes into consid-

eration anything else but Turing’s thesis if a more historical reference is made,

especially when the more philosophical issues are at stake. In fact, I do not

know of any relatively recent (philosophical) paper that discusses the Church-

Turing thesis in terms of say normal systems or λ-calculus, and take into ac-

count formalisms that have a less direct appeal to intuition.

In this dissertation we would like to start from exactly the opposite direction,

and study formal systems that are far removed from our intuition of computabil-

ity.

3.3 Strategies against intuition.

The point about incompleteness is not that formal systems ‘are missing some of

our intuitions’, but rather that the processes they are capable of expressing may

be effectively undecidable, according to [the Church-Turing thesis], no matter

how many of our intuitions they might formalize.

164 CHAPTER 3. 1936

Judson W. Webb, 1980.28

[...] if we are to really understand the evidence for (CT), and hence (CT) itself, we

must examine equivalence proofs between concepts falling under different con-

ceptual groups, at least to the point of isolating key-ideas, for they have too,often

been taken for granted, with the result that discussions of (CT) tend to end just

where they should really begin.

Judson W. Webb, 1980.29

Already from the first statements onwards of a thesis such as Turing’s, several

interpretations have been proposed with respect to, on the one hand, the sta-

tus of the theses, and, on the other hand, the kind of arguments that are most

important in discussing the several theses. Despite the overwhelming evidence

for the validity of these theses, people are still attracted to the subject nowa-

days.30

As we showed in the previous section, both Gödel and Church agreed that Tur-

ing’s thesis should be regarded as the most adequate identification given the di-

rectness of the identification, through Turing’s analysis. In the meantime, there

seems to be some general consensus, that Turing’s thesis is the most convinc-

ing, witness its dominance in the philosophical literature. Indeed, even if one

usually talks about the Church-Turing thesis, it is most often Turing’s analysis

and especially the resulting general Turing machine concept, that forms the

main focus of the contemporary discussions surrounding the subject (at least

as far as we can see). In this section, we would like to argue, on the basis of the

results of this and the previous chapter that, although we understand Turing’s

“direct appeal to intuition” argument as an important one, it is philosophically

important to also consider those identifications that are not directly covered by

this argument.

28From [Web80], p. 198.
29From [Web80], pp. 211–212.
30Part of the ideas from this section have been presented at a talk I gave at a conference in

Laval, France, International conference on Computers and Philosophy (I-C&P), 3–5 May, 2006

[Mol06b].

3.3. STRATEGIES AGAINST INTUITION. 165

As was shown, Church, Post and Turing all had their own way of arriving at their

respective theses, and each provided their own arguments and interpretations.

Clearly there are different types of arguments supporting the theses which were

subdivided into four main classes by Kleene [Kle52]. Neither Church, Post nor

Turing explicitly mentioned all of these arguments, partly due to the specific

formalisms they used.

Although the argument by example could be said to have functioned as the

method that led Church to the first statement of his thesis, he did not use it

in his 1936 paper. He did mention the argument by confluence in a footnote,

while the step-by-step argument functioned as the main argument in this pa-

per. However, once he had read Turing’s paper, it seems that the “appeal to

intuition” argument was the most convincing for Church. Indeed, as is clear

from his review [Chu37b] on Turing’s On computable numbers, he considered

Turing’s identification as the most natural and convenient one as compared to

the identification of effectiveness with λ-calculus or recursiveness.

Turing has made it very explicit what kind of arguments he took into account:

the argument by example, the argument by confluence and, the “direct appeal

to intuition” argument. The fact that the diagonalization cannot be done ef-

fective was also noted by Turing, but he did not mention it explicitly as an

argument. He also pointed out that there is an important logical connection

between Gödel’s incompleteness result and the unsolvability of the Entschei-

dungsproblem, but, again, he does not really use it as an argument.31

In Post’s case, it is clear that the argument by confluence played a very impor-

tant role in his work. The normal form theorem, and the fact that he considered

Principia to be reducible to a normal system, have been basic for him to realize

the generality of his systems in normal form. Furthermore, considering wider

and wider formulations which can be shown to be reducible to formulation 1,

was understood as a way to turn the hypothesis into a law. As far the “direct

31“If the negation of what Gödel has shown had been proved, i.e. if, for each U, either U or −U is

provable, then we should have an immediate solution of the Entscheidungsproblem. For we can

invent a machine K which will prove consecutively all provable formulae. Sooner or later K

will reach either U or −U. If it reaches U, then we know that U is provable. If it reaches −U, then,

since K is consistent [...], we know that U is not provable.”

166 CHAPTER 3. 1936

appeal to intuition” argument, it is clear that it must have played an important

role, since he most probably performed a similar kind of analysis as Turing, an

analysis he considered basic for making his thesis more acceptable. He also in-

directly referred to the argument by example, by mentioning Kleene’s footnote

from [Kle38] and was clearly aware of the fact that the diagonalization cannot

be done effectively, since he mentioned it in his [Pos65].

To our mind, each of the different arguments has its own important value for

supporting the several theses, i.e., taking them all together one has a very strong

case for accepting the theses. Except for the “direct appeal to intuition” argu-

ment, all of these arguments can be directly applied to the different formalisms

considered by Church, Post and Turing. If we do not take into account this one

argument, each of the theses can be considered as being equally adequate for

the intended identifications. However, this if is exactly the reason for many

researchers to consider Turing’s thesis as the most natural and adequate iden-

tification. This was clearly the case for Church and Gödel. Also Kleene has

pointed out that he considers Turing computability as “intrinsically persua-

sive”, while “λ-definability is not intrinsically persuasive” and “general recur-

siveness scarcely so (its author Gödel being at the time not at all persuaded.)”

([Kle81b], p. 49). As far as Post is concerned, I do not know of any explicit state-

ment from his side where he considers his formulation 1 or Turing machines

as better or more adequate identifications as compared to his first thesis or

Church’s thesis. Of course, he did regard the analysis leading to his formula-

tion 1 as very important, but this does not necessary imply that one should

consider one identification as being superior to another one. In the end, given

the equivalence between the different formalisms they are all equally adequate,

at least, from a theoretical point of view.

So why is it exactly that the “direct appeal to intuition” marks the difference, ac-

cording to some researchers, between the several theses? The most important

reason is that Turing computability is indeed intrinsically persuasive, resulting

from a direct analysis of the intuitive notion involved. I.e., Turing machines or

other similar machine-like formalisms like formulation 1, naturally follow from

such an analysis, by taking into account the general properties of a man in the

process of computing. That this is indeed the case, is illustrated by the fact that

3.3. STRATEGIES AGAINST INTUITION. 167

both Post and Turing formulated similar formalisms by starting from such an

analysis. As a consequence of its directness, Turing machines, even if one does

not go through Turing’s analysis, are indeed far more intuitively connected to

our notion of computability than e.g. normal systems. As we already argued,

the mere use of the notion of a machine, instead of a form or a calculus, that

moves and prints over a tape, recognizing symbols, and capable of changing its

“state of mind”, has indeed a very direct appeal to intuition, also, if not espe-

cially, for those who are not in the domain of mathematical logic or computer

science, like e.g. philosophers. Especially now, in the computer era, this kind of

identification has become even more obvious. Furthermore, Turing machines

are far more easy to program than e.g. λ-calculus or systems in normal form,

although it is not completely clear in how far this property is a consequence of

Turing’s way of having arrived at his machines.

While we certainly do not want to oppose the significance of Post’s or Turing’s

proposal – it is a very important aspect of the several theses – some comments

and questions are in place here.

3.3.1 The thesis as a definition. On the significance of using the

right formalism for the development of the theory.

In the previous section we showed that there have been several different un-

derstandings of the status of the theses. To our mind Kleene’s position is the

most reasonable: he first termed the identification put forward by Church as a

thesis, and emphasized that, depending on the context it is used in, it can be

understood as a definition or as a hypothesis.

Taken as a definition, in order to develop a mathematical theory that is rooted

in the thesis, it is clear that it is not a very good idea to only consider those for-

malisms that have a direct appeal to intuition, to develop the theory. As Turing

remarked ([Tur37], p. 153):

The identification of effective calculable functions with computable functions

is possibly more convincing than an identification with the λ-definable or gen-

168 CHAPTER 3. 1936

eral recursive functions. For those who take this view the formal proof of equiv-

alence provides a justification for Church’s calculus, and allows the ‘machines’

which generate computable functions to be replaced by the more convenient λ-

definitions.

As is clear from this quote, Turing considered the λ-calculus as more conve-

nient and he would use this calculus, and not Turing machines, exactly because

of this reason in his seminal Ph.D. dissertation on ordinal logics [Tur39]. It is

interesting to note that Turing uses the equivalence between λ-calculus and

Turing machines, as a sufficient reason to accept Church’s thesis, for those who

find that Turing machines are more convincing with respect to the formaliza-

tion of computability. This is also our point of view. While we consider Turing’s

(and Post’s) formalisms as basic support for the theses, the fact that these for-

malisms can be shown to be equivalent to e.g. λ-calculus results in theses that

are equally strong, even if e.g. λ-calculus is not “intrinsically persuasive”. Also

Post understood that the existence of several different formalizations offers a

theoretical advantage ([Pos47], p. 7):

The writer has often felt that the multiplicity of equivalent formulations of recur-

siveness has been a deterrent to the general promulgation of this discipline. Yet,

the writer’s normal systems naturally lead to the unsolvable problem of [Pos46],

while the deterministic character of the Turing machine is basic to the above

unsolvability proof. From this point of view, the several formulations of recur-

siveness are so many different instruments for tackling new unsolvability proofs.

Church also seems to have shared this point of view. Indeed, in our analysis of

Church’s earlier work, we discussed a quote in which Church emphasizes that

one cannot simply say that one system of logic is wrong and the other right, but

only that one is more convenient than the other, depending on the goal one has

in mind.32 It is indeed common practice to simply use the formalization that is

most convenient, as a definition, for the particular kind of goal one has in mind.

It is also in this context that turning one’s attention from the general identifica-

tion to particular systems that are further removed from our intuitive notion, in

32See Sec. 2.3.3, p. 76.

3.3. STRATEGIES AGAINST INTUITION. 169

that it is not quite clear what kind of function they are actually computing, can

be very important both theoretically as well as philosophically. If one no longer

cares about the exact interpretation, in an intuitive sense, of what a given sys-

tem is exactly computing, one can more easily focus on other features of that

system. In chapter 9 we will argue that a study of computational systems, on the

basis of their behaviour rather than on the basis of the encoding of functions

in the description of the machine, leads to important results in the context of

studying limits of solvability and unsolvability.

3.3.2 Different intuitions, different formalisms

It is, to our mind, very important that besides the intuitive notion of com-

putability, other notions have been considered. As we have shown, Post took

into account two other notions, i.e., generated set and solvability. In the pre-

vious section, we also mentioned Markov’s normal algorithms, which he con-

sidered to be more suitable to directly capture the notion of an algorithm as

compared to the other formalisms by Church, Post and Turing.

These intuitive notions should cover the same kind of “intuitive meaning” as

computability, given the equivalence between the several different formalisms.

While solvability and the notion of a algorithm are still rather close to com-

putability, it is not completely trivial to understand on an intuitive level that

something that is computed is the same as something that is generated, if one

is not acquainted with the formalisms themselves. Of course it is hard to provide

any real arguments here, since everybody has his own intuitive understand-

ing of several notions, depending on one’s background. Still it is important to

mention that something like normal systems seems to be better suited to work

out a theory of generated sets, and the related notion of an effectively enumer-

able set, than say Turing machines.33 But this is of course a personal opinion.

More significant is the fact that in understanding that “generated” can be iden-

tified with “computed”, or with “solved”, the several proposed theses become

stronger, since they cover not one but several intuitive notions. In a way, this is

a kind of argument by confluence on the level of intuitive notions, rather than

33In this respect, see Post’s seminal paper on recursively enumerable sets [Pos44].

170 CHAPTER 3. 1936

on the level of the formalisms themselves. It leads to a broader intuition of

what is meant with computability. Restricting one’s attention to computability,

blocks this kind of generalization of the intuition.

3.3.3 “Testing in practice”: Studying formalisms instead of in-

tuitions

In the previous chapter we have argued that the way Church and Post arrived at

the original statement of their respective thesis, was not through direct analysis

of a vague notion. On the contrary, the formalisms were already there and de-

veloped for quite different purposes. It was only by studying these formalisms

that they became more and more convinced about the generality of their for-

malisms. In Church’s case, it was the argument by example that played a fun-

damental role in this process. As for Post, there were two different aspects that

should be mentioned here. First of all, one should not forget that Post was al-

ready searching for more general and abstract forms of mathematics, one of

his major goals being to find a positive solution to the Entscheidungsproblem.

It were his tag systems that first led him to the conclusion that finding such a

solution might be impossible and led to the definition of his normal systems.

Once he had established his normal form and proven the normal form theorem

he realized how general these forms actually are, and proposed his thesis.

To our mind, it is rather remarkable that two of the three “pioneers of unsolv-

ability” formulated their thesis not on the basis of an analysis of an intuitive

notion, but on the basis of a study of certain formal systems. This shows how

important other considerations have been and are for the formulation of such

theses. But are there any other reasons, besides the historical one, to empha-

size this?

Two questions are in place here. First of all, even if one regards Turing’s the-

sis nowadays as more adequate, one can well wonder how his paper would

have been received if he would have only proposed his thesis on the basis of

his analysis, without the extra arguments (by confluence and example) and the

fundamental results he has proven? Secondly, and this question is more funda-

mental, if one accepts Turing’s thesis solely on the basis of his analysis, without

3.3. STRATEGIES AGAINST INTUITION. 171

having convinced oneself about the actual computational power of Turing ma-

chines by having studied and compared them with other formalisms, does one

not risk to completely obscure the connection between a kind of very general,

basically philosophical, identification of computability with the general concept

of a Turing machine and the actual use and implementation of particular Tur-

ing machines and, as a consequence, to undermine the true value of the thesis

itself? To put these two questions a bit differently: is it not because one only

takes into account the general identification between computability and Tur-

ing machines based on Turing’s analysis, without taking into account the other

intuitive notions and formalisms that are covered by it as well as the actual for-

malisms themselves, that it seems to be so hard for some to accept the theses?

As far as my own experiences go, it is only by having really worked with sev-

eral different formal systems, and especially tag systems, that I not only began

to understand more and more how significant and fundamental the respective

theses are, but it were these experiences, rather than Turing’s analysis, that re-

ally convinced me of the generality of the theses. It was me having worked on

tag systems, for which it is far from clear what they are actually computing, that

furthermore showed me a fundamental philosophical implication of the the-

ses, i.e., that the limit implied by the several theses is not only a limit for the

several formalisms, but also for me. I dare the person who says that he or she

is convinced that it is possible to “effectively solve”, understood intuitively, the

halting problem for a given tag systems, to solve it for the very formally simple

tag system, µ= 2, v = 3,0 → 00,1 → 1101!

3.3.4 Can we trust our intuition?

From a pure philosophical point of view, one of the problems involved in con-

sidering the “direct appeal to intuition” argument as the most important one

supporting Turing’s thesis, is that intuitions or one’s understanding of a vague

notion can be plainly wrong and are always very much biased by one’s own

background. History has already proven that one should be very careful in

accepting something on the basis of an intuition, the classic example in this

context being Euclid’s parallel postulate: for centuries people had searched

172 CHAPTER 3. 1936

for a proof, until Bolyai and Lobachevsky considered the possibility of non-

Euclidean geometries. Sieg, Gandy and some others have developed new for-

malisms, on the basis of Turing machines, to come to an even better, general or

more fundamental formalization of certain intuitive notions. Although we con-

sider their work very valuable, we think it equally important to challenge the in-

tuition and to study formalisms that are further removed from the intuition. In

having confronted myself with the rich variety of different kind of processes that

can be used to compute, especially those that are not intuitively appealing, the

notion of computability itself has been given a much more general meaning.

Indeed, in looking at formalisms that are further removed from the intuition,

one can only learn how much an intuition is in fact biased and that it can be

very restrictive to only focus on those formalisms that capture the intuition, al-

though it is of course basic to develop a formalism on the basis of certain vague

notions, as Turing did. If one no longer challenges the intuition itself, one risks

to forget about the rich variety of different processes that are actually covered

by “computability”.

Post proposed to consider wider and wider formulations to turn the hypothesis

into a law. Sieg has criticized exactly this aspect of Post’s work. To Sieg, Turing

reduced a broad notion to a narrow one, while Post wanted to extend a narrow

notion reducibly. To our mind, both directions, narrowing down and broaden-

ing up, are equally important. The former allows one to formalize the existing

intuition in a direct fashion, the latter allows to broaden up that self-same in-

tuition: to compute in λ-calculus or with tag systems is definitely a challenge

for that intuition. In that way, both sides of the thesis, intuition and formalism

can be generalized, thus leading to a much stronger case for any of the theses.

This is exactly the significance of the argument by confluence: it allows one to

see how general computability actually is.

In this and the previous chapter we have given a detailed historical picture of

how Church, Post and Turing each arrived at their theses, the kind of arguments

they considered important, as well as the kind of different interpretations that

have been attached to the theses by some of the leading logicians at that time.

Emphasis was put on the fact that there are some very clear differences present

3.3. STRATEGIES AGAINST INTUITION. 173

in this history of the theses, differences we consider as fundamental both from

a historical, a mathematical, as well as from a philosophical point of view.

However, the several formalisms considered, are not in any way “physical”, i.e.,

they are idealizations and abstractions used to prove certain theoretical results,

like e.g. the unsolvability of the halting problem. In this sense, the several

theses concern abstract devices, not physical devices, that capture the vague

notions or intuitions. Of course, and this is important to note in the light of

our discussion on hypercomputability to follow (See Sec. 4.3), if either Church,

Post or Turing would have believed that there are physical devices, which in

their turn can be formalized, that solve e.g. the halting problem for Turing ma-

chines, they would probably not have published their results.

In the next chapter we will take a closer look at the development of what may

be regarded as the physical realization of these formalisms, i.e., the computer,

and the role it has played and plays in the context of computability and unsolv-

ability.

174 CHAPTER 3. 1936

Chapter 4

The computer.

Mathematics deals with theorems, infinite processes, and static relationships,

while computer science emphasizes algorithms, finitary constructions, and dy-

namic relationships. If accepted, the frequently quoted mathematical aphorism,

’the system is finite, therefore trivial,’ dismisses much of computer science.

Michael S. Mahoney, 2000.1

Four years after Church, Post and Turing published their papers, the world was

at war. Turing would play a rather significant role in this war, since he worked

at Bletchley park and helped to decode the Enigma.2 He would also become

one of the first computer pioneers, having designed a machine which can be

regarded as the materialization of his own Turing machines.

Nowadays we can hardly live without the computer: if one would make a list of

all the functions the computer fulfills in our society it would almost be scary.

The idea of computing machines is very old, and goes back at least to the 17th

century when several calculating devices were developed, like Pascal’s calcu-

lator. In the 19th century, Charles Babbage conceived of the differential and

analytical engine, which are very close to the ideas behind modern computers.

1From [Mah00], p. 17
2A detailed account of Turing’s involvement in the war can be found in [Hod83]. In the mean-

time many more top secret documents have been declassified. The recent book [Gan06] gives a

detailed account of the work at Bletchley park, taking into account these new documents, and

focuses on the construction of the Colossus.

175

176 CHAPTER 4. THE COMPUTER.

Especially the description of the analytical engine, that was never built, con-

tains many typical features of current computers.3

To write a history of the development of the idea of computing machines through

the ages, however, is not the purpose of this chapter. Our main interest here is

with the earliest general-purpose discrete electronic computers that were built

shortly after the second world war. One thing I still find very fascinating is

that such computers – and the several generations of computers that have since

been built – can be regarded as a kind of physical realization of the rather ab-

stract ideas developed in the twenties and thirties. This is not only true for the

more obvious similarity between “real” computers and a universal Turing ma-

chine. Many of the abstract methods behind the results from this period can

be directly linked with certain aspects of the computer. It is thus not surprising

that these mathematical ideas have had (and still have) an important influence

on what is now known as the domain of computer science.

Placed in this context, the computer might be regarded as the physical answer

to the question of what exactly is meant with “effective calculability”. Since the

early rise of modern computers, not only their size has been reduced to an al-

most absolute minimum,4 but their field of application has grown in an almost

unforeseen way. The computer is no longer restricted to “pure” calculation, but

is involved in almost every aspect of our society. In this respect, the computer

can be said to have changed our intuition of effective calculability. Calculability

itself is no longer restricted to the domain of mathematical logic. It is remark-

able that the formalization of computability has played a significant role in its

own materialization and extension to other domains, going from biology to the

development of interactive computer games.

It didn’t take very long before people began to see the possibilities of comput-

ers. Several of the pioneers, like Turing and von Neumann, almost immediately

began to ask questions concerning the link between, on the one hand, “nat-

3A still very interesting text to read is Ada Lovelace’s translation of a French text describing

the Analytical Engine, and the notes she attached to the translation [oLAA43].
4Although the computer itself might be further reduced in size, the user needs a screen that

is big enough to keep the output discernible, except of course if one would start to develop

computers with an “audible” interface.

177

ural” automata, like the brain, and, on the other hand, “artificial” automata.

The idea of building “intelligent machinery” was put forward when the first

computers were still in full development.5 Although these ideas were regarded

rather “heretical” at that time,6 nowadays hundreds of people are involved in

the domain of Artificial Intelligence. Still, there is a clear taboo surrounding the

subject. Even I have difficulties to start a conversation with chatbots on the net!

This taboo seems to be closely related to the fact that several researchers try to

prove that the Turing limit is not a “real” limit for nature. But before we can dis-

cuss these matters in a bit more detail (Sec. 4.3), it is important to take a closer

look at the early beginnings of the computer. It is, however, impossible to give

a detailed account of the origin of the first computers. This would at least ask

for another dissertation. Several books and papers have been published on the

subject, focussing on different aspects of this history. The interested reader is

referred to these sources.7

5See for example von Neumann’s [vN58] and Turing’s [Tur50].
6Turing wrote a paper with the explicit title: Intelligent Machinery. A heretical theory

[Tur51a].
7In this footnote we would like to mention some of the references in this context, but we

should warn the reader that these references are far from complete. First of all, we should

mention the very important book A history of computing in the Twentieth Century. [HMR80],

containing many papers that were presented at a conference in 1976 on the history of com-

puters held at the equally historical location, Los Alamos. This is, to our mind, still one of the

most important sources on early computer history, since it contains detailed accounts of the

people who were actually there when it all happened. As for the history of computer languages,

we should mention two papers by Knuth, one in programming languages [KP80] and one on

compilers[Knu62]. The conference proceedings History of Programming Languages [Wex81]

gives a very interesting account of early programming languages, since the authors were all

involved in the development of the first computer languages. Goldstine’s book [Gol72] is also

known as a classic, but its main focus is the ENIAC and is biased with respect to the significance

of von Neumann’s contributions in this context. If one reads Goldstine’s book, when should also

read the accounts by Mauchly [Mau80] and Eckert [Eck80] in [Gol72], or, Scott McCartney’s

book [McC99]. Some books and papers have been written that situate the first computers in

the context of the history of logic and mathematics. Martin Davis wrote a very accessible book

describing this history [Dav01b], extending the ideas described in his [Dav87]. There is also a

German book discussing similar matters by Sybille Krämer [Krä88]. In general, there is the im-

portant journal IEEE annals for the history of computing, that contains many contributions by

178 CHAPTER 4. THE COMPUTER.

The main purpose of this chapter is to show how through he rise of the com-

puter, on the one hand, computability has obtained a physical form, and, on

the other hand, how this physical form has given rise to new possibilities and

problems in the context of computability and unsolvability. In a first section 4.1

we will describe some aspects of the history of early computers and the need for

developing programming languages. Focus will be put on the question of how

much the developments described in the previous chapters have had their in-

fluence on the rise of the computer.

In the next section 4.2, we will show how, from its early use on, the computer

was used to make available “the discourse” of mathematics. We will argue that

the role of the computer as a physical realization of the formalisms we have de-

scribed earlier, used to study the actual execution of these formalizations, can

hardly be underestimated.8

The last section, discusses two theoretical developments that are situated in

the context of computability and unsolvability, and are very closely connected

to the rise of the computer, developments which stand in sharp contrast with

each other, i.e., computational complexity theory, where one studies the fea-

sibility of computations, and hypercomputability in the context of which one

asks questions concerning the physical feasibility of devices that can give non-

computable answers.

4.1 The first computers: From rewiring to the need

for programming languages.

COMPUTER: any device capable of accepting information, applying prescribed

processes to the information, and supplying the results of these processes; some-

times, more specifically, a device for performing sequences of arithmetic and

logical operations; sometimes, still more specifically, a stored-program digital

people who were involved with the developments described.
8We are very much indebted to Maarten Bullynck for the very frequent and helpful conversa-

tions we have had when I was writing this chapter. The reader is referred to Bullynck’s [Bul07],

for an interesting discussion on the first computations done on the ENIAC.

4.1. THE FIRST COMPUTERS 179

computer capable of performing sequences of internally-stored instructions, as

opposed to calculators on which the sequence is impressed manually desk cal-

culator) or from tape or cards (card programmed calculator).

Martin H. Weik, 1961.9

In [Ula80] Stanislaw Ulam, who worked together with von Neumann at Los

Alamos, beautifully summarized the two main “streams” that gave rise to the

first computers ([Ula80], pp. 94–95):

It is perhaps a matter of chance, that computer development became possible

only by a confluence of at least two entirely different streams. One is the purely

theoretical study of formal systems. The study of how to formalize a description

of natural phenomena or even of mathematical facts. Professor May has spoken

felicitously of “genetic development”: we call it axioms and rules of procedure.

The whole idea of proceeding by a given set of rules from a given set of axioms

was studied successfully in this connection. The second stream is the technolog-

ical development in electronics, which came at just the right time. Of course, the

war had greatly accelerated the availability of funds and effort just a few years

later.

The confluence of formal systems and technology in the computer is still a very

remarkable fact of history, especially in the light of the fact that the computer

itself is nowadays used to study the formal systems it is the physical realization

of.

The significance of the war in early computer development can hardly be over-

estimated: there was a very direct need for computing machinery for several

different goals and several governments thus invested in this research domain.

One could say that the war accelerated the development of the computers.

However, many of the machines developed during the war, were special-purpose

machines and not all were discrete.10

9From [Wei61]
10For example, the differential analyzer developed in the 30’s by Vannevar Bush at MIT was

analogue.

180 CHAPTER 4. THE COMPUTER.

It is the idea of discrete general-purpose machines that is basic to the devel-

opment of the computer as we know it today. A very important paper in this

context is Shannon’s master thesis A Symbolic Analysis of Relay and Switching

Circuits [Sha38], that lay the foundations of digital circuit design. He showed

how Boolean algebra can be used to efficiently analyze and synthesize relay

circuits. The now almost trivial idea of AND, OR and other ports basically goes

back to Shannon’s thesis.This thesis is thus a very clear example of how logic

and technology can go hand in hand.11

During the war there were several people at different places involved in the

project of building computing machines in the U.S. It was here that Mauchly

and Eckert signed a contract to build what is probably known as one of the

most famous first computers, the ENIAC.

4.1.1 The ENIAC and the EDVAC

Neither Mauchly nor Eckert were mathematicians. Mauchly was a physicist,

Eckert was an engineer. In 1941 Mauchly took a course in wartime electronics

at the Moore School of Electrical Engineering, and this is were the two met.

In 1942 Mauchly wrote a memo proposing to build an electronic computer.

Lieutenant Herman Goldstine heard about the memo and asked Mauchly to

write a more formal proposal. On 1 June, 1943 the contract was signed, and

Mauchly and Eckert could begin with constructing the ENIAC. As Eckert em-

phasizes in [Eck80], the ENIAC was, from the very beginning, conceived as a

general-purpose machine ([Eck80], p. 526):

Long before we met von Neumann on the ENIAC project, it was John and I who

had to figure out how to arrange for flexible controls that would do all the things

that we felt were absolutely necessary for the generality of use that was our goal.

We are glad that Leland Cunningham, then working for the Ballistic Research

Laboratory (BRL), also had this philosophy and purpose. Unfortunately, it is of-

ten said that the ENIAC was built just for preparing firing tables. Cunningham

and others at BRL all supported us in making the ENIAC as generally useful as

11A more detailed discussion is given in [Dav88].

4.1. THE FIRST COMPUTERS 181

we could contrive to make it within the limited time that conditions of war de-

manded. Yes, BRL wanted firing tables, but they also wanted to be able to do “in-

terior” ballistics, and all kinds of data reduction, and they went on and on with

examples of what they would hope to be able to do with a truly flexible computer.

We wince a little when we hear the ENIAC referred to as a special-purpose com-

puter; it was not. The name “ENIAC,” where the “I” stands for “integrator,” was

devised to help sell the Pentagon that what the BRL was getting would compute

firing tables, which were, in 1943, the greatest need of Ordnance. But there was a

flexibility of control far beyond the implications of the name.

Indeed, although computing fire tables was a very important military task of the

ENIAC, it was not intended to be its sole purpose.12 Does this mean that ENIAC

was a real general-purpose computer as we know it today? No, especially not

if one understands “general purpose” to be a kind of finite approximation of a

universal Turing machine, including the stored program idea. One of the prob-

lems with ENIAC was that it was hard-wired: the sequence of instructions the

machine had to follow had to be physically programmed. It was only after it

had been rewired that it was able to “simulate” stored program computers.

And then John, Johnny for friends, von Neumann got involved in the ENIAC

project. According to Eckert, the first visit of von Neumann to the ENIAC project

could not have been before 7 September, 1944. It was Goldstine who intro-

duced von Neumann to Mauchly and Eckert ([Eck80], p. 532).

Apparently, while we were racing ahead on plans involving obvious uses of the

delay storage devices, Goldstine had spent a great deal of time in the hospital

with hepatitis, and had failed to get the full impact of the delay storage on con-

12The following quote, explains what fire tables were used for: “The army used its lush fields

and rolling hills to test artillery guns and other weapons. Since a gunner often couldn’t see his

target over a hill, he relied on a booklet of firing tables to aim the artillery gun. How far the shell

travelled depended on a host of variables, from the wind speed and direction to the humidity and

temperature and elevation above sea level. Even the temperature of the gunpowder mattered. A

gun such as the 155-millimeter “Long Tom” required a firing table with five hundred different

sets of conditions. Each new gun, and each new shell, had to have new firing tables , and the

calculations were done at Aberdeen based on test-firings and mathematical formulas.” [McC99],

p. 53.

182 CHAPTER 4. THE COMPUTER.

trol problems. This makes more understandable his apparent belief that von

Neumann was the source of ideas that in fact we had generated before Golds-

tine had met von Neumann at the Aberdeen railroad station. That chance meet-

ing in Aberdeen was the very beginning of von Neumann’s high interest in elec-

tronic computation. The clearance document for von Neumann’s first visit to

the Moore school ENIAC project has been found, and his first visit could not

have been before 7 September 1944. In my own records, which also became a

court document, is confirmation that Eckert and I had a commitment to meet

von Neumann about 7 September. I believe that was our first meeting with him.

As is clear from this quote, there have been problems between, on the one

hand, Eckert and Mauchly, and, on the other hand, Goldstine and von Neu-

mann. Reading any paper by any of these people that is related to these mat-

ters, should thus always be done with the awareness that there has been a seri-

ous fight between them!

It is often stated that one of the main contributions by von Neumann to the

first computers is the idea of stored programs, i.e., to store the instructions in-

ternally with the data. This was considered as one of the basic advantages of

the next computer to be build at the Moore school, i.e., the EDVAC. Eckert and

Mauchly however, have claimed that they already had the idea of stored pro-

grams even before they met “Johnny” for the first time. The most important

cause for the problems between the “engineers” and the “logician” was the fact

that von Neumann did not give full credit to Eckert and Mauchly when writing

his First Draft of a Report on the EDVAC [vN45]. The EDVAC is up to today con-

sidered as one of the first all-purpose stored-program computers, and in this

respect one of the first forerunners of our present-day computers (cfr. the so-

called Von Neumann-architecture). Its completion was delayed due to the dis-

pute between the “engineers” and the “logician”, leading to Eckert and Mauchly

to leave the University of Pennsylvania to form the Eckert-Mauchly Computer

Corporation.

We will not discuss here the controversy about who had which ideas first. Until

now it is still not completely clear how much Mauchly and Eckert contributed

to the design of the EDVAC. It should be noted though that Eckert had already

4.1. THE FIRST COMPUTERS 183

written an earlier report in January 1944, before the first meeting with von Neu-

mann, with a proposal of developing a new computer, that included some ideas

pointing in the direction of stored program.13 In fact, one of the reasons for

Eckert and Mauchly to develop a new computer, as they recount, was to avoid

the long set-up time that could be avoided by stored programs, allowing for au-

tomated programming. We think that the most correct interpretation of what

did actually happen is that the EDVAC design cannot be assigned to one per-

son, but emerged from the several discussions between Mauchly, Eckert, von

Neumann, Burks and some others, before the actual report was written. As far

as the idea of stored programs is concerned, we believe that the “engineers”

must have very quickly realized that internalizing the instructions would make

it possible to significantly speed-up the programming. Maybe they were not

able to put it in a clear well-cut logical language, as von Neumann was able to

do, but it seems to our mind very probable that their accounts on this matter

are true, although possibly slightly overstated.

Anyway, as is also acknowledged by Eckert and Mauchly themselves in their

“progress report on the EDVAC” they wrote to make clear their contributions

to the design of EDVAC, von Neumann wanted to emphasize the logical design

of the EDVAC, replacing “the physical structures and devices proposed by Eck-

ert and Mauchly [...] by idealized elements to avoid raising engineering prob-

lems which might distract attention from the logical considerations under dis-

13“Either discs of the etched or alloy type may be used to remember combinations required in

the conversion from the decimal to the binary system and the reverse if such a system is used. If

multiple shaft systems are used a great increase in the available facilities for allowing automatic

programming of the facilities and processes involved may be made, since longer time scales are

provided. This greatly extends the usefulness and attractiveness of such a machine. This pro-

gramming may be of the temporary type set up on alloy discs or of the permanent type on etched

discs. The principal virtues of such a machine are largely due to the alloy discs which allow num-

bers to be stored indefinitely and to be put on and taken off by a conveniently controlled electric

circuit, and that none of the mechanical parts have to accelerate or decelerate during the op-

eration of the machine. The advantages of the electric control are not only that it allows rapid

operation but that the design is simplified and capable of more readily being extended and in-

terconnected to other apparatus.” (quoted from the memo Eckert wrote for designing a new

computer, published as an appendix in [Eck80].

184 CHAPTER 4. THE COMPUTER.

cussion.”14

Whoever had the idea of stored-programs first, it is important to understand its

significance. Before the ENIAC was rewired in order to simulate stored program

computers, after it had been moved from the Moore school to Aberdeen, it took

days to set up a program for the ENIAC. A clear account of this set-up problem

is given by Alt ([Alt72], p. 694):

One of the peculiarities that distinguished ENIAC from all later computers was

the way in which instructions were set up on the machine. It was similar to the

plugboards of small punched-card machines, but here we had about 40 plug-

boards, each several feet in size. A number of wires had to be plugged for each

single instruction of a problem, thousands of them each time a problem was to

begin a run; and this took several days to do and many more days to check out.

14This is quoted from the progress report on the EDVAC by Mauchly and Eckert. The full

quote, crediting von Neumann’s contributions is: “[von Neumann] has fortunately been avail-

able for consultation. He has contributed to many discussion on the logical control of the EDVAC,

[and] has proposed certain instruction codes for specific problems. Dr. von Neumann has also

written a preliminary report in which most of the results of earlier discussions are summarized.

In his report the physical structures and devices proposed by Eckert and Mauchly are replaced

by idealized elements to avoid raising engineering problems which might distract attention from

the logical considerations under discussion.” I got the quote from McCartney’s book [McC99],

p. 121, that emphasizes the significance of the contributions by Mauchly and Eckert. Goldstine

also used this quote in his book to claim credit for von Neumann! Martin Davis took over this

quote from Goldstine in his book, stating that “[a]lthough Eckert and Mauchly later denied that

von Neumann had contributed very much, shortly after they wrote as follows [...].” ([Dav01b],

p. 183). I think that it is not completely true that Eckert and Mauchly later denied that von

Neumann contributed very much. The main conclusion I made after reading their [Eck80] and

[Mau80] is that they were very much disappointed in not having been given their due credit.

They do not however imply that von Neumann’s contribution was not important. Eckert for ex-

ample clearly states that he had long conversations with von Neumann on the EDVAC. He also

acknowledges that the permanent set up of the instructions for the rewired ENIAC were chosen

with von Neumann’s consultation: “A project was set up for operating the ENIAC with a perma-

nent numerical code set. The permanently set up “instructions” were chosen with von Neumann’s

consultation, and became known as the “von Neumann code for the ENIAC.”” ([Eck80], p. 529).

We think that in the end, the best way to form ones own opinion of who had what ideas first, is

through a detailed research of the accounts and papers written by the people who were actually

involved, looking at both sides of the story.

4.1. THE FIRST COMPUTERS 185

When that was finally accomplished, we would run the problem as long as pos-

sible, i.e. as long as we had input data, before changing over to another problem.

Typically, changeovers occurred only once every few weeks. In between we had

to cope with malfunctions of the machine, usually due to dead or submarginal

tubes. A faulty tube could be replaced in minutes, but it might have taken days

to locate it.

Indeed, setting up a program for the ENIAC was a cumbersome task, mostly

relegated to women. In Fig. 4.1.1 a picture is shown of two women program-

ming the ENIAC. Fig. 4.1.1 shows the external function tables of the ENIAC, that

would later show important for internalizing the instructions.

It was the idea to make the program instructions internal that was basic to

Figure 4.1: Two women programming the ENIAC

speed-up the programming process. One of the main insights behind stored-

programs was that instructions could be encoded as numbers and in this sense

be manipulated on the same level as numbers, i.e., they could be altered in and

by the machine itself. Eckert summarized it as follows (as one of his best com-

puter ideas, clearly claiming credit for the idea) ([Eck80], p. 531):

186 CHAPTER 4. THE COMPUTER.

Figure 4.2: Function tables for the ENIAC (right hand-side).

My best computer idea, today briefly called “stored program,” became to us an

“obvious idea,” and one that we started to take for granted. It was obvious that

computer instructions could be conveyed in a numerical code, and that what-

ever machines we might build after the ENIAC would want to avoid the setup

problem that our hastily built first try ENIAC made evident. It was also obvious

that the functions supplied by the Master Programmer in controlling loops and

counting iterations, etc., would be achieved very naturally by allowing instruc-

tions to be subject to alterations within the calculator. We even thought that

Goldstine, who had frequent contact with us, understood all of the uses to which

these delay lines could be put. Not so, it seems, as it turned out.15

15We would like to add some further quotes here by Eckert and Mauchly in which they de-

scribe what they meant with stored-program and state that they already had this idea before

von Neumann entered the scene. “At the Los Alamos conference I had the chance to check with

Harry Huskey, who says he started on the staff of the ENIAC Project about April, 1944. I asked

him whether, when he first came to the Moore school, he had heard any notions about storing

4.1. THE FIRST COMPUTERS 187

A more explicit description is given by Alt, comparing the stored-program idea

with compilers and interpreters ([Alt72], p. 694):

In retrospect, it seems to have been a forerunner of what we now call higher-

order programming languages. The idea was to encode the instructions of a

problem on the “function tables,” three panels of the machine, each of which

bore 1200 ten-way switches. They had been intended as a computer-accessible

table lookup, e.g. for empirical functions, but it was now proposed to use them

to set up the succession of instructions, each represented by a two-digit number.

The wiring of the plug boards would be set up permanently on the machine in a

way that would cause the machine to read a number from the table, carry out the

instruction encoded by it, go on to reading the next number, etc. Thus, the back-

ground wiring played the role of a present day “compiler” – more specifically, of

an interpretative routine, since the source code had to be read and interpreted

programs in the same storage used for computer data. He said, “Yes. My immediate reaction was,

‘Why didn’t I think of that?’ ” But for some reason, Goldstine did not understand this, if I cor-

rectly understand what he says in his volume [Gol72].” Mauchly comments on Eckert’s paper

([Eck80], pp. 531–532). “In January 1944, I wrote a memo, Disclosure of Magnetic Calculating

Machine, which I typed on my home typewriter and then gave to my supervisor for retyping.

For some reason it never got typed, but I finally did get my own version back. I had also read a

Master’s Thesis by Perry Crawford, at MIT, where he had proposed using a disk with some spots

magnetized on it for storage of numbers. My memo stated that we could use magnetic disks ei-

ther erasable or permanently for the storage of information both alterable or unchangeable. The

concept of general internal storage started in this memo.” ([Eck80], pp. 530–531.) “We conceived

of another mode of ENIAC operation, in which the function tables would control “the program.”

The switch setting then would not represent numerical data for calculating, but arguments fed

to the function tables would elicit patterns of program pulses output to prearranged program

lines. There were two ways in which this might ease the burden of “patch-cord setups” – (1) if a

new program were put on a function table, another program could check or verify the witch set-

ting of the “read-only” portable panel, making it unnecessary to go through the tedious manual

checking of the patchcord setups, or (2) a possibly long-term setting of the function table switches

might be given a permanent set of arguments corresponding to some permanent set of program

functions to be stimulated. Then every time a new set of numbers was read from the card input, a

new set of operations would be caused to occur. The foregoing ideas could be easily implemented

on the ENIAC, and we expected that at some time someone would want to do this, so we built the

necessary cable to connect “program pulses” into the function tables in place of “digit pulses”.”

([Eck80], pp. 528–529)

188 CHAPTER 4. THE COMPUTER.

anew for each run, and no permanent object code was set up. This mode of op-

eration would slow down the machine, of course; it was estimated that its speed

would decrease at least by a factor of 5, a small price to pay for eliminating the

long set-up time. We were, in effect, using ENIAC to “simulate” the future stored-

program computers, which were then still on the drawing board.

The main insight for stored-programming, i.e. to regard instructions as num-

bers, in order to make internal manipulations possible, has a very clear resem-

blance to Gödel’s coding: to express things about a given system in the system

itself, i.e., in terms of stored programs, to encode the operations on numbers as

numbers. It was this kind of feature that was also basic to Turing’s construction

of his universal machine: encoding operations and that on which is operated in

one and the same language, through standard descriptions, was a fundamental

step in Turing’s construction!

The fact that this idea was, most probably, developed independent of Gödel

and Turing by Mauchly, Eckert, and Zuse (see Sec. 4.1.3), in a completely dif-

ferent context, is to our mind of historical significance. It very clearly shows the

parallelism between, on the one hand, the theoretical problems logicians were

facing in the twenties and thirties, and, on the other hand, the problems “en-

gineers” and “programmers” were facing in trying to improve their computers.

They were not at all concerned with problems of how to find a good formal-

ization of an intuitive notion. Instead they were working against the clock to

find efficient methods to compute certain problems on a machine that was al-

ready then a kind of physical realization of that selfsame intuitive notion. As

is very clearly expressed by Eckert, in referring to work done by Captain Grace

Hopper, one of the first female programmers who developed one of the first

compilers, A0, one of main reasons for them to internalize operations in the

computer itself, was to reduce the human work to make the machines more

efficient ([Eck80], p. 533):

Later, she [Captain Grace Hopper] used the UNIVAC itself to work out the mem-

ory allocations. That was akin to our general philosophy, of course. You should

use the computer to do all the tedious dirty work if you possibly can. That was

the origin of all the languages, interpreters, and such that have since been devel-

4.1. THE FIRST COMPUTERS 189

oped.

In the meantime there was a growing need for programming languages. The

reason behind developing these languages was very pragmatic. This is very

clearly expressed by Captain Grace Hopper herself ([Hop81], pp. 10–11):

There was also the fact that there were beginning to be more and more people

who wanted to solve problems, but who were unwilling to learn octal code and

manipulate bits. They wanted an easier way of getting answers out of the com-

puter. So the primary purposes were not to develop a programming language,

and we didn’t give a hoot about commas and colons. We were after getting pro-

grams written faster, and getting answers for people faster. I am sorry that to

some extent I feel the programming language community has somewhat lost

track of those two purposes. We were trying to solve problems and get answers.

And I think we should go back somewhat to that stage.[...] I’m hoping that the

development of the microcomputer will bring us back to reality and to recogniz-

ing that we have a large variety of people out there who want to solve problems,

some of whom are symbol-oriented, some of whom are word-oriented, and that

they are going to need different kinds of languages rather than trying to force

them all into the pattern of the mathematical logician. A lot of them are not.

Hopper clearly opposed the idea of developing languages that are forced into

the pattern of mathematical logic. Indeed, although we cannot exclude the

possible influence of the developments from the twenties and thirties of math-

ematical logic on Hopper’s pioneering work, it is clear that she did not regard

the earlier development of programming languages as being heavily influenced

by logic. In general, as far as the development of the earliest programming lan-

guages are concerned, one can only conclude that mathematical logic must

have had an influence on some pioneers in this domain, but not on everybody.

For example, Zuse was acquainted with the predicate calculus when he de-

scribed his Plankalkül, and acknowledged its significance for his work (see Sec.

4.1.3). However, the development of Short Code, that was first implemented on

the BINAC, developed at the company by Eckert and Mauchly, was originally

suggested by Mauchly himself [KP80] and the influence of mathematical logic

190 CHAPTER 4. THE COMPUTER.

on this language thus seems rather doubtful.16

Of course, we do not want to oppose the idea that the developments from the

twenties and thirties discussed in the previous chapters, did not have an im-

portant influence on the beginning of the computer era. Still, we believe it im-

portant to emphasize that there have been developed techniques in the forties

and early fifties, that have a very clear resemblance to certain of the techniques

used by, e.g., Turing, but have arisen in a very different context: that of physical

computing. Stored-programs, compilers, programming languages, etc., are de-

velopments from the beginning of the computer era that can be directly con-

nected to mathematical logic, but cannot in every respect be traced back to

mathematical logic. In a way, one could state that where both Church and Post

developed certain techniques and found important results by studying their

respective formalisms, many computer pioneers developed similar techniques

by working with the physical version of such formalisms.

For now, it is not completely clear how many computer techniques can be called

to have been developed quite independent of mathematical logic. A more de-

tailed research would be needed here, taking into account the developments

in several different places by several different people. Indeed, one should not

forget here that there was research on computing in many different countries

by several different research groups. As a consequence many techniques were

re-invented in different places by different people. In this sense, research con-

nected to the first computers is in fact yet another examples of a confluence

of ideas, of which some were very explicitly influenced by the developments

sketched in the previous chapters, and some were not.

The influence of the results by Gödel, Turing and others on “Johnny” von Neu-

mann cannot be neglected. He knew all these papers and had been there in

1930 at the conference in Königsberg where Gödel announced his incomplete-

ness results for the first time. He was also fully aware of Turing’s paper and

16It should be noted however that mathematical logic has had a very important influence

on the development of the first “true”, more high-level, programming languages. For exam-

ple, λ-calculus has played a significant role in the development of LISP, and John Backus has

stated that Post’s canonical forms have had an influence on the development of the Backus-

Naur form, important for ALGOL60 (see for example [Bac80]).

4.1. THE FIRST COMPUTERS 191

acknowledged this in some of his papers and lectures on computers. As is ar-

gued in [Hod83] and [Dav87], based on a letter by Ulam to Hodges ([Hod83], p.

145),17 von Neumann must have read Turing’s paper before the outbreak of the

war.

After Gödel’s results von Neumann wanted to stay far away from logic. But then

he got involved with the ENIAC project, and with “real” computing. In this con-

text von Neumann’s logical background would prove very useful, although it

was not an interest in logic that triggered his interest in the subject. In [Ula80],

Ulam explains why von Neumann got interested in computers (pp. 93–94).

It must have been in 1938 that I first had discussions with von Neumann about

problems in mathematical physics, and the first I remember were when he was

very curious about the problem of mathematical treatment of turbulence in hy-

drodynamics. [...] He was fascinated by the role of Reynolds number, a dimen-

sionless number, a pure number because it is the ratio of two forces, the inertial

one and the viscous, and has the following importance: When its value surpasses

a critical size, about 2000, the regular laminar flow, as it is called, becomes highly

irregular and turbulent. [von Neumann] [...] wanted to find an explanation or at

least a way to understand this very puzzling large number. Small numbers like π

and e, are of course very frequent in physics, but there is a number of the order of

thousands, and yet it is a pure number with no dimensions: it does whet your cu-

riosity. I remember that in our discussions von Neumann realized that the known

analytical methods, the method of mathematical analysis, even in their most ad-

vanced forms, were not powerful enough to give any hope of obtaining solutions

in closed form. This was perhaps one of the origins of his desire to try to devise

methods of very fast numerical computations, a more humble way of proceed-

ing. Proceeding by “brute force” is considered by some to be more lowbrow. [...]

I remember also discussions about the possibilities of predicting the weather at

first only locally, and soon after that, about how to calculate the circulation of

meteorological phenomena around the globe.

17This letter is available on-line through Andrew Hodges website on Turing:

http://www.turing.org.uk/sources/vonneumann.html

192 CHAPTER 4. THE COMPUTER.

von Neumann was thus particularly interested in computers for doing numer-

ical calculations in the context of theoretical physics.18

In 1944 he got involved with the ENIAC project, and the plans for developing

another computer, the EDVAC. Indeed, the main design ideas for the EDVAC

were described by von Neumann in the first draft of this machine [vN45]. As we

already know, it is not completely clear how much of the ideas described in this

draft originated from Eckert and Mauchly, but, the emphasis on the logical as-

pects of the EDVAC clearly came from von Neumann. He also made important

contributions to the rewiring of the ENIAC at Aberdeen, since the permanent

set of instructions to be internalized were chosen with von Neumann’s consul-

tation. The main design of the rewiring was done by R.F. Clippinger, who states

in the introduction of a report describing the new coding system for the ENIAC,

that the rewiring was suggested by von Neumann and that “[t]he role of J. von

Neumann in working out the details has been a central one ([Cli48]).19

von Neumann’s interest in the logical design of computers, is also expressed by

Eckert ([Eck80], p. 525):

We thought the most important development problem we faced in the ENIAC

was to provide a control system consistent with and adequate for its general-

purpose use. And it was about the controls of the computer that von Neumann

first asked when he came in September 1944, for his first visit to the ENIAC project.

If he had first asked questions like “How fast does it work?” we would have been

disappointed. Because he asked about the control logic, there was an immediate

18The use of computers in mathematics and physics, as regarded by von Neumann, will be

discussed in more details in the next section.
19Neukom’s paper [Neu06] gives a detailed description of “the ENIAC’s second life”. It should

also be noted here that although the account on the rewiring of the ENIAC – von Neumann

suggesting the idea and Clippinger having detailed out the design – seems to be the generally

accepted account, in the end, Clippinger himself has stated the significance of von Neumann

here, Metropolis tells us a slightly different story: “In the meantime Richard Clippinger, a staff

member at Aberdeen, had suggested that the ENIAC had sufficient flexibility to permit is controls

to be reorganized into a more convenient (albeit static) stored-program mode ofoperation. [...]

Although implementing the new approach is an interesting story, suffice it to say that Johnny’s

wife, Klari, and I designed the new controls in about two months and completed the implemen-

tation in a fortnight.” ([Met87], p. 128).

4.1. THE FIRST COMPUTERS 193

rapport.

Although Eckert and Mauchly most probably already had the idea of stored pro-

grams, it is von Neumann who was able to convert it into logical terms, inde-

pendent of whether he got this idea through Mauchly and Eckert or not, and

very clearly understood the link between problems related to computing with

those occurring in logic. We think this is the most important contribution by

von Neumann: he understood that computers can be considered as logical ma-

chines, or, as Martin Davis has called it, engines of logic ([Dav87], p. 166).

According to Martin Davis [Dav87, Dav01b] this is one basic advance of the

computers of the postwar period ([Dav87], p. 166):

The computers of the postwar period differed from previous calculating devices

in having provision for internal storage of programs as well as data. They were

conceived, designed, and constructed, not as mere automatic calculators, but as

engines of logic, incorporating the general notion of what it means to be com-

putable and embodying a physical model of Turing’s universal machine.

This is maybe a slight overstatement from Davis’s side, since it obscures the

many different roads that led to the modern computer. However, there is some

clear truth in this statement, especially with respect to von Neumann’s contri-

butions, and, as we will later see, Turing’s.

The EDVAC design is often considered as laying the basis of present day com-

puters and has come to be known as the von Neumann architecture. We will

not discuss this design in detail, but it is important to ask in how far this de-

sign could have been influenced by the developments discussed in the previ-

ous chapters. Von Neumann had a broad and solid background in these mat-

ters and must have read Turing’s paper. In this sense it only seems “logical”

that, especially Turing’s paper, must have had an influence here. Davis has in

fact argued that the concept of a universal Turing machine must have had a sig-

nificant influence on von Neumann’s conception of computers as logical ma-

chines, as reflected in his first draft. A clue is given by the only reference in von

Neumann’s text, i.e., the paper by McCullough and Pitts [MP43]. As is pointed

out by Martin Davis, the reference to this paper gives a very direct link with

194 CHAPTER 4. THE COMPUTER.

Turing’s universal Turing machine: not only did McCullogh later state that their

paper was in fact directly inspired by Turing’s, but the paper itself states that the

possibility of representing a universal Turing machine in their neural model, is

in fact the main reason for believing in the adequacy of the formalism. Davis

has given some further arguments for the significance of the universal machine

concept in von Neumann’s work on computers.20

That logic has had a very significant influence on von Neumann’s work on com-

puters is obvious when reading several of his papers. In the introduction to

von Neumann’s work on Natural and artificial automata [Bur86] in the volume

[vN86], Burks discusses several of these influences. The first such influence

Burks mentions concerns the influence of Gödel’s work on von Neumann’s pro-

gramming methods ([Bur86], p.382–383):

There are some concepts in von Neumann’s program codes and programming

methods that are analogous to logical ideas that Gödel employed. I think it likely

that, in his programming work, von Neumann was guided by his knowledge of

Gödel’s work, at least intuitively.

Burks mentions two aspects of von Neumann’s work that might have been in-

fluenced by Gödel. The first concerns the distinction between metalanguage

and object language ([Bur86], p. 383):

In his program codes for the EDVAC and IAS machines, von Neumann used par-

tial substitution instruction for changing the addresses in a program during com-

putation [...] Arithmetic instructions and partial substitution instructions both

transform words, but they differ in this: The address in an arithmetic instruction

refers to a word usually interpreted as a number, whereas the address in a partial

substitution instruction refers to another instruction. This is an instance of the

metalanguage versus object language distinction.

This technique of partial substitution is one way to implement the stored pro-

gram idea. The technique shows how data and instructions can be manipulated

on the same level. In the following quote, one sees how von Neumann under-

stood this substitution technique as a way for the computer to manipulate its

20The interested reader is referred to [Dav87], pp. 167–169 and [Dav01b], pp. 180–193.

4.1. THE FIRST COMPUTERS 195

own code. The quote is also interesting because this ability of the computer is

considered as a necessary feature to obtain flexible codes, and is in fact one of

the features that makes coding a non-trivial operation according to von Neu-

mann. We give the full quote, including the explanation of how the process of

substitution works ([GvN46], p. 31–32):

It should be added here that there are two ways to send a number a from the

arithmetic organ to the memory, say to the memory position y . We either want

to place the entire 40 digit number a to occupy the entire space at y , or there

may be two orders at y , and we may only want to replace the memory-position-

reference x in one of these orders by part of a. Since we plan to have 4096 = 212

viewed as a binary digit number, hence it will require 12 digits of a, say the 12 last

ones (to the right). In view of this possibility we may also call the disposal orders

substitutional orders. The first use (40 digits of a moved) is a total substitution,

the second use (12 digits of a moved) is a partial substitution, and according to

whether the first or the second order at y is modified, the partial substitution is

left or right. It should be added that this technique of automatic substitutions

into orders, i.e. the machine’s ability to modify its own orders (under the control

of other ones among its orders) is absolutely necessary for a flexible code. Thus,

if a part of the memory is used as a “function table”, then “looking up” a value

of that function for a value of the variable which is obtained in the course of the

computation requires that the machine itself should modify, or rather make up,

the reference to the memory in the order which controls this “looking up”, and

the machine can only make this modification after it has already calculated the

value of the variable in question. On the other hand, this ability of the machine

to modify its own orders is one of the things which makes coding the non-trivial

operation which we have to view it as.

As compared to some of the quotes in which Eckert explains the stored program

idea, von Neumann’s explication of its use is stated in more logical terms, and

resembles more not only Gödel’s ideas but also those Turing’s. The ability of

the machine to manipulate its own code is an idea that becomes very explicit

in Turing’s universal machine. Indeed whereas Eckert uses terms such as “digit

pulse” and “program pulse”, i.e. engineering terms, von Neumann applies the

196 CHAPTER 4. THE COMPUTER.

much more logical terminology of substitution.

A further influence of Gödel’s work on von Neumann that Burks identifies, is

summarized in the following quote ([Bur86], p. 383):

In his programming procedures von Neumann explicitly uses the distinction be-

tween bound and free variables, and his single program loops are analogous to

Gödel’s bounded quantifiers.

We will not discuss this last influence in any further detail. Let me merely point

out that the differentiation between bound and free variable was effectively

used by von Neumann,21 while the form of bounded quantifier expressions is

considered by Burks to be quite similar to certain routines, like e.g. a for loop.

One can of course question whether these influences of logic on von Neumann,

as pointed out by Burks, are solely due to his knowledge of Gödel’s work, but,

in any way, it is clear that formal logic did have a significant influence on von

Neumann’s work on coding and thus on early computing.

Much of von Neumann’s papers in the late forties are indeed devoted to coding.

In collaboration with Goldstine, he wrote a sequence of reports, Planning and

Coding of Problems for an Electronic Computing Instrument, in which von Neu-

mann develops methods for coding problems [GvN47, GvN48a, GvN48b]. If

one scans through these reports, the influence of logic can hardly be neglected,

21In [GvN47], pp. 90–91, von Neumann indeed uses this terminology: “A mathematical-

logical procedure of any but the lowest degree of complexity cannot fail to require variables for its

description. It is important to visualize these variables are of two kinds, namely: First, a kind of

variable for which the variable that occurs in an induction [...] is typical. Such a variable exists

only within the problem. It assumes a sequence of different values in the course of the procedure

that solves this problem, and these values are successively determined by that procedure as it de-

velops. It is impossible to substitute a value for it and senseless to attribute value to it “from the

outside”. such a variable is called (with a terms borrowed from formal logic) a bound variable

Second, there is another kind of variable for which the parameters of the problem are typical –

indeed it is essentially the same thing as a parameter. Such a variable has a fixed value through-

out the procedure that solves the problem, i.e. a fixed value for the entire problem. If it is treated

as a variable in the process of planning the coded sequence, then a value has to be substituted for

it and attributed to it (“from the outside”), in order to produce a coded sequence that can actually

be fed into the machine. Such a variable is called (again, borrowing a term from formal logic) a

free variable.”

4.1. THE FIRST COMPUTERS 197

given the logical terminology used. In these papers one finds the development

of flow diagrams, as a means to represent algorithms in a precise and more

structured way, at a higher level than the machine language. Because these re-

ports were distributed to ([KP80], p. 208):

[...] the vast majority of people involved with computers at that time [...] cou-

pled with the high quality of presentation and von Neumann’s prestige, [...] their

report had an enormous impact, forming the foundation for computer program-

ming techniques all over the world.

Given the clear influence of mathematical logic in these reports, one cannot

underestimate the significance of logic in the domain of programming.

In an earlier paper, we already quoted from, von Neumann makes clear how the

“coder” should proceed in developing a program ([GvN46] p. 30):

In addition to a quite flexible set and general set of basic orders that can be un-

derstood by his machine, the coder needs certain further things: An effective

and transparent logical terminology or symbolism for comprehending and ex-

pressing a particular problem, no matter how involved, in its entirety and in all

its parts; and a simple and reliable step-by-step method to translate the problem

(once it is logically reformulated and made explicit in all its details) into the code.

From this quote it is very clear what value von Neumann attached to logic, not

only with respect to the design of computers, but also with respect to program-

ming. A last quote we want to mention here that illustrates the significance of

logic for von Neumann’s work on programming, was also used by Martin Davis

in this context ([GBvN46], p. 37):

It is easy to see by formal-logical methods that there exist codes that are in ab-

stracto adequate to control and cause the execution of any sequence of oper-

ations which are individually available in the machine and which are, in their

entirety, conceivable by the program planner. The really decisive considerations

from the present point of view, in selecting a code, are more of a practical nature:

simplicity of the equipment demanded by the code, and the clarity of its applica-

tion to the actually important problems together with the speed of its handling

of those problems.

198 CHAPTER 4. THE COMPUTER.

The first sentences of this quote seem to reflect the universal Turing machine

concept stated in terms of programs.

The influence of Turing’s universal machine on von Neumann’s work, seems

also to be reflected by von Neumann’s understanding that a small program-

ming vocabulary is not a problem, i.e., a few dozen of instructions are enough

to express all of mathematics (at least the computational part of it). This is re-

counted by Alt, who attended a lecture by von Neumann at the first meeting

of the Association for Computing Machinery at Abderdeen Proving Ground in

1947 ([Alt72], p. 694):

[von Neumann] discussed the need for, and likely impact of, electronic comput-

ing. He mentioned the “new programming method” for ENIAC and explained

that its seemingly small vocabulary was in fact ample: that future computers,

then in the design stage, would get along on a dozen instruction types, and this

was known to be adequate for expressing all of mathematics. (Parenthetically,

it is as true today as it was then that “programming” a problem means giving

it a mathematical formulation. Source languages which use “plain English” or

other appealing vocabularies are only mnemonic disguises for mathematics.)

von Neumann went on to say that one need not be surprised at this mall num-

ber, since about 1000 words were known to be adequate for most situations of

real life, and mathematics was only a small part of life, and a very simple part at

that. This caused some hilarity in the audience, which provoked von Neumann

to say: “If people do not believe that mathematics is simple, it is only because

they do not realize how complicated life is.”

The expressibility of the whole of mathematics by a few dozen of instructions

very clearly resembles the ambitions of many a logician at the beginning of the

20th century, including Post. However, von Neumann knew of the unsolvabil-

ity results published ten years before, and is probably pointing at the ability

of a universal Turing machine to compute anything computable by any other

Turing machine. Some years later, during the second lecture of a sequence of

lectures delivered at the University of Illinois in 1949, he would explicitly state

that the significance of Turing’s work lies in his proof of exactly this fact ([vN66],

p. 50):

4.1. THE FIRST COMPUTERS 199

A [a universal machine] is able to imitate any automaton, even a much more

complicated one. Thus a lesser degree of complexity in an automaton can be

compensated for by an appropriate increase of complexity of the instructions.

The importance of Turing’s research is just this: that if you construct an automa-

ton right, then any additional requirements about the automaton can be handled

by sufficiently elaborate instructions. This is only true of A is sufficiently compli-

cated, if it has reached a certain minimum level of complexity. In other words, a

simpler thing will never perform certain operations, no matter what instructions

you give it; but there is a very definite finite point where an automaton of this

complexity can, when given suitable instructions, do anything that can be done

by automata at all.

Later, he would also state that the universal Turing machine lies at the basis of

the construction of a self-reproducing automaton, i.e., von Neumann’s version

of cellular automata [vN51]. More generally, as is e.g. expressed in the above

mentioned lectures, von Neumann considered logic to be a basic part of the

development of a theory of automata. However, given the physical nature of

“artificial automata” and thus the fact that they will malfunction and make mis-

takes, such theory should also include statistical considerations. To this end,

he wanted to develop a kind of probabilistic logic, which was described in his

[vN56].

4.1.2 Alan Turing’s work on computers and programming

In the previous chapter we showed how Turing’s analysis of the process of a man

computing led him to the formulation of his Turing machines. It was his con-

struction of a universal Turing machine von Neumann regarded as one of the

most significant results of Turing’s paper in the context of building real com-

puters, and was thus an important influence on von Neumann’s work in this

context. Turing himself also got involved in the project of designing a “real” uni-

versal machine, i.e., a digital general-purpose stored program computer, and,

was well-aware of the fact that these computers are in fact the physical coun-

terpart of his universal machine.

Some years after the publication of his seminal paper, it was war, and Turing

200 CHAPTER 4. THE COMPUTER.

started to work at Bletchley park as a cryptanalyst. As is described in [Hod83]

Turing made many important contributions during the war, his background in

mathematical logic and the idea of automated processes being “extraordinar-

ily relevant” in this context. One of his first successes was his contribution to

the development of the British Bombe, a device more general than the Polish

Bomba in that it was capable of breaking all German Enigma message. The

crucial contribution by Turing to this generalization was the mechanization of

certain logical deductions ([Hod83], pp. 179–181):

It was Alan [...] who first formulated the principle of mechanising a search for

logical consistency based on a ‘probable word’. The Poles had mechanised a

simple form of recognition, limited to the special indicator system currently em-

ployed; a machine such as Alan envisaged would be considerably more ambi-

tious, requiring circuitry for the simulation of ‘implications’ flowing from a plug-

board hypothesis, and means for recognising not a simple matching, but the ap-

pearance of a contradiction. [...] The idea of automating processes was familiar

enough to the twentieth century; it did not need the author of Computable num-

bers. But his serious interest in mathematical machines, his fascination with the

idea of working like a machine, was extraordinarily relevant. Again, the ‘con-

tradictions’ and ‘consistency’ conditions of the plugboard were concerned only

with a decidedly finite problem, and not with anything like Gödel’s theorem [...]

But the analogy with the formalist conception of mathematics, in which impli-

cations were to be followed through mechanically, was still a striking one.

Turing also played an important role in breaking the Fish code, messages that

had a special encoding used for Hitler’s communications. The code was finally

cracked by the Colossus machines.22

It was also during the war that Turing had the occasion to build up his knowl-

edge of electronic technology and he even developed his own speech secrecy

system, with the aid of Donald Bailey, called Delilah.23

22The reader is referred to [Hod83] for more details on Turing’s work during the war.
23A transcription of a report dated 6 June 1944 by Turing, with the title Speech

System ‘Delilah’ - Report on Progress, can be found at Andrew Hodges website:

http://www.turing.org.uk/sources/delilah.html.

4.1. THE FIRST COMPUTERS 201

So to what extent did Turing’s theoretical work on computing machines, i.e. his

1936 paper, influence the development of early computing? We already know

that his work must have had an important influence on von Neumann’s work on

computers. Turing’s work also played its role in the development of the Colossi

machines, special-purpose machines, that were developed at the Post Office

Research Station, Dollis Hill, in close collaboration with people from Bletchley

Park. In [Ran80] Randell discusses the influence Turing’s mathematical work

might have had on these machines. Randell’s paper starts with a quote from

the explanatory caption accompanying a set of photographs of COLOSSUS that

were only made available by the British governement in 1975 ([Ran80], p. 48):

Babbage’s work in 1837 first established the logical principles of digital comput-

ers. His ideas were developed further in Turing’s classical paper in 1936. The

COLOSSUS machine produced by the Department of Communications of the

British Foreign Office, and put into operation in December 1943, was probably

the first system to implement these principles successfully in terms of contem-

porary technology [...] The requirement for the machine was formulated by Pro-

fessor M.H.A. Newman, and the development was undertaken by a small team

led by T.H. Flowers. A. Turing was working in the same department at that time,

and his earlier work had its full influence on the design concept.

Although this quote states the influence of Turing’s paper on the design of the

COLOSSUS, it is far from clear how far this influence actually went. As is noted

by Randell – whose main information came from several interviews with people

involved, since, at that time, not much documents had been made available

yet – Turing’s influence on the Colossi machines should not be overestimated.

However, his 1936 paper was well-known ([Ran80], p. 78):

[...] the early projects that the Dollis Hill people carried out for Bletchley Park,

were done in close cooperation with Turing [...] Apparently he did not have any

direct involvement in, or influence on, the design or use of COLOSSUS. His visits

to Dollis Hill occurred prior to the start of the COLOSSUS work, and Newman

does not remember his presence at any of the meetings that that Newman and

Flowers held at Bletchley Park, Turing’s prewar work on computability was well

202 CHAPTER 4. THE COMPUTER.

known, and virtually all of the people I have interviewed recollect wartime dis-

cussions of his idea of a universal automaton.[...] Good has written that “New-

man was perhaps inspired by his knowledge of Turing’s 1936 paper”. However,

Newman’s view now is that although he and his people all knew that the planned

COLOSSUS was theoretically related to a Turing machine, they were not con-

scious of their work having any dependence on either these ideas or those of

Babbage.

It is thus clear that Turing’s paper might have played its role in the development

of the Colossi machines, but it is not completely clear how far this influence ex-

tends.

More important here is Turing’s own work on computing machines. By the end

of the war, J.R. Womersley who had become a member of the National Physics

Laboratory (NPL) in the U.K. and headed the new mathematics division of the

NPL, made a trip to the U.S. He was allowed access to the brand new ENIAC

and informed of the EDVAC report. He already knew Turing’s paper, and, af-

ter he returned from his visit to the U.S. he made arrangements with Newman

to meet with Turing. Womersley hired Turing and some months later Turing

produced his ACE report [Tur45], describing the design of an Automatic Com-

puting Engine, a general-purpose digital computer with stored programs.24 In

the introduction of the ACE report, Turing makes explicit the typical feature of

the ACE as compared to other machines ([Tur45], p. 20):

Calculating machinery in the past has been designed to carry out accurately and

moderately quickly small parts of calculations which frequently recur. [...] It is

intended that the electronic calculator now proposed should be different in that

it will tackle whole problems. Instead of repeatedly using human labour for tak-

ing material out of the machine and putting it back at the appropriate moment

all this will be looked after by the machine itself.

Turing then sums up three basic advantages of his ACE. We will not give them

here, but it is maybe interesting to point out that they concern the elimination

24The paper by Carpenter and Doran [CD77] gives a detailed analysis of Turing’s ACE report

and makes a comparison between Turing’s report and von Neumann’s first draft for the EDVAC.

4.1. THE FIRST COMPUTERS 203

of human work, to speed-up the computing process and to avoid errors. In the

spirit of his 1936 paper, he also makes the analogy between what a computer

needs to compute, as compared to what a man needs in computing ([Tur45], p.

20–21):

It is evident that if the machine is to do all that is done by the normal human

operator it must be provided with the analogues of three things, viz. firstly, the

computing paper on which the computer writes down his results and his rough

workings; secondly, the instructions as to what processes are to be applied; these

the computer will normally carry in his head; thirdly, the function tables used

by the computer must be available in appropriate form of the machine. These

requirements all involve storage of information or mechanical memory.

The design of the ACE was based on the idea of stored programs. The fact that

the human work could be reduced to a minimum was considered as one of the

basic advantages of this computer. Indeed, all the human operator has to do is

to write the program and feed it to the machine, which will then do all the work

([Tur45], p. 21):

It is intended that the setting up of the machine for new problems shall be vir-

tually only a matter of paper work. Besides the paper work nothing will have to

be done except to prepare a pack of Hollerith cards in accordance with this pa-

per work, and to pass them through a card reader connected with the machine.

There will positively be no internal alterations to be made even if we wish sud-

denly to switch from calculating the energy levels of the neon atom to the enu-

meration of groups of order 720. It may appear somewhat puzzling that this can

be done. How can one expect a machine to do all this multitudinous variety of

things? The answer is that we should consider the machine as doing something

quite simple, namely carrying out orders given to it in a standard form which it

is able to understand.

As is clear from these quotes, Turing regarded the ACE as a true general-purpose

stored program computer, with a clear focus on the programmability of the

machine such that it can solve all different kinds of problems. Indeed, Tur-

ing conceived of the ACE as a machine that should be able to solve a variety of

204 CHAPTER 4. THE COMPUTER.

problems, i.e., “those problems which can be solved by human clerical labour,

working to fixed rules, and without understanding [...]”. Among the examples of

problems that Turing considers his machine to be capable to solve, are, jigsaw

puzzles and playing chess. Given the general-purpose character of the ACE in

the way Turing understood it, and the consequent need for the ACE to be a truly

programmable machine, one can contrast Turing’s design with von Neumann’s

first draft. As Martin Davis points out ([Dav01b], p. 188):

Turing’s ACE was a very different kind of machine from von Neumann’s EDVAC,

corresponding closely to the different attitudes of the two mathematicians. Al-

though von Neumann was concerned that his machine be truly “all-purpose,” his

emphasis was on numerical calculation and the logical organization of the ED-

VAC (and of the later johnniacs) was intended to expedite this direction. Since

Turing saw the ACE being used for many tasks for which heavy arithmetic was

inappropriate, the ACE was organized in a much more minimal way, closer to

the Turing machines of the Computable numbers paper. Arithmetic operations

were to be carried out by programming – by software rather than hardware. For

this reason, the ACE design provided a special mechanism for incorporating pre-

viously programmed operations in a longer program [i.e. the use of stacks]

Turing clearly knew the EDVAC report and even recommends the reader to read

his report in conjunction with von Neumann’s.

In a lecture to the London Mathematical Society on 20 February 1947 [Tur47],

Turing made an explicit comparison between his ACE and the universal Tur-

ing machine, and it is thus clear that, as far as Turing is concerned, he indeed

understood the ACE as a truly logical machine, or, an engine of logic [Dav87].

After having sketched the advantages of going digital, i.e., greater accuracy and

applicability to a wide range of problems, Turing says ([Tur47], p. 106–107):

Some years ago I was researching on what might now be described as an inves-

tigation of the theoretical possibilities and limitations of digital computing ma-

chines. I considered a type of machine which had a central mechanism, and an

infinite memory which was contained on an infinite tape. This type of machine

appeared to be sufficiently general. One of my conclusions was that the idea of

4.1. THE FIRST COMPUTERS 205

a ‘rule of thumb’ process and a ‘machine process’ were synonymous.[...] It was

essential in these theoretical arguments that the memory should be infinite [...]

Machines such as the ACE may be regarded as practical versions of this same

type of machine. There is at least a very close analogy. Digital computing ma-

chines all have a central mechanism or control and some very extensive form of

memory. The memory does not have to be infinite, but it certainly needs to be

very large.

Turing thus clearly conceived of his ACE as a universal machine. But this is not

where it stopped for Turing.

Although his Turing machines were developed with the idea of finding a for-

mal equivalent of the process of a man computing a number, and the ACE

could thus be regarded as the physical embodiment of this process, Turing no

longer wanted to restrict these computing machines to computability of num-

bers by a human being, but wanted to know what else these machines are ca-

pable of. During his lecture he made this idea very explicit and later devoted

several papers to the subject of the possibility of building intelligent machin-

ery [Tur69, Tur50]. To Turing’s mind, the machine should be educated just as a

child needs training. And as a child, and any adult human being, often makes

mistakes, this machine should also be allowed to make mistakes. Turing in fact

regarded the possibility of the machine to make mistakes, as a precondition for

it to become intelligent ([Tur47], pp. 123–124):

[...] I would say that fair play must be given to the machine. Instead of it some-

times giving no answer we could arrange that it gives occasional wrong answers.

But the human mathematician would likewise make blunders when trying out

new techniques. It is easy for us to regard these blunders as not counting and

give him another chance, but the machine would probably be allowed no mercy.

In other words then, if a machine is expected to be infallible, it cannot also be

intelligent.

The ACE was never built as Turing had envisioned it. After several difficulties

with finding resources and the right people to effectively build the ACE, due to

bad management at the NPL, Turing had had enough and in the end accepted

206 CHAPTER 4. THE COMPUTER.

a job at Manchester University. A small version of the ACE was finally built,

called the pilot ACE, but Turing was not really involved in its actual construc-

tion. In the meantime several computers were being built at several locations.

In Manchester, the Mark I was constructed. Instead of being involved in its

construction, Turing now really began to use computers to do research, directly

programming in the binary machine language.

In 1951, Turing wrote what might be the first programming book, for the new

Mark II computer in Manchester. We will not discuss this book in any detail

here, but, it is important to note that Turing again made an explicit analogy be-

tween human and machine computers, in the spirit of his 1936 paper. However,

as was also the case for the ACE, focus is now much more on the software aspect

of the machine, rather than on hardware, emphasizing that the machine itself

should not be too complicated, since it only has to obey instructions that can

be made explicit enough, without the need for complicated hardware. We will

give a rather long quote from the programmer’s book here, because it beauti-

fully shows Turing’s way of reasoning ([Tur51b]):25

Electronic computers are intended to carry out any definite rule of thumb process

which could have been done by a human operator working in a disciplined but

unintelligent manner. The electronic computer should however obtain its results

very much more quickly. The human computer with whom we are comparing it

may be imagined as supplied with various computing aids. He should have a

desk machine, paper to write his results on, and more paper on which is written

a detailed account of how the calculation is to be carried out. These aids have

their analogous in the electronic computer. The desk machine is transformed

into the computing circuits, and the paper becomes “the information store” or

more briefly the “store”, whether it is paper used for results or paper carrying

instructions. There is also a part of the machine called the control which corre-

sponds to the computer himself. If his possible behaviour were very accurately

represented this would have to be a formidable complicated circuit. However we

really only require him to be able to obey the written instructions and those can

25We would like to thank the creators of the Turing digital archive, available at

http://www.turingarchive.org/, for having made available many texts by Turing.

4.1. THE FIRST COMPUTERS 207

be made so explicit that the control can be quite simple. There remain two more

components of the electronic computer. These are the input and output mech-

anisms, by which information is to be transferred from outside into the store or

conversely. If the analogy of the human computer is to be maintained these parts

would correspond to his ears and voice, by which he communicates with his em-

ployer. [...] The information stored on paper by the human computer will mostly

consist of sequences of digits drawn from 0, 1, ..., 9. There may also be other sym-

bols such as decimal points, spaces, etc. and there may be occasional remarks in

English, Greek letters etc. There may in fact be anything from 10 to 100 different

symbols used, and there is no particular need to decide in advance how many

different symbols will be concerned. With an electronic computer however such

a decision has to be made; the number of symbols chosen is ruled very largely by

engineering considerations, and with the vast majority of machines the number

is two. [...] It is not difficult to see that information expressed with one set of

symbols can be translated into information expressed with another set of suit-

able conventions [...] Although we shall not need these translation conventions

we shall often wish to interpret a sequence of 0’s and 1’s as meaning some in-

teger.[...] Although the scale of two is appropriate for use within an electronic

computer it is not so suitable for work on paper, and it is not possible to avoid

paper work altogether. Without attempting to explain the reasons at this stage let

us accept that there are occasions when it is desirable to write down on paper the

sequence of symbols stored in some part of the machine. Suppose for instance

that the sequence was 100011101110100010011000111001010101101100100110.

The copying of such sequence is slow and very liable to inaccuracy. It is very dif-

ficult to ‘keep one’s place’. It is therefore advisable to represent such a sequence

on paper in a different form not subject to these difficulties. The method chosen

is to divide the sequence into block of five [...] and then to replace each block

by a single symbol, according to the table below. The above given sequence then

becomes z“SLZWRFWN.[...]

As is clear from this quote, Turing was very much aware of the fact that limiting

the number of symbols in advance is not a necessary restriction for humans,

but it is necessary for the machine. Since it was very obvious for Turing that

208 CHAPTER 4. THE COMPUTER.

one can translate any information expressed with a given set of symbols to an-

other set of symbols, the restriction of the binary alphabet is in no way funda-

mental. The fact however, that it is not very convenient to work out a program

in binary for us humans, it becomes important to develop an intermediary lan-

guage between humans and computers, i.e., replacing blocks of binary digits by

other symbols, since this makes the programming more efficient. Or, to state

it in Hopper’s terms: “We were after getting programs written faster, and getting

answers for people faster.” Nowadays, the language Turing describes in his pro-

gramming book would not really be regarded as very much adapted to the user,

since it is still rather close to machine language. Indeed, it has become very

usual to replace the blocks of bits by human language words or symbols that

are recognizable by most humans, like “if”, “next”, “+”,...

It is always interesting to go back to the roots of something. In case of program-

ming languages it is significant to see how programming evolved from phys-

ical rewiring to languages that got further and further removed from the ma-

chine language. In fact, one might well say that the Graphical User Interface, is

the “programming” most people are used to nowadays. We regret the fact that

most have completely forgotten what is actually going on when they e.g. push

a mouse button to select a sequence of letters in a word document. It is prob-

ably one of the reasons why people can’t stand it when their computer makes

mistakes: they no longer know the machine that has become part of their lives.

For now we have only looked at the developments of the earliest computers

in the U.S. and the U.K. As should be clear, some of these developments can

be connected with the developments from the previous chapters, others can’t.

Before drawing any definite conclusion in this context, it is important to have

a closer look at the development of computers by the “enemy”: the Germans,

centered around the work of one person, Konrad Zuse.

4.1.3 Zuse’s Z1, Z2, Z3, Z4 and Plankalkül

In [Bau80], Bauer very clearly describes the very different situation Konrad Zuse

was facing at the end of the war ([Bau80], p. 505–506):

4.1. THE FIRST COMPUTERS 209

In April 1945, a truck left Göttingen, heading for Bavaria. It carried an instrument

that had been built in Berlin during the war for the Aerodynamische Versuch-

sanstalt [...] and had been brought to their Göttingen laboratory a few weeks be-

fore. Here it had been put into operation for the first time. But then, the Russian

army approached Göttingen. The instrument had the code word V4 (Versuch-

modell 4) and because of the parallel with V1 and V2, the code word for buzz

bombs, the man who had built the instrument got permission to bring it “in

Sicherheit.” The adventurous journey via Hof, München, and Ettal ended at the

village of Hinterstein near Hindelang, a small town in the Bavarian Alps, in a

province called Algäu, near the Austrian border. A few days later, North African

troops of the French army occupied Hinterstein. They found may things, but not

the instrument that was hidden in a cellar. [...] In the winter of 1944-1945 a Swiss

soldier was on duty in the Rätikonand Silvretta mountains, at the border of Aus-

tria, some 50 miles away from Hinterstein [...] Later he would use the instrument

the fugitive from Prussia had built. This fugitive was Konrad Zuse [...] He had [...]

started in 1934 to build a computer that could ease the calculations of statics. V4

was his fourth model; V3, which was destroyed in 1944 in a bomb attack, was the

first fully programmable computer when it became operational in 1941. [...]

Zuse was born in Berlin. In 1935 he got his master degree in engineering at the

Technische Hochschule Berlin-Charlottenburg (nowadays, Technische Univer-

sität Berlin). As an engineer, Zuse was often confronted with pure calculations,

which he found too time-consuming. It was exactly this tremendous work in-

volved in making certain calculations, that led Zuse to the idea of constructing

machines that could take over this laborious task ([Zus80], pp. 611–612):

I was a student in civil engineering in Berlin. Berlin is a nice town and there were

many opportunities for a student to spend his time in an agreeable manner, for

instance with the nice girls. But instead of that, we had to perform big and awful

calculations. Also later as an engineer in the aircraft industry I became aware of

the tremendous number of monotonous calculations necessary for the design of

static and aerodynamic structures. Therefore, I decided to design and construct

calculating machines suited to solving these problems automatically.

210 CHAPTER 4. THE COMPUTER.

Zuse can be considered as a real computer pioneer. His work has to our mind

been neglected too much, standing in the shadow of the more heroic work by

the Allies. In a way he had bad luck to be born in Germany. Zuse’s work very

clearly shows how engineers should not necessary be regarded as non-logicians

who do not take into account logical considerations leading to more “elegant”

designs for computers, and vice versa.

Contrary to Eckert, Mauchly, Turing and von Neumann, Zuse worked in rela-

tive isolation, did not have many resources, and, quite naturally, was unaware

of the Top Secret work of the Allies. It is thus the more amazing to see how many

ideas he invented and implemented. At the time he developed his major ideas,

Zuse was neither aware of Turing’s On computable numbers, nor of Babbage’s

work.26.

The Z1, a mechanical computer, was constructed in his parent’s living room,

and finished in 1938. The machine used punched cards, included a 2-dimensional

storage, a selection mechanism that connects storage locations with the arith-

metic unit, and a control unit. Significant to note is that, already in the first

machine he developed, Zuse used binary representations instead of decimals!

The machine did not work well [Zus80], except for the storage unit, and Zuse

decided to change to electromechanical technology, using relays. The work on

this relay machine, the Z2, was started in 1937.

Unlike Mauchly and Eckert, already from the beginning, Zuse wanted to base

the development of his computers on a solid theoretical foundation. He devel-

oped what he called a Bedingungskombinatorik, combinatorics of conditions,

he could use to easily describe circuits. His former mathematics teacher read

a report describing the calculus Zuse developed for this purpose, and advised

Zuse to read the books by Hilbert and Ackerman, Hilbert and Bernays, Frege

26This is acknowledged by Zuse in his autobiography: “When I began to build the computer,

I neither understood anything about computing machines nor had I ever heard of Babbage. It

was only many years later, when my constructions and switches were basically set, that an exam-

iner from the American Patent Office showed me Babbage’s machines. The otherwise extremely

thorough German examiners had not been acquainted with Babbage.” ([Zus93], p. 34) “It also

illustrates just how hard I tried to build bridges between theoretical logic and practice. Unfortu-

nately, I was not yet familiar with the then already published work of Turing [Tur37].” ([Zus93],

p. 53).

4.1. THE FIRST COMPUTERS 211

and Schröder, which he did [Bau80]. Having made himself more familiar with

propositional calculus and predicate calculus, he determined that the propo-

sitional calculus was basically isomorphic to his Bedingungskombinatorik, but

he found that the mathematics had been worked out more exactly. Further-

more, propositional calculus provided him with rules he was not familiar with

[Zus93]. Having made himself more acquainted with logic as it already existed

at that time, he could now rewrite his calculus in these terms. This resulted in

Einführung in die allgemeine Dyadik [Zus37],27 which is in fact as revolutionary

a paper as Shannon’s thesis [Sha38].28 As Zuse explains ([Zus80], p. 614–615):

Right from the beginning I tried to base the whole development on a new and

solid theoretical foundation. At first, the analogies between switching circuits

and the calculus of propositions were discovered and a switching algebra was set

up.[...] Unfortunately, I never published my ideas concerning this matter. Later

on I learned that there were some papers, two in German language by Hansi

Piesch and Eder, and one in English language by Shannon. But I missed there

the consequent confrontation with the calculus of propositions. For us the terms

“And”, “Or”, “Not” belonged to our daily language. We really worked with them

and made the step to apply the mathematical logic to the computer design. I

translated the logical rules systematically into switching algebra. [...] So, switch-

ing algebra was consequently applied in all the computers we constructed. When

Schreyer changed to electronic technology he first had only to design the switch-

ing elements corresponding to the three propositional operations: conjunction,

disjunction, and negation. After that he was able to translate one to one the al-

ready proven diagrams for the electromechanical machines.

27We would like to thank the creators of the Zuse digital archive, available at

http://www.zib.de/zuse/, for having made available the work by Zuse.
28It is maybe also interesting to note that Zuse, given his familiarity with [AH28], consid-

ered the Entscheidungsproblem in the context of his Dyadik: “So können die Normalformen

dazu dienen, äusserlich verschiedenen Schaltungen miteinander zu vergleiichen, indem beide

auf die Normalform gebracht werden. [...] Das ist nicht immer einfach, und in der theoretis-

chen Behandlung von Schaltungen werden wir später auf ähnliche Probleme Stossen, wie sich in

der formalen Logik unter den Namen “Funktionenkalkül”, “Prädikatenkalkül”, “Entscheidung-

sproblem” usw. bekannt sind.” ([Zus37], p. 11). He did not work this out in any detail however.

212 CHAPTER 4. THE COMPUTER.

Indeed, given his Dyadik, it was very easy to make the switch from, e.g., electro-

mechanical machines to electronic machines. Using this abstract scheme, the

design of Z2 could easily be translated to an electric version. In 1937, Zuse be-

gan to study electronic circuits, using vacuum tubes, together with Schreyer.

Although both Zuse and Schreyer had seen how much speed they could obtain

with electronic devices, they had to give up on the idea ([Zus80], p. 619):

During the war we submitted the concept of an electronic computer with 2000

tubes to the German Government Research authorities, but their reaction was

negative. We would never have attempted to construct a computer with 18000

tubes and I admire the heroism shown by Eckert and Mauchly.

In 1939, the relay-computer Z2 was almost finished when Zuse had to join the

army. In 1940 he worked for Henschel Flugzeugwerke and could finish his Z2

over the weekends [Bau80]. Zuse gave a demonstration of the Z2 for the Deutsche

Versuchsanstalt für Luftfahrt (DVL) and they gave him approval to continue

work on the Z3, which was completed in 1941. Although not a stored program

computer, it has been proven by Rojas [Roj98] that the Z3 can in fact be consid-

ered in principle as a universal computer, i.e., in the way present-day comput-

ers can be considered universal.29 After the Z3, Zuse also build the Z4, which

was the only machine that survived the war.

For Zuse, his Dyadik were the “die theoretische[n] Grundlage[n] [für die] mech-

anische[n] Durchführung von Rechnungen” ([Zus37], p. 3), i.e., the theoreti-

cal foundation for the mechanical execution of computations. Computations

were, in his mind, not solely restricted to calculation with numbers. He un-

derstood it as something far more general, Zuse’s understanding here being

very close to Turing’s in the context of computing machines, as discussed above

([Zus37], p. 1):

In the following we want to develop a theory to mechanically solve schematic

thinking tasks. As schematic thinking operations we see all formulae, deriva-

tions, algorithms etc. for which specific resulting informations (Angaben) can

29For more detailed information on Zuse’s Z-machines, the reader is referred to [Roj00].

4.1. THE FIRST COMPUTERS 213

be derived from output states for all considered cases after a clear rule. Calcu-

lating with numbers belongs to the lowest level; the process of calculating is so

schematic and clear that mechanical solutions are already applied to a consider-

able extent. [...] but we want to note already now, that calculating with numbers

is only a special domain within general calculation. The question what other do-

mains of logic and their applications can be developed, will be investigated when

we can oversee more clearly the theory to be constructed here in all its possibil-

ities. Under “calculation” we understand: Form informations out of given infor-

mations after given rules. Thus, we first have the concept information. These can

have very different meanings, e.g., numbers, statements, names, codes, military

degrees, data, commands, messages, deductions etc.30

As is clear from this quote, Zuse had a very broad, “general-purpose”, con-

ception of computability, and identifies it with processes that produce certain

informations (Angaben), from other informations, where these informations

can, in a way, almost be anything. Given this generalized interpretation of

computability, it only takes a small step to connect computability with human

thinking. This is indeed the step Zuse made ([Zus80], p. 614):

General considerations concerning the relations between calculating and think-

ing followed. I realized that there is no border line between these two aspects and

30“Im folgenden soll eine Theorie entwickelt werden, um schematische Denkaufgaben mech-

anisch zu lösen. Als schematische Denkoperationen gelten alle die Formeln, Ableitungen, Al-

goritmen und dergl., bei denen für alle in Frage kommenden Fälle nach einer klaren Vorschrift

ausgegebenen Ausgangszustände bestimmte Resultatangaben abgeleitet werden. Zur unter-

sten Stufe gehört das Rechnen mit Zahlen; hier ist der Rechnungsgang so schematisch und

klar, dass mechanische Lösungen bereits in Großem Umfang angewandt werden.[...] jedoch

wollen wir jetzt schon beachten, dass das Zahlenrechnen nur eine Spezialgebiet des allge-

meinen Rechnens ist. Die Frage, welche anderen Gebiete der Logik und ihrer Anwendungen

sich durch “Rechnen” erschliessen lassen, wollen wir erst untersuchen, wenn die hier aufzustel-

lende Lehre in ihren Möglichkeiten klarer zu überblicken ist. Unter “Rechnen” willen wir also

verstehen: Aus gegebenen Angaben nach einer Rechenvorschrift neue Angaben zu bilden. Wir

haben also zunächst den Begriff der Angaben. Diese können sehr verschiedene Bedeutung

haben, z.B; Zahlen, Aussagen, Namen, Kennziffern, Dienstgrade, Daten, Befehle, Nachrichten,

Schlussfolgerungen u.s.w.” This translation as well as the following translations from Zuse are

due to Maarten Bullynck. Remark that the second sentence is grammatically ambiguous if not

unclear in the original and in the translation.

214 CHAPTER 4. THE COMPUTER.

by 1938 it was already perfectly clear to me that the development would progress

in the direction of the artificial brain. At that time I knew scarcely anything about

the working method of the human brain. [...] I took these ideas very seriously

and this may have influenced my whole philosophy of the further development.

At that time there was practically nobody to discuss with me the consequences

of the possible innovations following this line. Even ten years later when – after

the war – I became acquainted with the pioneer work on the other side of the

Atlantic I sometimes had the impression that they were playing with computers

like children play with matches without overlooking the whole scope of the new

field.

It is very remarkable, that Zuse very clearly understood that any of these “infor-

mations”, and the processes that manipulate them to produce other “informa-

tions”, could be encoded in the binary system, i.e., he knew that instructions

could be encoded as numbers. This idea is basic to the stored program idea.

Zuse indeed considered this possibility, but, as was said, he never implemented

it in one of his Z1–4-machines. To implement both instructions and data in the

same hardware location, was understood as closing a contract with the devil,

and Zuse thus searched for other solutions to be able to build the kind of ma-

chines he envisioned ([Zus80], p. 616):

The idea of general calculating or information processing, as we say today, in-

duced me to consider that the program, too, is information and can be processed

by itself or by another program. This general concept was elaborated in all conse-

quences in the Plankalkül. In hardware it means that we not only have a control-

ling line going from left to right, but also from right to left. I had the feeling that

this line could influence the whole computer development in a very efficient but

also very dangerous way. Setting up this connection could mean making a con-

tract with the devil. Therefore, I hesitated to do so, being unable to overlook all

the consequences, the good as well as the bad. So first I concentrated on theory.

This led to the Plankalkül. [...] My colleagues on the other side had no scruples

about the problem I just mentioned. John von Neumann and others constructed

a machine with a storage for all kinds of information including the program. This

idea may have been trivial, as soon as the programs were binary coded and there

4.1. THE FIRST COMPUTERS 215

existed storage units for storing any binary coded information. This requirement

was already fulfilled by the machines Z1 to Z4 and others. Besides this, the idea

of storing the program was already mentioned for instance in one of my patent

applications in 1936. Other pioneers may have had the same idea rather early. I

think it was the special organization of the machine of John von Neumann which

opened the door for universal calculating. He gave the signal “all clear” for the

scientists but for the devil, too. [...] My own design for future machines on paper

were more structured with instructions stored independently and special units

for the handling of addresses and subroutines nested in several levels.

For Zuse the idea of stored program was not something he wanted to imple-

ment in hardware, he did not want to locate instructions and data in the same

storage, and he indeed searched for another solution resulting in his Plänkalkul.

In the meantime he had also designed a machine that was never build, the

Z394, which was based on the logical operations, AND, OR and NOT [Zus44].

This machine can be considered as the hardware for Plankalkül. As is noted

by Bauer, he hoped in this way to build a “Planfertigungsgerät” – a device that

prepares programs, a separate computer that could e.g. be connected to the

Z4. Instead of storing instructions and data in the same storage, this Plan-

fertigungsgerät could work as a kind of compiler in which programs could be

processed by themselves. In this way, Zuse conceived of a special hardware

unit to prepare a program, that was connected to the part of the computer that

executes the purely numerical operations ([Zus80], p. 616–617):

In our situation the only realistic way to process a program by itself was to build

a separate computer for this purpose. Thus, the construction of the comput-

ers for numerical calculations could be continued without drastic modifications.

We called this type of machine “Planfertigungsgerät”, that means, a special com-

puter to make the program for a numerical sequence controlled computer. This

device was intended to do about the same sophisticated compilers do today. But

in 1945 we had to stop this interesting development.

Although Zuse did not want to use hardware stored programs he did know how

to encode programs as numbers, and he did understand the “computational”

216 CHAPTER 4. THE COMPUTER.

powers of logic. In fact, in his patent description of the Z394 he explicitly stated

that he considered logic to be capable to compute anything computable he

considered as computable. And we already know how general his intuitive con-

ception of computability was ([Zus44] pp. 2–3):

The inventor has recognized that all calculation problems can be resolved into

the elementary operations of theoretical logic. These calculation problems do

not only consider calculation with numbers, but more generally also calcula-

tion with states, occurrences and conditions. In the context of this invention,

we understand under “calculation” the derivation of resulting informations from

arbitrary informations after a rule. The invention wants to build a calculation in-

strument, that fulfills the formalism of propositional logic, with this instrument

one can execute autonomically all calculation processes after the definition [m.i.]

given supra, i.e., not only number calculations.31

Zuse considered this machine as a “Logistische Rechenmaschine” [Zus45a], a

logical machine, contrary to what he called his “algebraic machines”, Z1, Z2,

Z3 and Z4. We think it reasonable to regard Zuse’s conception of this machine

as a universal machine, in the more intuitive sense of the word. For him, this

machine should be able to solve any general combinatorial problem or other

problems ([Zus45a], p. 9):

The result of these developments will be the general calculation machine, that

solves general combinatorial problems and mechanical thinking problems on

31“Der Erfinder hat erkannt, dass alle Rechenaufgaben in die Grundoperationen der theo-

retischen Logik aufgelöst werden können. Diese Rechenaufgaben betreffen hier aber nicht

nur ein Rechnen mit Zahlen, sondern darüber hinaus ganz allgemein auch ein Rechnen

mit Zuständen, Begebenheiten und Bedingungen. Im Rahmen dieser Erfindung wird also

unter “Rechnen” das Ableiten von Resultatangaben aus irgendwelchen Angaben nach einer

Vorschrift verstanden. Die Erfindung stellt sich die Aufgabe eine Rechenverrichtung zu bauen,

die den Formalismus des Aussagenkalküls der theoretischen Logik genügt, mit dieser Vorrich-

tung kann man dann alle Rechenvorgänge gemäss obiger Definition [m.i.], also nicht nur alle

Zahlenrechnungen, entsprechend, selbstätig durchführen.” The translation is due to Maarten

Bullynck.

4.1. THE FIRST COMPUTERS 217

the basis of applied logistic. I call this development the “logistic calculation ma-

chine”.32

As was said, this logistic machine can be considered as the hardware counter-

part of Plankalkül. Plankalkül can be regarded as one of the first program-

ming languages ever, and influenced Bauer and Rutishauer for their contri-

butions to the development of ALGOL.33 Scrolling through the on-line Zuse

archive (http://www.zib.de/zuse/) one sees that already in 1941 there are notes

on Plankalkül. A hand-written text denoted by the editors of the digital archive

as the Urschrift des Plankalküls [Zus45b] is dated 1945, and is basically the writ-

ten version of [Zus72]. The title of this Urschrift however is not Plankalkül, but

Theorie der angewandten Logistik, “theory of applied logistic”, with the -ik in

Logistik underlined.

Although we will not discuss this language in detail here,34 it is important to

mention some of its possibilities, summarized in the following quote ([Rojnd],

p. 1):

The Plankalkül was the software counterpart of the logistic machine. Complex

structures could be built from elementary ones, the simplest being a single bit.

Also, sequences of instructions could be grouped into subroutines and functions,

so that the user had only to deal with a very abstract instruction set that masked

the complexity of the underlying hardware. The Plankalkül exploited the con-

cept of modularity, so important today in computer science, almost in an ex-

tremist way: several layers of software make the hardware transparent for the

programmer. The hardware itself is able only to execute the absolutely minimal

instruction set.

32“Das Ergebnis dieser Entwicklungen wird die allgemeine Rechenmaschine sein, die auf

der Grundlage angewandter Logistik allgemeine kombinatorische Probleme und mechanische

Denkaufgaben löst. Ich nenne diese Entwicklung die “Logistische Rechenmaschine”.”
33The paper by Bauer [Bau80] discusses these matters. Rutishauer knew Z4, and programmed

it, once it was moved to the Institute for Applied Mathematics of ETH (Swiss Federal Polytech-

nic Institute).
34For a detailed discussion on Plankalkül the reader is referred to [BW72].

218 CHAPTER 4. THE COMPUTER.

The basic principle of the Plankalül is indeed the bit,35 a feature that allows for

the hardware to be very simple. In his [Dav01b] Martin Davis has pointed out

that the philosophy behind Turing’s ACE had been to keep the hardware as sim-

ple as possible. As should be clear, Zuse’s general philosophy is in this respect

very similar to (and predating) Turing’s with respect to computing machines,

even if Zuse was an engineer and did not know about the universal Turing ma-

chine at that time. There are more similarities to be found between Zuse and

Turing. For example, Zuse had a very broad conception of what should be con-

sidered computable, emphasizing that computing is not restricted to calcula-

tions with numbers. In this respect, it is interesting to note that already in 1941

one finds notes for developing a “Schachprogramm”, a chess program, as a pre-

liminary investigation for Plankalkül.36 Later, Zuse describes that he wanted to

investigate the efficiency and generality of the Plankalkül by applying it to chess

problems ([Zus80], p. 623):

It was interesting for me to test the efficiency and the general scope of the Plankalkül

by applying it to chess problems. I learned to play chess especially for this pur-

pose. This field seemed to me suited for the formulation of rather sophisticated

data structures, nested conditions, and general calculations.

For Zuse, his Plankalkül is a real “universal” language, as he would later point

out, in the sense that he considered it capable to compute anything he con-

sidered computable. For him, computability was not restricted to numerical

calculations, but could be generalized even to certain thinking processes. It is

35This was rather important for Zuse, especially given the fact that in contemporary lan-

guages, the bit is often only tolerated as a Boolean object for controlling conditional branching:

“The first principle of the Plankalkül is: data processing begins with the bit. [...] Since about 20 to

30 years the priority of numerical calculation has only slowly been overcome; and in this time, in

conventional computers the bit has been tolerated only as a Boolean object for controlling con-

ditional branching and so on. In contrast, the Plankalkül is fundamentally based on the bit. To

express logical relations I used the notation and results of the propositional and the predicate

calculus. Any arbitrary structure may be described in terms of bit strings; and by introducing

the idea of levels we can have a systematic code for any structure, however complicated, and can

identify any of its components.” [Zus80], pp. 621–622.
36The reader is referred to the digital Zuse archive http://www.zib.de/zuse/ to check this.

4.1. THE FIRST COMPUTERS 219

interesting to note that he effectively tested this generality of his language, by

applying it to several different problems, like chess problems: ([Zus80], p. 625)

Behind the Plankalkül there is a special philosophy based on my early convic-

tion, that there is a steady way from simple numerical calculation to high-level

thinking processes. In order to test the universality of this language I applied it

for several unusual fields. Thus, for instance, I made some steps in the direction

of symbolic calculations, general programs for relations, or graphs, as we call it

today, chess playing, and so on.

Zuse did more than building computers and developing a programming lan-

guage. He for example developed self-reproducing automata, independent of

von Neumann and Ulam, but contrasted his with that of von Neumann by sta-

ting that for him this was an engineering problem.37 We will not discuss these

other research interests by Zuse here since they lie beyond the scope of our dis-

cussion here.

4.1.4 Conclusion.

The “behemoth” ENIAC, as Martin Davis has described it, was a machine in-

vented and constructed by engineers. The basic advantage of the EDVAC design

over ENIAC is that it is more general purpose and includes the idea of stored

programs. It is far more close to a universal Turing machine than the behe-

moth.

Until now the answer to the question of who made what kind of contribution to

the EDVAC design is still not completely clear. According to Mauchly and Eck-

ert they made significant contributions to the design, including the stored pro-

gram idea. So, is the EDVAC an engineer’s or a logician’s machine? To our mind,

it is the result of the combination of both. On the one hand, we do not think that

Eckert or Mauchly lied about the significance of their contributions. Why else

would they have made such a thing about this whole issue? On the other hand,

37“Another field of my research is “self-reproducing systems.” But I see the problem not from a

mathematical point of view, as, for instance, von Neumann did, but as an engineer.” ([Zus80], p.

627)

220 CHAPTER 4. THE COMPUTER.

the emphasis on the logical design of the machine and its link with McCullough

and Pitts’s “neural computers” – influenced by Turing’s universal machine – is

due to von Neumann. One might well ask whether the general-purpose digital

stored program computer would have resulted without von Neumann’s contri-

butions. Of course, we cannot answer this question in any definite way. More

important, here is the fact that several very similar solutions to problems were

being developed by people who were less familiar with logic than von Neu-

mann and Turing, solutions which clearly have their formal counterpart, like

the idea of encoding instructions as numbers such that they can be manipu-

lated as numbers.

That the first such solutions were “behemoths”, and still far removed from the

more elegant and general design of an ACE or and EDVAC, is to our mind only

normal. Is it not a typical feature of many scientific and technological innova-

tions that the original form of a solution is very far removed from the elegant or

efficient form it evolves in through the years? Or, to put this slightly rhetorically,

who would object that the universal Turing machine, as originally described by

Turing, is not a behemoth in its own genre, with its difficult if not obscure de-

scription, containing several mistakes? It is true that the theoretical ideas un-

derlying the original universal Turing machine are still basically the same as any

theoretical universal machine constructed today, while the ENIAC was quite

different from the EDVAC. After it was rewired however, it was still a behemoth,

but far more general-purpose than it was originally. The point is that if one does

not already have a theory that can be useful to, e.g., build a computer, one can

only learn from the problems that arise in developing a behemoth without the-

ory. Luckily there were people like von Neumann and Turing who knew about

the theoretical counterpart of the computer, and were thus able to very quickly

propose their “logical engines”, much more in the spirit of a (theoretical) uni-

versal Turing machine. In this sense, their work – especially the EDVAC design

since it was more well-known – has most probably accelerated the technology

and has contributed significantly to the form of present-day computers.

A completely different story is given by Zuse, one that to our mind throws a

refreshing light on this whole engineers vs. logicians controversy. Zuse was

an engineer who started to build computers because he wanted to automate

4.1. THE FIRST COMPUTERS 221

the monotonous calculations he had to perform as an engineer. Very soon, he

developed a theoretical foundation for designing these machines. After having

read Hilbert he was able to put this foundation in a more logical form. Logic did

play a very important role in Zuse’s thinking, but he was not very familiar with

the subject and did not know the results by Turing. One can thus conclude that

Zuse developed his own kind of logical system because he needed one, quite

unaware of many of the developments that would (of course) have contributed

significantly to his work, if he had known them.

To our mind, Zuse’s work beautifully shows how an engineer’s work became

more and more connected with logic, in having thought and worked for several

years on computing machines. The first of these machines were more special-

purpose and intended to merely perform certain calculations. But Zuse soon

realized that such machines might also be used to solve far more general prob-

lems. This idea was probably more exactly formulated, once he had abstracted

from the engineering details and developed an abstract calculus to make more

easy the design of circuits. From that point on, Zuse becomes very explicit

about the possibilities of computing machines. In this sense, we do not think

that Zuse’s understanding of the possibilities of computing machines was less

general-purpose than e.g. Turing’s, as is clear from some of the quotes given

and the fact that he considered chess problems as a test case for his construc-

tions. One could very well say that Zuse very quickly formulated a kind of thesis,

identifying a very general all-purpose concept of computability with the kind

of logistic and algebraic machines he envisioned, his Plankalkül being the final

form of his thinking in this direction.

So, was logic a fundamental prerequisite to develop digital general-purpose

stored program computers? To our mind, the answer to this question can only

be affirmative. However, as the case of Zuse shows, this does not mean that

such “logistic” ideas, i.e. logic turned into a technical instrument, could not

arise in a context quite independent from the development of mathematical

logic before the war. Indeed, in Zuse’s case, his logistic machines cannot be

seen independent from what he had learned from his first experiences with

computing machines. The more logical ideas only followed in having had the

222 CHAPTER 4. THE COMPUTER.

time to think about these machines. A kind of reversed conclusion is, to our

mind, valid for Turing’s work. Turing already knew the formal equivalent of a

computer and this must have heavily influenced his design of the ACE. Thus,

in 1936 he did have a theory for computing machines, but not the knowledge

for really building one. Turing always had a keen interest in real machines, an

interest he could turn into reality after having built up his knowledge of the

more technical aspects of building real machines, during his time as a crypt-

analyst at Bletchley Park. Given his theoretical knowledge combined with the

more practical knowledge he could then design a kind of practical version of

his theoretical universal machine.

To return to the quote by Ulam from the beginning of this section: the com-

puter is a marvellous machine, developed after one of the most ugliest periods

of human history, as a result of the confluence of engineering ideas with logic.

This is exactly what makes the computer such an interesting device from the

point of view of this dissertation: it is a physical engineered thing that embod-

ies the theoretical ideas developed by Church, Gödel, Post, Turing, Kleene et

al, a fact quite independent of the question of how much “logic”, as it already

existed at that time, was necessary for the development of the computer. Re-

garded as the physical form of the intuitive notion of computability, one that

can compute far more quickly than we humans, this device becomes the more

interesting if one uses it to disclose the “discourse” of computability. This was

exactly one of the things it was used for, from its early years onwards.

4.2 Exploring the “universe of discourse”: heuristic

methods and computer experiments.

If mathematics describes an objective world just like physics, there is no reason

why inductive methods should not be applied in mathematics just the same as in

physics. The fact is that in mathematics we still have the same attitude today that

in former times one had towards all science, namely we try to derive everything

by cogent proofs from the definitions (that is, in ontological terminology, from

the essence of things). Perhaps this method, if it claims monopoly, is as wrong in

4.2. EXPLORING THE “UNIVERSE OF DISCOURSE” 223

mathematics as it was in physics.

Kurt Gödel, 1951.38

It will seem not a little paradoxical to ascribe a great importance to observations

even in that part of the mathematical sciences which is usually called Pure Math-

ematics, since the current opinion is that observations are restricted to physical

objects that make impression on the senses. As we must refer the numbers to

the pure intellect alone, we can hardly understand how observations and quasi-

experiments can be of use in investigating the nature of the numbers. Yet, in

fact, as I shall show here with very good reasons, the properties of the numbers

known today have been mostly discovered by observation, and discovered long

before their truth has been confirmed by rigid demonstrations. There are even

many properties of the numbers with which we are well acquainted, but which

we are yet able to prove; only observations have led us to their knowledge. Hence

we see that in the theory of numbers, which is still very imperfect, we can place

our highest hopes in observations; they will lead us continually to new proper-

ties which we shall endeavor to prove afterwards. The kind of knowledge which

is supported only by observations and is not yet proved must be carefully dis-

tinguished from the truth; it is gained by induction, as we usually say. Yet we

have seen cases in which mere induction led to error. Therefore, we should take

great care not to accept as true such properties of the numbers which we have

discovered by observation and which are supported by induction alone. Indeed,

we should use such a discovery as an opportunity to investigate more exactly the

properties discovered and to prove or disprove them; in both cases we may learn

something useful.

Leonhard Euler, 1761.39

From its early use on, the computer has been used as a means to study and solve

a rich variety of different problems and questions, of which some are “pure”

mathematical problems, others are related to other domains like physics and

even biology. Given its high speed it can be used to make calculations to tackle

problems in a way that was hardly within human reach before. However, it was

soon understood that “pure” calculations are not the sole domain of the com-

puter. We already know that both Turing and Zuse regarded the computer as

38From [Göd51], p. 313
39From [Eul61], translated and quoted in [Gre82], p. 4

224 CHAPTER 4. THE COMPUTER.

something that might be used to study human reasoning, the idea of playing

chess being one typical example of how one could start to deal with the ques-

tion in how far computers can be considered “intelligent”.

From the introduction of a volume of the Annals of Mathematics Studies from

1956, called Automata Studies, it is clear that the idea of linking the computer

with questions concerning the functioning of the human brain very soon be-

came a “fashionable” topic: ([MS56b], p. v):

Among the most challenging scientific questions of our time are the correspond-

ing analytic and synthetic problems: how does the brain function? Can we design

a machine that will simulate a brain? Speculation on these problems, which can

be traced back many centuries, usually reflects in any period the characteristics

of machines then in use. Descartes, in DeHomine, sees the lower animals and,

in many of his functions, man as automata. Using analogies drawn from water-

clocks, fountain and mechanical devices common to the seventeenth century, he

imagined that the nerves transmitted signals by tiny mechanical motions. Early

in the present century, when the automatic telephone system was introduced,

the nervous system was often linked to a vast telephone exchange with automatic

switching equipment directing the flow of sensory and motor data. Currently it

is fashionable to compare the brain with large scale electronic computing ma-

chines.

From this context of researching the idea of “intelligent machinery”, several dif-

ferent branches and theoretical frameworks have arisen. Automated theorem

proving, artificial neural networks, self-reproducing automata,...are different

developments tackling different aspects of the self-same question: in how far

can computers be considered capable to perform certain tasks a human can

perform, and vice versa.40

Although these are very interesting developments, they lie beyond the scope of

this research. Of more significance here is the use of the computer as a pure

powerful computing machine. We will mainly focus on some of the work and

remarks made by two computer pioneers in this context: John von Neumann

40In [Dav01a] a historical survey is given of automated reasoning, by one of the pioneers of

this branch of computer science, i.e., Martin Davis.

4.2. EXPLORING THE “UNIVERSE OF DISCOURSE” 225

and Derrick H. Lehmer. It is not the purpose of this section to be complete.

Rather we want to give an impression of how it was very clearly understood, by

some of the first computer users, that the mere computing power of computers

makes it possible to enclose what Lehmer has called the “universe of discourse”

and how this possibility has led to more heuristic research within the context of

mathematics as well as new results. We first planned to add a small subsection

on Turing’s work in this context, but finally decided to merely mention it here

in the introduction. Turing used the Mark I for research on the distribution of

the zeros of the Riemann zeta-function [Tur53] on the Manchester Mark I, and

emphasized the significance of mathematical rigour in this context, even if one

is working with “mere” computations. Furthermore, he used the computer for

studying certain problems connected to his work on morphogenesis and did

some numerical simulations of non-linear equations, that are now studied in

the context of chaos theory.

4.2.1 von Neumann and theoretical physics.

In the previous section we already mentioned that according to Ulam, von Neu-

mann got interested in computers, due to the realization that some of the usual

methods of mathematics fell short to study certain problems in theoretical physics.

Also Burks has pointed out von Neumann’s interest in computers as a way to

obtain certain information about the solutions to non-linear partial differential

equations underlying certain physical phenomena, like turbulence ([Bur66] pp.

2–3):

von Neumann became especially interested in hydrodynamical turbulence and

the interaction of shock waves. He soon found that existing analytical methods

were inadequate for obtaining even qualitative information about the solutions

of non-linear partial differential equations in fluid dynamics. Moreover, this was

so, of non-linear partial differential equations in general. von Neumann’s re-

sponse to this situation was to do computing. During the war he found com-

puting necessary to obtain certain answers to problems in other fields, including

nuclear technology.[...] The procedure he pioneered and promoted is to employ

computers to solve crucial cases numerically and to use the results as a heuris-

226 CHAPTER 4. THE COMPUTER.

tic guide to theorizing. von Neumann believed experimentation and comput-

ing to have shown that there are physical and mathematical regularities in the

phenomena of fluid dynamics and important statistical properties of families

of solutions of the non-linear partial differential equations involved. [...] From

the special cases one could get a feeling for such phenomena as turbulence and

shock waves, and with this qualitative orientation could pick out further critical

cases to solve numerically, eventually developing a satisfactory theory.

As is clear from this quote, von Neumann wanted to use the results generated

through the computer as a “heuristic guide”for further theorizing. To give an

example, that is not immediately connected to theoretical physics, von Neu-

mann expressed an interest in using the ENIAC to compute the value of π and e

to many decimal places in order to get an idea about the statistical distribution

of these two numbers.41 The computations for e were finished in July 1949,

those for π during Labor-Day weekend, in September 1949.42 In [Rei50] and

[MRvN50] set-up and results were discussed: the first 2000 decimal digits of

both numbers were computed. A statistical analysis of the data led to the con-

clusion that “the material has failed to disclose any significant deviations from

randomness for π, but is has indicated quite serious ones for e.” ([MRvN50], p.

109).43 von Neumann’s interest in the subject of randomness and, more gen-

erally, Monte Carlo methods, was triggered by its usefulness in the context of

41“Early in June, 1949, Professor John von Neumann expressed an interest in the possibility

that the ENIAC might sometime be employed to determine the value of π and e to many decimal

places with a view toward obtaining a statistical measure of the randomness of distribution of

the digits [...]” ([Rei50], p. 11)
42As was the case for many computations done on the ENIAC, these were all done outside the

“official time”, during holidays. As Reitwiesner [Rei50] explains, four members of the ENIAC

staff and Reitwiesner himself did 8-hours shifts to keep the ENIAC operating continuously

throughout the Labor-day weekend.
43It is interesting to point out that part of the research on the random character of the digits

in π is still situated in a more heuristic research context. Recently, an important paper was

published in the journal Experimental Mathematics on this topic [BC01], in which it is shown

that the statistical randomness of several constants, including π, depends on an hypothesis

concerning the distribution of the iterates of certain dynamical maps, and is thus situated in a

branch of mathematics, characterized by the numerous computer experiments underlying it,

i.e., chaos theory.

4.2. EXPLORING THE “UNIVERSE OF DISCOURSE” 227

nuclear physics, i.e., in the context of developing the H-bomb. It was Ulam

who came up with the idea of Monte Carlo methods and its possible use in this

context and communicated it to von Neumann. In fact the name “Monte Carlo”

goes back to a story about Ulam’s uncle, who would borrow money from rela-

tives because “he just had to go to Monte Carlo” [Met87]. As Ulam recounts

(Remark dated 1983 by Ulam, quoted in [Eck87], p. 131):

The first thoughts and attempts I made to practice [the Monte Carlo Method]

were suggested by a question which occurred to me in 1946 as I was convalescing

from an illness and playing solitaires. The question was what are the chances that

a Canfield solitaire laid out with 52 cards will come out successfully? After spend-

ing a lot of time trying to estimate them by pure combinatorial calculations, I

wondered whether a more practical method than “abstract thinking” might not

be to lay it out say one hundred times and simply observe and count the number

of successful plays. This was already possible to envisage with the beginning of

the new era of fast computers, and I immediately thought of problems of neutron

diffusion and other questions of mathematical physics, and more generally how

to change processes described by certain differential equations into an equiva-

lent form interpretable as a succession of random operations. Later [in 1946, I]

described the idea to John von Neumann and we began to plan actual calcula-

tions.

The Monte Carlo method is used as a way to explore the behaviour of various

physical and mathematical systems, in order to make certain predictions. The

basic idea is to use a randomly distributed sample, and look at what happens

to the sample, or to make certain random decisions that determine the future

behaviour of the sample. Metropolis, who worked together with von Neumann,

Ulam et al, explained how the method was originally implemented, describing

an example from von Neumann in a letter to Richtmyer (p. 127):

Consider a spherical core of fissionable material surrounded by a shell of tamper

material. Assume some initial distribution of neutrons in space and in velocity

but ignore radiative and hydrodynamic effects. The idea is to now follow the de-

velopment of a large number of individual neutron chains as a consequence of

228 CHAPTER 4. THE COMPUTER.

scattering, absorption, fission and escape. At each stage a sequence of decisions

has to be made based on statistical probabilities appropriate to the physical and

geometric factors. The first two decisions occur at time t = 0, when a neutron is

selected to have a certain velocity and a certain spatial position. The next deci-

sions are the position of the first collision and the nature of that collision. If it is

determined that a fission occurs, the number of emerging neutrons must be de-

cided upon, and each of these neutrons is eventually followed in the same fash-

ion as the first. If the collision is decreed to be a scattering, appropriate statistics

are invoked to determine the new momentum of the neutron. When the neu-

tron crosses a material boundary, the parameters and characteristics of the new

medium are taken into account. Thus, a genealogical history of an individual

neutron is developed. The process is repeated for other neutrons until a statisti-

cally valid picture is generated. [...] How are the various decisions made? To start

with, the computer must have a source of uniformly distributed pseudo-random

numbers.

As is clear, von Neumann’s interest in the statistical distribution of π and e

might not have been completely innocent: the use of a good random number

generator on the ENIAC must have been basic for the results from the com-

puter experiments to be reliable. One of the random generators known then

was von Neumann’s “middle-square digits” method. For this method, an arbi-

trary n-digit is squared creating a 2n-digit product. A new integer is generated

by extracting the middle n-digits from the product. This method is known to

be a rather bad random number generator, though selecting certain ‘runs’ and

imposing restrictions on the generated sequences, one could attain more or

less appropriate random sequences. One can only speculate how important it

has been for the computations done on the ENIAC in the context of nuclear

physics.44

von Neumann understood very well how the computer could be used to in-

44See e.g. Metropolis’s paper [Met87]. For more information on the history of the Monte Carlo

method, the reader is referred to the special issue of Los Alamos Science, nr. 15, 1987, avail-

able on-line at http://www.fas.org/sgp/othergov/doe/lanl/pubs/number15.htm. In [Bul07],

one also finds a discussion of the Monte Carlo method in the context of a study of the first

computations done on the ENIAC.

4.2. EXPLORING THE “UNIVERSE OF DISCOURSE” 229

vestigate the behaviour of certain physical systems, by computing numerically

approximate solutions to the non-linear partial differential equations underly-

ing them. Monte Carlo methods are then indeed invaluable instruments in this

context. In one of the lectures delivered at the University of Illinois in 1949, he

made explicit how the computer can be used not only in the context of physics

but also in mathematics ([vN66], pp. 33–35):

In pure mathematics the really powerful methods are only effective when one

already has some intuitive connection with the subject, when one already has,

before a proof has been carried out, some intuitive insight, some expectation

which, in a majority of cases, proves to be right. In this case one is already ahead

of the game and suspects the direction in which the result lies. A very great dif-

ficulty in any new kind of mathematics is that there is a vicious circle: you are

at a terrible disadvantage in applying the proper pure mathematical methods

unless you already have a reasonably intuitive heuristic relation to the subject

and unless you have had some substantive mathematical successes in it already

[...] progress has an autocatalytic feature. Almost all of the correct mathemat-

ical surmises in [the area of the non-linear sciences] have come in a very hy-

brid manner from experimentation. If one could calculate solutions in certain

critical situations [...] one would probably get much better heuristic ideas. [...]

there are large areas in pure mathematics where we are blocked by a peculiar

inter-relation of rigor and intuitive insight, each of which is needed for the other,

and where the unmathematical process of experimentation with physical prob-

lems has produced almost the only progress which has been made. Computing,

which is not too mathematical either in the traditional sense but is still closer to

the central area of mathematics than this sort of experimentation is, might be a

more flexible and more adequate tool in these areas than experimentation.

To von Neumann, the computer was very clearly a means to “de-block” certain

areas of mathematics for further exploration, allowing to build up an intuition

of a certain problem. Indeed, although the task the computer has to perform in

this context seems quite inessential, it “merely” computes quicker than we can,

it has been basic to several branches of science exactly in this respect. To give

just one example, the area of fractal geometry and chaos theory would probably

230 CHAPTER 4. THE COMPUTER.

have remained “blocked” were it not for the computer. The role “computer ex-

periments” have played in this domain can hardly be overestimated, i.e., most

results go back to such “experiments”. As we will see in part II, it has been this

kind of approach that has been invaluable for building up our intuition of tag

systems.

For von Neumann, the possibility of using computers to build up heuristic knowl-

edge useful for solving certain mathematical problems, must have been a fas-

cinating development because it offered the possibility of connecting hard the-

oretical mathematical problems with more down-to-earth problems. For von

Neumann this link between “pure” mathematics and more concrete, “empiri-

cal” ideas was very important, if not basic. We would like to end this section

on von Neumann with the conclusion from The Mathematician, where he very

much opposes the idea of mathematics becoming too much ‘l’art pour l’art’

([vN47], p. 378):

I think that it is a relatively good approximation to truth – which is much too

complicated to allow anything but approximations – that mathematical ideas

originate in empirics, although the genealogy is sometimes long and obscure.

But, once they are so conceived, the subject begins to live a peculiar life of its

own and is better compared to a creative one, governed by almost entirely aes-

thetical motivations, than to anything else and, in particular, to an empirical sci-

ence. There is, however, a further point which, I believe, needs more stressing.

As a mathematical discipline travels far from its empirical source, or still more, if

it is a second and third generation only indirectly inspired by ideas coming from

“reality”, it is beset with very grave dangers. It becomes more and more purely

aestheticizing, more and more purely l’art pour l’art. This need not be bad, if

the field is surrounded by correlated subjects, which still have closer empirical

connections, or if the discipline is under the influence of men with an excep-

tionally well-developed taste. But there is a grave danger that the subject will

develop along the line of least resistance, that the stream, so far from its source,

will separate into a multitude of insignificant branches, and that the discipline

will become a disorganized mass of details and complexities. In other words, at

a great distance from its empirical source, or after much “abstract” inbreeding,

4.2. EXPLORING THE “UNIVERSE OF DISCOURSE” 231

a mathematical subject is in danger of degeneration. At the inception the style

is usually classical; when it shows signs of becoming baroque, then the danger

signal is up. It would be easy to give examples, to trace specific evolutions into

the baroque and the very high baroque, but this, again, would be too technical.

In any event, whenever this stage is reached, the only remedy seems to me to be

the rejuvenating return to the source: the reinjection of more or less directly em-

pirical ideas. I am convinced that this was a necessary condition to conserve the

freshness and the vitality of the subject and that this will remain equally true in

the future.

von Neumann died in 1957 of cancer, possibly caused by exposure to radiation

during (one of) the A-bomb tests at the Bikini islands.

4.2.2 Lehmer’s computational work on number theory.

Contrary to von Neumann, Derrick Henry Lehmer had a clear background in

computing machinery when he, together with his wife Emma, implemented his

first ENIAC program. He had already build several special-purpose devices, i.e.,

prime sieves.45 Lehmer was a number theorist who, very explicitly, considered

mathematics and more specifically number theory, as an experimental science,

a lesson he learned from his father, D.N. Lehmer, also a number theorist. It is

thus not surprising that he very quickly understood the possibilities of using

computers for making progress in number theory ([Leh74], p. 3):

My father did many things to make me realize at an early age that mathematics,

and especially number theory, is an experimental science. [...] Exploring in dis-

crete variable mathematics is generally simpler than in continuum mathematics.

One can see the input and the resulting experimental output with absolute clar-

ity. For the same reason a digital or discrete variable computer is a better aid to

discovery than an analog machine. This advantage is due to the enormous flexi-

bility possessed by digital computers. Exploits such as moon missions would be

utterly impossible without discrete variable techniques, despite the continuity of

space. We should regard the digital computer system as an instrument to assist

45A detailed account on Lehmer’s sieves can be found in [Leh80].

232 CHAPTER 4. THE COMPUTER.

the exploratory mind of the number theorist in investigating the global and local

properties of this universe, the natural numbers and their algebraic expansions.

The role of this system in such an investigation can be of varying importance,

ranging from the production of a single counterexample, to the organization of

data to suggest ideas, through the search for patterns in data, to the ultimate role

of proving theorems on its own.

Lehmer has always been very explicit of how he understood the role of the com-

puter in the context of mathematical research. For him, computers can be used

to assist man in studying the “universe” of the natural numbers. In fact, they

give us direct access to this universe, and allow us to explore parts of the theory

of numbers inaccessible before. Although Lehmer understood number theory

as an experimental science and the computer as an instrument that can assist

us in our research of this science, it is clear that the computer’s role is not re-

stricted to the one emphasized by von Neumann. It can help us to build up

an intuition of a given problem. Furthermore, by using it to generate math-

ematical tables, it can produce counterexamples.46 However, to Lehmer, the

computer can also be used to generate genuine proofs. We already mentioned

the newly arising domain of automated theorem proving in the fifties. The the-

orems Lehmer was able to prove, however, were at that time not considered as

real machine proofs in the sense of the theorem proving programs then devel-

oped. As is explained by Lehmer ([LLMS62], pp. 407–408):

The referee comments that the proof of theorem 1 [...] is “not a machine proof

in the sense of the theorem-proving programs now being developed.” This is

true. The aim of most writers on this subject is to consider a very general pro-

gram enabling a digital computer to prove a wide class of theorems at a very low

level, beginning with the axioms, setting its own goals, and trying to achieve them

without human intervention. This is, in a way, a simulation problem. Specula-

tions about such programs involve (significantly) such notions as decidability.

Meanwhile, no really new theorems seem to emerge. Perhaps too much is ex-

pected of a single program. In our work, instead of starting with axioms, we did

46This is basically what Turing had in mind with the set-up of an experiment described in

[Tur53]: he hoped to find with the help of the machine a 0 of the critical line for a given interval.

4.2. EXPLORING THE “UNIVERSE OF DISCOURSE” 233

not hesitate to use any device or previously known result that might be useful. In

particular, the authors aided and abetted the machine in its search for a theorem

and its proof. Nevertheless, all three results [...] are due to the machine. Even the

verification of these results using the data supplied by the machine would be far

too long and hazardous a calculation to do by hand.

At that time, the domain of automated theorem-proving had indeed not been

able to prove any really new theorems.47 Of course, Lehmer did not have the

same research goals as the pioneers of automated theorem proving: he was not

interested in studying human deductive processes, but wanted to study num-

ber theory and obtain new theorems. In this sense, it was basic that the process

for finding a proof with the help of a computer, was far more interactive, com-

bining both human and machine knowledge, during the process itself, depend-

ing on intermediary output and input.

So what kind of theorems were proven by the computer in this way? We will

mention two such theorems, which Lehmer considered as genuine machine

proofs, in the sense just described.

Theorem 1 Every set of 7 consecutive integers greater than 36 contains a multi-

ple of a prime ≥ 43

Before stating the second theorem, it is important to explain the notion of cu-

bic residues. Let p = 3n +1 be a prime, then if 13,23,33, ..., (p −1)3 are reduced

modulo p, only n remainders will be distinct. These are the cubic residues of

p.48

Theorem 2 All primes, except

7,13,19,31,37,43,61,67,79,127,283

47As was pointed out by Martin Davis, in having implemented a decision procedure for Pres-

burger arithmetic on the IAS computer, the first example of an algorithm implemented in the

context of automated theorem proving, “[i]ts great triumph was to prove that the sum of two

even numbers is even.” (quoted in [Dav01a]). That nothing really stunning could be proved

was due to the fact that the algorithm was more than exponentially slow on certain inputs.

The most important contributions of early automated theorem proving, are most probably the

development of some standard algorithms and techniques [Dav01a].
48For example, with p = 13, the cubic residues are: 1, 5, 8, 12.

234 CHAPTER 4. THE COMPUTER.

have three consecutive cubic residues. The first triple occurs not later than

23532,23533,23534.

This result is the best possible because there are infinitely many primes for which

no three residues less than 23534 are consecutive.

In [LLMS62], where Lehmer discusses the set-up and the proof of theorem 2,

he explains that one of the reasons for considering the theorem as genuine is

the fact that, although the proof involves only a finite number of steps, it is a

statement about an infinite class.

The proofs and the exact statement of both theorems are impossible to estab-

lish without the help of the computer, or as Lehmer describes it, are humanly

impractical. For the proof of the first theorem, the computer had to solve thou-

sands of instances of the Pell equation:

x2 −2∆y2 = 1

where ∆ is a certain parameter. As is noted by Lehmer, there was one “small”

difficulty with the proof. The Pell equation has for each ∆ 6= 2 infinitely many

solutions. It is here that the human mathematician must supply an important

lemma, in that only the 21 smallest solutions (x, y) for the equation have to be

examined by the machine. We will skip the details of the lemma.

The proof of the second theorem is much more complicated, as noted by Lehmer.

The outcome was at first very much in doubt because they did not know in ad-

vance whether the proof tree that had to be constructed would come to a halt.

The limit of 55 “stories” for each branch of the proof tree was determined by the

machine. Furthermore, the “world constant” 23532 , as Lehmer called it, was

found by the machine, independent of the method of proof.

For Lehmer, the fact that the proofs and theorems are humanly infeasible is fun-

damental, because only then it becomes possible to prove really new theorems,

theorems that could not have been proven or even been stated by a human be-

ing. In this respect, it is very important that the outcome has a certain sense of

unpredictability. Indeed, in order to outclass the human being, it is important

that the machine has to perform thousands of steps, that are different enough

4.2. EXPLORING THE “UNIVERSE OF DISCOURSE” 235

from each other, such that the outcome cannot be predicted by human beings

([Leh63], pp. 141–142):

I would like to speak briefly of some theorem proving programs that we have

been running in which the human is completely outclassed in what, I think you

will agree, are fair contests. Our aim was to prove mechanically some really new

theorems of some interest to humans. The novelty of the theorems is guaran-

teed by the fact that the proofs are humanly impractical. [...] In casting about for

genuine theorems the proofs of which will tax the powers of a human being, we

want to exploit the speed of the machine. This means that the proof must involve

many thousands of steps all sufficiently different so that the outcome cannot be

forecast. We must also exploit those features of the logical system of the machine

that permit it to supervise and organize its own program. We should make it pro-

ceed in an unpredictable way by laying its own track ahead of it like a caterpillar

tractor. At the same time it should keep a record of where it has been, so that it

can return at a previous point and branch out along another path whenever it

decides that this is necessary. Humans find this kind of work difficult even when

it occurs in only moderate amounts. Of course if the proof is to be too difficult

for humans we cannot be sure in advance that the theorem is true or, if true, that

even the machine can prove it.

The significance of the unpredictability of the outcome in using a computer,

was also pointed out by Turing, during a radio discussion on the idea of intelli-

gent machinery ([Tur52a] p. 19):

Sometimes a computing machine does do something rather weird that we hadn’t

expected. In principle one could have predicted it, but in practice it’s usually too

much trouble. Obviously if one were to predict everything a computer was going

to do one might just as well do without it.

Because of this unpredictability, and the thousands of steps and decisions made

by the machine itself, we do not have access to all the details of the proof ([Leh63],

p. 143):

Of course no one has all the details. The machine was asked to make progress

236 CHAPTER 4. THE COMPUTER.

reports from time to time and studying these reports we can follow the proof in

broad outline only.

In this respect, one might well wonder what would happen if some computer

would prove a long-standing important conjecture, but nobody would really

understand the proof. One is then faced with the situation that one knows

that something is true, but without understanding why, a situation which is

quite opposite to what has been basically Penrose’s argument to show that hu-

man mathematical insight cannot be algorithmic, using Gödel’s incomplete-

ness theorem.

Besides proving theorems, Lehmer used the computer for producing mathe-

matical tables. As is pointed out by Franz Alt [Alt72] a “computations commit-

tee” was assembled, including Lehmer, Haskell Curry (!), Leland B. Cunning-

ham, and Alt for testing the ENIAC. Lehmer describes, amongst others, the fol-

lowing “test” program: ([Leh74], p. 4):

The ENIAC, the first electronic computer, was to have been shut down from Wednes-

day night till the following Monday morning. Instead, this chunk of 111 hours of

machine time was made available to me and my wife to keep the ENIAC warm

and active. The problem we decided to run was the following: For each odd

prime p there is a least positive integer e = e(p) such that 2e ≡ 1(mod p), some-

times called the order or exponent of 2 modulo p. The problem proposed to the

ENIAC was to find those primes p for which e(p) ≤ 2000 until Monday morning

8 o’clock. During the weekend the limit 2000 was reduced to 1000 and then to

300 in order to speed things up. By Monday, we had reached p = 4538791. This

successful run had a number of consequences, even legal ones, which I shall not

discuss.

Making mathematical tables has a long-standing tradition in mathematics. They

were, e.g,. very important for the work of Gauss.49 At that time, these tables

were computed by human computers. With the availability of the computer,

it has become possible to seriously enlarge several tables, and construct new

ones. Vandiver very clearly summarized the significance of tables, and the role

of computers in this context, as follows ([Van58], p. 459):

49See [Bul05].

4.2. EXPLORING THE “UNIVERSE OF DISCOURSE” 237

Examination of numerical tables tells the number theorist so often what isn’t

true. For example, before we were able to use extensive pertinent data recorded

by computing machines, we had made conjectures as to the answers to a partic-

ular problem; but when more extensive computations were made, it turned out

that a number of conjectures were inaccurate. So a lot of time had been lost in

trying to prove or disprove the false conjectures. In addition, we hope, by study

of tables, to observe patterns indicating the existence of certain theorems which

may turn out to be of an entirely novel character. For example, it is fairly clear

that Euler must have discovered the Law of Quadratic Reciprocity by a study of

the results of his extensive computations. There seems to be nothing in the lit-

erature which could have suggested it to him. He did not prove the law. This

was achieved by Gauss, and this was the beginning of the development of a far-

reaching subject in number theory.

The journal, Mathematical Tables and Other aids to Computation, that was founded

in 1943 by D.H. Lehmer and R.C. Archibald, and now goes under the name

Mathematics of Computation, only further emphasizes the role mathematical

tables have played in the domain of “computational mathematics”.

4.2.3 Conclusion

In this section, we have mainly focussed on the significance of the computer,

from its early beginnings, for tackling certain more mathematical problems.

von Neumann clearly understood how the computer could help us to build up

an intuition of a certain problem. Due to its computational power, it can be

used to “simulate” certain physical phenomena numerically, in a way hardly

possible in physical experimentation, varying several parameters, such that we

are able to draw certain heuristic conclusions that can help to advance more

theoretical results. Contrary to Lehmer, however, von Neumann believed that

the production of a huge amount of information is only useful for the machine

itself, not for man ([vN66], pp. 38–39):

[...] let me point out that we will probably not want to produce vast amounts of

numerical material with computing machines, for example, enormous tables of

238 CHAPTER 4. THE COMPUTER.

functions. The reason for using fast computing machines is not that you want to

produce a lot of information. After all, the mere fact that you want some infor-

mation means that you somehow imagine that you can absorb it, and, therefore,

wherever there may be bottlenecks in the automatic arrangement which pro-

duces and processes this information, there is a worse bottleneck at the human

intellect into which the information ultimately seeps. The really difficult prob-

lems are of such a nature that the number of data which enter is quite small.

All you may want to know is a few numbers, which give a rough curve, or one

number. All you may want in fact is a “yes” or a “no,” the answer as to whether

something is or is not stable, or whether turbulence has or has not set in. The

point is that you may not be able to get from an input of, say, 80 numbers to

an output of 20 numbers without having, in the process, produced a few billion

numbers in which nobody is interested.

Indeed, for von Neumann, producing large mathematical tables as output to

be studied by man is no longer necessary, since the computer itself can process

these tables, tables, that are too large to be of any interest to man. Von Neu-

mann regarded the computer rather as a machine that provides man with cer-

tain answers that can then be used for further research. This opinion stands

in contrast with Lehmer’s understanding of the computer, who considered the

production of mathematical tables as an important possibility of these new ma-

chines. For Lehmer the fact that the computer gives as access to information –

even in the “raw” form of tables – that was not within human reach before, is

very fundamental ([Leh51], p. 146):

There is no doubt that these new machines are creating new service jobs for

mathematicians, young and old. However, it seems to me, the most important

influence of the machines on mathematics and mathematicians should lie in the

opportunities that exist for applying the experimental method to mathematics.

Much of modern mathematics is being developed in terms of what can be proved

by general methods rather than in terms of what really exists in the universe of

discourse. Many a young Ph.D. student in mathematics has written his disserta-

tion about a class of objects without ever having seen one of the objects at close

range. There exists a distinct possibility that the new machines will be used in

4.2. EXPLORING THE “UNIVERSE OF DISCOURSE” 239

some cases to explore the terrain that has been staked out so freely and that

something worth proving will be discovered in the rapidly expanding universe

of mathematics.

For Lehmer, the most significant influence of the computer is the fact that it

gives us access to what he has called “the universe of discourse”. The disclo-

sure of this “universe”, although accessible within certain limits before, has in-

deed made it possible to directly observe certain objects of mathematics, that

could only be considered in a theoretical fashion before. One only has to think

about the “disclosure” of the Mandelbrot set, and many other attractors, to

understand the significance of "this disclosure. Looking at the words by von

Neumann and Lehmer from our contemporary perspective, it is clear that both

contain a certain truth. On the one hand, computers are used to produce vast

amounts of data, that are then studied by man. In the meantime, we have de-

veloped several methods to “summarize” these amounts of data in a form that

can be easily accessed by humans. The significance of several forms of visu-

alizations, including graphs and tables, in this context can hardly be under-

estimated.50 On the other hand, the computer is often only used to provide

answers, without the necessity of producing vast amounts of information.

In part II, we will consider some examples of how the computer has been and

can be used as an instrument making available the universe of discourse, in the

context of computability and unsolvability. Our main focus there will be on tag

systems. The production of vast amounts of data, has played a significant role

in our research on tag systems. To mention the most important result in this

context, it was only after having studied hundreds of periodic strings produced

by several different tag systems, through the computer, that we were able to

50I have worked for some time on computer visualizations. I wanted to use them to study

tag systems and, at that time, several other formal systems. Soon however, I had the feeling

that, although I was and am convinced of the significance of computer visualizations even in

this context, I would be better off in looking at the raw data some of these visualizations were

based on, for the things I wanted to do. I should also add that during this research, I ended up

with a very strange result, published as [Mol05], that shows through visualization, that there

is a certain property concerning how space can be structured, by using the chaos game. I was

in fact not searching for this result, I “discovered” it by accident. For me, this experience still

serves as a very clear examples of how the computer indeed discloses the universe of discourse.

240 CHAPTER 4. THE COMPUTER.

deduce several types of periods. Before we will enter the universe of tag sys-

tems, we will first look at some developments in the context of computability

and unsolvability that are very directly connected to the computer.

4.3 Going beyond or not beyond the Turing limit?

Developments arising from computability, un-

solvability and the computer.

In this section we will consider two theoretical developments in the context of

computability and unsolvability that are very closely related to the use of the

computer. As in the two previous sections of this chapter, we will not attempt

to be complete here, and the reader should thus be warned that the two areas

discussed do not exhaust this field.51 We have chosen these two domains be-

cause they beautifully illustrate how the computer has given rise to research on

theoretical and practical limits of solvability. The domains we will discuss are

computational complexity theory and the rather recent development of what

has been called hypercomputability, the idea of being able to go effectively be-

yond the Turing limit.

4.3.1 On the practical feasibility of the computable: Computa-

tional Complexity Theory.

The entscheidungsproblem does have practical importance in addition to it’s

philosophical significance. Mathematical proof is a codification of more general

human reasoning. An automatic theorem prover would have wide application

within computer science, if it operated efficiently enough. Even though this is

hopeless in general, there may be important special cases which are solvable.

It would be nice if Church’s or Turing’s proofs gave us some information about

51A domain that will for instance not be discussed here is Algorithmic Information Theory,

where complexity is not defined in terms of the smallest number of steps needed to compute

something, but in terms of the smallest possible algorithm to compute something. The theory

was founded by Chaitin, Kolmogorov and Solomonov in the sixties. See for example [Cha87] for

a quite clear but formal presentation of this theory.

4.3. GOING BEYOND OR NOT BEYOND THE TURING LIMIT? 241

where the easier cases might lie. Unfortunately, their arguments rest on “self-

reference,” a contrived phenomenon which never appears spontaneously. This

does not tell us what makes the problem hard in interesting cases. Conceivably,

a proof that P is not equal to NP would be more informative.

Michael Sipser, 1992.52

In a letter dated 20 March, 1956, Kurt Gödel presented the following problem to

John von Neumann ([Göd56], p. 375):

Since, as I hear, you are feeling stronger now, I would like to take the liberty to

write to you about a mathematical problem; your view on it would be of great

interest to me: Obviously, it is easy to construct a Turing machine that allows

us to decide, for each formula F of the restricted functional calculus and every

natural number n, whether F has a proof of length n [length = number of sym-

bols]. Let ψ(F, n) be the number of steps required for the machine to do that,

and let ϕ(n) = maxF ψ(F, n). The question is, how rapidly does ϕ(n) grow for an

optimal machine? It is possible to show thatϕ(n) ≥ K n. If there really were a ma-

chine with ϕ(n) ∼ K n (or even just ∼ K n2) then that would have consequences

of the greatest significance. Namely, this would clearly mean that the thinking

of a mathematician in the case of yes-or-no questions could be completely53

replaced by machines, in spite of the unsolvability of the Entscheidungsprob-

lem. n would merely have to be chosen so large that, when the machine does

not provide a result, it also does not make any sense to think about the prob-

lem. Now it seems to me to be quite within the realm of possibility that ϕ(n)

grows that slowly. For 1.) ϕ(n) ≥ K n seems to be the only estimate obtainable

by generalizing the proof of the unsolvability of the Entscheidungsproblem; 2.)

ϕ(n) ∼ K n (or K n2) just means that the number of steps when compared to pure

trial and error can be reduced from N to logN (or logN2). Such significant re-

ductions are definitely involved in the case of other finitist problems, e.g., when

computing the quadratic remainder symbol by repeated application of the law of

reciprocity. It would be interesting to know what the case would be, e.g., in deter-

mining whether a number is prime, and how significantly in general for finitist

52From [Sip92], p. 603
53Except for the formulation of axioms. [Gödel’s note]

242 CHAPTER 4. THE COMPUTER.

combinatorial problems the number of steps can be reduced when compared to

pure trial and error.

This letter by Gödel contains one of the first statements of a problem that is

very closely connected to the famous P vs. NP-question, i.e., he asked whether

it is possible to “feasibly” compute for any formula from first-order predicate

calculus, whether it can be proven in n steps. This kind of problem, i.e., the

problem of whether one can practically compute a certain (decision) problem,

is nowadays studied in the context of Computational Computability Theory.

In the early days of actual computing with computers, one was soon confronted

with this kind of problems. As is recounted by Martin Davis [Dav01a], when

he implemented the Presburger procedure54 on the IAS computer, it did not

perform very well because, as is now known, it performs worse than exponen-

tial. In this respect, computational complexity theory can be said to be directly

linked with the rise of the computer: besides the general unsolvability of cer-

tain decision problems one was soon confronted with a whole range of decision

problems which seemed to be uncomputable in any practical or realistic way,

although not unsolvable in the theoretical sense.

Besides its clear connection with the computer, computational complexity the-

ory is very closely connected to the theory of computability and unsolvability.

In fact, many of the concepts used in the context of computability and unsolv-

ability recur in the context of computational complexity theory. Thus, compu-

tational complexity theory can be said to result from the confluence of, on the

one hand, experiences based on computing on a machine, and, on the other

hand, mathematical logic.

One of the founding papers of computational complexity theory is the paper by

Hartmanis and Stearns, On the computational complexity of algorithms [HS65],

published in 1965.55 They formulated the computational complexity of a given

54A procedure that makes it possible to compute for any formula in the language of Pres-

burger arithmetic, i.e. a first-order theory of addition, whether it is deducible within that arith-

metic.
55This paper of course did not come out of the blue. There exist several historical surveys

on computational complexity theory and the related P vs. NP problem in which this issue is

discussed in more detail. See for example [FH03] and [Sip92]. A paper discussing the official

4.3. GOING BEYOND OR NOT BEYOND THE TURING LIMIT? 243

decision problem through (multitape) Turing machines, introducing hierar-

chies of computational complexity in terms of the minimum speed needed by

a (multitape) Turing machine to compute a given problem:

The computational complexity of a sequence is to be measured by how fast a

multitape Turing machine can print out the terms of the sequence. This par-

ticular abstract model of a computing device is chosen because much of the

work in this area is stimulated by the rapidly growing importance of computa-

tion through the use of digital computers, and all digital computers in a slightly

idealized form belong to the class of multitape Turing machines.

Nowadays, the computational complexity of a given problem is still stated in

terms of (one-tape) Turing machines and they are thus the generally accepted

model to work with. In their paper, Hartmanis and Stearns proposed and devel-

oped the notion of measuring the complexity of a problem in terms of the maxi-

mum number of steps, i.e., the time, needed to solve a particular instance of the

problem, where the complexity of a given problem is a function of the size of

the input. Besides time complexity classes, one has also introduced space com-

plexity classes in the meantime, i.e., the size of the memory needed to compute

a given problem.

The two most famous complexity classes are the classes P and NP. The class

P is the class of decision problems solvable by a deterministic Turing machine,

within a number of steps bounded by some fixed polynomial in the length of

the input. Thus, for example, if a given problem can be solved in at most c ·n2

steps, where c is a fixed constant and n is the size of the input, the problem be-

longs to P. The class NP, i.e., non-deterministic polynomial time, is the class of

decision problems that can be solved by a non-deterministic Turing machine,56

within a number of steps bounded by some fixed polynomial. Equivalently, NP

is the class of decision problems that can be verified in polynomial time, i.e.,

it takes at most a polynomial number of steps to verify whether a solution to a

given instance of the problem is correct. To explain this with an example, con-

statement of the P vs. NP problem is [Coo].
56Informally, a non-deterministic machine is a machine that has more than one possible

move from a given configuration.

244 CHAPTER 4. THE COMPUTER.

sider the Travelling Salesman Problem, the problem to determine the shortest

route to visit a collection of cities and return to the starting point. While it can

be verified in polynomial time whether a given number is the correct solution to

an instance of the problem, given a certain number of cities in a certain config-

uration, it is far from clear whether one can compute the solution for every in-

stance of the problem in polynomial time with a deterministic machine. If one

would be able to prove that one can solve every instance of the Travelling Sales-

man in at most a polynomial number of steps with a deterministic machine,

or, vice versa, that it is impossible to solve the Travelling Salesman problem in

polynomial time with a deterministic machine, one would be one million dollar

richer in having solved the P vs. NP problem. Nowadays, the general consensus

is that P 6= NP. Some, however, still believe that P = NP, while still others think

that the problem is impossible to prove or disprove.

A basic concept in the context of research on the P vs. NP problem is the ex-

istence of a wide range of problems which are known to be NP-complete, i.e.,

problems which are in NP and are NP-hard. A problem is NP-hard if any other

problem in NP can be reduced to it.57 In his seminal 1971 paper, Stephen Cook

proved that several “natural” problems are NP-complete. One year later, Karp

[Kar72] used Cook’s results to show that 20 other problems are NP-complete.

Nowadays there are hundreds of problems known to be NP-complete, varying

over many different fields. The Travelling Salesman problem is just one of the

many more famous examples. In this sense, a solution to the P vs. NP problem

would give us important information about problems stated in several different

fields of science.

But this is not the only reason why a solution to this problem is considered so

important. Stephen Cook summarized the consequences of a proof of P = NP,

clearly echoing some of Gödel’s idea about the significance of proving that the

57In this context a problem A is understood to be reducible to another problem B, if A is

polynomial-time, many-one reducible to B. A set of natural numbers S1 is said to be many-one

reducible to a set S2, if for each positive integer n in S1 there is an effective method to determine

a positive integer m, such that n is or is not in S2 according as m is or is not in S2. Then, if we

have a method to determine whether m is in S2 we would have a method to determine whether

n is in S1. The notion many-one reducibility is due to Post [Pos44].

4.3. GOING BEYOND OR NOT BEYOND THE TURING LIMIT? 245

problem he considered could be solved in polynomial time ([Coo71], p. 9):

Although a practical algorithm for solving an NP-complete problem (showing P

= NP) would have devastating consequences for cryptography, it would also have

stunning practical consequences of a more positive nature, and not just because

of the efficient solutions to the many NP-hard problems important to industry.

For example, it would transform mathematics by allowing a computer to find a

formal proof of any theorem which has a proof of reasonable length, since formal

proofs can easily be recognized in polynomial time. Example theorems may well

include all of the CMI prize problems. Although the formal proofs may not be

initially intelligible to humans, the problem of finding intelligible proofs would

be reduced to that of finding a recognition algorithm for intelligible proofs. Sim-

ilar remarks apply to diverse creative human endeavors, such as designing air-

plane wings, creating physical theories, or even composing music. The question

in each case is to what extent an efficient algorithm for recognizing a good result

can be found. This is a fundamental problem in artificial intelligence, and one

whose solution itself would be aided by the NP-solver by allowing easy testing of

recognition theories.

There are several important analogies between the domain of mathematical

logic and computational complexity theory, many of the concepts of the latter

being inspired by the former. The nice thing about this analogy is that whereas

the results from the previous chapter concern theoretical limits that can never

be overcome by any effective procedure as long as the Church-Turing thesis

remains valid, computational complexity theory studies limits that can be the-

oretically overcome but not necessarily in practice. I.e. many basic questions

in computational complexity theory, concern “feasible” limits of computabil-

ity. The notion of “feasibility” however is a vague and intuitive notion. It should

thus not be surprising that, as is the case for “computability”, there have been

attempts to capture to intuitive notion formally. Indeed, also in this domain

there exists a thesis, known as the Cook-Karp-thesis:

The Cook-Karp thesis. A problem is considered feasibly computable

iff. it is polynomial time computable.

246 CHAPTER 4. THE COMPUTER.

Contrary to the several equivalent theses discussed in the previous chapter, the

Cook-Karp thesis is very debatable, since an algorithm that is in P may not ac-

tually be feasible in any meaningful sense. Indeed, as was e.g. pointed out by

Martin Davis ([Dav82], p. 23):

There has not been extensive activity seeking O(n100) algorithms!58 Thus it seems

entirely possible, in the present state of knowledge, that all NP-problems have

polynomial time algorithms although none has an algorithm which is feasible in

any practical sense.

Besides the fact that polynomially executable does not necessary imply feasibly

executable, the domain of quantum computing seems to further challenge this

thesis. For example, Shor [Sho97] has given a quantum computer algorithm

for factorization of integers in polynomial time, while no algorithm is known

to factor integers on a Turing machine in polynomial time. One of the prob-

lems involved with quantum computing is that for now, quantum computers

are only capable to handle only very small numbers, the best quantum com-

puter ever build (until now) to factor a number being only capable to factor up

to 15 (whose prime factors are 3 and 5). Of course the field of quantum comput-

ing is only starting to develop and it seems a promising new domain for turning

problems known to be unfeasible into feasible problems.

Quantum mechanics has also been mentioned in the context of what is now

called hypercomputability. In this domain one is not interested in feasibly com-

putable problems, but in the question of whether it is possible to feasibly “com-

pute”, where feasibly now means executable, the non Turing computable.

4.3.2 The land of Tor’bled-nam. To solve the unsolvable.

Let us imagine that we have been travelling on a great journey to some far-off

world. We shall call this world ‘Tor’Bled-Nam’.

Roger Penrose, 1989.59

58The notation O(x) is used to denote how much time it takes at most for a given algorithm to

solve an instance of a given problem, the n in the equation used by Davis indicating the length

of the input.
59From [Pen89]

4.3. GOING BEYOND OR NOT BEYOND THE TURING LIMIT? 247

Figure 4.3: The Mandelbrot set.

In The Emperor’s New Mind [Pen89] Roger Penrose argues, amongst other things,

for the physical and Platonic existence of non-recursive phenomena, of which

the land of Tor’Bled-Nam is suggested to be one such example. This ‘land of

Tor’Bled-Nam’ points at the structure of one of the most famous fractals, the

Mandelbrot set.

The Mandelbrot set is the set of complex numbers c for which the sequence c,

c2+c, (c2+c)2+c, ((c2+c)2+c)2+c,...remains bounded. Starting with an arbi-

trary point c ∈C the question posed by Penrose is whether it is computable for

any c if c does or does not belong to the Mandelbrot set. Figure 4.3 shows a pic-

ture of the Mandelbrot set. Of course, since the Mandelbrot set is defined over

C the question of it being “uncomputable”, is ill-posed, as is also noted by Pen-

rose.60 Nonetheless, the only way to enter the ‘land of Tor’Bled-Nam’ is through

60In 1989 Blum, Shub and Smale presented a model of real computation [BSS89], i.e., com-

puting over the reals, and showed that the Mandelbrot set is indeed “uncomputable” within the

framework of their theory of real computations. In fact the so-called BSS-model is a model of

analogue computing, and assumes that the real numbers are represented exactly, and that each

arithmetic operation can be performed in one step. One of the problems, to our mind, with

the BSS-model is the fact that besides the Mandelbrot set, very simple fractals like the Koch

snowflake are also “uncomputable” in their model. See for example [BC05] for an alternative

model, in which the simpler fractals are known to be “computable” while the “uncomputabil-

248 CHAPTER 4. THE COMPUTER.

the computer. Still, Penrose suggests that the “existence” of the Mandelbrot set

implies that there “exist” non-recursive phenomena, and this illustrates that it

might be possible to go beyond the Turing limit.61

Penrose’s way of approaching the Mandelbrot set is just one example of how

one often reasons in the context of hypercomputability: one first defines a non-

computable function, or an abstract device that is, theoretically, capable to

solve e.g. the halting problem, and then uses these theoretically defined func-

tions and devices as arguments for the possibility of developing devices that

“compute” the non Turing computable.

This idea of building a “hypercomputer” is closely connected with the com-

puter. When Church, Post and Turing formulated their theses, this was done in

a purely theoretical context. With the rise of the computer however, computa-

tions have been given a physical form, i.e., as was argued in Sec.4.1, the com-

puter is in a certain way the physical, finite realization of the identifications

proposed by Church, Post and Turing. Furthermore, through the computer, it

became clear that computability should not remain restricted to “pure” calcu-

lability of numbers. Both Zuse and Turing very quickly understood that com-

puters can do much more than computing numbers. Nowadays, computers are

involved with almost every aspect of our society.

As a physical realization of the Church-Turing thesis, that has illustrated how

general computability actually is, the computer makes clear that the Church-

Turing thesis also has a physical side, i.e., the physical Church-Turing thesis

[Cot03]. It is this thesis, identifying machines with Turing computability, that

has become the main target of the advocates of hypercomputability. In the pre-

vious chapter, we already mentioned Gandy’s paper [Gan80], which contains

one of the statements of this physical Church-Turing thesis, indicated as thesis

M [Gan80]:62

ity” of the Mandelbrot set is still an open problem.
61Penrose’s books [Pen89, Pen94] are of course most well-known for the use of Gödel’s in-

completeness results to show that there must be something non-computable going on in our

mind. Without wanting to oppose this last claim, it should be noted that Gödel’s results cannot

be used in this context as is e.g. argued in [Dav90, Dav93, Fef88].
62It should be noted however that Gandy did not propose this thesis in a context of hyper-

computability. Rather, Gandy proposed this thesis, because to his mind, there are crucial steps

4.3. GOING BEYOND OR NOT BEYOND THE TURING LIMIT? 249

Thesis M (Gandy). Anything that can be calculated by a machine is

Turing computable.

It should be noted that Gandy identifies “machine” with “discrete deterministic

mechanical device”. According to Jack Copeland, who introduced the now fash-

ionable term “hypercomputability” [Cop98, CP99], one has been too careless in

not separating Thesis M from the Church-Turing thesis:

A myth seems to have arisen concerning Turing’s paper of 1936, namely that he

there gave a treatment of the limits of mechanism and established a fundamental

result to the effect that the universal Turing machine can simulate the behaviour

of any machine.

Copeland considers Gandy as one of the few who has carefully distinguished

the “stronger” statement expressed in thesis M, that any finitely realizable sys-

tem can be simulated by a Turing machine, from the “weaker” Church-Turing

thesis. Indeed, it seems that Copeland does not want to attack the Church-

Turing thesis, but rather Thesis M, although this is not completely unambigu-

ous in his work. By using phrases such as, “computing the uncomputable”

[CP99] he seems to actually contradict the Church-Turing thesis, and with it,

Thesis M. A similar, to our mind rather ambiguous, attitude can also be found

in [EGW04] and [Sta04]. In [EGW04], the “normal” Turing thesis is separated

from the so-called strong Turing Thesis, i.e., the claim that a Turing machine

can do anything a computer can do. Stannet [Sta04] claims that serious mis-

understandings are involved with respect to the Church-Turing thesis, in that

many people have interpreted it wrongly as “a statement to the effect that any-

thing that can be computed by any means whatsoever can be computed by a

Turing machine” ([Sta04], p. 136). According to Stannet, Turing did not intend

to identify “effective computation” with “computations by any means whatso-

ever”, [r]ather, [effective computation] is essentially the highly constrained form

in Turing’s analysis where he appeals to the fact that the computation is carried out by a hu-

man being, steps which cannot simply be applied to machines. In other words, Gandy pro-

posed (and argued for) his Thesis M, because he wanted to generalize Turing’s arguments from

computing human beings to machines.

250 CHAPTER 4. THE COMPUTER.

of behavior effected by human clerks engaged in the production of books of ta-

bles;” ([Sta04], p. 137).

It is indeed true that Turing considered a man in the process of computing a

number, as the kind of process that can be captured by a Turing machine. In

this sense, one can indeed argue, as Gandy did, that other models, equivalent

to Turing machines, might be more suitable to make the identification with ma-

chines. However, the idea of constructing other formalisms because they are

more suitable to e.g. capture the machine notion, does not imply that such

identifications are “stronger” than the Church-Turing thesis.63

Notwithstanding the fact that other formalisms might be more suitable to cap-

ture certain notions, one can seriously doubt whether Turing would not have

identified his Turing machines with “computations by any means whatsoever”

or with what a machine or a computer can do. Besides, it should also be noted

that Turing was in fact the only one who started from human computers in or-

der to formulate his thesis. Church started from the vague notion “effective

calculability” as used in mathematics, and later clearly stated that there are

no fundamental problems to be overcome in identifying “computing machine”

with a “human calculator”.64 Post in his turn considered the notion of gener-

ated set, and stated that in order for his thesis to gain a more general character,

it would be necessary to analyze all the possible process that can be set-up by

the human mind to generate a set, an analysis which resulted in his formula-

tion 1. However, as is here illustrated, in the context of hypercomputability, one

only rarely takes into account anything else but Turing machines. As a conse-

quence, one does not consider all the other formalisms that are covered by the

“traditional” Turing thesis and neglects that there is nothing new to the idea of

developing other formalism equivalent to Turing machines, because they are

more suitable for other purposes.65

63In the previous chapter we also mentioned Markov’s thesis, who developed a formalism

very different from Turing machines, because he believed that the formalisms already consid-

ered by Church, Post and Turing were not suitable for capturing the notion of an algorithm.
64See the first part of Church’s review [Chu37b] of Turing’s On Computable Numbers, quoted

in the previous chapter.
65Another example in this context are cellular automata, which are known to be capable to

simulate any Turing machine, but are more well-suited to study self-reproduction in a compu-

4.3. GOING BEYOND OR NOT BEYOND THE TURING LIMIT? 251

But why would some of the researchers in the domain of hypercomputability

make such a fuss about the fact that Turing himself would not have identified

Turing machines with “machines”, thus being able to claim that they are not re-

ally opposing Turing’s thesis, but rather the physical version of it?66 The answer

is clear: Turing had a much wider concept of machines since he introduced or-

acle machines in his seminal [Tur39], i.e. abstract devices that are indeed capa-

ble in theory to provide answers to non-computable questions. Copeland and

Proudfoot have identified these oracles as Alan Turing’s forgotten ideas in Com-

puter Science [CP99], the title of one of their papers. Also Wegner et al. make a

similar statement, one that also illustrates the ambiguities involved with their

attitude towards the “‘weak” Church-Turing thesis and the “strong” Turing the-

sis ([EGW04], p. 160):

It is little known that Turing had proposed other, non-algorithmic models of

computation, and would have disagreed with the strong Turing Thesis [i.e. a Tur-

ing machine can do anything a computer can do]. He did not regard the Turing

machine model as encompassing all others. As with many other of his ideas, Tur-

ing was far ahead of his time. Only now, with the development of new powerful

applications, is it becoming evident to the wider computer science community

that algorithms and Turing Machines do not provide a complete model for com-

putational problem solving.67

tational framework.
66To further illustrate the rather ambiguous attitude of some of the researchers in this con-

text, we should mention that Stannet announces in the introduction that he “shall try to give an

engineering solution to the question “Can computation be non-recusive?” Can machines be built

– or, at the very least, might natural systems exist? – that perform actions that cannot be simu-

lated by a Turing machine?” ([Sta04], p. 136). As is clear from this quote, Stannet is convinced

that it is possible to build machines that “compute” the non-recursive. Still, he seems to suggest

that he is not opposing the Church-Turing thesis, but rather the fact that anything what can be

computed by any possible means would be Turing computable. As far as I am concerned, I can

only place question marks with these kind of statements. Was it not the main purpose to cover

anything we consider (intuitively) computable with e.g. Turing machines?
67It should be noted that Wegner et al. not only intend Turing’s oracles, but also the choice

machines mentioned by Turing in his [Tur37], as the kind of other non-algorithmic models of

computation (note the ambiguity in this statement!) Turing would have considered. This leads

252 CHAPTER 4. THE COMPUTER.

Now, we have every respect for researchers trying to overcome what seems, for

now, still impossible. However, we believe it very problematic that some of the

advocates of hypercomputability, (ab)use Turing’s work to strengthen their “ar-

guments”. First of all, it should be noted that Turing himself stated very explic-

itly that oracles cannot be regarded as machines ([Tur39], p. 166–167):

Let us suppose that we are supplied with some unspecified means of solving

number-theoretic problems; a kind of oracle as it were. We shall not go any fur-

ther into the nature of this oracle, apart from saying that it cannot be a machine.

To state that many researchers misunderstand Turing’s thesis, because it does

not apply to machines, given the fact that Turing himself introduced oracles

that can solve the halting problem, can only sound very wrong in the light of

this quote. As is also argued in [Dav04, Hod04], there is no clue in Turing’s work

that he intended to really build an oracle, and it can thus not be claimed that

Turing anticipated the agenda of hypercomputability.

Besides this fact, the claim that the idea of an oracle is one of Turing’s “forgotten

ideas” is a further illustration of this abuse: oracles are far from being forgotten

in the literature and are in fact one of the fundamental concepts of recursion

theory. Oracles can be used to define what it means for a problem to be com-

putable relative to another problem. In this sense, oracles are a very useful tool

in recursion theory and have been basic for research on degrees of unsolvabil-

ity. One can for example use oracles to express Post’s problem introduced in

[Pos44] and solved, independently, by Friedberg [Fri57] and Muchnik [Muc56]:

the problem of whether there can be two recursively enumerable sets that are

non-recursive, such that first is recursive relative to the other, but not vice versa,

i.e., an oracle for solving the decision of the first would not result in a solution

Wegner et al. to the conclusion that Turing would have disagreed with the so-called strong

Turing thesis. Choice machines were described by Turing as follows: “For some purpose we

might use machines [...] whose motion is only partially determined by the configuration [...]

When such a machine reaches one of these ambiguous configurations, it cannot go on until some

arbitrary choice has been made by an external operator.” ([Tur37], p. 118) While these choice

machines indeed work in a different manner than Turing machines, it has been proven in 1956

[LMSS56] that Turing machines provided with a random number generator can compute only

those functions which are Turing computable.

4.3. GOING BEYOND OR NOT BEYOND THE TURING LIMIT? 253

for the second, while the oracle for the second would give solutions for both

problems. To state that oracles have been forgotten is plainly wrong, since they

are a standard part of recursion (or computability) theory. Furthermore, they

are also used in the context of computational complexity theory, although they

are not introduced to answer non-computable questions, but rather to deter-

mine complexity classes relative to other classes.68

The basic difference between the use of oracles in the context of hypercom-

putability and recursion theory, is the fact that in the former they are consid-

ered as machines that could maybe be effectively build, while in the latter, they

function as theoretical devices that have shown very fruitful to advance the the-

ory.

As is clear, the “agenda” of hypercomputability is to show that there exist, or

that one can construct, (physically realizable) processes or devices that func-

tion as an oracle, i.e., they are capable to give answers to uncomputable prob-

lems like the halting problem. Several different proposals of such devices have

been made, in several different domains. Cotogno [Cot03] makes the following

classification: physical supertasks and infinite computations; interactive sys-

tems; analog computations and quantum computations. For a more detailed

description of the “devices” considered in each of these classes the reader is re-

ferred to Cotogno’s paper.

Although one can describe these devices theoretically, none has been built until

now and it seems rather improbable that, as far as these devices are concerned,

one will ever be able to really build one of them. Several arguments, showing

that there are serious problems involved with the idea of building a hypercom-

puter, have already been formulated, so we will not discuss these in any detail

here, but merely mention the most basic ones69.

It has been pointed out by Martin Davis [Dav06b] that in discussing these mat-

ters, one should differentiate between the theoretical and the practical in this

context, as is the case for “theoretical” and “practical” computability. A Tur-

ing machine is a theoretical device, used in theoretical computer science. A

68For example, the seminal paper by Cook [Coo71] mentioned above uses the notion of an

oracle.
69Some papers giving several different arguments are [Cot03, Dav04, Dav06a, Dav06b].

254 CHAPTER 4. THE COMPUTER.

“real” computer cannot be identified with a Turing machine since it is finite.

The same goes for “hypercomputers”. Although one can invent many theoreti-

cal devices that are capable to solve unsolvable problems, like Turing’s oracles,

one should take into account physical constraints if one really wants to build

one.

The first major problem related to this, is the fact that we humans are finite.70

Suppose that someone would claim that he has build an apparatus that “com-

putes” a non Turing computable sequence. How will we humans be capable

to check this? Indeed, given our finiteness we can only perceive but a finite

amount of data, and no finite amount suffices to distinguish the computable

from the non-computable sequences.

Right now, the most obvious basis for building a hypercomputer is through

physical theory and most of the models proposed are indeed based on physics.71

But here there are some basic problems. One of the biggest problems here, is

that the theory should be able to predict (and compute with) a non-computable

real number to infinite precision in finite time! For now, no physical theory is

capable to do this. As is remarked by Davis, “[u]ntil now, all physical theory has

been content with predictions that can be verified to within less than, say 50 dig-

its” ([Dav04], p. 207). Even if we would be guaranteed that the physical theory is

100% precise, resulting in infinitely precise number, another question is: How

will one build a device that is infinitely precise, following the theory, and, how

will we humans be able to check this? Is it not basic to physics that one should

be able to experimentally verify that the results are correct? Indeed, what kind

of measuring device would one have to develop, that measures in finite time

the correctness of an infinite number, and, foremost, how can we be sure about

70The arguments provided here, come from [Cot03, Dav04, Dav06b].
71Some other models are: infinite computation and interactive computation. However, for

infinite computation, like e.g. so-called Zeno machines, one assumes that it is possible to per-

form infinite computation in finite time. Although one cannot exclude this possibility in princi-

ple, this can only work under highly idealized conditions, as is argued by Cotogno [Cot03], not

taking into account certain quantum and thermodynamical constraints. As for conversational

computation (see e.g. [EGW04]), Cotogno has argued that it can be simulated by a Turing ma-

chine, and has no hypercomputing aspect, unless viewed in a non-effective way, i.e., through

infinite computation.

4.3. GOING BEYOND OR NOT BEYOND THE TURING LIMIT? 255

that? Would it not be frustrating if we would have a theory, and a device based

on that theory, that solves e.g. the halting problem, but that we would not be

capable to check and know the answers? In other words, is it not the case that,

if it would be possible to develop a physical theory that solves the unsolvable,

one would also have a theory that outruns us humans? Copeland [Cop98] has

proposed the hypothesis that the human mind itself is an oracle. Well then, I

ask, as I did in the previous section, if Dr. Copeland wants to take this hypothe-

sis serious, I would like to see his mind solve the decision problem for the very

simple tag system v = 3, 1 → 1101, 0 → 00. Of course, I am not sure whether this

tag system is solvable or not, but the very simple fact that it is at least very hard

to prove this, is reason enough for me to be convinced that my mind is not an

oracle, except if I would suppose that this oracle part of my mind would only

work for very specific cases, in a way that it is impossible for me to solve the

halting problem, because I cannot control the oracle that is my mind. But what

would be the point then?

A last objection, pointed out by Davis [Dav04], is the fact that for now one does

not take into account questions of computational complexity ([Dav04], p. 209):

Copeland’s supposed oracles not only store information regarding unsolvable

problems, but apparently spew out the information with no significant delay. Of

course, in reality, even if [...] an actual oracle materializes, it will be quite use-

less if, for example, the time needed for the answer to a query to the oracle is an

exponential function of the size of the query.

Clearly, this objection stands in sharp contrast with the following, to our mind,

rather careless remark by Wegner et al. ([EGW04], p. 190):

We think that the P = NP question will lose its significance in the context of

super-Turing computation.

Does all this critique imply that we completely oppose the possibility of a phys-

ical theory that is capable to give answers to non-computable questions? No.

However, and here we follow Davis, the current approaches to hypercomputabil-

ity cannot serve this goal, since they rely on current physical theory, which

seems not suitable for what one needs in order to hypercompute.

256 CHAPTER 4. THE COMPUTER.

In the end, one cannot but conclude that, their claim amounts to the following:

if it were possible to build an oracle, it would be possible to solve unsolvable

questions. This is a quite trivial remark, especially in the light of the develop-

ments based on Turing’s so-called forgotten ideas in recursion (or computabil-

ity) theory. We certainly do not want to exclude the possibility of a physical

theory that is capable to cope with the infinite in finite time, however, such

theory would require a revolution in physics itself. In supposing that one day

some genius would develop such a theory, and, on the basis of the theory, build

a device that “solves” the unsolvable, this would be a very exciting and funda-

mental philosophical discovery. Indeed, man would be confronted with some-

thing that not only goes beyond the Turing limit, but also beyond man’s limit,

an aspect of hypercomputability that is hardly taken into account by its advo-

cates.

4.3.3 Conclusion

I was first confronted with the idea of “hypercomputability” at a time I was

reading about chaos theory, wondering how chaotical systems might be con-

nected to unsolvability. It was in this context that I read the paper by Da Costa

and Doria [dCD90], in which they prove that there is no method to determine

whether a given set of equations is chaotic or not, a paper published at a time

that the domain of hypercomputability was not yet as fashionable.72 In that

same paper, the authors consider the possibility of developing devices that “com-

pute” the non Turing computable on the level of the Gedanken experiment,

and admit that a real implementation might be “tricky from a practical point

if view.”. Being unaware at that time of the domain of hypercomputability, and

the fact that a large number of researchers situate themselves in this domain,

I was rather surprised by their proposal, but even more by the following state-

ment [dCD90]:

We cautiously suggest that the trouble may lie not in some inner weakness or flaw

72Besides Da Costa and Doria, there were several others who constructed uncomputable

problems in the domain of physics, that are now discussed in a context of the possibility of

“computing” the non Turing computable. See e.g. also [PER79, Sca63].

4.3. GOING BEYOND OR NOT BEYOND THE TURING LIMIT? 257

of mathematical reasoning, but in a too narrow, too limited concept of formal

system and of mathematical proof. There is a strong mechanical, machinery-

like archetype behind our current formalizations for the idea of algorithmicity

that seems to stem from an outdated 17th century vision à la Descartes [...] Also,

a first-order language such as the one for Zermelo-Fraenkel theory is too weak:

even if we can prove all of classical mathematics within it, it is marred by the

plethora of undecidability and incompleteness results that we can prove about it,

and which affect interesting questions [m.i.] that are also relevant for mathematically-

based theories such as physics. The authors certainly do not know how to, let

us say, safely go beyond the limits of the presently available concepts of com-

putability, algorithmicity, and formal systems, but they feel that if there are so

many quite commonplace things that ‘should’ somehow be provable or decid-

able within a sensible mathematical structure, and which, however, turn out to

be algorithmically undecidable or unprovable, then one cannot blame the whole

of mathematics for that. Mathematics is not at fault here. The problem lies in

our current ideas about formalized mathematics. They are too weak. We must

look beyond them.

As is clear from this quote, the reason for Da Costa and Doria to ask for an-

other “hypercomputable” kind of mathematics is not the idea of mechaniza-

tion itself, but rather the fact that the formalisms underlying it have shortcom-

ings – they are marred with the plethora of unsolvability and incompleteness.

But why is this a problem? Their answer: because there are “so many” com-

monplace things which should not be marred with this plethora. We already

pointed out that some of the supporters of hypercomputability have a rather

ambiguous attitude towards the Church-Turing thesis. On the one hand, they

seem to suggest that they do not want to oppose it, but rather the “stronger”

physical version of it. On the other hand, in using phrases like “computing the

uncomputable” ([CP99]) or asking questions like “Can computations be non-

recursive?” ([Sta04], p. 136) they do oppose the Church-Turing thesis, and with

it thesis M. A same attitude seems to underly the quote by Da Costa and Doria,

and is rather revealing: their basic problem is not mechanization itself, but the

fact that it gives rise to unsolvable decision problems not only in mathematics,

258 CHAPTER 4. THE COMPUTER.

but also in physics.

I have always been attracted to the impossible, and especially its implications

for me as a human being. In my mind, the fact that there are limits for us hu-

mans, is something very fascinating. This is in fact one of the reasons why I

chose to study unsolvability and the question of how the theoretical results that

follow from the Church-Turing thesis and diagonalization, are connected to

specific formal systems and their execution. In Sec. 3.3 we argued, on the basis

of our more historical results, that studying, on the one hand, specific (classes

of) cases, and, on the other hand, formal systems that do not necessarily have a

direct appeal to intuition, is very important from a philosophical point of view.

For me, as a philosopher, exploring variant systems of computability has been

basic to accept the Church-Turing thesis and it has been our study of tag sys-

tems that really confronted us with our own limitations. From this point of view

it is indeed very important to consider other models of computability. However,

this does not imply a hypercomputationalist perspective.

To our mind, the supporters of hypercomputability too much neglect this other

side of the Turing limit. They do not take into account particular systems, nor

do they consider anything else but the Turing limit, and only, in a very general

sense. The fact that Copeland considers the hypothesis that the mind is an or-

acle only illustrates how far he is removed from understanding the true power

of “computability” and the Church-Turing thesis. Again, we would like to em-

phasize, that this statement from our side, does not imply a computationalist

point of view, assuming that the mind itself is computable. rather, we want to

emphasize that as far as problems are concerned that are situated in the context

of computability and unsolvability, the mind is at least as limited as a universal

Turing machine, if one accepts the Church-Turing thesis.

As was argued, both computational complexity theory and hypercomputability

are very closely connected to, on the one hand, theoretical computability and

unsolvability, and, on the other hand, the computer itself. These two develop-

ments stand in a very sharp contrast with each other. Computational complex-

ity theory investigates the practical feasibility of the computable, hypercom-

putability studies the possibility to make feasible the non-computable. In both

4.3. GOING BEYOND OR NOT BEYOND THE TURING LIMIT? 259

domains, theses have been proposed (or opposed) that are very closely con-

nected to the Church-Turing thesis. However, the Cook-Karp thesis is clearly

not as strong and well-supported as the Church-Turing thesis, while the ad-

vocates of hypercomputability have a rather ambiguous attitude towards the

Church-Turing thesis. They do not explicitly oppose it, but do not give very

clear nor convincing arguments for differentiating it from the thesis they do

want to oppose, i.e., the physical Church-Turing thesis. It is remarkable to see

that what they actually oppose is not really the Church-Turing limit, but indeed

the idea that the computer is the actual physical limit of computability. This po-

sition can only be called “strange” in the light of the previous chapters. Indeed,

since the computer can be regarded as a finite version of a universal Turing ma-

chine, given its physical form, and is thus in fact a “weaker” form of the Turing

limit, it would seem more logical if one would oppose the Church-Turing thesis

itself, rather than its physical version.

Relating the two developments described here to the previous chapters, it is

clear that the theoretical developments in the twenties and thirties, when com-

bined with the physical form of these developments, have given rise to a va-

riety of new fundamental problems, problems closely connected to the limit

imposed by the Church-Turing thesis. In both domains however, Turing ma-

chines and the Turing limit are the dominant paradigm. While this is not a real

problem with respect to computational complexity theory – it is clear that Hart-

manis and Stearns preferred Turing machines because they are close to real

computers – we believe this is a problem in the context of hypercomputabil-

ity. In not taking into account the several other theses as well as the proper

context in which Turing wrote his 1936 paper, some of the advocates of hyper-

computability make fundamental mistakes and are unclear about what they

are actually opposing. Indeed, by stating that they do not want to oppose the

Church-Turing thesis, because Turing himself did not identify physical ma-

chines with his Turing machines, but rather human calculators, they first of

all, neglect Church’s and Post’s statements in this respect, and, secondly, do not

see that the true purpose of the theses was in effect to capture computability

and effectivity in all its possible forms. If e.g. Turing would have believed that

his thesis is merely a theoretical construct, while being convinced that it is pos-

260 CHAPTER 4. THE COMPUTER.

sible to construct physical machines that are not subject to the Turing limit, I

don’t think that he would have claimed to have proven that the halting problem

is unsolvable!

4.4 Conclusion.

In this chapter we have shown in how far the computer can be considered as

a physical realization of computability (Sec. 4.1). It was argued that as such a

physical realization, that can be effectively used to compute very quickly, the

computer itself has generalized the notion of computability. It is no longer re-

stricted to “pure” computations. Important here, is that the computer did not

solely arise from a formal-theoretical analysis of what we exactly mean with a

computation. Rather, it resulted from the experiences and abstract thinking of

both the logicians and the engineers, or the logician-engineers (like Turing and

Zuse) when developing this device.

As a physical realization of computability, the computer has not only shown us

the rich variety of “tasks” covered by computability – in the end, anything that

can be computed by a computer as we know it today can be computed by a

Turing machine – but has also made available the universe of discourse to an

extent that was not possible before (Sec. 4.2). In this sense, the computer has

given rise to fundamental new results in several different domains. Equally im-

portant in this respect, however, is also the fact that as such, the computer has

made it possible to study the formalizations it is the physical realization of. In

part II, we will give some examples where the computer has played an impor-

tant role in the establishment of certain results.

The computer also resulted in developments that are closely connected to the

question of computability and its (theoretical and practical) limits (Sec. 4.3).

Computational complexity theory studies the feasibility of the computable, while

hypercomputability takes into account the question of the physical realizability

of a device that “computes” the theoretically uncomputable.

To summarize, the computer’s role in the context of computability and unsolv-

ability can hardly be underestimated. Even though it is but a finite realization

4.4. CONCLUSION. 261

of the formalisms considered in the previous chapters, it has lead to devel-

opments closely connected to the Church-Turing thesis, some of them arising

from the actual use of the computer, some from theoretical considerations con-

nected to computers.

In part II of this dissertation we will study tag systems. Our purpose here is

not to go beyond the Turing limit. Rather we would like to show that there are

enough problems remained unsolved on the level of a class of formalisms that

are known to be capable to compute what any Turing machine can compute.

Although part II is far less historical as compared to part I, there are several con-

nections between the two parts. In fact, our research on tag systems was very

much inspired by our way of thinking on computers, our more historical study

of the work by Church, Post and Turing and our more or less philosophical con-

clusions on the basis of this study. First of all, tag systems are in a way a “class

example” of a class of formal systems that are far removed from our intuitions

of computability. In the end, one should not forget that they were developed by

Post in order to find abstract forms of mathematics, far removed from interpre-

tation or meaningful concepts. Part II is based on the assumption that studying

systems further removed from intuition, allows to more easy focus on more ab-

stract properties of those systems. Secondly, most of our results are based on

a study of specific (classes of) systems of tag. Finally, as will become clear, the

computer is considered as an important tool to not only study tag systems, but

also to get new results, results which can be heuristic as well as theoretical.

262 CHAPTER 4. THE COMPUTER.

Part II

Tagging

263

265

[...] [...] time after time I found that because of my ignorance of these antecedents,

I had not, nor could have, really understood those ideas. All the logical analysis n

the world will not reveal the intentions behind ideas, and without these inten-

tions one all too easily misunderstands and misjudges the ideas and theories of

a writer no longer living. [...] one also finds that current ideas and results can illu-

minate older and crustier ideas. The lesson seems to be this: we cannot fully un-

derstand our own conceptual scheme without plumbing its historical roots, but

in order to appreciate those roots, we may well have to filter them back through

our own ideas.

Judson C. Webb, 1980.73

In Part I we discussed the early beginnings of unsolvable decision problems,

and showed how, through the computer, new problems and possibilities have

arisen in this context. Although this first part could be understood as a research

in itself, the main recurring theme will now be further investigated from a com-

pletely different point of view. This main theme is the significance of the ac-

tual use, discourse and physical implementation of the several different formal

systems considered by Church, Post and Turing for the abstract results of un-

solvability and the closely connected theses of identifying the intuitive notion

of computability with one of these formalisms. In this second part we will in-

vestigate solvability and unsolvability by starting from the form that first led

Emil Post to the idea that, contrary to what he believed previously, there might

not exist a positive solution to the decision problem for Principia Mathematica.

Here, we will study Post’s form of Tag.

73From [Web80], p. xii.

266

Chapter 5

Introduction. Why tag systems?

All important fields of human endeavor start with a personal commitment based

on faith rather than on result. [...] Only a sour, crabbed and unadventurous spirit

will hold it against us.

David Marr, 1976.1

Since Post spent nine months of his research during his Procter fellowship at

Princeton (November 1920 – July 1921) on tag systems there has not been very

much research on this class of systems relative to some of the other formalisms

significant in the context of computability and unsolvability. As a consequence

their influence on computer science and mathematical logic is nihil as com-

pared to the influence of e.g. Turing machines and λ-calculus.2 This does not

imply that they are not known to a wider audience – they are frequently men-

tioned in e.g. surveys of or introductions to mathematical logic or theoretical

computer science. It only means that not many researchers really got involved

with tag systems. As far as the author knows there are about 15 researchers, ex-

cluding Post, who have researched and published on tag systems: Marvin Min-

sky [Min61, Min62, Min62b, CM63, Min67], Yuri Maslov [Mas4a, Mas4b], Hao

1[Mar76]
2The fact that the entries on Wikipedia for λ-calculus, Turing machines, primitive and par-

tial recursive functions are significantly longer as compared to that for tag systems (of which

the major part is reserved for cyclic tag systems) can be considered as a kind of superficial in-

dication of the infamousness of tag systems relative to these other formalisms.

267

268 CHAPTER 5. WHY TAG SYSTEMS?

Wang [Wan3a], Shigeru Watanabe [Wat63], Philip K. Hooper [Hoo6a], Stal Aan-

dera and Dag Belsnes [AB71], Charles E. Hughes [Hug73], David Pager [Pag70],

Turlough Neary and Damien Woods [NW06a], Frank Rubin [Rub88], Brian Hayes

[Hay86, Hay6a] and Stephen Wolfram [Wol02].3

The limitedness of this research on tag systems naturally leads to the following

question: given the fact that tag systems have hardly been investigated, why

would one be interested at all in these systems? Of course one could claim

that the meagerness itself of this research is reason enough but one could also

argue to the contrary and claim that tag systems simply haven’t got much at-

tention because they are not as interesting as, e.g., Turing machines or that this

research would add nothing new to the existing literature.

While it was at first not “part of the plan” to devote more than 1/2 of this dis-

sertation to tag systems, I got more and more attracted by these fascinating

systems. In this sense, it was intuition rather than theoretical considerations

that led me to this research, and our choice for tag systems can thus be called

a subjective choice, one however that is completely in line with some of the

conclusions from part I. We hope that through the results and comments to be

given in the chapters to follow, in the spirit of the idea of “Legitimation durch

Verfahren,”4 we will be capable to convince the reader that tag systems were

and are in need of more research. In the remainder of this short introductory

chapter I would like to point out some of the typical general features of tag sys-

tems that make them interesting systems to study, at least for me.

As was pointed out in 2.2.5, one of the reasons why Post wanted his Account of

an anticipation to be published was the difference in method as compared to

Church, Gödel or Turing: he was more interested in the outward forms of sym-

bolic logic, rather than in the logical concepts expressed through it. Tag sys-

tems were one of the forms that resulted from this method. As a consequence

it is very hard to attach any concrete interpretation to them since they are far

more abstract. This is to our mind a very important feature of tag systems. First

of all, because of this abstract character, they are far less intuitively appealing

3In Section 6.1, the research that has already been done on tag systems, will be discussed in

more details.
4“Justification by doing”

269

than Turing machines and do not arise from an analysis of the intuitive notion

of computability. In this sense, they have seriously challenged the idea I had

of a computation before I investigated these systems and in fact generalized it.

Secondly, we believe that because of their abstract character, tag systems are

very suitable to confront one with his/her own limitations on a very low level.

Indeed, as was already explained, even the very simple example of a tag system

mentioned by Post is very hard if not impossible to predict. For me personally,

tag systems have played the role of showing me how general the limit implied

by the theses discussed in the previous chapters actually are.

Another feature of tag systems connected to their formal simplicity is that they

are very easy to implement on a computer and allow easily for a more “experi-

mental” approach. In chapter 8 we will use this approach to study tag systems.

A further consequence of their abstractness is that it seems rather straightfor-

ward to find a large number of very small tag systems that are very hard to get a

grip on and might be unsolvable.

A very interesting opportunity offered by tag systems, that cannot be fully ex-

plored in the present research, is to study the connection between number the-

ory and formalized systems of logic. Post repeatedly mentions that there is a

close connection between tag systems and number theory, through the regu-

larity of always removing v letters. In chapter 9, Sec. 9.4.1 we will prove that tag

systems are closely connected to an intricate problem of number theory, and

further discuss these matters.

Although we have pointed out here some features of tag systems, they are merely

general aspects that have yet to prove their merits in the following chapters.

It is only in actually studying tag systems, that they show their true charac-

ter. Still, we believe it is important to give the reader at least one clue from

the existing literature that indicates where tag systems might play a significant

role. There is indeed such a clue: tag systems’ role in the research on small

universal machines and limits of solvability and unsolvability. In the fifties

and sixties of the 20th century, there seemed to have been a small hype for

finding the smallest possible Universal machine, the size of a machine being

270 CHAPTER 5. WHY TAG SYSTEMS?

measured by the product of the number of states and symbols.5 The winner of

this “competition” was, for a very long time, Marvin Minsky’s 4-symbol, 7-state

machine [Min62, Min62b]. Without going into the question of why search-

ing for (smallest) universal systems might be interesting (see Ch. 9, Sec. 9.1

and 9.2), it is significant to note that Minsky’s 4x7 machine was proven to be

universal because it can compute what any tag system with v = 2 can com-

pute. Since it was already proven by Minsky that there are universal tag systems

[Min61, Min62, CM63] with v = 2, tag systems that are able to represent any Tur-

ing machine, this proof is valid. For the last twenty years, searching for smallest

universal machines has gained new attention, research now being explicitly sit-

uated in the context of studying the limits of solvability and unsolvability. Re-

markable here is that tag systems lie at the basis of many of the small universal

systems known, including cellular automata [Coo04], Turing machines (See e.g.

[Rog96]) and circular Post machines (See e.g., [KR01]).6 Despite the significance

of tag systems in this context, any extensive research on the limits of solvability

and unsolvability on tag systems is still lacking. In chapter 9, Sec. 9.4 we will

tackle this specific problem, and study limits of solvability and unsolvability in

5In his [Sha56], Shannon argued for the interchangeability between number of states and

symbols, since the product of both has a certain invariance. He thus suggested this product as

a measure for the size of a Turing machine. Minsky took this over in his [Min62b] and nowadays

it is the conventional measure. For more detailed information see Ch. 9.
6It should be pointed out here that tag systems are of course not the sole means for con-

structing (small) universal systems in the context of determining limits of solvability and un-

solvability. For example, in the domain of diophantine equations one has also done some seri-

ous research on limits of solvability and unsolvability, where universal Diophantine equations

are constructed by other means (e.g. through simulation of partial recursive functions, Turing

machines and register machines). Since Matiyasevich [Mat70] has proven that Hilbert’s tenth

problem is recursively unsolvable, one has searched for small universal diophantine equations,

while there has also been research on solvable classes. The paper by Jones [Jon82] gives an

overview of the smallest known universal diophantine equations (in terms of the number of

unknowns or the total degree) and gives several examples. It should be noted that, as is the

case in the context of Turing machines, it is still not known what the minimum degree or the

minimum number of unknowns is to obtain a universal diophantine equation. It is known

however that the cases with degree 2 are solvable, while one can construct universal equations

for any degree equal to or greater than 4.

271

tag systems.

Part II is divided into several chapters. We will first discuss most of the existing

research results on tag systems and describe the general classes of behaviour in

tag systems and their connection to the two forms of the problem of “tag”. In

this way, the first chapter (Ch. 6) can be considered as a kind of introduction

to tag systems. In the next chapter (Ch. 7), we will consider several features of

tag systems, called constraints, that have been implemented in an algorithm for

generating tag systems that might be considered intractable on a more practical

level, i.e., for now it is very challenging if not impossible to develop methods

for predicting the behaviour of these tag systems. One such class of tag systems

generated was used in several computer experiments, the results of which will

be described in Chapter 8. In the final chapter 9 we will situate tag systems in

the research on limits of solvability and unsolvability. It should be pointed out

here that, besides tag systems, our main focus will be on research on limits of

solvability and unsolvability in Turing machines. Other computational systems

in which finding minimum limits for unsolvability or upper limits for solvability

will not be taken into account.7

7But see footnote 6 in this respect.

272 CHAPTER 5. WHY TAG SYSTEMS?

Chapter 6

Preliminaries: Some basic aspects of

Tag systems

In this chapter we want to give the reader an introduction to tag systems. In

a first section, we will discuss most of the existing literature and results on tag

systems. This section not only serves the purpose of giving an overview but can

help to make the reader more familiar with the inner workings of tag systems.

The last subsections of this section, will make clear that tag systems are very

‘stubborn’ systems, easy at first sight but particularly hard to structurally un-

ravel. In a second section, we will discuss the several classes of general behav-

iour in tag systems, as first described by Post, and furthermore link these classes

with the two forms of the problem of “Tag”. After having given an example of

how one might proceed to prove specific instances of tag systems solvable, we

will prove a small theorem concerning the reducibility of the decision prob-

lems for specific classes of tag systems to other classes of tag systems, through

decomposition.

273

274 CHAPTER 6. PRELIMINARIES

6.1 Discussion of published results on tag systems.

A number of [...] investigators [...] have worked on the problem [...], and in recent

years they have brought the power of the computer to bear on it. Nevertheless,

we live in a state of almost perfect ignorance about the nature of Post’s tag sys-

tem[s].

Brian Hayes, 1986.1

The existing results by on tag systems can be subdivided into two categories.

On the one hand there are theoretical results concerning the whole class of tag

systems, related to general mathematical properties such as unsolvability and

universality. On the other hand, there are some publications that try out a more

concrete approach to tag systems, mostly starting from one and the same spe-

cific case the tag system mentioned by Post, defined in Sec. 2.2.3.

6.1.1 General Theoretical results

Tag systems, Universality and unsolvability

Tag systems were first proven to be unsolvable (relative to Turing machines)

by Marvin Minsky in 1961 [Min61], after the problem was suggested to him

by Martin Davis. Some months after the publication of this first proof, Min-

sky, in collaboration with Cocke, provided an alternative proof, published as

[Min62, Min62b, CM63]. Hao Wang somewhat modified this second proof in

order to limit the length of the words to be tagged at the end of a string.

The first proof by Minsky will be described here, but not in all its details. It

is added here because it was the first proof of the general unsolvability of tag

systems. The second proof will be described in all its details, since it will be dis-

cussed later on in Chapter 9. Wang’s proof will not be included, since it basically

relies on the same methods used by Minsky in his second proof.

§1. Minsky’s first proof To prove the decision problem for tag systems un-

solvable, Minsky showed that tag systems can “compute” anything computable

1[Hay86], p. 21

6.1. DISCUSSION OF PUBLISHED RESULTS ON TAG SYSTEMS. 275

by a Turing machine. While the construction in his [Min61] is rather ingenious,

it is also rather complex, contrary to the proof he found some months later.

The proof is not a direct reduction of Turing machines to tag systems. It is first

shown that any Turing machine can be reduced to a 2-tape non-writing ma-

chine. Then, it is proven that any 2-tape non-writing machine can be reduced

to a tag system. The reduction of Turing machines to 2-tape non-writing ma-

chines uses a kind of Gödel numbering, relying on a factoring method.

A 2-tape non-writing machine, consists of two semi-infinite tapes, each of which

is completely blank, except for a single mark indicating the location of the square

at the left end of the tape. The only thing such machines can do is move left or

right and “recognize” that they are at the left end of one of their tapes. Now how

does the encoding of a Turing machine into this 2-tape non-writing machines

work?

Suppose that the Turing machine we want to simulate is T , T being a 2-symbolic

Turing machine,2 and let us indicate the 2-tape non-writing machine to which

T is reduced by T ∗.

As we already know from Part I, a Turing machine can be represented by a set

of quintuples:

qi s j : si j di j qi j

where the q’s represent internal states, the s’s symbols (0 or 1), and d the di-

rection of the motion of the head (left or right). Using this representation, the

operations of T are:

Rqi : Read the tape. If the current symbol is 0, go to Wi0 . If the current symbol

is 1, then goto Wi1 .

Wi0 : write si0 , go to Mi0

Mi0 : Move in direction di0 , go to Rqi0

Wi1 : write si1 , go to Mi1

Mi1 : Move in direction di1 , go to Rqi1

2Since Shannon has proven in [Sha56] that any n-symbolic Turing machine can be reduced

to a 2-symbolic Turing machine, this does not lead to any problems with respect to the proof.

276 CHAPTER 6. PRELIMINARIES

If for some i and j there is no quintuple qi s j , we can set Wi j equal to the halt-

ing instruction. For each instruction of T , T ∗ will have a corresponding set of

instructions, and whenever T executes an instruction, T ∗ will execute the in-

structions from the corresponding set. In order for T to be reducible to T ∗, T ∗

must be able to represent the complete state of T , each time T has completed

an instruction. The complete state is given by:

(1) the content of the tape

(2) the location of the reading head on the tape

(3) the machine’s internal state

All three tapes of these machines are semi-infinite, ending left. In counting

from the left, the number x denotes the current square of T . At any moment

in the operation of T its tape contains a finite amount of data, represented by

the integer k. The number k is the decimal value of the binary number that

represents the contents of the tape, where the content of the 0-th square con-

tains the least significant letter of k. The content of the square x scanned at a

given time, is always equal to the x-th digit of k’s decimal expansion. Now, at

the beginning of each instruction of T , the two tapes T ∗
1 and T ∗

2 of T ∗ will be in

the following state. Tape T ∗
2 will be positioned at its left end. Tape T ∗

1 will have

been moved, such that its reading head is 2k 32x
squares to the right. In this way,

T ∗ indeed represents the entire content of T (k) as well as the location x of the

current square T is scanning. After each read, write or move instruction of T ,

T ∗ will be restored in this state, x and k being changed in the appropriate way.

Now how will T ∗ do this? We will not go through the whole proof here, but

merely sketch the global idea behind it. T ∗ is able to “simulate” each of the

instructions of T ’s program through its own instruction table, such that, if T

has moved to the right, the reading head of T ∗
1 will be moved from the 2k 32x

-th

square to the 2k 32x+1
-th square. Similarly, if T has moved to the left, the reading

head of T ∗
1 will be moved from the 2k 32x

-th square to the 2k 32x−1
-th square. If

the x-th digit in the binary expansion of k has been changed from a 0 into a 1, T

has printed a 1 in its x-th square, the reading head of T ∗
1 will be moved from the

2k 32x
-th square to the 2k+2x

32x
-th square. Similarly, if T has changed a 1 into 0,

6.1. DISCUSSION OF PUBLISHED RESULTS ON TAG SYSTEMS. 277

the reading head of T ∗
1 will be moved from the 2k 32x

-th square to the 2k−2x
32x

-

th square. Now, T ∗ must also be able to determine whether the x-th digit of the

binary expansion of k is a 0 or a 1. This is done by repeatedly subtracting 2x

from k, until k is exhausted, keeping track of the parity of the number of times

2x has been subtracted from k. If the parity is even, x must have been 0, if not,

x must have been 1.

Now that we know how the tape must be changed, the question of course be-

comes, how will this change be executed? Instead of going through all the oper-

ations, the general principle behind them can be explained by showing how T ∗

is able to perform the right actions depending as to whether T reads a 1 or a 0.

The first step is to make a copy of k so that T ∗
1 is restored i.e. the head is moved

from the 2k 32x
-th to the 2k 5k 32x

-th square. This is done by an iterative method

in which 2k 32x
is first changed to 5k 7k 32x

and then to 2k 5k 32x
. The first step of

this iterative process is accomplished by a subroutine called C (2,35) which will:

(1) divide the length of the T ∗
1 tape by 2; then

(2) multiply its length by 35, goto (1).

This process is repeated until (1) fails and the length of the tape is no longer

divisible by 2, 2k 32x
being changed to 5k 7k 32x

. Then, 5k 7k 32x
is changed to

2k 5k 32x
by a similar subroutine, C (7,2), consecutively dividing by 7 and mul-

tiplying by 2, until we can no longer divide by 7. In general C (S,T) indicates

a loop, of consecutively dividing by S and multiplying by T , until we can no

longer divide by S. Now we still have to repeatedly subtract 2x until k is ex-

hausted. This is done as follows:

2k 5k 32x C (15,7) //2k 5k−2x
72x C (35,3) //2k 5k−2·2x

32x C (15,7) //

2k 5k−3·2x
72x C (35,3) // ...

This cycle is repeated until the substraction is completed, keeping track of the

parity i.e. whether the last operation was a C (35,3) or a C (15,7) loop. After this

is done, the original tape is restored by a simple C (7,3) operation (if the last

278 CHAPTER 6. PRELIMINARIES

routine performed was C (15,7)). T ∗ then starts with the set of instructions cor-

responding with Wi0 or Wi1 of T depending as to whether it ended after having

performed C (35,3) or C (15,7) respectively.

This same kind of reasoning can be applied to the operations of moving to the

left or right, or write 0 or 1. For example, to move to the right, changing 2k 32x

to 2k 32x+1
, the following process is performed:

2k 32x C (3,5) //2k 52x C (5,9) //2k 92x = 2k 32x+1

Now that the global encoding scheme from T into T ∗ has been described, we

still have to further specify the routines C (S,T) as lists of instructions for T ∗.

Since multiplication and division are the operations T ∗ has to perform in order

to execute a subroutine C (S,T), Minsky shows how one can encode these oper-

ations over an arbitrary number (called MPY(T) and DIV(S)) in T ∗. We will not

describe in detail how this can be done, since this is, with a little bit of think-

ing, rather straightforward to program (T ∗
2 ’s role is crucial here, functioning as

a kind of calculation sheet for MPY and DIV) .

In assembling MPY(T) and DIV(S) in the right way, using the right indices, T ∗ is

then able to represent any complete state of T , emulating the instructions of T .

It should however be noted that in order for the solution for the Post tag prob-

lem to work, the program for C (S,T) only uses subprograms MPY and DIV, with

prime parameters. Suppose that S = pi1 pi2 ...pim and T = p j1 p j2 ...p jn , where no

pi is one of the p j ’s. Then if S or T are not prime, one does not directly multiply

resp. divide by S or T , but by the prime factors p of S and T . For example if S

= 6, MPY(S) is done by consecutively performing the following two operations:

MPY(2), MPY(3). In doing the right assembling, one can then simulate any Tur-

ing machine T by a 2-tape non-writing machine T ∗. Minsky has thus proven

the following theorem:

Theorem 1 T ∗ represents the machine T in the following sense. Suppose that

the machine T is started in state qi at the x-th square of its tape, with the binary

number k written on its tape. Suppose also that the machine T ∗ is started at

instruction Rqi with its tape T ∗
1 at its 2k 32x

-th square, and its tape T ∗
2 at its left

end square. Then if T ultimately halts on its y-th square with the binary number

6.1. DISCUSSION OF PUBLISHED RESULTS ON TAG SYSTEMS. 279

N on its tape, T ∗ will ultimately halt with tape T ∗
1 at its 2N 32y

-th square. Thus

one can conclude that if T is a universal machine, then so will T ∗.

Now, using this theorem, Minsky showed that any Turing machine can be re-

duced to a tag system, thus obtaining the general unsolvability of tag systems.

We already know that every Turing machine T can be represented by a 2-tape

non-writing machine with a program consisting of a certain number of instruc-

tions I , each instruction being one of the two following forms:

(I j) MPY(K j). Go to I j 1

(I j) DIV(K j). If division is exact go to I j1 else go to I j2

In each case K j will be one of four primes 2, 3, 5, 7.3 So “all” we still have to show

is that one can always encode these operations into a tag system, maintaining

the right transfer-of-control. The shift number v is always equal to the product

of the primes one needs in the encoding.4.

Now if the j -th instruction is MPY(K j), we need v+3 letters: A j , a j ,B j1 , ...,B jv , b j ,

for the tag system to be able to “simulate” the j -th instruction. The state of the

program at the start of instruction I j is always represented by a string in the tag

system that has the following form: A j an
j .5 This must be converted into A j a

nK j

j ,

if we want to encode MPY(K j). This can be done by the following production

rules: 
A j → B j1 B j2 ...B jv

a j → bv2

j

B ji → b(v−i+1)(v−1)
j A j1

b j → a
K j

j1

The string A j an
j will indeed be converted into A j a

nK j

j by repeated application

of the production rules.

The encoding for DIV(K j) into tag production rules is a bit more complicated. If

3All the subroutines work with numbers for which the prime factors or never larger than 7.
4It should be noted that, later on in the paper, Minsky shows that the values of K j can be

reduced to 2 and 3 so v becomes 6
5Note that an

j means that a j is repeated n times.

280 CHAPTER 6. PRELIMINARIES

the j -th instruction is DIV(K j), we now need 2v+2 letters: A j , a j ,B j1 , ...,B jv , b j1 , ..., b jv ,

for the tag system to be able to “simulate” the j -th instruction. We then need

the following production rules:



A j → B j1 B j2 ...B jv

a j → b j1 b j2 ...b jv

B ji → Ai
j1

a
(v−i)/K j

j1
I f K j |i

b ji → a
v/K j

j1
I f K j |i

B ji → Ai
j2

a(v−i)
j2

I f K j - i

b ji → av
j2

I f K j - i

Applying these production rules to the string A j an
j , it will be converted to A j1 a

n/K j

j1

or to A j2 an
j2

depending as to whether n is divisible by K j . Both the produc-

tion rules representing DIV and MPY can be checked manually. The details are

skipped here.

It should be noted that in this encoding, the number of symbols needed for a

tag system “simulating” the operations of a given Turing machine, let alone a

universal Turing machine, is very large. We can make a rough estimate of this

number of symbols in the following way. As was said before, the operations of a

Turing machine T can be represented by 5 instructions: Rqi ,Wi0 ,Mi0 ,Wi1 ,Mi1 .

Now in order to read a symbol (Rqi), we need 5 subroutines of the form C (S,T).

Encoding these as MPY and DIV, we need 6 multiplications and 5 divisions. This

implies that, supposing v = 2 ·3 = 6, we need 6 ·9 productions for the multipli-

cations, and 5 · 14 productions for the divisions. This results in a total of 124

productions for one single reading operation. For the tape to move to the left,

we need 2 subroutines of the form C (S,T). Encoding these with MPY and DIV,

we get 3 multiplications and 2 divisions, resulting in a total of 28+27 = 55 in-

structions. Doing the same calculations for moving to the right we get 60 in-

structions. For writing a 0 we need 55 instructions, for writing a 1 we need 60

instructions. Making a kind of “best-situation” estimate, supposing the Turing

machine one wants to represent only moves to the left, and always prints 0’s,

never 1’s, we need at least 124+ (4 ·55) = 344 productions in the tag system for

6.1. DISCUSSION OF PUBLISHED RESULTS ON TAG SYSTEMS. 281

each state.6 Now, since the shortest 2-symbolic universal Turing machine has

18 states, a representation of this Turing machine into tag systems – thus con-

structing a universal tag system with an unsolvable decision problem – would

lead to a tag system of at least 18*344 = 6192 productions (and thus symbols).

Besides the gigantic proportions of the tag system, the time needed by the tag

system – the number of productions to be performed – is equally gigantic since

we are working with very large numbers, resp. strings.

Although Minsky must have been satisfied to have solved Post’s problem of tag,

he understood that improvements could be made ([Min61], p. 450):

We have been unable to reduce P [= v] further, and the prospects seem gloomy.

(We have been unable, as was Post, to prove a negative result for P = 2.) It would

be desirable to reduce the exponentiation level in this representation but the

“Tag” systems seem intractable in regard to lower level manipulations. We have

been unable even to find productions which can reduce the length n > P of a

string to n −1, for arbitrary n.

Some months later, Minsky, in collaboration with Cocke, managed to prove that

any Turing machine can indeed be reduced to a tag system, with a shift number

v = 2. This encoding leads to the possibility of constructing shorter universal

tag systems.

§2. Minsky’s second proof The first proof of the general unsolvability of tag

systems is rather complicated and impractical (given the level of exponentia-

tion). This motivated Minsky to search for a more “elegant proof” of this result

([CM63], p. 1):

[The previous proof] is very complicated and uses lemmas concerned with a va-

riety of two-tape non-writing Turing machines. Our proof here avoids these oth-

erwise interesting machines and strengthens the main result, obtaining the the-

orem with a best possible “deletion number” P = 2. Also the representation of

6Of course the calculation was based on the original encoding of Minksy using four prime

numbers. An encoding with two prime numbers might result in a shorter list of productions.

Still, even if we would be able to halve this number, it remains a fact that we need relatively

large tag systems to do the simulation properly.

282 CHAPTER 6. PRELIMINARIES

the Turing machine in the present system has a lower degree of exponentiation,

which may be of significance in applications.

In this second proof, it is shown how any two-way infinite Turing machine T

can be directly reduced to a tag system (without the intermediary reduction to

two-tape machines).

In [CM63], the usual formalization of the operations of a Turing machine – the

machine is in state qi , depending on the symbol it is scanning it writes si ,0 or

si ,1, performs move di ,0 or di ,1 and goes to state qi ,0 or qi ,1 – is replaced by

a slightly different, though completely equivalent one: The machine is in state

qi , it writes si , performs move di . Only then it reads the tape, and depending on

whether a 0 or a 1 was scanned, it goes to state qi ,0 or qi ,1. In converting the first

formalization of a Turing machine to this second form, of course the number

of states has to be doubled.7 Within this formalization, a Turing machine is

represented by a set of quintuples of the following form: {qi : si , di , qi ,0,Qi ,1}.

The contents of the tape can then be represented as follows:

... a6 a5 a4 a3 a2 a1 a0 α b0 b1 b2 b3 b4 b5 b6 ...

where the machine is in state qi and α is the digit on the scanned quare. The

complete state (contents of the tape, the machines present location on the tape

and its internal state) can now be represented by 3 numbers: qi (the state the

machine is in after having read α), m = ∑
ai 2i and n = ∑

ai 2i , α not being in-

cluded because it has become redundant within the present formalization). It

is assumed that the machine is binary, the a’s and b’s thus always equal to 0 or

1. All but a finite number of a’s and b’s are zero, so the summation is defined.

Now, since the complete state of a machine is given by the triple {qi , m, n},

the effect of applying a quintuple {qi : si , di , qi ,0, qi ,1} to such triples – the way

the triples are transformed from each moment to the next – can be very eas-

7Minsky finds this formalization of a Turing machine a bit more honest than the usual one.

As is stated in [CM63]: “In a way, however, this new formalism is a little more honest, because in

the usual formalism the machine needs an extra memory in which to store the symbol just read,

while it writes and then moves. Here, the reading operation causes an immediate state-change,

and no implicit symbol-memory is required.”

6.1. DISCUSSION OF PUBLISHED RESULTS ON TAG SYSTEMS. 283

ily described. For example if our machine were to move to the right, the triple

{qi , m, n} will be changed as follows:

• Change m to 2m +0 or 2m +1 (depending on whether si = 0 or 1)

• Change n to bn
2 c, i.e. the largest integer ≤ n/2

• Change the new state to q j ,0 or q j ,1, depending on whether n was even or

odd.

In other words, {qi , m, n} is changed to {qi ,(n mod 2),2m+ si ,bn
2 c}. If the machine

has moved to the left, we only have to reverse the roles of m and n. Now, how

will we construct a tag system out of this interpretation?

Given a binary Turing machine, with states q1, ..., qr we define a tag system with

symbols xi , Ai ,αi ,Bi ,βi ,Di ,0,Di ,1, di ,0, di ,1,S, s,Ti ,0, ti ,1, for i = 1, ..., r .

The complete description (qi , m, n) of a Turing machine at a given time will be

represented by the following letter string in our tag system:

Ai xi (αi xi)mBi xi (βi xi)n

where the superscripts m and n mean that the bracketed strings are repeated

m and n times respectively. The indices determine the state the machine is in.

From now on, the state-subscripts, that appear on each letter, will be dropped.

To simulate the operation of moving to the right, the following production rules

in the tag system will be sufficient.

The tag words associated with Ai and αi are:
A →C x (si = 0)

A →C xcx (si = 1)

α→ cxcx

Applying these rules to Ax(αx)mBx(βx)n we get:

Bx(βx)nC x(cx)m′
(6.1)

where m’ is 2m or 2m + 1. The rules for B and β are:{
B → S

β→ s

284 CHAPTER 6. PRELIMINARIES

Applying these to (6.1), we get:

C x(cx)m′
S(s)n (6.2)

Then, applying {
C → D1D0

c → d1d0

to (6.2) we get:

S(s)nD1D0(d1d0)m′
(6.3)

The rules for S and s are: {
S → T1T0

s → t1t0

If n is odd, the above given rules result in:

D1D0(d1d0)m′
T1T0(t1t0)

n−1
2 (6.4)

If n on the other hand is even, (6.3) is changed to:

D0(d1d0)m′
T1T0(t1t0)

n
2 (6.5)

Let us proceed first with the case n odd. The rules for D1 and d1 are:{
D1 → A1x1

d1 →α1x1

Applying this to (6.4) we get:

T1T0(t1t0)
n−1

2 A1x1(α1x1)m′
(6.6)

The rules for T1 and t1 are: {
T1 → B1x1

t1 →β1x1

and result in:

A1x1(α1x1)m′
B1x1(β1x1)

n−1
2 (6.7)

6.1. DISCUSSION OF PUBLISHED RESULTS ON TAG SYSTEMS. 285

from (6.6). Since n−1
2 is equal to bn

2 c, we have arrived at the next complete state

of the Turing machine, having gone from {qi , m, n} to {qi ,n mod 2, m′,bn
2 c}.

Now, let us look at the case n even. The rules for D0 and d0 are:{
D0 → x A0x0

d0 →α0x0

Applying these to (6.5) we get:

T0(t1t0)
n
2 x A0x0(α0x0)m′

(6.8)

Next, we have: {
T0 → B0x0

t0 →β0x0

resulting in:

A0x0(α0x0)m′
B0x0(β0x0)

n
2 (6.9)

From this it follows that also in case n even, we have arrived at the next com-

plete state of the Turing machine, {qi , m, n} being changed to {qi ,n mod 2, m′,bn
2 c}.

Both (6.7) and (6.9) have the same form as the string we started from initially,

except for the indices being changed. In this respect the production rules given

here, are exactly those needed for simulating one execution of the operations

that have to be performed in a given state, the Turing machine having moved

to the right. The rules for moving to the right, can be applied in a similar way.

These are: 

A → S α→ s

B →C x B →C xcx(si = 0or1)

β→ cxcx

S → T1T0 s → t1t0

C → D1D0 c → d1d0

T1 → A1x1 T0 → x A0x0

t1 →α1x1 t0 →α0x0

D1 → B1x1 D0 → B0x0

d1 →β1x1 d0 →β0x0

As is clear from these production rules everything depends on the parity of n

(when moving to the right) or m (when moving to the left). This can be clarified

286 CHAPTER 6. PRELIMINARIES

with an example. Suppose that we want to simulate the machine going from

complete state {qi , m, n} to {qi ,2m+1,bn
2 c}. Further suppose that n = 3 and m =

5 (...0000011xα101000000...). Then starting from the string, AxαxαxαxαxαxBxβxβxβx,

which is the encoding of the content of the tape of the Turing machine, applying

the above production rules, we get the following sequence of strings (remember

that v = 2):

Axαxαxαxαxαx︸ ︷︷ ︸
m=5

Bxβxβxβx︸ ︷︷ ︸
n=3

αxαxαxαxαxBxβxβxβxC xcx

αxαxαxαxBxβxβxβxC xcxcx

αxαxαxBxβxβxβxC xcxcxcxcxcx

αxαxBxβxβxβxC xcxcxcxcxcxcxcx

αxBxβxβxβxC xcxcxcxcxcxcxcxcxcx

BxβxβxβxC xcxcxcxcxcxcxcxcxcxcxcx

βxβxβxC xcxcxcxcxcxcxcxcxcxcxcxS

βxβxC xcxcxcxcxcxcxcxcxcxcxcxSs

βxC xcxcxcxcxcxcxcxcxcxcxcxSss

C xcxcxcxcxcxcxcxcxcxcxcxSsss

cxcxcxcxcxcxcxcxcxcxcxSsssD1D0

cxcxcxcxcxcxcxcxcxcxSsssD1D0d1d0

cxcxcxcxcxcxcxcxcxSsssD1D0d1d0d1d0

cxcxcxcxcxcxcxcxSsssD1D0d1d0d1d0d1d0

cxcxcxcxcxcxcxSsssD1D0d1d0d1d0d1d0d1d0

cxcxcxcxcxcxSsssD1D0d1d0d1d0d1d0d1d0d1d0

cxcxcxcxcxSsssD1D0d1d0d1d0d1d0d1d0d1d0d1d0

cxcxcxcxSsssD1D0d1d0d1d0d1d0d1d0d1d0d1d0d1d0

cxcxcxSsssD1D0d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0

cxcxSsssD1D0d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0

cxSsssD1D0d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0

SsssD1D0d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0

ssD1D0d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0T1T0

D1D0d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0T1T0t1t0

d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0T1T0t1t0 A1x1

6.1. DISCUSSION OF PUBLISHED RESULTS ON TAG SYSTEMS. 287

d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0T1T0t1t0 A1x1α1x1

d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0T1T0t1t0 A1x1α1x1α1x1

d1d0d1d0d1d0d1d0d1d0d1d0d1d0d1d0T1T0t1t0 A1x1α1x1α1x1α1x1

d1d0d1d0d1d0d1d0d1d0d1d0d1d0T1T0t1t0 A1x1α1x1α1x1α1x1α1x1

d1d0d1d0d1d0d1d0d1d0d1d0T1T0t1t0 A1x1α1x1α1x1α1x1α1x1α1x1

d1d0d1d0d1d0d1d0d1d0T1T0t1t0 A1x1α1x1α1x1α1x1α1x1α1x1α1x1

d1d0d1d0d1d0d1d0T1T0t1t0 A1x1α1x1α1x1α1x1α1x1α1x1α1x1α1x1

d1d0d1d0d1d0T1T0t1t0 A1x1α1x1α1x1α1x1α1x1α1x1α1x1α1x1α1x1

d1d0d1d0T1T0t1t0 A1x1α1x1α1x1α1x1α1x1α1x1α1x1α1x1α1x1α1x1

d1d0T1T0t1t0 A1x1α1x1α1x1α1x1α1x1α1x1α1x1α1x1α1x1α1x1α1x1

T1T0t1t0 A1x1α1x1α1x1α1x1α1x1α1x1α1x1α1x1α1x1α1x1α1x1α1x1

t1t0 A1x1α1x1α1x1α1x1α1x1α1x1α1x1α1x1α1x1α1x1α1x1α1x1B1x1

A1x1α1x1α1x1α1x1α1x1α1x1α1x1α1x1α1x1α1x1α1x1α1x1︸ ︷︷ ︸
2m+1=11

B1x1 β1x1︸ ︷︷ ︸
n−1

2 =1

As is clear from the examples, the production rules indeed do the job for n un-

even: m is changed to 2m +1 (the string αx is repeated 11 times now, instead

of 5); n is changed to 1 (it is halved): the string of the form βx is repeated only

once. Moreover, the tag system has “recognized” that n is uneven (look at the

indices). Now let us have a look at an example for which the machine prints a

zero, moves to the right, with n = 4, m = 2:

Axαxαx︸ ︷︷ ︸
m=2

Bxβxβxβxβx︸ ︷︷ ︸
n=4

αxαxBxβxβxβxβxC x

αxBxβxβxβxβxC xcxcx

BxβxβxβxβxC xcxcxcxcx

βxβxβxβxC xcxcxcxcxS

βxβxβxC xcxcxcxcxSs

βxβxC xcxcxcxcxSss

βxC xcxcxcxcxSsss

C xcxcxcxcxSssss

cxcxcxcxSssssD1D0

cxcxcxSssssD1D0d1d0

288 CHAPTER 6. PRELIMINARIES

cxcxSssssD1D0d1d0d1d0

cxSssssD1D0d1d0d1d0d1d0

SssssD1D0d1d0d1d0d1d0d1d0

sssD1D0d1d0d1d0d1d0d1d0T1T0

sD1D0d1d0d1d0d1d0d1d0T1T0t1t0

D0d1d0d1d0d1d0d1d0T1T0t1t0t1t0

d0d1d0d1d0d1d0T1T0t1t0t1t0x A0x0

d0d1d0d1d0T1T0t1t0t1t0x A0x0α0x0

d0d1d0T1T0t1t0t1t0x A0x0α0x0α0x0

d0T1T0t1t0t1t0x A0x0α0x0α0x0α0x0

T0t1t0t1t0x A0x0α0x0α0x0α0x0α0x0

t0t1t0x A0x0α0x0α0x0α0x0α0x0B0x0

t0x A0x0α0x0α0x0α0x0α0x0B0x0β0x0

A0x0α0x0α0x0α0x0α0x0︸ ︷︷ ︸
2m=4

B0x0β0x0β0x0︸ ︷︷ ︸
n
2 =2

This example shows that the rules work for n even too: m is changed to 2m,

n is halved (from 4 to 2), and the index is changed to 0. It has been ‘recog-

nized’ that n is even. As is clear, the recognition of whether n is even or odd

is accomplished through an intelligent use of the shift number: evenness or

oddness lead respectively to a kind of de-synchronization and synchronization

(this happens the first time with D1D0) and a re-synchronization when n is even

through the addition of three symbols instead of two (D0 → x A0x0).

While this proof by Minsky is less complicated and in a way more elegant than

his first proof of the unsolvability of tag systems, it might perhaps already be

clear that Turing machine simulating tag systems are not quite practical: 2-

symbolic Turing machines with m states and 2 symbols can be reduced to a tag

system with v = 2 µ= 16m, i.e., to still large tag systems. This will be discussed

in more detail in Chapter 12.

Decidability criteria in tag systems

To prove that the whole class of tag systems has an unsolvable decision prob-

lem has been an important result – Post probably would have been relieved to

6.1. DISCUSSION OF PUBLISHED RESULTS ON TAG SYSTEMS. 289

hear that the intractability he had experienced when working with tag systems

is actually inherent to these systems. This of course does not mean that every

tag system has an unsolvable decision problem. To exclude specific classes of

tag systems that have an unsolvable decision problem, some mathematicians

have proved the existence of criteria that can mark the difference between solv-

ability and unsolvability. 8

In his Account of an anticipation, Post mentions some results concerning solv-

able cases of tag systems, thus determining a kind of lower bound for unsolv-

ability with respect to the number of symbols and v, which is still the best

known so far. Anything below this limit is known to be solvable. After having

discussed the different types of behaviour, Post writes ([Pos65], p. 362):

[...] the problem of “tag” was made the major project of the writer’s tenure of a

Procter fellowship in mathematics at Princeton during the Academic year 1920–

1921. Indeed, the reduction of the last section, effected early in that year, sealed

this determination. And the major success of that project was the complete so-

lution of the problem for all bases in which µ and v were both 2.

In the footnote to this quote he added:

When eitherµ or v is 1 the problem becomes trivial. By contrast, even this special

case µ = v = 2 involved considerable labor.

Post thus proved the following theorem:

Theorem 6.1.1 For any given tag system T , if µ= 1 or v = 1 or µ= v = 2 then the

two forms of the decision problem for T are solvable.

The proof of the theorem however, was never published.9 It is indeed a fact that

the case for which µ = 1 is very trivial. Clearly, the word wa0 corresponding to

this one symbol a0, will be a concatenation of lwa0
times a0. Then, if lwa0

< v

8More will be said about such criteria in Chapter 7, where a more exact definition of such

criteria will be given, following Margenstern [Mar00].
9This result or notes relating to this result might still be present in the archive of Emil Post in

Philadelphia (American Philosophical Society). The present author plans a visit to this archive

for exactly this reason.

290 CHAPTER 6. PRELIMINARIES

the tag system will halt, whatever the initial condition might be, it will become

periodic when v = lwa0
and show unbounded growth when lwa0

> v. The case

with v = 1 seems not that trivial, since Wang took it seriously enough to present

it in his [Wan3a]. The case v = µ= 2, will be proven to be solvable in chapter 9.

As will become clear then, the proof indeed involves “considerable labor”.

Both µ and v can be regarded as a decidability criteria [Mar00] for tag systems,

since their solvability depends on the size of these parameters. The number of

symbols µ is a decidability criterion since tag systems with µ = 1 are solvable,

while there also exist tag systems with a given number of symbols µ> 1 that are

unsolvable.10 Cocke and Minsky proved that any Turing machine can be simu-

lated by a tag system for which v = 2 (See [CM63], [Min62]). Maslov generalized

this result and proved that for any v > 1 there exists at least one tag system with

an unsolvable decision problem and, independent of Wang, proved that any tag

system for which v = 1 is solvable [Mas4b].

Another such criterion for tag systems, is the length of the words. Let lmi n de-

note the length of the smallest word of a tag system and lmax the length of the

lengthiest word. Pager studied classes of tag systems with shift number v, lmi n

and lmax , that contain tag systems with an unsolvable decision problem. Wang

proved that any tag system for which lmi n ≥ v or lmax ≤ v is solvable [Wan3a]. It

should be added here that Maslov proved that the tag systems with an unsolv-

able decision problem that can be constructed using his method, for each v > 1

all satisfy the following condition: lmi n = v−1, lmax = v+1 [Mas4b]. Taking into

account Wang’s result, he describes this condition as a kind of minimal condi-

tion for unsolvability in tag systems. This result was independently proven by

Wang for a tag system with v = 2 [Wan3a].

Except for Post, nobody takes into account the number of symbolsµ, determin-

ing the number of production rules, in order to study solvable and unsolvable

classes of tag systems.11 Still, it is clear that the significance of µ for determin-

10The exact value for µ to mark the difference between solvability and unsolvability will be

further discussed in Chapter 9, where we will tackle the question of the unsolvability of tag

systems with µ= 2
11In the chapters to follow the significance of µ will be made more explicit. It should also be

noted that besides including µ to determine solvable classes of tag systems, Post also explicitly

6.1. DISCUSSION OF PUBLISHED RESULTS ON TAG SYSTEMS. 291

ing solvable and unsolvable classes of tag systems cannot be underestimated

and can in fact be used as a decidability criterium, which is independent of v.

It is thus only natural to include µ in the definition of a measure for the size of

tag systems. In this respect we would like to propose the following measure for

the size of tag systems:

Definition 6.1.1 The size of a tag system is defined as the product of µ and v,

where TS(µ, v) denotes the class of tag systems withµ symbols and a shift number

v.

The length of the words is not taken into account, since the decidability crite-

rion with respect to lmi n and lmax is defined relative to v.

Decision problems for tag systems and degrees of unsolvability

Some more results on tag systems, which are only mentioned here for com-

pleteness, concern degrees of unsolvability in tag systems and the proof of the

unsolvability of yet another decision problem for tag systems.

In 1966 it was proven by Philip Hooper that the immortality problem for 2-

symbolic Turing machines is recursively unsolvable [Hoo6a]. What was pre-

viously called a complete state of a Turing machine T , is called the instanta-

neous description (ID) of T by Hooper. If an ID has a corresponding quintuple

– describing the internal state of the machine and the operations that have to

be performed when the machine enters this state – the result of applying it is

another ID. If this is not the case, the ID is called terminal. Those ID’s that ulti-

mately lead to a terminal ID are called mortal ID’s, those that do not are called

immortal. The immortality problem now is the problem to decide for a given

T whether or not there exists an immortal ID. After having proven that the im-

mortality problem is indeed unsolvable for Turing machines, Hooper added a

whole list of related problems and results, one of them being the proof of the

unsolvability of polygenic Post normal systems, through reduction of the tiling

refers to µ in describing the behaviour of other classes of tag systems. I.e. the case with µ =
2, v > 2 is called intractable, while he terms the cases µ > 2, v = 2 as being of “bewildering

complexity”. See Sec. 2.2.5, p. 51.

292 CHAPTER 6. PRELIMINARIES

problem to polygenic normal systems.12 A polygenic normal system is the op-

posite of a monogenic system. A monogenic normal system is a system for

which one can never apply more than one production on a given string. Fur-

thermore he mentioned the unsolvability of the immortality problem for tag

systems and monogenic systems in normal form as an open problem.

Some years later, in 1971 Stal Aanderaa and Dag Belsnes published a paper

[AB71] called Decision problems for tag systems, in which the authors prove two

results for tag systems. First of all they settled the questions posed by Hooper

concerning the immortality problem for tag systems and monogenic systems

in normal form, by proving that the immortality problem for tag systems is re-

cursively unsolvable of degree 0”. Furthermore they proved that for each recur-

sively enumerable degree d, there is a tag system whose halting problem is of

degree d.13

While this field of recursion theory is of course a very fascinating one, Post’s

[Pos44] being one of the founding papers, it will not be considered here in any

details.

6.1.2 “Tag – you are it”: Some concrete research on tag systems.

Using the computer with tag systems.

In his introduction to Theory of finite and infinite machines [Min67], Marvin

Minsky spends several pages on tag systems, including his less exponential

construction of a universal tag system. In discussing the only tag system men-

tioned by Post (v = 3,1 → 1101,0 → 00) Minsky remarks ([Min67], pp. 267–268):

Post found this (00, 1101) problem “intractable”, and so did I, even with the help

of a computer. Of course unless one has a theory, one cannot expect much help

from a computer (unless it has a theory) except for clerical aids in studying ex-

amples; but if the reader tries to study the behaviour of 100100100100100100

without such aid, he will be sorry.

12The proof was announced in [Hoo65], and proven in [Hoo6b].
13A more formal proof of this result is given in [Ove71]. The result was generalized to the

immortality problem in [Hug73].

6.1. DISCUSSION OF PUBLISHED RESULTS ON TAG SYSTEMS. 293

This quote is actually a perfect characterization of how one feels after having

worked some time on this exemplar of tag system: you can’t seem to do with-

out a computer. It makes one respect even more Post’s research on tag systems

and illustrates that his study of tag systems had to involve certain “experimen-

tal” work.14

The example mentioned by Post is a remarkable example of a very small sys-

tem, with only two production rules, giving rise to complex behaviour. Despite

its simplicity, it is still not known whether this tag system is solvable or not.

By formulating a kind of statistical argument one would think that the system

would always come to a halt or would become periodic after some time. As

Minsky remarks ([Min67], p. 270):

[...] Post was interested in the decidability of the question: Does the reading

head, which is advancing at the constant rate of P squares per unit time, ever

catch up with the write head, which is advancing irregularly. [...] Note, in the (00,

1101) problem, that the read head advances three units at each step, while the

write head advances by two or four units. Statistically, one can see, the latter has

the same average speed as the former. Therefore, one would expect the string

to vanish, or become periodic. One would suppose this for most initial strings,

because if the chances are equal of getting longer or shorter, then it is almost

certain to get short, from time to time. Each time the string gets short, there is

a significant chance of repeating a previously written string, and repeating once

means repeating forever, in a monogenic process. Is there an initial string that

grows forever, in spite of this statistical obstacle? No one knows. All the strings I

have studied (by computer) either became periodic or vanished, but some only

after many millions of iterations!

Indeed, given the fact that the total number of 1’s and 0’s in the two words to

be tagged (w0 and w1) are equal, one would expect that the system will always

come to a halt or become periodic after a certain number of steps. This so-

called “statistical obstacle” presupposes, however, that the relevant letters have

14As was explained in Sec. 2.2.5, the double quotes surrounding “experimental” have a clear

intention, and indicate that “experimental” should be understood here in a specific way.

294 CHAPTER 6. PRELIMINARIES

a random distribution.

The relevant letters are those letters in a given string that will be scanned by the

tag system, i.e. every 3n+1-th letter in the case of Post’s tag system. For example,

in the following string,

101011010101010100101010101010101010110110110

the bold letters, are the ones that really matter, the rest of them are erased as a

consequence of the shift number.

Also Brian Hayes understands that this kind of reasoning is “tempting”. After

having described the same kind of argument, he compares this tag process with

a random walk ([Hay86], p. 22):

The variations in the length of the string should describe a one-dimensional ran-

dom walk centered on the average length. Any one-dimensional random walk, if

it is continued long enough, can be expected to visit all the sites available to it;

in this case the string should at some point become arbitrarily short, drop below

the three-digit treshold, and dwindle away. (The blind man, stumbling about

at random on top of the cliff, eventually falls over the precipice.) Even before

that happens, the system may light upon a pattern that leads into a cycle. The

problem with this analysis is that the pattern of 0s and 1s is not random; on the

contrary, it is generated by a fully deterministic process. Moreover, even if most

of the strings have the statistical properties of random patterns, there may well

be exceptional strings that behave very differently. At best, a probabilistic argu-

ment can predict the total outcome, but what is of greatest interest is the singular

case.

Neither Minsky nor Hayes seem to be completely convinced by this kind of

statistical argument. While Minsky does not give very clear reasons why this

should be the case, Hayes does. He is completely right in pointing out the fal-

lacy in the argument by saying that the sequence of letters formed by the rele-

vant letters is not necessarily random. However, his reasons for saying so, are

6.1. DISCUSSION OF PUBLISHED RESULTS ON TAG SYSTEMS. 295

not necessarily correct. First of all, randomness can at least be called a prob-

lematical concept. Besides the fact that there are different usages of the no-

tion,15 one is also confronted with the fact pointed out by Marsaglia – the de-

veloper of DIEHARD, a battery of random tests – that deterministic random

number generators usually do better as compared to physical devices accord-

ing to statistical tests for randomness. In other words, the first argument by

Hayes is problematic. As far as the second argument is concerned, one should

remark that one does not necessarily need “exceptional strings” in order for this

sequence of relevant letters not to be random. In chapter 8 this argument will

be further explored through some experimental results.

Hayes’s paper mainly focusses on Post’s exemplar of a tag system. Besides the

description of an algorithm to run tag systems, Hayes raises several questions

based on his observations of the output of several “computer experiments”. In

a first set-up he tested 50 initial conditions of length 24. Starting from an arbi-

trary 24-bit string, the 49 consecutive strings were tested measuring the num-

ber of steps it takes for each string to halt or enter a period. For those strings

that became periodic he also measured the length of the period and the length

of the first repeated string. He found that about 2/3 of these strings become pe-

riodic, the rest halting after no more than 400 steps. Most of those that become

periodic, did so after 100 steps, although there are exceptions. Furthermore

about 50% of the strings that become periodic have a period 6, while about 30%

has a period 10. In looking at a larger sample of strings, 75% of the strings be-

come periodic, the rest halt. Based on this observation, Brain Hayes poses the

question of whether, as the initial strings get longer, the proportion of strings

that become periodic relative to the strings that vanish, grows. The findings

concerning the dominance of period 6 and 10 were affirmed by the larger sam-

ple, Hayes consequently asking the question of whether there is an explanation

for this dominance. A further observation is the fact that the length of the first

string repeated is always an odd number. At first Hayes thought that this obser-

vation might lead to an explanation. However, in another sample of 1000 intial

conditions, the conjecture was contradicted. A further conjecture was the idea

15Compare for example the definition of randomness in algorithmic information theory, with

the way Stephen Wolfram uses this notion.

296 CHAPTER 6. PRELIMINARIES

that as the number of relevant 1’s increases, the average number of steps before

periodicity is entered would also increase, given the fact that if a 1 is scanned,

the length of the string increases. But after having tested a sample of all first 50

strings for which all the relevant letters are 1’s, he concluded that, while there

are clearly some long runs, it is clear from the data that neither the length of the

initial string, nor the number of significant 1’s can be used as reliable predictors

of run length.

As is clear from these results, one must be very careful in making conclusions

based on data from computer experiments as far as tag systems are concerned.

Of course, one can always make conjectures, but one should always perform

more tests before being less critical about the conjecture. E.g. some of Hayes’s

initial conjectures were falsified by the systems themselves while testing the

conjecture ([Hay86], pp. 26–27):

In much of life, perhaps, the exception proves the rule, but in mathematics a law

valid in 99 and 44/100% of the cases is an abomination.

Hayes ask two further questions. First of all, given the intractable character of

Post’s tag system, and the difficulty of getting a grip on it even “experimentally”

Hayes poses the question of whether there might exist a connection between

the 3n +1-problem and tag systems.

The 3n + 1-problem is the following: Given an arbitrary number. If it is even,

divide it by 2, if not, multiply by 3 and add 1. The same procedure is applied

to any next number produced this way. The question now is, whether for every

number, this iterative process ultimately leads to 1 and consequently period-

icity. This problem is still open, although most believe that the mapping will

always lead to a cycle, and is one of those mathematical problems for which

the computer has become an indispensable instrument. The 3n +1- problem

will be discussed in more detail in the last chapter 9, linking it both to the Busy

Beaver game and tag systems. In fact, it will be shown that the answer to Hayes’

question is affirmative.

Another question posed by Hayes concerns the periods he found in Post’s tag

system, viz.: 2, 4, 6, 8, 10, 12, 16, 28, 40, 52. Based on this piece of data, Hayes

wondered whether the intervening even numbers in this sequence will ever

6.1. DISCUSSION OF PUBLISHED RESULTS ON TAG SYSTEMS. 297

turn up. In a column published 10 years later in the American Scientist, Hayes

further lingered upon this question [Hay6a]. Hayes now submitted the sequence

of periods he found to Sloane’s sequences@research.att.com.

Sloane has made a wonderful instrument available on the internet, called The

On-Line Encyclopedia of Integer Sequences. In this encyclopedia millions of inte-

ger sequences can be looked up. If there is a match, you immediately get a list of

functions which result in the same sequence, or another sequence of which the

one submitted is merely a subset. One of the interesting aspects of this encyclo-

pedia is that it can function as a kind of bridge between all the specialized fields

of mathematics. While it may be the case that the mathematician working in

one field cannot understand the work of the mathematician working in another

field, they have one thing in common: numbers. Indeed, whatever field you are

working in, numbers are always present (explicitly or implicitly). In submitting

a sequence of integers to the encyclopedia, one sees that it can happen that one

sequence pops up in a variety of domains, thus linking them up.

The answer of the algorithm behind the e-mail address Hayes submitted his se-

quence to was a “no match”. There is, however, also a more sophisticated list of

algorithms developed by Sloane, called Superseeker. It can be addressed though

the following address: superseeker@research.att.com. After Superseeker exam-

ined the sequence submitted by Hayes, “it” concluded that the last four terms

are separated by three equal intervals of 12, which led Superseeker to the pre-

diction that the four following terms should be 64, 76, 88, 100. Hayes went back

to his computer and now tested 650000 different initial conditions which re-

sulted in the following sequence of periods: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,

26, 28, 32, 34, 36, 40, 46, 52, 56, 282. Superseeker now suggested three different

generating functions, all resulting in the even numbers. Hayes wondered in his

column whether Post’s tag system is indeed able to generate all even numbers,

or whether the sequence is just a finite and arbitrary collection of numbers.

The problem was settled by James B. Shearer in a letter to the editors [She96].

He showed that Post’s tag system can indeed generate all even numbers, the

298 CHAPTER 6. PRELIMINARIES

proof being very straightforward. Let A = 001101, and B = 110111010000. It is

clear that A has a period 2, while B has a period 4. Then it follows that any even

number n > 4 is generated by A(n−4)/2B. For example, a period 14 is generated

by (001101)5110111010000.

Hayes’s research on tag systems is a very good example of how research on tag

systems can be like: Doing computer experiments with tag systems often leads

to a variety of questions, that can be specified by performing yet more exper-

iments. Sometimes one gets a clearer answer, making it possible to formulate

a conjecture. More often however, doing more experiments only leads to more

puzzling questions.16

Periodicity in Post’s tag system: an attempt to get formal control on tag sys-

tems.

The paper that seemed – to the author – the most promising as far as hard math-

ematical facts and tag systems are concerned is Watanabe’s [Wat63], called Pe-

riodicity of Post’s normal Process of Tag, published in 1963. It was presented at

the Symposium on Mathematical Theory where many other important math-

ematicians and computer scientists gave a talk, including Martin Davis, Tibor

Rádo, John McCarthy and Hao Wang.

It was only by the end of August 2006 that the author was able to read this paper,

and our expectancies were high. However, although the first pages seemed at

first sight rather promising, a first “scroll” through the paper showed that what-

16There is one researcher whose “work” on tag systems should be mentioned here in a foot-

note: Stephen Wolfram. In his rather arrogant A new kind of science Wolfram [Wol02] discusses

several classes of computational systems in one of the first chapters of his book, including “tag

systems”, in order to add strength to his conjecture – which flows like a kind of mantra through-

out the whole book – that small systems not only give rise to complex behaviour, but that the

threshold for universality is very low. While there is actually nothing more to be said about

the few pages Wolfram spends on “tag systems”, we mention it, to point out an error. One of

the examples Wolfram gives of a “tag system” leading to complex behaviour, is the following:

v = 2,11 → 100,10 → 100,01 → 0,00 → 01. As should be clear from this set of rules, this system

is not a tag system, but is a member of the more general class of systems tag systems belong to

i.e. monogenic systems in normal form.

6.1. DISCUSSION OF PUBLISHED RESULTS ON TAG SYSTEMS. 299

ever the proofs might prove, there had to be an error somewhere. To explain

why this is the case, we have to explain a bit more about periods in Post’s tag

systems. As was said, this tag system is able to produce all the even numbers. In

Chapter 8 we will study in more detail the several possible periodic structures in

several tag systems, including Post’s. The “structure” of a periodic string should

be understood here as the sequence of letters formed by the relevant letters in

a periodic sequence. For example, given the following periodic string (period

6):

10111011101000000

Its structure, formed by the bold letters is:

111000

After having tested thousands of initial conditions of Post’s tag system, we found

4 basic structures, all the other structures (except for two) being compositions

of these structures. These basic structures are:17
10 Period = 2 [2]

1100 Period = 4 [4]

111000 Period = 6 [6]

1100011100 Period = 10 [10]

An example of a composed structure is given by the following string, which has

a period 30:

10111011101000000110100110111011101000000110

111011101000000110111011101000011011101000000

Assembling the relevant letters we get:

111000101110001110001110011000 = 3 · [6]+1 · [2]+1 · [10] = [30]

While the majority of periodic strings analyzed this way always have a compos-

ite form, or one of the basic forms, two exceptions to this rule were found, viz.

17Of course these are just one possible form of each of the structures. E.g. 001110 is a possible

variant of the structure of period 6.

300 CHAPTER 6. PRELIMINARIES

a period 40 and a period 66. While their structure contains some of the basic

structures, it is not composite. Furthermore, contrary to the composite peri-

ods, the length of the structure does not equal the length of the period. The two

exceptions found (until now) are:18

{
000001101011100 Period = 40 [40]

111101001101000100011111 Period = 66 [66]

Now, what is the significance of these findings for Watanabe’s paper? The paper

was written with the intention of getting a better understanding or even expla-

nation for the periodic structures in Post’s tag system – as should be clear from

the title. At the end of the paper, Watanabe concludes, on the basis of formal

arguments, that the following periodic strings (or any variant form of them):

(1) 0000110111011101(000000110111011101)n

(2) 001101

(3) 110111010000

(4) Any concatenation of (2) and (3)

are the only periodic strings possible in Post’s tag system ([Wat63], p. 97):

We can [...] conclude that any periodic string is only ab, b2a2 or a concatenation

of ab’s and b2a2, or a2b3(a3b3)n

where a = 1101, b = 00. These strings, are in fact three of the basic periodic

structures mentioned above, namely those for period 2, 4 and 6. As should be

clear by now, however, there must be something wrong here, since neither [10]

nor [40] and [66] are concatenations of this form.

First of all, on the basis of the proofs, Watanabe excludes the possibility of pe-

riodic strings being a concatenation of (1) with (2) and/or (3). This cannot be

true. The composite structure of a string with period 30 (given above), contains

both (1) and (2) and was effectively produced by Post’s tag system. Secondly,

18Of course this is just one form of the structure

6.1. DISCUSSION OF PUBLISHED RESULTS ON TAG SYSTEMS. 301

the fourth basic periodic structure found, period 10, is not included. Further-

more, the “special” structures found for strings with a period 40 or 66 are not

considered. So, what is wrong here? There are several mistakes in the proof, but

we will only discuss one more fundamental mistake.

At some points Watanabe presupposes certain properties for periodicity. These

assumptions exclude the possibility of structures such as that for the period 40

string. On p. 92 he claims to have proven the following “theorem”:

The string L = PQ defined above always produces the same form [QP] as consid-

ered as a circular permutation. We call L a loop.

Now, the string PQ is defined as consisting of a periodic string (P) and some

other string (Q), the length of PQ being divisible by 3. In defining a certain,

rather strange, operation19 – without proving that this operation “works” in tag

systems – Watanabe proves that when we have PQ it will always be converted

into QP , after applying another operation defined earlier in the paper, indi-

cated by a short arrow. This short arrow, basically means that a string X is pro-

duced from a string Y after all the relevant letters of X have been processed,

where X has a length divisible by v = 3. As should be clear, scanning all the

relevant letters of PQ, with the length of PQ divisible by 3, and P periodic, can

never result in QP since after this is done, the first string in whatever string re-

sults from PQ after application of the short arrow operation, must be P , if peri-

ods are considered such as the period 4 and 6 in Post’s tag system, which are the

only periodic strings considered by Watanabe. Thus, there must be something

wrong here. It would make more sense if the short arrow is – in the context of

the proof – understood as the result of scanning the relevant letters of P . Then

it is indeed possible for PQ to produce QP . E.g. if P has length 6, PQ will be

converted into QP after two iterations in Post’s tag system.

This is indeed the case if P is a periodic string of the types considered by Watan-

19This operation, indicated as “ is defined as follows: A“Wi B → AWi “BXi , where Wi is a string

of a given form, and Xi a specific kind of string produced by Wi . Watanabe never shows that

it is possible to define this kind of operation for Post’s tag system for any string in this form.

This kind of introduction of special operations and special derivations is typical for Watanabe’s

whole proof, and one of its weakest points.

302 CHAPTER 6. PRELIMINARIES

abe, or is it not? Let us look at an example:

001101︸ ︷︷ ︸
P

000000︸ ︷︷ ︸
Q

Applying the production rules of Post’s tag system to this string for two times,

having gone through all the significant letters in P , leads to the following string:

000000︸ ︷︷ ︸
Q

001101︸ ︷︷ ︸
P

As far as this example is concerned, everything is OK. However what about the

following example, using a period 6?

10111011101000000︸ ︷︷ ︸
P ′

1101︸ ︷︷ ︸
Q′

After 6 iterations, having gone through all the relevant letters in P , we get the

following string:

1011︸ ︷︷ ︸
6=Q

10111011101000000︸ ︷︷ ︸
P ′

As is clear from this example, it is not always the case that PQ → QP , if PQ ≡
0 mod 3, with P periodic. Now, based on the “proof” that PQ will always be

converted into QP after all the significant letters of P have been processed, tak-

ing into account the conditions on P and PQ, Watanabe naturally concludes

that if both P and Q are periodic the following symmetry is achieved:

PQ →QP → PQ →

It is this “fact”, together with several other “facts”, that finally lead him to the

proof that there are only 3 basic periods (together with the concatenations of

(2) and (3)) possible in Post’s tag system. Besides the fact that the proof of the

convertibility from PQ into QP is wrong, taking into account the conditions im-

posed on PQ and P Watanabe does not see the possibility of a structure such as

that of a period 40. This is the case, because he presupposes that any periodic

string is of the form PQ as described above, with both P and Q periodic. This

6.1. DISCUSSION OF PUBLISHED RESULTS ON TAG SYSTEMS. 303

leads him to the further assumption that if a string is periodic, it must repro-

duce itself after all its significant letters have been scanned. This is indeed the

case for the majority of the periods produced in Post’s tag system. E.g.:

001101 → 10100 → 001101

However, in the case of the period 40 given above this cannot be the case. If all

the relevant letters of a string with this kind of periodic structure are “processed”

(15 steps in the case of the structure given above) the resulting string is not the

same as the one started from. The same reasoning goes for the structure of the

period 66 string mentioned above. It is in making certain assumptions about

periodicity, possibly linked to a theoretical knowledge of periodicity, that first

of all, the basic proof on loops is wrong, and that, secondly, the possibility of

having a periodic string, which, in a way, exceeds its own length, is not taken

into account.

In general, although we have enjoyed reading Watanabe’s paper in a certain

way, it is clear that what he proves is contradicted by Post’s tag system. Some

comments are in place here. First of all, we have the impression that Watan-

abe has started from a too limited set of observations of Post’s tag systems, and,

on the basis of these observations, constructed a proof that is not correct. Sec-

ondly, as was shown in the analysis of one subproof, he starts from certain as-

sumptions that have not been proven. Thirdly, the whole proof is characterized

by a kind of reversal of the normal structure of a proof. I.e., Watanabe’s lemma’s

are often of the form “if this kind of periodic structure occurs, the involved

strings are of this particular form”, however, when trying to follow his proofs,

it appears that what actually is the case, is the opposite: “if the involved string

is of this particular form, this kind of periodic structure occurs”. Although this

is not a problem in itself, it does obscure the actual assumptions of the proof.

Finally, as a consequence of these previous points, the proofs themselves con-

tain basic errors. For example, without going into the details, the proof starts

by constructing words of several orders, 00 and 1101 are for example words of

the first step, derived from substrings 0– and 1–. He considers words of the first,

second and third step, and derived words for each of these steps. Basic to the

proof is that words of the first step can always be “rewritten” as words of the

304 CHAPTER 6. PRELIMINARIES

second step, and that words of the second step can always be “rewritten” as

words of the third step, where both the words themselves as well as the derived

words have a length divisible by v. The problem with the proof is that noth-

ing guarantees that this will actually happen. Furthermore, Watanabe does not

take into account, that the reverse might happen, words of the third step e.g.

being “rewritten” as words of the second step.

Summarizing, Watanabe’s proof is too much directed towards a given goal, prov-

ing that Post’s tag system allows but a certain kind of periodic strings, and, as a

consequence, neglects certain aspects of Post’s tag system, and tag systems in

general.

Despite our critiques towards Watanabe’s paper, we still believe that it is a very

interesting paper. It is the only paper I know of that tries to find a more formal

approach towards specific cases of tag systems. Furthermore, Watanabe’s fail-

ure to get a more formal grip on tag systems, only shows that even this simple

case is far from trivial.

6.1.3 Conclusion

In this section we have seen that there are some basic results on tag systems,

the most important being Minsky’s proof of the general unsolvability of tag sys-

tems. Still, the number of results remains limited. From the previous, it is also

clear that once researchers focus on more specific cases of tag systems, there

arise more problems than there are solutions. Both Minsky, Hayes as well as

Watanabe concluded for the intractability of Post’s tag system. This serves as

an indication of the difficulties even such simple tag system gives rise to.

In the next section we will take a closer look at the several classes of behaviour

one can differentiate in tag systems, and connect these classes to the two forms

of the problem of tag (as was done by Post).

6.2. GENERAL CLASSES OF BEHAVIOUR IN TAG SYSTEMS 305

6.2 General classes of behaviour in tag systems

In Post’s description of his research on tag systems, he discusses the relation

between solvable and unsolvable classes of tag systems and the general classes

of behaviour for tag systems: termination, periodicity and unbounded growth.

It is the purpose of this section to discuss these general classes and their link

with unsolvable decision problems in tag systems. In this way, we want to give

the reader yet another impression of the behaviour of tag systems.

6.2.1 Description of classes of behaviour

There are two global classes of behaviour for tag systems: termination and non-

termination. A tag system terminates, when the empty string ε is produced. In

Fig. 6.1, the following tag system:
v = 3

0 → 0

1 → 0110

was started with a random initial condition of length 200. After about 700 steps

it terminates.

If a tag system does not terminate, the resulting infinite sequence of strings

produced either converges or diverges, i.e. either the tag system becomes pe-

riodic or grows without bound. In Fig. 6.2 an example is given of a tag system

that becomes periodic. The tag system used here is:
v = 4

0 → 01

1 → 011010

The period of a tag system is determined by the number of iteration steps needed

for a string to reproduce itself. In the example, the period = 2. The string:

0101101001011010010110100101101001011010010110100

1011010010110100101101001011010010110100101101001

0110100101101001011010010110100101101001011010010

11010010110100101101001011010010110100101101001011010

306 CHAPTER 6. PRELIMINARIES

Figure 6.1: Example of a tag system that terminates.

Figure 6.2: Example of a tag system that becomes periodic.

6.2. GENERAL CLASSES OF BEHAVIOUR IN TAG SYSTEMS 307

Figure 6.3: Example of a tag system that grows ad infinitum

being repeated after two steps, when applying the production rules. A tag sys-

tem becomes periodic if any string appears more than once in the evolution of

the system. This is due to the fact that tag systems are monogenic: in applying

the iterative tag process to a given string, one and only one string can be pro-

duced. Consequently if a sequence of strings A → B → ... → A is produced, the

second time A occurs it must enter the same cycle.

Besides periodicity and termination, a tag system can also grow without the

lengths of the strings produced being bounded. In Fig.6.3 an example is given

of a tag system showing this behaviour. The tag system used here is:
v = 5

0 → 1001

1 → 0110111

For this specific example, it can be shown that the tag system will keep on grow-

ing i.e. it can be proven that whatever initial condition it is started with, except

for the initial condition 0, for any number n the tag system will produce a string

Si of length lSi > n after a finite number of iterations i , such that no string S j ,

j > i , will ever be produced again for which lS j ≤ n. In other words, the tag sys-

tem will show unbounded growth.

In looking at the examples of termination, periodicity and unbounded growth

308 CHAPTER 6. PRELIMINARIES

one might begin to wonder as to why adjectives such as “uncontrollable” and

“intractable” were used in relation to tag systems. As far as the examples given

above are concerned, it is indeed all rather simple. The tag systems were con-

structed such that I knew in advance what kind of behaviour they would give

display. So what kind of behaviour is it precisely that characterizes the more

difficult tag systems?

6.2.2 “Unpredictable iterations.”

In Fig. 6.4 an example is shown of what we call fluctuating behaviour.20 The tag

Figure 6.4: Example of fluctuating behaviour in Post’s tag system.

system used is that mentioned by Post:
v = 3

0 → 00

1 → 1101

As can be seen, there seems to be no indication whatsoever in this kind of be-

haviour to predict what will happen in the end. Will this process terminate,

20The title of this subsection, Unpredictable Iterations is the title of a paper by Conway

[Con72] in which he gave a proof of the unsolvability of Collatz-like problem, cfr. Sec. 9.3.2.

6.2. GENERAL CLASSES OF BEHAVIOUR IN TAG SYSTEMS 309

become periodic or lead to unbounded growth? It is a typical feature of “fluctu-

ating behaviour” that there seems to be no regularity in the way the lengths of

the strings evolve with the number of iterations.

As was already discussed in the previous chapter, for this specific tag system,

one would at first expect that despite this fluctuating behaviour, the process

will in the end become periodic or terminate, presupposing that the distribu-

tion of relevant letters is statistically random. For the tag process shown in Fig.

6.4 this is indeed the case. It will become periodic after about 16500 iterations

as is shown in Fig. 6.2.2. However, neither the rules of the tag system nor the

Figure 6.5: Further evolution of the tag process from from Fig. 6.4, leading to

periodicity.

first, say, 10000 iterations of the tag process (See Fig. 6.4) seem to give us any

clue that this will in fact happen. In general, until now, no one has found a

method to predict the behaviour of Post’s tag system, when started with an ar-

bitrary initial condition. All one seems to be able to do is to wait and see. It is

exactly this kind of behaviour that characterizes the more difficult tag systems,

such as the one mentioned by Post. Whenever we find a tag system that seems

to show this kind of behaviour, such that there seems to be no clear way to pre-

dict the behaviour of the tag system, we will call this tag system intractable,

allowing for the possibility that one or both forms of the problem of tag are un-

310 CHAPTER 6. PRELIMINARIES

solvable for the specific tag system considered, and thus also allowing for the

possibility of universality.

6.2.3 Classes of behaviour and the two forms of the problem of

“tag”.

For Post [Pos65], the two forms of the problem of tag and the general classes

of behaviour were clearly connected questions. The problem in its first form

is the problem to determine for a given tag system T , when given an arbitrary

initial condition I , whether it will terminate yes or no. In the second form of the

problem, the initial condition is considered part of the description of the tag

system. Then the problem is to determine for any string A whether a given tag

system T will ever produce A. How can these problems become solvable?

As far as the first problem is concerned, the problem is solvable for a given

(class of) tag systems if it can be determined for every possible string over the

alphabet, from the recursively enumerable list of all possible strings, whether

it belongs to the class of terminating initial conditions or to the class of non-

terminating initial conditions for the (class of) tag systems considered. In the

second form, the problem is immediately solved if it can be shown that the tag

system will terminate. If the tag process does not terminate, we must differen-

tiate between periodic or non-periodic behaviour. If one is able to show that

the lengths of the strings produced will remain bounded – they will never be-

come longer than a given number n – then the system will become periodic

(or halt) and one thus merely has to compare the string for which one wants

to know whether it will be produced by the tag system, with a finite number of

strings. If this is not the case, the problem is solved if one can find a method

to show that the tag process will show unbounded growth, i.e. [Pos65], p. 362:

“if a method were also found for determining for any given length of sequence

a point in the process beyond which all derived sequences were of length greater

than that given length.” (cfr. the example of unbounded growth). Indeed, if

you know in advance, for every possible length n, how many iteration steps i

it takes before the tag system will never again produce a string S j , j > i , with

length lS j ≤ n the problem in its second form can be solved.

6.2. GENERAL CLASSES OF BEHAVIOUR IN TAG SYSTEMS 311

In the remainder of this text, the first form of the problem of tag will also be

identified as the halting problem for tag systems, the problem in its second

form will be called the reachability problem for tag systems.

With respect to the solvability of the two forms of the problem of tag, it is inter-

esting to have a closer look at Minsky’s small 4-symbols, 7-state universal Turing

machine (cfr. in Ch. 5). This machine was proven to be universal by showing

that it can simulate every tag system with v = 2. Since Minsky had already shown

that there exist tag systems with v = 2 that can represent any Turing machine, the

small universal Turing machine constructed by Minsky is indeed universal.

The tape of this universal machine is subdivided into three regions:

... 0 0 Rules Region Erased Region Sequence Region 0 0 ...

The rules of the tag system to be simulated are represented in the rules region

of the tape. Every time the simulation of an iteration step has been finished, the

encoding of the production rules will be restored in its original form. The se-

quence region is used to encode the actual productions of the tag system, and

are represented by an arrangement of X’s and B’s.21 For example, encoding the

words of the tag system mentioned by Post, a 1 will be encoded as XXXXB and 0 as

XXXXXXXB. If the initial condition of the tag system to be represented is 000110,

the sequence region will contain XXXXBXXXXBXXXXBXXXXXXXBXXXXXXXBXXXX.22

One of the features of this universal machine UT is that every time the first 2 sym-

bols are erased in the tag system simulated, the 2 first encoded symbols of the

string contained in the sequence region are all set to 0. This portion of the tape

thus becomes the erased region. E.g., if we suppose that the tag system simulated

is Post’s tag system, the shift number v however being equal to 2, instead of 3, the

erased and sequence region together will contain the following sequence of sym-

bols: 0000000000XXXXBXXXXXXXBXXXXXXXBXXXXBXXXXBXXXX after the ma-

chine has done what it has to do to simulate one iteration step of the tag process,

applied to the above sequence of symbols. In repeating this process, the number

21The details of the exact encoding can be found in [Min62, CM63].
22The encoding of the last symbol of the string, is always the original encoding without the B.

312 CHAPTER 6. PRELIMINARIES

of 0’s between the encoding of the string actually produced by the tag system and

the encoding of the production rules will never shrink.

Given the universality of this machine, it can be used to construct a universal

tag system Utag, applying Minsky’s coding discussed in 6.1.1. Given the encoding

of UT, the length of the erased region can only grow. As a consequence, given

Minsky’s encoding from Turing machines to tag systems, the problem of tag in

its second form is solvable for Utag. In this sense it is useful to talk about the

modified reachability problem, following Margenstern [Mar00] who uses this ter-

minology in the context of Turing machines. The modified reachability problem

for tag systems is then the problem to determine for every arbitrary string S, and

a given tag system T , the initial condition fixed, whether T will ever produce a

string of which the last (or the first) lS letters are equal to S.

Summarizing, the halting problem for tag systems is solvable for a given tag

system or class of tag systems if it can be shown for each string over the alpha-

bet of the tag system that it will lead to termination or non-termination. The

problem in its second form is solved for a given tag system if one can prove that

it will terminate, become periodic, or lead to unbounded growth, each of these

possible classes of behaviour being illustrated through Figs. 6.1 - 6.3.

6.2.4 Conclusion

Post had already pointed out that one can identify three general classes of be-

haviour for tag systems: termination, periodicity or unbounded growth, the

two forms of the problem of tag each being closely connected to each of these

classes. If it can be shown for a given tag system that it will lead to one of these

classes of behaviour after a finite number of steps, these two problems are solv-

able for that tag system. It is the possibility of what we have called fluctuating

behaviour that makes these problems so hard to solve for specific instances of

tag systems such as the one mentioned by Post. It is in this respect that we have

called tag systems showing this kind of behaviour intractable. Of course, con-

trary to the other three classes of behaviour, fluctuating behaviour is ill-defined

and the notion of intractability is only used here heuristically.

6.3. SHIFTING THROUGH TAGS 313

In the next, rather short, section we will give an example of a solvable tag sys-

tem to give a better idea of how one might proceed to solve a given tag system

and how this is connected to the three classes of behaviour. On the basis of this

proof, we will also be able to prove a certain theorem about the possibility of

reducing specific classes of tag systems to a certain number of other classes of

tag systems.

6.3 Shifting through tags. Decomposition of tag sys-

tems.

6.3.1 An example of a solvable tag system.

The following tag system can be shown to be solvable, by decomposing it first

in 6 different tag systems: 
v = 6

0 → 001

1 → 010011101

If the tag system is started with a random initial condition of length 200, the

string produced after b200
6 c = 33 iterations, will have one of the 4 following forms:

00x1x2x3..........x33

01x1x2x3..........x33

10x1x2x3..........x33

11x1x2x3..........x33 xi ∈ {001,010011101}

The first two letters (whatever they may be) determine a shift throughout x1x2x3

..........x33, i.e. if x1 = 010011101, the fifth letter of 010011101 will be processed,

if x1 = 001, the second letter of x2 will be processed. This tag system differs

from, e.g., Post’s exemplar, because the shift induced by the length of the initial

condition remains constant in a certain way. This is due to the fact that the

length of the respective words and the shift number v are not relatively prime.

Based on this property we can prove that this tag system can be decomposed in

6 different solvable cases. A general proof that tag systems where the lengths of

314 CHAPTER 6. PRELIMINARIES

the words and v are not relatively prime are reducible to v different tag systems,

will be given in the following subsection (6.3.2). For now, we will develop the

example to prepare for the proof.

In order to understand the possibility of such decomposition, it should first be

noted that for each initial condition with a length l , there are exactly 2l≡n mod 6

possible forms of the string Sb l
6 c produced after b l

6c iteration steps. For example,

for l = 203, there are 32 possible forms, i.e., the five last letters of the initial

condition plus the words tagged at the end of the initial condition. Thus, the

shift Sb l
6 c is “entered” with, is determined by l mod 6. Now let us look at each

such possible shift l ≡ n mod 6.

Case 1: l ≡ 0 mod 6. If the length l of the initial condition is divisible by 6, the

string Sb l
6 c produced after b l

6c iteration steps will be of the following form:

x1x2x3..........xb l
6 c xi ∈ {001,010011101}

In the following iteration the first letter of x1 will be processed, which is al-

ways equal to 0. If x1 = 010011101 the next letter scanned is 1, the 7th letter

of 010011101. If x1 = 001 the next letter scanned is always 0.23 This reason-

ing can be generalized, by looking at every possible combination of words 001

and 010011101, and all the possible letters of 001 and 010011101 that can be

scanned during the tag process, for every such possible combination. This is

done in the following transition scheme, where an arrow going from a word x

to a word y is to be interpreted as x is followed by y . A letter is put in bold and

underlined when it will be processed by the tag system.

23If x2 = 001, the first letter of x3 will be processed, which is always equal to 0. If x2 =
010011101, the 4th letter of x2 will be processed, which is also equal to 0.

6.3. SHIFTING THROUGH TAGS 315

NILL //

��2
22

22
22

22
22

22
22

22
22

22
22

2 001 //

��

001 //

((PPPPPPPPPPPPP 001
vv

~~}}
}}

}}
}}

}}
}}

}}
}}

}}

010011101

vvnnnnnnnnnnnn
//001

hhPPPPPPPPPPPPPP

ii

010011101 //

WW

010011101

OO

//010011101
rr

010011101

AA

As is clear from this scheme, it is indeed true that the shift determined by the

length of the initial condition can, in a way, never be changed again. I.e., once

started with a shift 0, it can be predicted that certain letters of the words will

never be “scanned” by the tag process. If the letters of a word wi of a given tag

system are indexed as a0...alwi −1, with lwi being the length of wi , then letters 1

and 2 of 001 and letters 1, 2, 4, 5, 7 and 8 of 010011101 will never be scanned by

the tag process if the initial condition has length l ≡ 0 mod v. The letters that

will be scanned are: letter 0 of 001 and letters 0, 3 and 6 of 010011101, i.e. 0, 0,

0 and 1. Now, given the production rules of the tag system, we know that if the

first letter of a given string S with length l is 0, the length of the string produced

from S will equal l −3. If the first letter of a given string S with length l is 1, the

length of the resulting string is l+3. From this it follows that if this tag system is

started with an initial string of length l , such that 0 ≡ (l mod 6) it will either halt

or become periodic. Why is this the case? Since only the first letter of 001 can

ever be processed, every time 001 is encountered during the tag process, the

resulting string must get 3 letters shorter. If 010011101 is processed there are

two possibilities: the letter indexed 3 is scanned, or letters 0 and 6 are scanned.

In the first case the resulting string gets shorter, in the second case the length

of the resulting string remains invariant. In other words, whatever word 001 or

010011101 is processed, the resulting string can never grow, and the two forms

of the problem of tag become solvable.

Before looking at the other cases, it should be noted that the above given scheme,

while being more explicit, can be simplified to the following scheme:

316 CHAPTER 6. PRELIMINARIES

y //

$$JJJJJJJJJJJ 001 //

((PPPPPPPPPPPPP 001
vv

vvnnnnnnnnnnnnn

010011101

66nnnnnnnnnnnnn
//010011101ii

hhPPPPPPPPPPPPP

It is this simplified form that will be used in the discussion of the remaining

cases.

Case 2: l ≡ 1 mod 6 If the length of the initial condition l ≡ 1 mod 6 the string

Sb l
6 c produced after b l

6c iteration will be of the following form:

y x1x2x3..........xb l
6 c xi ∈ {001,010011101}, y ∈ {0,1}

Applying the same reasoning as in the previous case, the following scheme

shows which letters of 001 and 010011101 can be scanned in this case:

y //

$$JJJJJJJJJJ 001 //

((PPPPPPPPPPPPP 001
vv

vvnnnnnnnnnnnnn

010011101

66nnnnnnnnnnnnn
//010011101hh

hhPPPPPPPPPPPPP

From this scheme, it follows that the shift determined by the length of the ini-

tial condition determines which letters of 010011101 and 001 will and will not

be scanned. The letters never scanned are: letters indexed 0 and 1 of 001 and

letters indexed 0, 1, 3, 4, 6 and 7 of 010011101. The letters that can be scanned

are: letter 2 of 001 and letters 2, 5 and 8 of 010011101, i.e. 1, 1, 0 and 1. From this

it follows that if the tag system is started with an initial condition with length

l ≡ 1 mod 6 the strings produced can never get shorter. If 001 is processed, only

its last letter can be scanned, resulting in growth. If 010011101 is processed, we

have two possibilities: if letter 5 is scanned, the resulting string will grow, if let-

ters 2 and 8 are scanned, the length remains invariant. From this it follows that

in this case, the tag system can never become shorter, and the two forms of the

problem of tag become solvable.

Case 3: l ≡ 2 mod 6 If the length of the initial condition l ≡ 2 mod v , the string

Sb l
6 c produced after b l

6c iteration will be of the following form:

y1 y2x1x2x3..........xb l
6 c xi ∈ {001,010011101}, yn ∈ {0,1}

6.3. SHIFTING THROUGH TAGS 317

The following scheme shows which letters of 001 and 010011101 can and can-

not be scanned in this case:

y1 y2 //

&&LLLLLLLLLL 001 //

((PPPPPPPPPPPPP 001
vv

vvnnnnnnnnnnnnn

010011101

66nnnnnnnnnnnnn
//010011101hh

hhPPPPPPPPPPPPP

This scheme proves that this tag system, when started with an initial condition

with length l ≡ 2 mod 6 the following letters can never be scanned: letters in-

dexed 0 and 2 of 001 and letters 0, 2, 3, 5, 6 and 8 of 010011101. The letters

that can be scanned are: the 2nd letter of 001 and letters indexed 1, 4 and 7 of

010011101, i.e. 0, 1, 1, 0. Now one must be careful in concluding that also in

this case the tag system is solvable. As was already argued with respect to the

tag system mentioned by Post, it is not because one expects that on the aver-

age equally as many 0’s as 1’s might be processed that the system must become

periodic or halt, since one then presupposes a random distribution of the se-

quence of relevant letters scanned. Still, it can be shown that even in the case

the length of the initial condition l ≡ 2 mod v the tag system discussed here is

solvable: it will either become periodic, or, for a special subclass of initial con-

ditions, halt. This can be easily proven by applying a certain method, which

will be discussed in more detail in Sec. 7.3. This method looks at all the the-

oretically possible productions starting from individual words as follows. Take

a word wi , and look at all the possible strings that can be produced from wi ,

by entering it with all the possible shifts, going from 0 to v −1. Thus from each

word, v − 1 strings are produced. If one of these strings is identical to wi or

any other string already produced, it is marked, since all possible productions

from this string, are the same as those from the string it is identical to. Then the

same procedure is applied to the unmarked strings produced from wi , mark-

ing those strings that are identical to one of the strings already produced. If at

a given time all the strings produced are marked, one applies the same proce-

dure to the next word. If it is the case that this procedure applied to each of

the words comes to an end – all the strings produced at a given time have been

marked – one must conclude that the tag system is solvable, since the length of

318 CHAPTER 6. PRELIMINARIES

any possible substring produced in the tag system is bounded.

In case of the tag system considered here, we do not have to take into account

all the possible shifts, but only those allowed by the length of the initial condi-

tion. Since there are only two possible shifts with which 010011101 can be en-

tered (010011101001 and 010011101001), only two possible strings can be pro-

duced from 010011101: 010011101 and 010011101001. The first of these strings

is again 010011101, so we only have to look at what happens with 010011101001.

Again there are two possible shifts possible (010011101001001 and 010011101001).

In either case the result is again 010011101001. As far as 001 is concerned, it can

only lead to 001 (itself) or the nill string (when preceded by 001). The reasoning

is summarized in the following scheme:

010011101 //

((RRRRRRRRRRRRR 010011101001ii

��
010011101

OO

66 010011101001ii

OO

001hh

It follows that the tag system will always become periodic or halt if the initial

condition is of length l ≡ 2 mod v. It will halt for any initial condition, with

l ≡ 2 mod 6, for which all the relevant letters are 0. In all the other cases it will

become periodic.

Cases 4–6: l ≡ 4 mod 6, l ≡ 5 mod 6, l ≡ 6 mod 6. Each of the cases l ≡ 4 mod

6, l ≡ 5 mod 6, l ≡ 6 mod 6 can be reduced to cases 1–3 respectively.

It thus follows that both the halting problem as well as the reachability problem

for tag systems is solvable for this one specific tag system. We have been able to

prove this by reducing the decision problem of this tag systems to the decision

problem of three other tag systems. Indeed, as should be clear from the exam-

ple, the tag systems’ solvability depends on the solvability of the following tag

6.3. SHIFTING THROUGH TAGS 319

systems:
v = 2 0 → 0 1 → 010

v = 2 0 → 1 1 → 011

v = 2 0 → 0 1 → 110

6.3.2 Generalization of the example.

The analysis given above clearly shows that the tag system v = 6,0 → 001,1 →
010011101, is solvable. Depending on the length of the initial condition, the

tag process either leads to termination, periodicity or unbounded growth. The

proof was based on the fact that the length of the initial condition determines

which letters of the words will or will not be scanned, thus leading to the de-

composition of the tag system in three other cases of tag systems, its decidabil-

ity thus depending on the decidability of these three cases. This is possible only

because the lengths of the respective words and v are not relatively prime. in

this subsection we will prove the following theorem:

Theorem 6.3.1 Given a tag system T with shift number v, Σ = {a0, a1, ..., aµ−1}

and words wa0 , wa1 , ..., waµ−1 . Then, if the lengths lai of the words and v are not

relatively prime, the solvability of a given decision problem for T can be reduced

to the solvability of the decision problem for λ different tag systems, λ being the

greatest common divisor of v, lwa0
, ..., lwaµ−1

, with shift number v ′ = v/λ.

Given a tag system T with shift number v,µ letters and thusµwords w0, w1, ..., wµ−1

with respective lengths l0, l1, ..., lµ−1, with v and l0, l1, ..., lµ−1 having λ > 1 as

their greatest common divisor (g.c.d.). Given this last feature, the following

equation:

a0l0 +a1l1 + ...+aµ−1lµ−1 +bv = 1 (6.10)

with a0, a1, ..., aµ−1, b ∈Z, does not have integer solutions.24 Then, given an ini-

tial condition I with length lI over the alphabet Σ, the string produced after b l
v c

steps will always be of the following form:

y1 y2...yn x1x2x3...xb lI
v c ly1 y2...yn ≡ lI mod v

yi ∈Σ x j ∈ {w1, w2, ..., wµ}

24See e.g., [Gau01], article 42 for this classical theorem.

320 CHAPTER 6. PRELIMINARIES

If a string of this form has been produced, i.e. after b l
v c steps, it is possible

to determine what letters of any wi will and will never become relevant – the

letters of every word wi being indexed from 0 to lwi − 1. This is possible by

determining the solutions to the following equation:

a0l0 +a1l1 + ...+aµ−1lµ−1 +bv + lI mod v = n (6.11)

with a0, a1, ..., aµ−1, b ∈Z, and x mod y being the additive complement of x rel-

ative to y .25

Definition 6.3.1 The additive complement x mod y of a given number x rela-

tive to a modulus y is defined as follows:

x mod y =
{

y − (x mod y) if x 6= 0 mod v

0 if x ≡ 0 mod v

Eq. (6.11) can be used to determine the indices of all the letters that will and

will never become relevant for each of the words wi . For ease of explanation,

suppose that from the point y1 y2...yn x1x2x3...xb lI
v c is produced, the leading let-

ters are never really erased by the tag system, but that you merely shift further

and further to the right.26 Then we are always working with a string of length

(lI mod v)+ a0l0 + a1l1 + ...+ aµ−1lµ−1. Instead of lI mod v, lI mod v is used in

the equation, since we do not want to determine the “absolute index” of the rel-

evant letters scanned, where absolute index means the x-th letter in the string

produced at a given time. Rather we want to determine the indices of the rele-

vant letters (to be) scanned, taking into account the shift (lI mod v) induced by

lI . The index of the letter scanned in a given word can be calculated by using ad-

ditive complements, since given lI mod v, lI mod v letters will be erased in the

first letters following y1...yn . The shift operation is represented in the equation

by bv, moving b · v times to the right. As a consequence a0 +a1 + ...+aµ−1 = b.

Eq. (6.11) can be further simplified. Since l0, l1, ..., lµ−1, v are not relatively prime,

25An alternate formulation would be: The absolute value of the least negative residue of x

modulo y .
26This was actually the original conception of tag systems, where a tag moves along a string

from left to right, cfr. Sec. 2.2.5.

6.3. SHIFTING THROUGH TAGS 321

they have a greatest common divisor (λ), thus a0l0+a1l1+...+aµ−1lµ−1+bv must

be divisible by λ and can be rewritten as λ · i and (6.11) can be rewritten as:

λi + lI mod v = n (6.12)

If lI mod v > λ, lI mod v may be rewritten as (λ · m)+ lI mod λ, m being the

quotient of lI after division by λ, since v is divisible by λ. This rewriting op-

eration implies that the cases for which lI ≡ x mod λ is valid, can be reduced

to each other, even though different lI , lI mod v may give different solutions.27

Putting j = m + i , the general form for (6.11) is:

λ j + lI mod λ= n (6.13)

Given (6.13), we can determine the indices of all the letters of each of the words

wi that can be scanned by the tag system, given lI , by the following sets of solu-

tions: 

(λ j0 + lI mod λ) j0 = 0, ..., l0
λ
−1

(λ j1 + lI mod λ) j1 = 0, ..., l1
λ
−1

(λ j2 + lI mod λ) j2 = 0, ..., l2
λ
−1

...

(λ jµ−1 + lI mod λ) jµ−1 = 0, ...,
lµ−1

λ
−1

Applying this to the example of the tag system discussed above, e.g. supposing

that lI = 199, we get: {
(3 j0 +2) = {2} j0 = {0}

(3 j1 +2) = {2,5,8} j1 = {0,1,2}

As was shown the only letters which can be relevant for this case are the letter

indexed 2 of 001 and the letters indexed 2, 5 and 8 of 010011101.

Now, since li is always divisible by λ, it follows that not every letter of each of

the words can become relevant. Indeed, it follows from the above given set of

equations that, given the length li of the word wi corresponding with the i -th

letter from the alphabet, only li /λ letters in wi will ever be scanned once the tag

process is started with a given initial condition I of length lI . If the g.c.d. λ of

27In the example of sec. 6.3.1 the case lI ≡ 1 mod v is e.g. equivalent to the case lI ≡ 4 mod v.

322 CHAPTER 6. PRELIMINARIES

v, l0, l1, ..., lµ−1 is greater than 1, these numbers are not relatively prime, li /λ< li .

From the method for calculating the indices of the letters that will be scanned

and a given lI , it follows that given a tag system T with g.c.d. (v, l0, l1, ..., lµ−1)

= λ > 1, its decision problem can be reduced to λ cases. We have thus proven

theorem 6.3.1.

Chapter 7

Constraints for intractable

behaviour

7.1 Introduction

As was shown in the previous section, one can identify three general classes of

behaviour with respect to tag systems: termination, periodicity and unbounded

growth. It was furthermore shown how the two forms of the problem of tag can

be shown to be solvable for a given tag system, if one can determine for that

tag system and any initial condition that it will either terminate, become peri-

odic or lead to unbounded growth after a finite number of steps. On the level

of observing the behaviour of tag systems, the more “challenging” tag systems

are those which show what was called fluctuating behaviour. As was said, while

the mere observation of such behaviour does not guarantee anything about the

future behaviour of the process, it can be considered as an indication of the in-

tractable character of the tag system involved.

However, one must be very careful here. It might be the case that, even if one

is working with a tag system that shows “fluctuating behaviour”, having tested

it for several initial conditions, there still exists a method or algorithm to solve

its decision problems and thus predict its behaviour. This problem is a conse-

quence of the general unsolvability of tag systems. Even if one has searched for

years for a method to prove a specific tag system or a class of tag systems solv-

323

324 CHAPTER 7. CONSTRAINTS FOR INTRACTABLE BEHAVIOUR

able, without finding anything pointing into the direction of such a solution,

you can never be sure that there is not some (special kind of) method which

predicts the behaviour of that (class of) tag system(s). Except of course, if one

is able to prove that the decision problem of the tag system or class of tag sys-

tems considered is unsolvable.

This leads to the following problem. On the one hand, it is known that 2-

symbolic tag systems, with v ≤ 2 are solvable. The shortest universal tag sys-

tem known so far, on the other hand, is rather gigantic: it needs 288 symbols

and thus production rules, although v = 2. This leaves us with an infinite class

of tag systems in between these two classes. Clearly, it would be very useful if

we would find a way to make a kind of selection of tag systems which are in-

tractable, to study the limits of solvability and unsolvability in tag systems from

the perspective of the more “difficult” cases. “Fluctuating behaviour” seems to

be a good indication of intractability. However, apart from the fact that this im-

plies no theoretical guarantee, the question arises how one can use this rather

intuitive description for making a selection of intractable tag systems in a com-

puter search?

While the idea of fluctuating behaviour is helpful, it is only when one starts to

search for an explanation of this behaviour that one is able to make such a se-

lection. Of course such an explanation can never be completely formal, given

the general unsolvability of tag systems. However, if one wants to study these

in-between classes, it is better to have something instead of nothing, or, as they

say, one bird in the hand is better than two in the bush. There are several fea-

tures of tag systems that might contribute to an explanation for a tag system

being predictable or unpredictable. While none of these features guarantee

anything on a theoretical level, putting them together in an algorithm makes

it possible to separate the more “difficult” tag systems from the easy ones. In

this section, it will be shown how it is possible to make such a selection in

discussing several of these features, putting them together as, what we have

called, constraints for intractability. While it might have been more convenient

to talk about features rather than constraints, we used this word because the

“features” to be described were implemented in an algorithm for selecting “‘dif-

ficult” tag systems from a class of randomly generated tag systems.

7.1. INTRODUCTION 325

Some of these constraints have already been discussed in Sec. 6.1, others not.

The last constraint to be described merely functions as a heuristic constraint.

Constraint 3 is still in a conjectural stage and needs more research.

It should be emphasized that the notion of intractability is used heuristically

here and should not be identified with the inherent intractability of certain tag

systems, i.e. their unsolvability. It is only if we would be able to prove that the

tag systems identified as being intractable have an unsolvable decision prob-

lem, that the two uses of the word ‘intractable’ coincide.

Some of the constraints discussed here are decidability criteria as defined by

Margenstern in the context of Turing machines. Margenstern proposed the fol-

lowing definition for a decidability rsp. strong decidability criterion for Turing

machines [Mar00]:

Definition 7.1.1 Let c be an integer-valued function defined on a set M of Tur-

ing machines in with the following property: there is an integer f such that the

halting problem is decidable for any machine T ∈ M such that c(T) < f , and for

any k ≥ f a machine U ∈ M such that c(U) = k and such that its halting problem

is undecidable, respectively, such that U is universal, can always be constructed.

In that case, c is called decidability (respectively, strong decidability) criterion

and f is called its frontier value.

The differentiation between decidability and strong decidability criteria is based

on the fact that there exist Turing machines with an unsolvable halting problem

that are not universal, i.e., Turing machines with an unsolvable decision prob-

lem of a lower degree of unsolvability. Based on this definition, a similar defi-

nition for decidability rsp. strong decidability criterion can be formulated for

tag systems. However, not all the constraints discussed here can be regarded as

decidability criteria. This will be discussed for each of the constraints individ-

ually.

In this chapter we will first describe the several constraints and then give two

algorithms for generating tag systems, implementing all but one of the con-

straints. For each of the algorithms described, we will give a list of tag systems

generated by them, and discuss them in the context of finding a method for

proving certain tag systems equivalent. Before starting the description of the

326 CHAPTER 7. CONSTRAINTS FOR INTRACTABLE BEHAVIOUR

constraints, we will first add some notational conventions that will be used in

the remaining chapters. Most of them are already in use, but we thought it use-

ful for the reader to summarize them here.

7.2 Notational Conventions

An arbitrary tag system T is defined as follows. Given a positive integer v and

µ letters over an alphabet Σ = {a0, a1, ..., aµ−1}. A set of µ words w0, w1, ..., wµ−1

is defined over the alphabet such that each letter ai over the alphabet corre-

sponds with one such word wi :

a0 → a0,1a0,2...a0,t0

a1 → a1,1a1,2...a1,t1

...

aµ−1 → aµ−1,1aµ−1,2...aµ−1,tµ−1

We can then set up the following operation for obtaining from any given se-

quence A over the alphabet a uniquely derived sequence A′ as follows. Depend-

ing on the first symbol ai of A, tag the word wi associated with ai at the end of

A. Then remove the first v symbols. This operation is repeated on A′ resulting

in A′′,...
The length of a word wi is indicated as lwi . The longest word in the set of words

for a given tag system T is indicated as lmax, the shortest as lmin. In general lx

always means: “the length of x”. The total number of times a symbol ai from

the alphabet appears in the set of words {w0, w1, ..., wµ−1} is represented by #ai .

For example in Post’s tag system, #1 = 3, #0 = 3.

7.3 Theoretical, conjectural and heuristic constraints.

The main focus at the beginning of our research on tag systems was on the tag

system mentioned by Post (which will be called T1 here) and another tag system

7.3. DESCRIPTION OF THE CONSTRAINTS 327

T2 which seemed to be as difficult to predict as Post’s tag system:

T2 =


v = 6

0 → 00101

1 → 1011010

T2 was in a certain way developed by accident. I wanted to know whether in

making the words of Post’s tag system a bit longer, adapting v, this would also

result in a tag system showing intractable behaviour. A “small” mistake was

made here. Instead of 1101, 1011 was extended. It soon became clear that al-

though trying to develop tag systems in a rather arbitrary way can help to im-

prove ones intuition of tag systems, a more systematic method was needed.

In this respect, some algorithms were programmed, able to generate tag sys-

tems for which there is a higher chance for intractability, combining several

constraints a tag system must fulfill so that it does not become (trivially) solv-

able. The following constraints were taken into consideration. All but one were

implemented in the algorithms.

7.3.1 Constraint 1: Post’s condition

The first constraint was proven by Post, viz., that tag systems for which µ= 1 or

v = 1 or µ = v = 2 are solvable (although the proofs were never published). In

isolating both µ and v from each other it is clear that both function as decid-

ability criteria. Indeed, since any tag system for which v = 1 is solvable, while,

as was proven by Maslov [Mas4b], for each class of tag systems with v ≥ 2 there

exists at least one tag system that is universal, v is a strong decidability cri-

terion. Although the frontier value for the number of symbols µ marking the

difference between solvability and unsolvability is unknown, it is clear that it

also functions as a decidability criterion, given the fact that the solvability or

unsolvability of a tag system depends on its value.

7.3.2 Constraint 2: The Wang condition

As was shown in 6.1.1 Wang proved that the two forms of the problem of tag are

solvable for any tag system T, for which lmax ≤ v or lmin ≥ v and constructed a

328 CHAPTER 7. CONSTRAINTS FOR INTRACTABLE BEHAVIOUR

universal tag system for which lmax = v+1 and lmi n = v−1. A similar result was

obtained by Maslov [Mas4b].1 The values lmin and lmax when combined seem

to function as (strong) decidability criteria, the frontier values f being equal

to v − lmin = 1 and lmax − v = 1. For this condition to completely satisfy the

definition for (strong) decidability criterion however, it should first be proven

that for any class of tag systems with v− lmin ≥ 1 and lmax−v ≥ 1 there is at least

one tag system that is universal.

7.3.3 Constraint 3. Proportions between #ai .

Another feature of tag systems that might be used to differentiate solvable from

unsolvable tag systems is the proportion between the total number of times

each of the letters appears in the respective words. To explain this idea, let us

start from the class of 2-symbolic tag systems, and consider the following tag

system: 
v = 3

0 → 01

1 → 1101

This example is clearly based on T1, with the “minor” change that the second

letter of w0 has been changed from 0 into 1, thus setting #0 = 2 and #1 = 4. Now

every time a 1 is scanned during the tag process, the resulting string will grow

with one letter, erasing 3 letters, tagging 4. If a 0 is scanned, it will shrink with

1 letter, erasing 3 adding 2. Since #0 = 2 and #1 = 4, one is tempted to conclude

that this tag system will always lead to unbounded growth, except for the initial

condition 0. This is indeed the case. The system can only shrink when the first

letter of w0, or the 3th of w1 is scanned. Now suppose that at a given time dur-

ing the tag process, the first letter of w0 has been scanned. How many iterations

will it minimally take before the next 0 is scanned? If we would be working with

T1, the answer is 0 steps, because one can have 00 followed by 0000. However

within this tag system this is not the case. Once all the relevant letters in the

initial condition have been scanned, the minimal number of iteration steps be-

fore the next 0 is scanned is equal to 1. Indeed, looking at all the possibilities of

1For more details, see Sec. 6.1.

7.3. DESCRIPTION OF THE CONSTRAINTS 329

words following 01, the quickest way to scan the next 0 is when 01 is followed by

3 times 01: 01010101. However, even this situation is rather “exceptional” since

it is only possible if one has 000000000000 as a substring in the initial condi-

tion. Once 01010101 (produced from 000000000000) has been scanned, it can

never happen again during the process that a string is produced that contains

the substring 01010101. Looking at the other possibility of the system for scan-

ning a 0, as the third letter of 1101, a similar reasoning can be applied, since

the tail of 1101 is 01. This implies that every time a 0 is scanned, minimally one

1 is scanned, and one can thus conclude that the system can never shrink (of

course after the relevant letters of the initial condition have been processed).

On the basis of this example, one might be tempted to conclude that if #1 > #0,

a 2-symbolic tag system is always solvable. A same reasoning could be applied

for the case where #0 > #1. This conclusion however can only be taken seri-

ously if v − w0 = w1 − v. Indeed, the idea that #1 = #0 must be the case for a

tag system not to be solvable, was based on the assumption that the amount of

shrinking induced by scanning a letter is always equal to the amount of growth

of a string. But what about those cases for which v −w0 6= w1 − v? Consider e.g.

the following example: 
v = 10

0 → 0101100

1 → 11000111100000

Here, v−w0 = 3 < w1−v = 4. This means that every time a 0 is scanned the sys-

tem shrinks with 3 letters, and grows with 4 if a 1 is scanned. For the behaviour

of this system not to be predictable, it seems important that on the average, for

each 3 1’s, 4 0’s are scanned, since 4·(−3)+3·4 = 0. For the above tag system, the

proportion between #0 and #1 is indeed such that it seems not possible to con-

clude for the solvability of the tag system on the basis of the production rules.

Since #0 = 12 and #1 = 9, we get 12 · (−3)+9 · (4) = 0. Due to this kind of “right”

proportion between #0 and #1 one guarantees that one cannot predict the be-

haviour of the system on the basis of the proportion between #0 and #1. This

kind of reasoning can be generalized to n-ary tag systems.

It seems reasonable to assume that there exists an infinite class of tag systems

330 CHAPTER 7. CONSTRAINTS FOR INTRACTABLE BEHAVIOUR

for which the halting and reachability problem are solvable if the proportion

between all #ai is such that the result of the following equation:

x = #a0(v −w0)+#a1(v −w1)+ ...+#aµ−1(v −wµ−1) 6= 0 (7.1)

is a number x 6= 0. It is however far from trivial to prove this in general. In-

deed, while it might be easy to prove for individual tag systems that they are

solvable on the basis of this reasoning, finding a general method to prove this

is not. In fact, such a proof is impossible since, although we are convinced that

the constraint is valid for certain classes of tag systems, it is not valid for all

classes of tag systems. For the constraint to be valid in general it needs further

refinement. To show this, we will discuss three problems with respect to the

constraint.

Problems 1 & 2: Minsky’s universal tag system

A first problem related to the constraint occurred in checking its validity with

respect to Minsky’s second encoding of Turing machines into tag systems. In

Sec. 9.2 a table is given of a universal tag system constructed using this encod-

ing. In calculating the proportions between the symbols that lead to an increase

and those that lead to a decrease, the result of (7.1) is 59, after replacement of

the variables for the proper values. This implies that, in general, one suspects

that this tag system should always lead to unbounded growth. If our reason-

ing with respect to constraint 3 would be generally valid, we should conclude

that this tag system is solvable. Clearly this cannot be true since we are dealing

with a universal tag system. Still, the prediction on the basis of the constraint,

that the strings produced by this tag system – if it encodes this universal Tur-

ing machine in the proper way, i.e. indirectly encoding tag systems with a shift

number v = 2 – will get longer and longer, thus showing unbounded growth,

is valid.2 Indeed, although the universal machine used to construct a univer-

2It is important that this getting longer of the strings produced can stop at a given time, if a

halt takes place in the Turing machine, because the tag system simulated by the Turing machine

scans a halting symbol. Still, the reachability problem for the universal tag system remains

solvable, since one can compute a bound on the number of iteration steps for producing a

string of given length n.

7.3. DESCRIPTION OF THE CONSTRAINTS 331

sal tag system differs from Minsky’s 4-symbol 7-state machine, it is based on

the same kind of encoding, its so-called erased region never getting shorter. As

was stated in Sec. 6.2.1 we thus have to reformulate the reachability problem

as the modified reachability problem for this kind of tag systems. Taking this

consideration into account, we cannot but conclude that if we want to under-

stand constraint 3 as a kind of decidability criterium, it can only be valid as a

criterium with respect to the reachability problem for tag systems.

A further more intricate problem with respect to constraint 3, also appeared in

the context of Minsky’s second encoding of Turing machine into tag systems.

This problem has to do with the use of the symbol x in this encoding scheme.

This symbol functions merely as a kind of separator and is used to regulate the

shift through the tag system. Since it is never supposed to be scanned, no cor-

responding word is attached to it. Now suppose that we would construct a tag

system – representing a given Turing machine, using Minsky’s encoding – for

which, in replacing the variables in (7.1) by the proper values, the result of (7.1)

equals 0, however, without taking into account the word corresponding to x.

We could for example assign the word xx to x. If this tag system would also

satisfy certain of the other constraints considered here, proving the tag system

solvable might be very hard. The problem here is that as far as the represen-

tation of Turing machines in this tag system is concerned, the actual word as-

signed to x does not matter, since x is not supposed to be scanned anyway. This

however is merely the case if we use specially encoded initial conditions. If we

would work with arbitrary initial conditions, x plays a major role in the future

behaviour of the tag system, since it is the symbol most frequently used in the

production rules. If the word corresponding to x would be smaller than v, the

tag system when started with arbitrary initial conditions will in the majority of

cases, come to a halt. A similar reasoning can be applied for predicting the be-

haviour of this tag systems if lwx = 2 or lwx > 2.

This example shows that any proof of constraint 3 being a valid decidability

criterium for a certain class of tag systems, must take into account the possibil-

ity of classes of initial conditions that are structured in a way that one or more

symbols from the alphabet of the tag system under consideration, will never be

scanned by the tag system and thus do not play a role in the development of

332 CHAPTER 7. CONSTRAINTS FOR INTRACTABLE BEHAVIOUR

the length of the strings produced by the tag system. If we would like to apply

constraint 3 to a given tag system, we should first check whether it is possible

to construct subclasses of such initial conditions. After this is done, constraint

3 should be applied to every such subset. I.e. for each such subset, one should

take into account only those symbols that will be scanned by the tag system to

compute the result of (7.1).

We have to do more research on this and other related problems with respect

to constraint 3. For example, it could also be possible that although a given

symbol will be scanned for a certain number of times during the tag process,

that from a given point on, it will never be scanned again. In the short time we

have spent on searching for refinements of constraint 3, we came to the conclu-

sion that any proof of constraint 3 will most probably have to work with certain

frontier values for the number of times each of the letters appears in the initial

condition as a relevant letter.

Problem 3: The number of letters in small words, to which are assigned long

words

The last problem, which showed up in connection to the proof of the solvability

of the class of tag systems µ = v = 2, has to do with the number of letters a j in

words wi , lwi < v, to which are assigned words w j , lw j > v. As will be discussed

in Sec. 9.4.2, there exist certain frontier values with respect to #1 and #0 mark-

ing the difference between classes of tag systems that halt or become periodic,

and tag systems that show unbounded growth. It will be shown there that for

almost all cases (7.1) gives a very good estimate of this frontier value, except

for those cases for which w0 = 1; lw1 > 2. For this case, the frontier value that

can be calculated on the basis of constraint 3 is higher than the actual frontier

value. This has to do with the fact that although #1 = 1, the word w0 that leads

to a decrease in the length of the string produced will, indirectly, always lead to

an increase if the letter 1 produced by scanning 0, is scanned by the tag system.

This case clearly illustrates that the equation for constraint 3 (7.1) should be

further refined, taking into account the distribution of each of the letters over

the different words. Again, more research is needed. We will not enter any fur-

7.3. DESCRIPTION OF THE CONSTRAINTS 333

ther details concerning this last problem, since we will discuss it in more detail

in Sec. 9.4.2.

Despite these three problems that arise in connection with constraint 3, we

are convinced that further research on constraint 3 as it has been discussed

here, could be used to differentiate solvable from unsolvable tag systems rel-

ative to the reachability problem. It should be noted though, that we are not

sure whether we will be able to formulate it in terms of a decidability criterium

in the sense of Margenstern, since it might not involve the existence of one ab-

solute frontier value but rather one constant solution to a given equation or the

existence of frontier values relative to the number of symbols and the length of

the several words.

We also think that given a tag system, the classes of initial conditions that ex-

clude certain symbols as relevant symbols can be constructed and are in fact

computable. This would allow for a method to determine for a given tag system

whether the constraint has to be applied to only one or more than one class of

initial conditions.

To conclude, although there are clear reasons why constraint 3, as defined through

(7.1), cannot be valid for the whole class of tag systems, there are clear indica-

tions that it might be useful for certain classes of tag systems. More research

on the ideas behind the constraint might lead to a more exact criterium for dif-

ferentiating between solvable and solvable tag systems, which can be proven in

general.

We should also point out here that, notwithstanding the problems connected to

constraint 3, we still implemented it as a constraint in our algorithms for gen-

erating tag systems. We did this because it is our experience that the majority

of tag systems generated by random means are decidable if constraint 3 is not

satisfied, i.e. if the result of Eq.(7.1) does not equal 0.

7.3.4 Constraint 4. The table method.

As is clear from the previous section, the proportion between the total number

of occurrences of each letter of the alphabet in the words to be tagged, can make

334 CHAPTER 7. CONSTRAINTS FOR INTRACTABLE BEHAVIOUR

the difference between solvable and unsolvable tag systems. Another aspect is

the order in which words are tagged at the end of a string, an order which is de-

termined by the position in which the different letters appear in the respective

words. To explain this, consider the following example:
v = 4

0 → 010

1 → 11010

At first sight, there seems to be no clear reason as to why this tag system would

be solvable, while Post’s isn’t. Contrary to Post’s, this tag system is solvable. This

follows from the following table:

Table 7.1: Proof of the solvability of the tag system

010 11010 11010010 01011010

S0 010 X 11010010 11010010 X 01011010 X

S1 11010 11010 X 11010010 X 11010010 X

S2 010 X 010 X 01011010 01011010 X

S3 NILL 11010 X 11010010 X 11010010 X

This kind of table will play a fundamental role in the proof of the solvability of

the class of tag systems µ= v = 2 (Sec. 9.4.2) and is another, more efficient, rep-

resentation of the kind of proof given in Sec. 6.3.1 for the solvability of a certain

tag system. There we already explained that one way to prove a certain tag sys-

tem solvable, is to look at all the possible theoretical productions, starting from

the words of the tag system. If it follows from these production that the lengths

of the strings that can be produced from the words are bounded, the tag system

will always halt or become periodic. This is also the method represented in the

table, which, from now one, will be called the table method. We will now give a

more “exact” explanation of this table method.

As was said, what one basically does with this method is to look at a certain

7.3. DESCRIPTION OF THE CONSTRAINTS 335

number of substrings that can be produced theoretically in a given tag system,

by starting from the possible productions from the respective words w0, ..., wµ−1.

Given a tag system T with a shift number v, it is clear that for any word wi =
ai ,1ai ,2...ai ,lwi

produced by the tag system at a given time, some letters in wi

will be scanned, others not. The sequence of letters that is scanned is deter-

mined by the number n, 0 ≤ n ≤ v −1, of leading letters of wi that is erased but

not scanned by the tag system, called the shift, and which leads to the concate-

nation or tagging of the words corresponding to the letters from the sequence

at the tail of a given string. For example, if v = 3, there are three different se-

quences of letters in wi that might be scanned by the tag system: ai ,1ai ,4...ai ,t0 ,

ai ,2ai ,5...ai ,t1 , ai ,3ai ,6...ai ,t2 , with:

t j = lwi − [(lwi − j) mod 3]

Now, given a tag system T, with shift number v and µ letters. The table method

is applied to the tag system by first looking at all the possible strings v that can

be produced from each of the words wi , 0 ≤ i < µ, by concatenating the words

corresponding to the letters of each of the different sequences in each of the

wi , determined as above. If one of these new strings produced is equal to one

of the words wi it is marked. If all the strings produced in this way are marked

or equal to ε it follows that the tag system will always halt or become periodic,

since the length of the strings that can be produced from the respective words is

bounded. If this is not the case, the same procedure is applied to all the strings

left unmarked and not equal to ε,... If we, for instance, apply this method to

the two words 00 and 1101 of T1, the tag system mentioned by Post, we get the

following strings: 00, 00, ε, 11011101, 1101, 00. As is clear only one (11011101)

of the 6 possible strings produced will be left unmarked, and differs from ε. If

we then apply the method to this one string, and then again to the 3 unmarked

strings that can be produced from 11011101, it becomes clear very soon that

the method will never come to a halt, i.e., there will always remain strings left

unmarked.

Now to explain the table representation of this method, let us return to the tag

system proven solvable through table 7.1. The row headed with S0 gives, for

each of the strings S represented in the first row, the string produced from that

336 CHAPTER 7. CONSTRAINTS FOR INTRACTABLE BEHAVIOUR

string when the first letter of the string S is scanned by the tag system. In gen-

eral, a row headed Sx, gives the possible productions from a given string S when

its first x letters are erased without being scanned, i.e., when S is entered with

a shift x. In the example, columns 2 and 3 show the possible productions from

each of the words 010 and 11010, by entering it with the four different shifts

(since v = 4), S0,S1,S2, and S3. If a string is produced that has already been

produced in the table, or that is equal to one of the words, then this string is

marked off, since we only have to trace the productions of a given string once.

If an unmarked string is produced, the same procedure is applied to this string,

looking at all the possible strings that can be produced by entering it with the

possible shifts. The procedure halts if no produced string leads to the produc-

tion of new strings that are unmarked. It follows that in applying this method

to the tag system considered here, it will always become periodic or halt after a

finite number of iterations.

This specific tag system is just one example of an infinite class of tag systems

that can be proven solvable through the table method. But why is the above

given tag system solvable? As is clear from the scheme, it is impossible to scan

two consecutive 1’s in any of the strings produced through the words. As a con-

sequence the lengths must remain bounded. This feature is in part due to the

position of the letters in the words. Indeed in slightly changing the above given

tag system, by e.g. exchanging the last two letters of w1 it becomes far from

trivial to solve it.

Now, given a tag system, it is always possible to determine in a bounded num-

ber of steps3 using the table method, whether the respective words allow for the

production of at least one string that contains a sequence of relevant letters in

which the number of symbols inducing growth, “outbalances” the number of

symbols that don’t.4 In general however, we have not find a method to deter-

3This bound is given by the total number of possible combinations of length l ≤ dlmax/ve.
4The use of the word “outbalance” should be understood here in the sense of Eq. 7.1. I.e.

given a sequence of relevant letters ai ,1ai ,2...ai ,n from a string, then if the result of the equation

7.1 – by substituting the variables #ai for the number of times ai , j appears in the sequence of

letters, and the lwi for the lengths of the words assigned to each ai , j – is a number equal to or

smaller than 0, than we say that the number of symbols inducing growth does not outbalance

7.3. DESCRIPTION OF THE CONSTRAINTS 337

mine whether the table method when applied to a given tag system will come

to a halt or not. This is due to the fact that there are also tag systems, for which,

although there are at first some strings produced by the method that contain

sequences of relevant letters for which the number of letters inducing growth

does “outbalance” the number of letters that don’t, in the end, no string will be

produced for which this is the case and the procedure will halt. Examples of

such more complicated cases will be given in the proof of the solvability of the

class of tag systems with µ = v = 2. Because of the existence of such cases, we

do not see any clear method to compute in general for any given tag system

the maximum number of steps it can take before the table method comes to a

halt. Of course, if one has applied the table method for some iterations for a

given tag system, and it has not come to a halt yet, it might be possible to prove

for that individual case that the method will never come to a halt and can thus

(possibly) not be used as a means to prove the tag system solvable. However,

being capable of using it for individual cases does not lead to a general method

for applying it.

The table method applied to the tag system defined at the beginning of this sec-

tion is very simple, but yet a powerful instrument to study tag systems. As we

will e.g. see in Sec. 9.4.2, even if the table method does not come to a halt, it can

still be used to prove particular classes solvable. We feel that we have not ex-

hausted the possibilities of this method yet and more research is needed here.

It is very straightforward to implement this procedure on the computer. As such

it could be used as a kind of heuristic constraint to generate classes of tag sys-

tems with a higher chance for intractable behaviour, using a bound n on the

number of strings that are produced through the procedure. If the procedure

halts before n strings are produced one can exclude the tag system. At the time

I wrote the algorithms, I did not have this method yet, hence it was not imple-

mented.

the number of symbols that do not give rise to growth.

338 CHAPTER 7. CONSTRAINTS FOR INTRACTABLE BEHAVIOUR

7.3.5 Constraint 5. On the number of iterations.

The last constraint to be discussed is the most experimental, and one could def-

initely doubt the use of the word constraint here. Still, since it was actually used

as a constraint we will not deviate from our terminology. Given a tag system

which fulfills constraints 1-4, one still cannot be sure that all the tag systems

fulfilling these constraints, will give rise to intractable behaviour. An experi-

mental way to reduce this class further is to select only those tag systems which

are able to produce millions of strings, without leading to either termination,

periodicity or unbounded growth. Several problems, however, are connected

to this approach, due to its experimental character. We will describe here how

the constraint was implemented, as well as some of the problems that are con-

nected to it.

First of all, it should be noted that the fact that a given tag system is able to

produce millions of productions without becoming predictable, does not guar-

antee anything about productions in the order of trillions, due to the general

unsolvability of tag systems. This problem never vanishes: even if one has ini-

tial conditions for a given tag system that lead to the production of trillions of

strings, this in its turn doesn’t say anything on the level of trillions of trillions of

trillions of productions. One thus has to impose a limit somewhere, and I have

chosen for 10.000.000. If a given tag system satisfies constraint 1–4, the tag sys-

tem is tested as to whether it is possible to run for 10.000.000 iterations, before

leading to termination, periodicity or unbounded growth.

Now, how to find such initial conditions? In the implementation of the con-

straint, a given tag system was tested for 20 different initial conditions, gener-

ated using a pseudo-random number generator, of length 300. If none of these

leads to unpredictable behaviour (after 10.000.000 iterations) the tag system is

not selected. Random conditions were chosen, since it is my experience that in

most of the cases a sample of random conditions lead a ‘representative’ sample

of the behaviour5, at least if one is using tag systems that have not been en-

5We thus used a kind of crude Monte Carlo method, assuming that randomly sampling the

space of all initial conditions, will produce a more or less statistically representative picture

of average behaviour of a tag system. Strictly spoken though, this assumption rests upon the

7.3. DESCRIPTION OF THE CONSTRAINTS 339

coded in some kind of special way, such as the universal tag system already dis-

cussed. We only tested 20 conditions to spare time and because one has to pose

a limit somewhere. Related to this choice is the length of the initial conditions.

Since we only maximally tested 20 initial conditions, it seemed reasonable to

chose rather long initial conditions.

Now, in testing a certain tag system for 20 different random initial conditions,

one also has to develop methods to test whether the system has led to one of

the three general classes of behaviour. As far as termination is concerned, this

is straightforward to check, since termination occurs when the empty string ε

is produced. In order to check periodicity there is one ultimate method: store

each string produced and compare it with all the preceding strings. This method

is guaranteed to work, but, as Brian Hayes remarks in [Hay86], p. 23,

The trouble with the brute-force method is that it requires too much brute force.

For a pattern that runs through a million iterations, before entering a cycle, with

an average string lengths of 1000 digits, the storage requirement would be at

least a gigabyte. Furthermore, roughly 500 million string comparisons would be

needed.

Given the time and memory this method takes, another approach was cho-

sen, basically working with a kind of sampling.6 The programs discussed be-

low store every 1.000.000th string produced and compare every new string pro-

duced with the stored one, the reference string being replaced by a new one

every 1.000.000th iterations. This method is very efficient as compared to the

previous, but excludes the possibility of having periods longer than 1.000.000.

We chose to prefer efficiency over correctness and thus used this less correct

method. The tag systems that were selected to be used for further experiments

finally, were then each tested individually. Every one of the tag systems to be

used was rerun with initial conditions that were supposed to lead to the pro-

duction of 10.000.000, using a more efficient, but still very slow, variant of the

brute-force method. After this test, four tag systems were withdrawn, because

they had periods larger than 1.000.000. The remaining tag systems are those we

“reasonable belief” this will be the case, not upon statistical derivations.
6Cfr. preceding footnote.

340 CHAPTER 7. CONSTRAINTS FOR INTRACTABLE BEHAVIOUR

will use in the next chapter.

While termination and periodicity are rather easy to detect unbounded growth

is far more challenging. This is the case because there are many different ways

for a system to grow unboundedly. In the simplest case, a system grows in a

more or less linear way, such that e.g. after every 100 new strings produced, the

101th will never be shorter than the 1st of these 100. However, since we do not

know how fast or slow this growth proceeds, it is hard to determine some kind

of measure here. It might, e.g., be the case that only every 1.000.000th string,

lengths are produced which never become shorter than e.g. the 900.000th of the

previous block of 1.000.000 strings produced. Furthermore, this kind of growth

is not the only one possible. Growth can also proceed in a christmas-tree-like

way: the process grows for a very long time, e.g., going from a string of length

100 to a string of length 10000, but then the strings become shorter and shorter

until length 200, in its turn evolving until a string of say length 10100 is pro-

duced,....How will one detect this kind of growth? Still other kinds of growth are

possible such as e.g. growth which is in a way the result of a combination of two

christmas trees, e.g., going from 100 to 2000 to 500 to 1500 to 200 to 2100 to 600

to 1600,...

A first simple solution to this problem seems to be the following: store the

length of every 10.000th string produced. If, after 10.000.000 steps, these lengths

have never decreased, one concludes for a case of unbounded growth. Clearly

this method cannot work. First of all, it is not because every 10.000th string is al-

ways longer as compared to the previous 10.000th string that the process shows

unbounded growth. E.g. if the tag system has been fluctuating around the same

length for 10.000 steps, this method will not work. Secondly, if the system grows

very slow, it might be the case that while the 9.000.000th string is shorter than

the 8.900.000th string, this does not exclude unbounded growth. Furthermore

if one is having a christmas tree growth, this method must necessary fail if one

does not know the right distances. There are several other problems involved

here, and I finally decided to use the rather brute method of rejecting an ini-

tial condition as a possible condition if it does not lead to predictable behav-

iour after 10.000.000 iteration steps, if a string is produced the length of which

is longer than 15.000. While this method can lead to the exclusion of tag sys-

7.3. DESCRIPTION OF THE CONSTRAINTS 341

tems on the wrong basis – it is not because a string of length 15.000 is produced

that the system shows unbounded growth – it was considered as the least time

and memory consuming, both on the level of the programming itself as well

as on the level of the actual execution of the code. Indeed, developing a cor-

rect program for detecting such growth might have taken several weeks if not

months from my research time, especially since one first has to find out about

all the different ways in which a tag system can grow, and provide a good for-

malization for these different ways, such that they can be implemented into an

algorithm.7 The limit of 15.000 is considered reasonable, since the tag systems

are all started with an initial condition of length 300, running maximally for

10.000.000 iterations. In this respect some limited space for growth is allowed

for, while, if the system is indeed showing unbounded growth, the chance that

it will have passed the limit of 15.000 after 10.000.000 is rather high. Of course,

efficient though as this method might be, perfect it is not.

As is clear from the previous, there is a huge difference between constraints 1-4

and the more experimental constraint of checking whether a certain tag system

can run for at least 10.000.000 iterations without becoming predictable: it is a

far less elegant way to further restrict the class of possible intractable tag sys-

tems. Despite its non-elegance, it is in a certain way the most powerful. Indeed,

in applying only one of the constraints 1-4, to restrict the class of possible in-

tractable tag systems, one would still have a very large subclass of tag systems

which are far from intractable. However, merely applying the more “experi-

mental” constraint discussed here, to tag systems which are randomly gener-

ated, will result in a far more restricted class. Indeed, if one of the constraints

is not valid for a given randomly generated tag system (except for certain cases

where constraint 3 is invalid) there is a very high chance, if not certainty, that

the constraint discussed here will lead to the rejection of the tag system. In a

way constraint 1-4 are thus merely speed-ups for constraint 5: they lead to a

7In a very interesting paper [MS90], describing methods to calculate particular values for

the Busy Beaver function, the identification of such different kinds of growth and writing decent

algorithms to detect them, was fundamental to the authors’ research. In fact, the design of these

algorithms was based on the larger part of Machlin’s Ph.D. dissertation of Machlin [Kop81], one

of the co-authors.

342 CHAPTER 7. CONSTRAINTS FOR INTRACTABLE BEHAVIOUR

restricted class of tag systems, on the basis of which a certain selection can be

made using constraint 5. In other words, although this constraint will never

guarantee anything about the tag systems selected, nor about the tag systems

excluded, it offers us a very good method to select tag systems that might be

called intractable.

7.4 Algorithms for generating possible intractable tag

systems.

The constraints we discussed can help to find tag systems which might be in-

tractable, and thus generate possible candidates for particular instances of tag

systems for which neither the halting problem, nor the reachability problem

are solvable. In this section we will describe two algorithms that were effec-

tively implemented and run on my computer. The second algorithm is a gen-

eralized version of the first. We also implemented a third algorithm which is a

further generalization of the second algorithm, generating n-symbolic tag sys-

tems. Since focus in the chapters to follow will be put on 2-symbolic tag sys-

tems, we will spare the reader the description of this last algorithm. The inter-

ested reader is referred to Appendix A.

7.4.1 Algorithm 1: Two-symbolic tag systems, v − lw0 = lw1 − v

The first tag generating algorithm I ever implemented takes into account con-

straints 1, 2 and 5, and generated 2-symbolic tag systems. A restricted form of

constraint 3 was also implemented: only those tag systems for which v − lw0 =
lw1 − v were taken into account, thus setting #0 = #1.

The shift number v is determined at random, with maximal value v = 15. Of

course the choice of 15 is in a certain way completely arbitrary, and can be eas-

ily adjusted in the algorithm, but posing a limit somewhere is necessary. This

choice is motivated by the length of the initial conditions tested, the larger v

becomes the less letters will be scanned in the initial condition. Since all fur-

ther experiments to be discussed always start with initial conditions of length

7.4. GENERATING INTRACTABLE TAG SYSTEMS 343

300 this limit is indeed a good one, although one cannot exclude a certain de-

gree of arbitrariness.

After v is determined, and after it has been checked that it is greater than 2

(constraint 1),8 the algorithm randomly generates the length of w0 again, using

the method given above. This procedure is put into a conditional loop: it is re-

peated until the algorithm generates a number such that 0 < lw0 < v. After lw0

has been generated, lw1 is set to v+(v− lw0), thus assuring that v− lw0 = lw1 −v.

After #0 = #1 are both set to v,9, the two words w0 and w1 are generated in a

random way as follows. First, w0 is calculated. Its letters are determined by

using a random number generator, resulting in numbers x between 0 and 1. If

0 < x ≤ 0.5, a 0 is concatenated to w0, else 1 is concatenated. If lw0 letters have

been generated, w1 is calculated. In using a counter, keeping track of the num-

ber of times a 0 or 1 has been concatenated to one of both words, the procedure

prevents #1 or #0 becoming greater than v. Once #1 (or #0) is equal to v, no 1 (or

0) will be concatenated again. After v, w0, w1 have been generated, constraint

5 is applied, testing the tag system for maximally 20 randomly generated ini-

tial conditions. If none of these conditions leads to the production of 10000000

strings, the tag system is rejected else it is accepted. Some of the tag systems

generated with this algorithm are given in the following table:

Table 7.2: Tag systems generated by Algorithm 1

Tag System Word0 Word1 Shift Number v

A1 1000100 110111001 8

A2 0100100 10111 6

A3 11110010001 100111000 10

A4 1 01100 3

A5 10110110110111 101010000000 13

A6 01111 10000101100 8

A7 1011010011110 00100010011 12

Continued on next page

8If v = 2, a new v is generated.
9#0 = #1 = v, since it is always the case here that lw0 + lw1 = 2v and lw0 + lw1 = #0+#1

344 CHAPTER 7. CONSTRAINTS FOR INTRACTABLE BEHAVIOUR

Table 7.2 – continued from previous page

Tag System Word0 Word1 Shift Number v

A8 0001 001111 5

A9 1 01001 3

A10 100010110 10000011111 10

A11 0111 101000 5

A12 000001010111111 00110001110 13

A13 01111 100100010 7

A14 101110 11010000 7

A15 100 11100 4

A16 1101100 010000111 8

A17 001010111 01010011010 10

A18 00101110100000 10110111 11

A19 0 11010 3

A20 1 0001101 4

A21 010011001000000 01011111111 13

A22 010110 00101101 7

A23 011 1001100 5

A24 101 10001011100 7

A25 100 01101 4

A26 01 0110 3

A27 110 01010 4

A28 11011 1100000 6

A29 11 0010 3

A30 10 1100 3

A31 0000110100 100011101111 11

A32 1001 111000 5

A33 010 1010011 5

A34 100111010 01010100011 10

A35 10110 0101100 6

A36 1100100110 111101010000 11

A37 0110101 011000011 8

Continued on next page

7.4. GENERATING INTRACTABLE TAG SYSTEMS 345

Table 7.2 – continued from previous page

Tag System Word0 Word1 Shift Number v

A38 101 11000 4

A39 001 00111 4

A40 110000011 11110100010 10

A41 1010111101 011110000000 11

A42 1101111000 111011000000 11

A43 1111111011 001000010000 11

A44 0001001001010 110111110 11

A45 11 0100 3

A46 11 0010 3

A47 0 10110 3

A48 1110 100001 5

A49 00 1101 3

A50 0100 110011 5

A51 1011010000100 11001111100 12

A52 0111 000110 5

The first thing to be noted is that in running the algorithm, T1 (Post’s tag sys-

tem) was generated (A49). This is interesting not only because it is an indi-

cation of the fact that the constraints can indeed be used to select intractable

tag systems, but also because in comparing T1 with the other tag systems gen-

erated, there are some that seem to be very similar to T1 as is e.g. the case

for A45. If we concatenate e.g. w0 and w1 of T1, we get a string 001101. We

could then apply the following iterative process on this string: erase the first

letter, and tag it at the end of that string. Apply this same operation on the

resulting string,...until 011111100 is produced again. After two application of

this process, we get 110100, which is exactly the string which would result from

concatenating w0 and w1 of A45. Given this kind of convertibility of T1 in A45

(and vice versa), their shift numbers being equal, and the fact that they were

both selected by the algorithm as possible intractable tag systems, might lead

346 CHAPTER 7. CONSTRAINTS FOR INTRACTABLE BEHAVIOUR

one to the conclusion that both systems might be reducible to each other, and

one could thus find a way to define certain equivalence classes of tag systems.

In this respect it is important to add the following small intermezzo on rotated

combinations.

Rotated Combinations At one time during my research, I was convinced that

in generalizing the kind of conversions sketched above, it would be possible to

define whole classes of equivalent tag systems, even allowing a variation in the

lengths of the respective words, as follows. Given a combination C of µ letters

ai from a finite alphabet Σ. Any combination which is the result of removing

k letters from C (k ≤ lC) and tagging them at the end of C , is called a rotation.

Now, given a tag system T , concatenate its words resulting in a combination CT ,

and generate all the rotations of CT . Then it is always possible to generate a cer-

tain number of different tag systems, for which v and µ remain constant, and

the concatenation of the respective words are rotations of the same combination

through the following procedure. For every rotation of CT , a set of µ words wi

can be generated by splitting up CT in µ pieces, such that the length of the first

piece never exceeds lCT −(µ−1). Applying this to T1, the following set of different

tag systems, are such that their shift number and µ are equal to those of T1, the

concatenation of their words all being rotations of the same combination:

0 → 0 1 → 01101

0 → 00 1 → 1101

0 → 001 1 → 101

0 → 0 1 → 11010

0 → 01 1 → 1010

0 → 011 1 → 010

0 → 1 1 → 10100

0 → 11 1 → 0100

0 → 110 1 → 100

0 → 1 1 → 01001

0 → 10 1 → 1001

0 → 0 1 → 10011

0 → 01 1 → 0011

0 → 1 1 → 00110

0 → 10 1 → 0110

As is clear from this list, one cannot simply conclude that tag systems for which

µ and v are the same, while the concatenation of their words are all rotations of

7.4. GENERATING INTRACTABLE TAG SYSTEMS 347

the same combination, are reducible to each other, since the tag systems from

this list for which lw0 = lw1 are solvable in a trivial way. Still it seems reasonable

to suppose that in starting from such a set of such tag systems, it is possible to

find a subset in this set of tag systems which are reducible to each other. One

might e.g. try to argue for the mutual reducibility of tag systems for which µ, v as

well as the lengths of the words are all the same, while the concatenation of the

words are rotations of the same combination. However, it seems far from trivial

to prove that this is indeed the case. In fact, I am not convinced that, while it

might be true for some individual cases, this can be proven in general. Indeed,

as we already know, the order in which words are tagged, determined by the po-

sition of the letters and the shift (resulting from v and the lengths of the words)

can be a determining factor for the behaviour of a given tag system. It is in this

respect that there is a fundamental difference between tag systems, sharing the

same constants v and µ, the concatenation of their words being rotations of the

same combination. Still, in excluding the trivially solvable cases the possibility

of finding whole classes of intractable tag systems, using this method of rotated

combination, is worth more research. A start could be made, by generating more

tag systems with the tag generating algorithms, in order to see whether the num-

ber of tag systems defined this way, grows.

The following sets of tag systems from Table 7.2, all have the same constants

v and µ, the concatenations of their words being rotations of the same com-

bination: {A26, A29, A30, A46, A47, A4},{A19, A45, A49, A9},{A39, A15},{A25,

A20},{A32, A8}, {A48, A11}.

7.4.2 Algorithm 2: Two-symbolic tag systems, v − lw0 6= lw1 − v

The second tag generating program, generates 2-symbolic tag systems for which

it is not necessary the case that #0 = #1, i.e. tag systems for which it can be the

case that v −w0 6= w1 − v. It is thus a generalization of the previous algorithm.

Here, v is determined in the same way as was done in the first algorithm. To

determine the lengths, two numbers are generated at random. The length of

w0 is set to the smallest number, the length of w1 is set to the largest. If lw0 ≥ v

348 CHAPTER 7. CONSTRAINTS FOR INTRACTABLE BEHAVIOUR

or w1 ≤ v, new lengths are generated.

Since it is not necessarily the case that #0 = #1, an extra procedure is added to

determine #0 and #1, such that constraint 3 is satisfied. The algorithm is based

on the following equations:

a
b = v−lw0

lw1−v

a · x +b · x = lw0 + lw1

(7.2)

which, when worked out result in the following solution:

x = lw0 + lw1

a +b
(7.3)

If
lw0+lw1

a+b is not an integer it is not possible to find the “right” proportion (con-

straint 3) for #0 and #1 for the specific values for lw0 , lw1 and v generated by

the algorithm. Indeed, a and b give us the proportion between #0 and #1, on

the basis of v, w0, w1: scanning 0 results in a decrease of a letters, scanning 1

results in a growth of b letters. Consequently, in order to avoid unbounded

growth or termination, for every a 1’s scanned, b 0’s have to be scanned. To

calculate the values of #0 and #1, respecting this proportion between a and b

one merely has to determine how many times x, a and b can be multiplied,

such that ax + bx = lw0 + lw1 . Once this solution has been calculated a and b

are multiplied with x to find resp. the values for #1 and #0. If the result of this

computation is not an integer, this means that it is not possible to satisfy con-

straint 3 with the specific values found for v, w0 and w1. If this is the case, the

whole program is restarted, determining new values for v, w0 and w1.

Once v, lw0 , lw1 ,#0,#1 have been determined, the algorithm generates w0 and

w1. This is done in a way similar to the previous algorithm, however now us-

ing a biased random number generator, taking into account the fact that it is

not necessary the case that #1 = #0. This is done as follows. First the number

x = #0
lw0+lw1

is calculated. For each random generated number r that is gener-

ated, if 0 < r ≤ x, a 0 is concatenated (if the number of 0’s generated is not equal

to #0), else a 1 is concatenated (if the number of 1’s generated is not equal to

#1).

7.4. GENERATING INTRACTABLE TAG SYSTEMS 349

Once the tag system has been completely determined, it is checked whether

constrained 5 is satisfied, as in the previous algorithm. In the following table, a

list of tag systems generated with this algorithm is given:

Table 7.3: Tag systems generated by Algorithm 2

Tag System Word0 Word1 Shift Number v

T3 111 01000 4

T4 11101 1100000 6

T5 010110 11100100 7

T6 0 01011 3

T7 101011 00011010 7

T8 011 111100 5

T9 101 0000111 5

T10 001 10110 4

T11 001 01110 4

T12 0 01011 3

T13 0110001 10000101111 9

T14 1010 110100 5

T15 111 0110000 5

T16 111000 11010110011000 10

T17 1001111 10100000011 9

T18 000110 101001010000 8

T19 110 001111 5

T20 1011000 111011000 8

T21 11011011 1110000000 9

T22 101001001 0101100110011 11

T23 001 010100 4

T24 11 00111000 5

T25 10000111 1000100111 9

T26 00111 0111000 6

T27 11011 0011000 6

Continued on next page

350 CHAPTER 7. CONSTRAINTS FOR INTRACTABLE BEHAVIOUR

Table 7.3 – continued from previous page

Tag System Word0 Word1 Shift Number v

T28 111000 11000110011100 10

T29 110 01001 4

T30 000111 11000011 7

T31 1 10100 3

T32 111010101110 00110101010000 13

T33 10001 1110010 6

T34 010 001001 4

T35 0010101 01010100100011 10

T36 1011 010100 5

T37 1111 010000 5

T38 000101 000000111 7

T39 00101 1001000110 7

T40 001 110000 4

T41 101 00001110011 7

T42 10111 0000011 6

T43 100 11001 4

T44 1111 00110000 6

T45 101 0011010 5

T46 1011 110000 5

T47 0 1001101 4

T48 11010011110 1111000010000 12

T49 001 100100 4

T50 110 11000 4

T51 1110010 00111110000 9

T52 01101 0111000 6

T8, T19, T23, T34, T35, T38, T39, T40 and T49 are examples of tag systems for

which #0 6= #1. From those tag systems for which #0 6= #1, it should be noted

that T8 and T19 have the same constants v and µ, the concatenation of their

7.4. GENERATING INTRACTABLE TAG SYSTEMS 351

words being rotations of the same combination. Other such sets in Table 7.3

are: {T12, T6}, {T50, T10}, {T37, T9}, {T26, T42, T4}. In combining the results

from tables 7.2 and 7.3, we get the following sets:{A26, A29, A30, A46, A47, T6,

T12, A4}, {A19, A45, A49, T35, A9}, {A39, T29, A15}, {A25, T10, T50, A20}, {T11,

A38}, {A32, A8}, {A48, T9, T37, A11}, {T45, A33}, {T24, A52}, {T19, T8}, {T26, T42,

T4}, which means that 37 of the 102 tag systems already generated are part of a

set of tag systems which are possibly intractable, having the same constants µ

and v, the concatenation of their words being rotations of the same combina-

tion.

While tag systems for which the lengths of the words and v are relative prime

can be further reduced to a number of tag systems equal to the g.c.d. of the

lengths and v, such tag systems were not excluded by the program in its 1st ver-

sion. In table 7.3 there are three such tag systems: T16, T28 and T45. Since the

lengths of the initial conditions used in testing whether the tag systems can run

for 10000000 iterations without becoming predictable, are all of length 300, it is

easy to deduce the tag systems contained in T16, T28 and T45 which were ac-

tually selected through the constraints. Indeed, since the respective shift num-

bers are 10, 10 and 6, it is clear that one should only take into account the letters

from the respective words which can be scanned with a shift 0.10 The actual tag

systems, contained in T16, T28 and T45, which passed all constraints are:
T17,Shift 0 v = 5 0 → 110 1 → 1001010

T31,Shift 0 v = 5 0 → 110 1 → 1001010

T49,Shift 0 v = 3 0 → 11 1 → 0100

Since the tag systems that actually passed all tests contained in T16 and T28 are

the same, it is not necessary to consider both of them in further experiments.

It should be noted that the tag system resulting from T45 should be added to

the set of 2-symbolic tag systems deducible from T1, through the method of

rotated combination. The tag system contained in T16 and T28 is deducible in

this same way from T40.

10Since the length of the initial is divisible by all v’s.

352 CHAPTER 7. CONSTRAINTS FOR INTRACTABLE BEHAVIOUR

Chapter 8

Playing with tag systems. An

experimental approach.

What we have in mind is using the computer as the mathematician’s laboratory, in

which he can perform experiments in order to augment his intuitive understand-

ing of a problem, or to search for conjectures, or to produce counterexamples, or

to suggest a strategy for proving a conjecture. [...] We shall not argue the philo-

sophical merits of mathematical experiments [m.i.]; we are more concerned with

convincing mathematicians with different research orientations that it may be

worth their while to try some experiments of their own on the computer. Obvi-

ously, there are many areas in mathematics where experiments would be of little

or no help. In other, however, experiments may be really useful, sometimes in

situations where this does not appear likely at first. Therefore the message is: Try

it!

Ulf Grenander, 1981.1

While one could say that any mathematician does some kind of “experimenta-

tion”, think of some of the research by Euler or Gauss, working out several cases,

in order to prove a more general result, it is with the rise of the computer that

the idea of “experimentation” in mathematics has become much more explicit

(See Sec. 4.2). In being confronted with certain objects or systems for which

we have to rely on “computer experiments” in order to gain new results, one

1[Gre82], pp. xiii – xiv.

353

354 CHAPTER 8. PLAYING WITH TAG SYSTEMS

becomes much more aware of the fact that mathematics should not be con-

trasted too much with physics, biology or any other science depending on “des

choses composées” (cfr. Descartes, quoted in the introduction). It is in this re-

spect that we will use the word experiment here. Since we are facing systems

the behaviour of which can be considered intractable, where initially, the only

way to come to a better understanding of these systems, is to observe certain

features of their behaviour, we indeed have to rely on some typical aspects of

experimentation. We will have to set-up experiments, to answer certain ques-

tions, where none of the results from the experiments can directly lead to math-

ematically rigorous results. However, they can be used to build up an intuition

of the systems involved, they can help to formulate and strengthen certain con-

jectures that have to be further investigated, they can lead to strategies to gain

new results or, the further analysis (by hand or by computer) of the heuristic

results can lead to rigorous ones. The element of surprise is always present.

Although we often have certain expectations about the results from the exper-

iments, it will become clear throughout the experiments, that while the results

often more or less satisfy the expectation, the precise details of the results often

come as a nice surprise.

In this chapter, we will approach tag systems from this experimental viewpoint,

by using computer experiments to study and characterize their behaviour. To

be more specific, we will use the tag systems generated by algorithm 2 from

Sec. 7.4.2, together with T1, Post’s tag systems and T2, the tag system I once

wrote down almost by accident (See Sec. 7.3). This results in a total of 52 tag

systems, so to say a tear-off calendar of tag systems, one for each week to guide

us through the year ;-)

It is not our purpose here to build up a more philosophical theory of the no-

tion of an experiment in mathematics, since we are convinced that it is far from

unproblematic to isolate the notion of an experiment from other methods in

mathematics. A very careful research would be needed here, and this is not the

place to do this. Rather, we will assume that the things we have done with our

computer to study tag systems can be considered as computer experiments,

in the same way many mathematicians nowadays use this notion. Indeed, it

has become rather common to talk about experiments in mathematics, the ex-

8.1. PURPOSE OF THE CHAPTER 355

amples are legio. The new journal called Experimental Mathematics, founded

in 1992, illustrates this point. We would like to start this chapter with a quote

from the statement of the philosophy behind this journal, that beautifully sum-

marizes our opinion about experiments in mathematics ([ELdlL92], p. 1):

While we value the theorem-proof method of exposition, and while we do not de-

part from the established view that a result can only become part of mathemat-

ical knowledge once it is supported by a logical proof, we consider it anomalous

that an important component of the process of mathematical creation is hidden

from public discussion.[...] Experimental Mathematics was founded in the belief

that theory and experiment feed on each other, and that the mathematical com-

munity stands to benefit from a more complete exposure to the experimental

process. [...] The word “experimental” is conceived broadly: many mathemati-

cal experiments these days are carried out on computers, but others are still the

result of pencil-and-paper work [...]

8.1 Purpose of the chapter

In this chapter 52 tag systems of which 50 were generated by algorithm 2 (See

Sec. 7.4.2) will be studied. The reasons behind the experiments on these tag

systems are manifold.

First of all, we want to understand better how good the algorithms described

in Sec. 7.4 actually are to generate tag systems of which the behaviour is very

hard, if not impossible, to predict. If it is possible to find experimental support

for the fact that (some of) the tag systems generated by this algorithm are in-

deed very hard to predict, we have a clear indication, but of course not a proof,

that this class of tag systems might contain unsolvable tag systems.

Secondly, we want to know whether it is possible to identify different classes of

tag systems within the 52 studied here. Identifying different classes cannot only

help to better understand tag systems, but might be a basic step to differentiate

solvable from unsolvable classes. Furthermore, if we would be able to identify

certain classes for the 52 tag systems to be considered here, the characteris-

tics through which they are separated from each other could be used to further

356 CHAPTER 8. PLAYING WITH TAG SYSTEMS

investigate the problem of determining “good” constraints for intractable tag

systems.

Finally, the more general reason behind these experiments is to improve our

understanding of tag systems. In trying to get a firmer grip on tag systems

through these experiments, it is possible to build up a better intuition of these

systems. Furthermore, building up such an intuition can help us to develop

new approaches, methods or arguments for the more general theoretical re-

sults that we, ultimately, want to establish.

Before starting with a description of the experiments and their results, we will

first consider some of the restrictions.

8.2 Some further restrictions

8.2.1 On the programming language used.

If somebody asks me what programming language I use right now, I always feel

a bit ashamed to admit that I use Visual Basic (VB), and actually merely the

Basic part. The reason for this choice is very simple: when I started with this

research I couldn’t program, and I followed the advise of my former supervisor

to learn to program in Visual Basic. At that time the plan was to make extensive

use of computer visualizations, and he considered VB as the best language to

do this. When this advise was given to me, I didn’t have a windows PC, but a

Mac so I downloaded a Basic compiler which runs under MacOS 9. Then I went

through a textbook on Basic and this was basically how I started to program.

Later, when I knew a bit more about programming, it was too late to learn an-

other language and use it for the experiments. In having read some books and

papers by Chaitin I learned a bit of Lisp, and then spent some time on Scheme.

Scheme is really completely different from Basic since it is a functional pro-

gramming language. I liked it very much, and the idea of switching to Scheme

became very tempting. However, liking one programming language more than

another is not a good reason to make such a switch. Furthermore, since it was

Basic and not Scheme I was used to, programming in Scheme was too time-

8.2. SOME FURTHER RESTRICTIONS 357

consuming, and I never had the time to learn it in a decent way.2 I thus stuck to

VB, being aware of the fact that this was not really a well-considered decision.

The way I have programmed the last two or three years can only be called prag-

matic: learning the basics of Basic so I would be able to do would I wanted to

do. If I would have known then what I know now, I would probably first have

taken a closer look at several different programming languages, taking into con-

sideration the speed with which one can program in the language,3 the speed

of the programs themselves and the specific purpose the language will be used

for.

Despite the more practical reasons behind my choice for VB, it should be noted

that the language has two features I like very much. First of all, contrary to C,

it is possible to interrupt the code while it is running (it works with an inter-

preter). This is a very useful, if not necessary, feature in doing computer exper-

iments. Secondly, and this concerns the Basic part of VB, it is a very accessible

language for people who have never programmed. In a way you can almost di-

rectly write what you want to implement. But maybe this last feature is biased

by the fact that Basic was the first language I learned.

8.2.2 Size of Sample space vs. computation time

Another important restriction on the experiments is the size of the samples.

First of all, we merely study 52 tag systems, although there is an infinite class of

tag systems for which µ = 2, v > 2. Secondly, in all experiments limits have to

be imposed somewhere. To give some examples, in experiment 1, we will only

test 2000 initial conditions for each of the tag systems. In experiments 2 to 6,

we merely used 10 (sometimes 20) initial conditions from the 2000 tested.

The fact that one has to impose a limit somewhere is a common feature of any

computer experiment, since the objects studied are often infinite, while the

2I went through the first chapters of [AS96], a book I would highly recommend to anyone

who wants to program in Scheme.
3E.g. while Brainfuck, An Eight-Instruction Turing-Complete Programming Language is from

a certain point of view an attractive language, based as it is on register machines, programming

in this language – as might be clear from its name – is a very time-consuming business. Brain-

fuck is available at: http://esoteric.sange.fi/brainfuck/

358 CHAPTER 8. PLAYING WITH TAG SYSTEMS

computer is finite. As long as one does not find a method for reducing an infi-

nite class to a finite number of cases (e.g. through a theorem),4 one is obliged

to keep in mind, that one is only collecting heuristic material, collected within

self-imposed, sometimes rather arbitrary limits.

Still, the limits chosen here are relatively low. Since my time, and that of my

computer, was limited however, I could not allow myself to choose for higher

limits. This might lead to a wrong interpretation of the results. For example,

suppose that we would be able to find classes, it might be that there is some

other kind of class of tag systems with µ= 2, v > 2 which is much more interest-

ing but not considered because a tag system from that class was not generated?

In our interpretation of the results we have been as careful as possible, always

taking into account the fact that a larger sample space might lead to other re-

sults. One should not forget though that as large a sample space might be, one

can never be sure about the results. It is only when one has found a rigorous

proof that certain results can be generalized. This is in the end the reason why

we are talking about experiments and not proofs.

8.2.3 Focus on 2-symbolic tag systems

The characteristics of [certain] results is that they often lie at a relatively low level

in the overall canvas of intellectual functions, a level often dismissed with con-

tempt by those who purport to study “higher, more central” problems of intelli-

gence. Our reply to such criticism is that low-level problems probably do repre-

sent the easier kind, but that is precisely the reason for studying them first. When

we have solved a few more, the questions that arise in studying the deeper ones

will be clearer to us.

David Marr, 1976.5

As is clear from the example of T1, the tag system Post described, there are 2-

symbolic tag systems, with v > 2, for which it is by no means trivial to prove

their solvability. The fact that the little research that has been done on T1 has

4Only then it also becomes possible to consider the possibility of using the computer for

actual proofs and not only for collecting, comparing, analyzing... data.
5[Mar76], p. 3

8.2. SOME FURTHER RESTRICTIONS 359

not lead to any result pointing into the direction that it might be solvable, can

be regarded as an indication of the intractability existing on this level. As far as

I know, T1 is still not known to be solvable.

In what follows, the results to be discussed will be restricted to this class of tag

systems, their seeming intractability of course being a precondition for this fo-

cus. There are several reasons for this restriction. First of all, there is of course

T1, the tag system mentioned by Post. In starting to study tag systems, this was

the one I started from, and until today, I still have more questions than answers

as far as T1 is concerned. Given the existing difficulties on this level, I con-

sider it important to try to understand the smallest tag systems not known to

be solvable first, before passing on to larger systems, presupposing that what I

can learn from these systems, might help to understand the problems that arise

in studying the more general class of tag systems better.

Of course this does not mean that there are no significant differences between

2-symbolic tag systems and µ-symbolic tag systems (µ > 2). Indeed, as the al-

phabet of a tag system becomes larger, predicting the outcome of a tag process

becomes harder and harder. If one e.g. has 10 symbols, and the words assigned

to each of these symbols have different lengths, there will be a larger variety of

ways in which the lengths of the strings produced shrink and grow. Further-

more, in having more symbols it becomes easier to encode certain functions

over the integers, as was clear, e.g., from Minsky’s proof of the general unsolv-

ability of tag systems. Despite these differences, I have still not been able to

detect a more fundamental (proven) difference, one which makes it possible to

conclude that there can be no universality and thus unsolvability at the level

of 2-symbolic tag systems, with v > 2, although reducing a µ-symbolic tag sys-

tem, with µ > 2 (even in the case where µ = 3) to a two-symbolic tag system is

far from trivial.6 As long as there is no proof of the solvability of the class of

2-symbolic tag systems, they remain an interesting class to study.

A further reason for confining ourselves to 2-symbolic tag systems, is that they

are the class of smallest possible tag systems not known to be solvable i.e. they

lie at the lower boundary of the area between small tag systems known to be

6So far we have been unable to find a general procedure for this.

360 CHAPTER 8. PLAYING WITH TAG SYSTEMS

solvable, and classes of large tag systems known to be unsolvable. Studying

such systems, systems on the edge of solvability, can help to bridge the gap be-

tween solvability and unsolvability.

To summarize, since the results to be discussed in the following sections are

restricted to 2-symbolic tag systems which were generated by using the con-

straints described in the previous chapter, one should be very careful in mak-

ing generalizations. Before making such generalizations, one should first of all

study, to a more exact extent, in what ways 2-symbolic differ from µ-symbolic

tag systems. For now, we will keep our eyes focussed on the so-called easiest,

though possibly unsolvable, tag systems.

In total we have performed 6 different experiments. Because of the fact that the

description of the set-up and the analysis of the results from the experiments

is very lengthy as compared to the actual conclusions that can be drawn on

the basis of each of the experiments, we will not deter the reader by describ-

ing every one of the experiments in all its details. Instead we have chosen to

only include the details of experiment 1 and 2, since the (direct and indirect)

results from these experiments are the more interesting and have laid the basis

for the remaining 4 experiments. As for these 4 experiments, we will only in-

clude a summary of the conclusions drawn on the basis of these experiments.

The interested reader is referred to Appendix C for a detailed description.

8.3. EXPERIMENT 1 361

Post found this (00, 1101) problem “intractable”, and so did I even with the help

of a computer. Of course, unless one has a theory, one cannot expect much help

from a computer (unless it has a theory) except for clerical aid in studying ex-

amples; but if the reader tries to study the behaviour of 100100100100100100100

without such aid, he will be sorry.

Marvin Minsky, 1967.7

Although tracing individual tag systems, cannot answer the deepest of questions

about the nature of systems, it is a useful way of gathering information about

them. A computer, even one without theories, can be of much assistance in this

information-gathering.

Brian Hayes, 1986.8

8.3 Experiment 1: Distribution of general classes of

behaviour in 2-symbolic tag systems.

The purpose of the first experiment is to get an idea of the distribution of the

general classes of behaviour for the tag systems considered when started with

arbitrary initial conditions. The experiment counts how many times one such

tag system leads to periodicity, termination, unbounded growth or behaviour

which cannot be classified in one of these three classes after 10000000 itera-

tions. The initial conditions from this last class were then used in some of the

other experiments.

8.3.1 Set-up of experiment 1

The program used for the experiment tests 999 random initial conditions of

length 300.9 One could object to this arbitrary choice of this length, since the

7[Min67], pp. 267–268
8[Hay86], p. 22
9The choice for 999 initial conditions and not 1000 might seem rather strange, and, actually

it was my purpose to use 1000. However, it was only after the code had been running for days

that I saw there was a rather stupid bug in the code, and I thus decided not to rerun it. The

362 CHAPTER 8. PLAYING WITH TAG SYSTEMS

number of letters scanned in the initial condition is determined by the shift

number v. Then, T1, with v = 3, would scan 100 letters, while T2 would merely

scan 50. Upon further consideration however, one quickly sees that this is not a

problem at all, since a larger v also means that the average length of the words

added is larger.

In order to decide what kind of behaviour a tag system leads to, when given one

of the initial conditions, the description of the procedure that tests constraint 6

was used (See 7.3.5). If an initial condition is found for which the tag system be-

comes periodic, a counter which keeps track of the number of initial conditions

leading to periodicity, is added with one. The same is done for any other kind

of behaviour. If an initial condition leads to a string longer than 15000 letters, it

is classified as a possible case of unbounded growth, indicated as “growth?”.10

The class of initial conditions which do not lead to termination, periodicity or

Growth?, are classified as “Immortals?”. It is the existence of initial conditions

for which it is far from clear what will happen to them that indicates the in-

tractable behaviour of the tag system. Indeed, if we could find a procedure that

decides for a given tag system that it will either lead to unbounded growth, be-

come periodic or halt, it would be solvable and, as a consequence, tractable.

The fact that a tag system is able to run for 10.000.000 iterations without lead-

ing to one of these classes of behaviour, is considered as an indication of its

intractability.

If a classification has been made for a given condition, the program outputs the

initial condition that led to the behaviour, for each of the cases in a different file.

In case of periodicity, the last string produced and the length of the period are

also written to a file.

The program also uses a counter keeping track of the number of iterations

which have already been performed. This information is not only used to sim-

ply know when 10000000 iterations have been performed, but also to know, for

reason of the bug was that a new tag system was tested if the counter of the initial condition

was not > 1000, but ≤ 1000, while the counter was always set to 1 (and not 0) for every new tag

system tested.
10The problems described in 7.3.5 resurfaces here. The “?” is meant as a reminder of the

problematic determination of “growth”.

8.3. EXPERIMENT 1 363

each 10000 iterations, how many strings are still in the running as possible Im-

mortals?. If an initial condition has led to periodicity, Growth? or termination,

the number of iteration steps already performed is divided by 10000. The result-

ing integer part i of this number determines the interval [i ·10000,(i+1)·10000[,

where 0 < i ≤ 1000. For each of the intervals, a counter keeps track of the num-

ber of times an initial condition has led to one of the three classes of behav-

iour, for that interval. If periodicity is detected, one must be careful in adding

one to the counter of a specific interval. Indeed if, for example, a period 200

is detected at step 70100, the actual point from which the system has become

periodic, does not lie in the interval [70000
10000 , 80000

10000 [. In the worst case, the system

has already become periodic at step 69801. It is possible to detect the exact

moment when the system has become periodic, by going back to the last ref-

erence string (i.e., in the example the string produced after 70000 iterations)

and comparing successive pairs of strings separated by an interval having the

length of the period. However, while exact, it would lead to time-consuming

computer processes. Since it already takes days of calculation now to test all

the tag systems, a more non-exact adjustment is made: if period p is detected

at step n, the counter of the interval which will be increased is determined as

follows: n − (p + p
2).

In keeping track of the number of initial conditions for each interval of itera-

tions that has led to one of the three general classes of behaviour, one can then

build up an idea about how fast initial conditions lead to one of the three classes

of behaviour for each of the tag systems.

The experiment was performed twice, with two different sets of 999 initial con-

ditions of length 300. This was done in order to check whether the numbers

found during the first run for each of the classes are “representatively” indica-

tive for the number of initial conditions that fall into each of these classes. I.e.

it is a crude check on the statistical “representability”. If a second run of the

experiment would result in large deviations from the original results, it is clear

that the experiment should be run for a larger number of initial conditions in

order to get a good estimate of the probabilities for each of the classes of be-

haviour.

364 CHAPTER 8. PLAYING WITH TAG SYSTEMS

8.3.2 Discussion of the results

In the following table one finds an overview of the number of times each kind

of behaviour was found for the different tag systems, for the two runs of the

experiment.

Table 8.1: Number of initial conditions that halt, become

periodic, possibly lead to unbounded growth (Growth?),

or cannot be classified in neither of these classes after

10000000 iterations (Immortals?).

Tag System Halts Periodics Immortal? Growth?

T1 188 170 790 808 18 19 3 2

T2 0 0 891 897 108 102 0 0

T3 0 0 893 886 106 113 0 0

T4 0 0 926 918 73 81 0 0

T5 0 0 982 974 17 25 0 0

T6 953 954 9 10 37 30 0 5

T7 0 0 989 992 10 7 0 0

T8 0 0 968 961 17 27 14 11

T9 0 0 958 959 40 40 1 0

T10 0 0 973 952 26 43 0 4

T11 0 0 951 960 48 39 0 0

T12 962 955 11 7 26 31 0 6

T13 0 0 981 983 18 16 0 0

T14 0 0 950 952 49 47 0 0

T15 0 0 975 977 24 22 0 0

T16 0 0 979 990 15 8 5 1

T17 0 0 979 975 20 24 0 0

T18 0 0 972 968 25 28 2 3

T19 0 0 976 971 19 26 4 2

T20 0 0 833 878 166 121 0 0

T21 0 0 976 983 23 16 0 0

Continued on next page

8.3. EXPERIMENT 1 365

Table 8.1 – continued from previous page

Tag System Halts Periodics Non-periodics Growth?

T22 0 0 639 664 317 300 43 35

T23 0 0 958 973 41 25 0 1

T24 0 0 977 969 20 25 2 5

T25 0 0 987 993 12 6 0 0

T26 0 0 962 931 37 68 0 0

T27 0 0 983 987 16 12 0 0

T28 0 0 985 981 12 12 2 6

T29 0 0 952 943 47 56 0 0

T30 0 0 977 977 22 22 0 0

T31 0 0 965 971 34 28 0 0

T32 0 0 849 840 150 159 0 0

T33 0 0 964 970 35 29 0 0

T34 0 0 912 911 85 80 2 8

T35 0 0 954 942 30 39 15 18

T36 0 0 938 927 61 72 0 0

T37 0 0 817 819 182 180 0 0

T38 0 0 975 981 24 17 0 1

T39 0 0 983 988 10 7 6 4

T40 0 0 934 932 64 67 1 0

T41 828 807 152 172 11 11 8 9

T42 0 0 927 923 72 76 0 0

T43 0 0 978 981 19 10 2 8

T44 0 0 976 968 23 31 0 0

T45 0 0 983 978 14 18 2 3

T46 0 0 955 946 44 53 0 0

T47 546 521 427 458 13 14 13 6

T48 0 0 981 985 18 14 0 0

T49 0 0 946 946 52 52 1 1

T50 0 0 921 945 78 54 0 0

T51 0 0 926 917 72 76 1 6

Continued on next page

366 CHAPTER 8. PLAYING WITH TAG SYSTEMS

Table 8.1 – continued from previous page

Tag System Halts Periodics Non-periodics Growth?

T52 0 0 977 968 22 31 0 0

The first thing to be noted in observing the results from the table, is that there

are no large deviations between the first and the second run of the experiment.

This serves as an indication of the fact that the numbers found give a good es-

timate of the distribution of the several classes of behaviour for each of the tag

systems.

There are some results in the table that immediately catch the eye. First of all,

the number of tag systems for which the number of halts is greater than 0 is

very low. Indeed, only 5 of the 52 were run with an initial condition leading to

termination, i.e. T1, T6, T12, T41, and T47. Furthermore, for those tag systems

that lead to halts, the number of halts is rather high.

Given this low number of tag systems for which a certain number of initial con-

ditions tested leads to a halt, and the fact that, if this is the case, the number of

conditions that halt is relatively large, one wonders whether these other tag sys-

tems can actually ever lead to a halt. It can indeed be proven for each of the re-

maining 47 tag systems that they will never halt, except for a very specific class

of initial conditions. So how will we prove this? Let us first consider T2. Clearly,

if T2 is started with initial condition 0, it will halt. It can be proven, however,

that for any other initial condition it will never halt. This is the case because

once w0(= 00101) or w1 is produced, and any of its letters is scanned by the tag

system, a halt can never occur. First of all, it should be noted that as long as the

tag system produces a string that contains at least one time w1 it can never lead

to a halt, since its length is larger than v = 6. As a consequence, w1 can never

lead to the production of the empty string ε, the tag system either produces w0,

w1 or w1w0 from w1. The only way to induce a halt, i.e., the production of the

empty string ε, in this tag system is through w0. However, the only way for w0

to lead to a halt is that w0 is entered with a shift such that none of its letters will

be scanned, i.e. when the last letter scanned before the tag system moves to

8.3. EXPERIMENT 1 367

w0 is the letter that precedes w0. This letter is either equal to 1 or to 0.11 If it is

equal to 0, this means that the word preceding w0 is w1 (= 1011010). Now, if the

last letter in w1 is scanned, its first letter will also have been scanned, and this is

equal to 1. Thus, we can conclude that if w0 is preceded by w1, and none of its

letters are scanned, the substring w1w0 must lead to the production of w1w0.

If w0 is preceded by w0, and none of the letters in the second w0 are scanned,

the last letter scanned must have been equal to 1, and w0w0 can thus neither

lead to the production of the empty string ε. From this, it follows that T2 can

never halt, except when started with the initial condition equal to 0. We have

thus proven the following theorem:

Theorem 8.3.1 The first form of the problem of tag, i.e. the halting problem for

tag systems, is solvable for T2.

For all other 47 tag systems from the table in which no halt has been detected,

except for T13, it can be proven that once these systems produce w1w0 or w0w0,

they can never halt, by applying a similar kind of reasoning used for proving the

theorem. As far as T13 is concerned, it can be proven that once w1w0 is pro-

duced, it can never halt. In other words, T13 will only halt for initial conditions

in which no letter 1 is scanned. We can thus prove the following theorem

Theorem 8.3.2 The first form of the problem of tag, i.e. the halting problem for

tag systems is solvable for all tag system from table 8.1 for which none of the

initial conditions tested has led to a halt.

We have checked the theorem for each of these tag systems but will spare the

reader the details of the proof. The reader who is not convinced, can easily

check the theorem by working out by hand each of the tag systems considered

in the theorem.

Besides the fact that there are only a few tag systems that can lead to a halt,

there is also a clear differentiation between the number of Immortals? Indeed,

their number varies between 10 and 317. The number of Growths? is for all the

tag system very low or even equal to 0, although it should maybe be noted that

11Remember that the shift number v = 6 for T2.

368 CHAPTER 8. PLAYING WITH TAG SYSTEMS

the tag system T22 with the largest number of Immortals? has the largest num-

ber of Growths?. One could thus suspect that certain of the initial conditions

classified as Immortals? are actually non-detected cases of growth. Some of the

results to follow, especially those from experiment 4, will help to exclude this

possibility. As far as the variety in the number of Immortals? is concerned it is

hard to draw any conclusion. Although it is clear that the probability that one

will find initial conditions that do not lead to one of the three general classes

of behaviour after 10000000 iterations, can be relatively high or relatively low,

depending on the tag system one is using, this does not allow to make any clear

distinctions between the different tag systems.

The results from the experiment measuring how fast initial conditions lead to

one of the three classes of behaviour for each of the tag systems, gives us some

more information. We have made plots showing the number of iterations (us-

ing the intervals) against the number of initial conditions that have not (yet)

led to one of the three general classes of behaviour for a given interval of it-

erations. What very much surprised me in these plots, is that there are clear

differences between the several tag systems, if one considers the rate of decay

of the number of initial conditions that have not yet resulted in behaviour of

one the three classes after n iterations. We will not show all the plots here, be-

cause that would ask for a rather huge number of pages of plots interrupting

the text, but we have printed all the plots in Appendix B. Here we will only show

some of the plots that clearly differ from each other.

The plots from T1, T2, T3 and T13 result in a kind of hyperbolic shape. The

plots suggest that the curves’ lower leg converges to an axis parallel or identi-

cal to the X-axis, the larger the number of iterations. Of course, it is far from

surprising that the larger the number of iterations, the fewer initial conditions

are left that have not yet led to one of the three classes of behaviour. What is

surprising is the shape of the plot: it suggests that the speed with which the

number of left-overs decreases, is at first very high but then becomes very low.

To put it differently, as fast as the number of left-overs decreases at first, as slow

it decreases from a given point on.

In T13, the switch from fast to slow decrease is very abrupt, i.e. the transition

between the upper and lower leg nearly coincide with a straight angle. For T1,

8.3. EXPERIMENT 1 369

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 8.1: Plot of T13

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 8.2: Plot of T1

370 CHAPTER 8. PLAYING WITH TAG SYSTEMS

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 8.3: Plot of T2

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 8.4: Plot of T3

8.3. EXPERIMENT 1 371

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 8.5: Plot of T51

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 8.6: Plot of T22

372 CHAPTER 8. PLAYING WITH TAG SYSTEMS

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 8.7: Plot of T34

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 8.8: Plot of T48

8.3. EXPERIMENT 1 373

this switch is still rather abrupt, but the transition from upper and lower leg is

more continuous. This is the same for T2, but the lower leg does not approxi-

mate the X-axis, but a line parallel to it. The plot of T3 is similar to that of the

other three tag systems, but the change between fast and slow decrease is far

less abrupt. These four plots are more or less continuous, where the small dis-

crete transitions in the plots can be explained by the size of the intervals and

the fact that the identification of the right interval for initial conditions that

have become periodic is merely an approximation and must contain some er-

rors.

The plots, however, of T22, T34 and T48 are far from continuous. Indeed, there

are clear discrete transitions that can no longer be explained by the size of the

intervals, or the possible errors induced by the determination of the intervals

for initial conditions that become periodic. The plots of T34 and T48 show one

large discrete transition. In case of T34 the plot is at first very similar to that of

T2, but then the number of left-overs suddenly drops, somewhere in an interval

between 1·106 and 2·106. Of course, if we would make our intervals smaller, this

transition might become less discrete, but still the fact remains that the num-

ber of left-overs initially decreases very fast. Then, the speed slows down in a

way similar to the plots for T2, but after a few more intervals, the speed again

becomes very fast, the plot suddenly dropping from about 350 to about 100 left-

overs. The speed then again slows down but given the first discrete transition,

one suspects that more might happen. Similar observations hold for the plot of

T48, but the transitions seem to be even more discrete. For the case T22 there

is not one large discrete transition but many smaller ones. Again one cannot

explain this by the size of the intervals or the possible errors caused by the de-

termination of the intervals for initial conditions that have become periodic.

The plot of T51 is shown because it is difficult to decide whether the discrete

irregularities are due to the set-up of the experiment or are inherent to the tag

system.

So what can one conclude on the basis of these plots? Since we are dealing

with experimental results, any conclusion can only be heuristic and has to be

checked through further experimentation. Still, on the basis of the plots, one

can make some inductions. The basic question to be asked here is whether

374 CHAPTER 8. PLAYING WITH TAG SYSTEMS

we can generalize the plots. Let us first consider the plots for T1, T2, T3 and

T13, and all other plots, shown in appendix A that are similar to one of these

plots. Given the fact that these plots do not contain any serious discrete tran-

sitions, let us assume that such transitions will not occur for these tag systems,

however far one would extend the plot to the right, or whatever the number of

initial conditions tested. This implies that the larger the number of iterations

becomes, the number of left-overs will more and more converge to a constant

value a. The question then is whether the plot merely converges to the line

y = a, intersecting it at an infinite point, or, whether an intersection will occur

at a finite point, i.e., the question of whether the number of left-overs ever be-

comes equal to a (or, if a > 0, smaller than a)? Indeed, since the number of

initial conditions tested is finite, and, for now we have no decision procedure

for the tag systems considered, there is no way to exclude one of these two pos-

sibilities, except if one would wait until all conditions tested have led to one

of the three classes of behaviour. But of course, this is exactly what is at stake

here.12

This problem becomes even worse if we take into account that we have merely

tested 999 initial conditions of length 300. Since about b300/vc letters can be

scanned given the shift number v, there are in fact about 2b300/vc possible ini-

tial conditions of length 300, for each of the tag systems considered. Supposing

that we can more or less generalize the results from table 8.1, for those tag sys-

tems with plots similar to that of T1, T2, T3 and T13, an estimate for the results,

if all conditions of length 300 would be tested, is given by the multiplication of

each of the numbers in the table by a factor of about 2b300/vc−210 (The subtrac-

tion of 210 results from the fact that 210 approximates 999). This implies that

the number of Immortals? will grow linearly with the size of the sample space,

12Indeed, suppose we would take the 18 left-overs from Post’s tag system and see what has

happened to them after 100.000.000 iterations. Maybe all of them will have halted or become

periodic, maybe not. Suppose only 9 are left once we have performed 100.000.000 iterations,

and we then take these 9 and see what happens to them after 1.000.000.000 iterations. Again,

all of them might have led to periodicity or a halt, maybe not. As is clear this kind of reasoning

shows what problem is involved here: the only way to solve it is to wait and see, but there seems

to be no way to predict how long one should wait.

8.3. EXPERIMENT 1 375

which grows exponentially with the length of the initial condition.13

If we would make a plot after having tested all possible conditions of length

300 for each of the tag systems, the lower leg of the hyperbolic shape would lie

significantly higher (with the same limit to select Immortals? at 10.000.000 it-

erations). This reasoning implies that the more initial conditions one tests, the

slower the number of left-overs converges to a constant, possibly 0, and the fur-

ther the point of intersection, if finite, moves to the right. Furthermore, given

the presumed exponential growth of the number of Immortals? with the length

of the initial condition, one cannot but conclude – on assumption that the plots

can be generalized – that this intersection point, if finite, moves exponentially

fast to the right.

The basic question to be asked is whether any such plot converges to the a a

line y = a at a finite or at an infinite point. If we would be able to prove that for

every class of initial conditions of arbitrary length l , this intersection point is

finite for a given tag system, we would have proven its halting and reachability

problem. For now however, there is no clear method to prove this for the tag

systems considered here. The fact that, if we assume that we can generalize the

plots, this intersection point moves exponentially fast to the right for increas-

ing l serves as a clear indication of the difficulties that might be involved here,

i.e., it illustrates the intractability (though possibly not inherent) of these tag

systems.

We still have to consider the tag systems for which the plots are similar to those

for T22, T34 and T48, i.e., plots with clear discrete jumps. These cases illustrate

that generalizing the plots from the other tag systems might be tricky. Indeed,

for now nothing guarantees that such drops might not occur for the other tag

systems if one would consider a larger sample space of initial conditions and

13We should point out here that one should of course take into account that there are always

v different lengths of classes of initial conditions for which the tag system will scan the same

relevant letters. For example, the relevant letters scanned in the class of initial conditions of

lengths 298, 299 and 300 will all be the same for Post’s tag system. This, however does not mean

that given an initial condition of length 299 and length 300 for which the relevant letters are

identical, that the tag system will lead to the same behaviour. On the contrary, because the

sequence of relevant letters in the respective strings produced in the two cases from the initial

condition will be different, given this length of the condition.

376 CHAPTER 8. PLAYING WITH TAG SYSTEMS

follow the lower leg of the plots further to the right. Still, sudden drops in these

plots do not imply tractability. Indeed, as is e.g. clear for T34, after the large

discrete jump in the plot, the lower leg seems to become more continuous. For

now, we have not investigated these tag systems to an extent allowing to con-

clude that plots with or without discrete transitions can be explained by some

structural property that makes it possible to differentiate between these two

classes.

8.4 Experiment 2: Periodicity in the different tag sys-

tems

Here again was the untiring calculator who blazed the way into the unknown.

Gauss set up huge tables: of prime numbers, of quadratic residues and non-

residues, and of the fractions 1/p for p = 1 to p = 1000 with their decimal ex-

pansions carried out to a complete period, and therefore sometimes to several

hundred places! With this last table Gauss tried to determine the dependence of

the period on the denominator p. What researcher of today would be likely to

enter upon this strange path in search of a new theorem?

Felix Klein, 1979.14

The second experiment to be discussed here uses data from Experiment 1, viz.,

the initial conditions that led to periodic behaviour. The purpose of this exper-

iment is to answer empirically certain questions concerning the possible types

of periods produced by tag systems.

In the discussion of Watanabe’s [Wat63] (See 6.1.2) we described several aspects

of the kind of periods produced in Post’s tag system T1. Among other things, it

was shown, through Shearer’s proof [She96], that it is possible to generate all

even numbers by a specifically configured combination of two different peri-

odic strings, namely 2 and 4. Given such proof, one is tempted to ask whether

one can generalize the method of the proof to the other tag systems investi-

gated here, possibly involving other sequences of numbers e.g. the uneven

14[Kle79], quoted in [Gre82], p.5

8.4. EXPERIMENT 2 377

numbers. In other words, is it the case for any tag system satisfying the con-

straints from Sec. 7, that, given a certain infinite sequence of numbers P , one

can always construct a periodic string S for any p ∈ S, such that S has period

p? The answer to this question is negative. It can for example be proven for T2

that it is impossible to find at least two periodic strings of the type needed for

Shearer’s proof to work.

For Shearer’s proof to work, we have to find at least two periodic strings A and

B in T2 which, when all their relevant letters have been processed, reproduce

themselves after a different number of steps. Furthermore, A cannot simply be B

repeated x times and vice versa, i.e. A and B must lead to different periods. A fur-

ther restriction is the fact that the length of A and B must be divisible by v. This is

necessary to guarantee that the shift A and B are entered with remains constant

each time.15 Suppose for example that v = 3, lA = 7, lB = 10, and that A and B

self-reproduce themselves after all their relevant letters have been scanned. Let

us further suppose that in starting from AB scanning all the letters in A, starting

from the first letter in A, results in a new string BA, where B is entered with a

shift 2, i.e. the additive complement of 7 mod v.16 Now, scanning all the relevant

letters of B, A will not be entered with a shift 0, but with a shift 1. Similarly, after

all the relevant letters of A have been scanned, B will now be entered with a shift

0. In other words, if the lengths of the periodic strings used are not divisible by

v, the shifts the A’s and B’s are entered with cannot remain constant. In this re-

spect, for Shearer’s proof to work, we need periodic strings with a length divisible

by v. One could counter this restriction by saying that 10111011101000000 is also

a periodic string in T1, although its length is not divisible by v. This is true. How-

ever, scanning all the letters of this string results in 110111011101000000, which

has a length divisible by v. It is only, because 110111011101000000 is tagged to

10111011101000000 that 10111011101000000 results in 10111011101000000. In

other words, if one wants to e.g. generate all the even numbers by concatenating

a period 2 x times to a period 4, it might be the case that the initial length of the

period 4 string is not divisible by v. However, one can only get the desired result

if every periodic substring produced in the process is entered with the same shift.

This is only possible if all these substrings have a length divisible by v. In the fol-

lowing, it is thus assumed that if one wants to apply Shearer’s proof to another

tag system, the two periodic strings A and B needed will have a length divisible

15A more exact definition of this type will be given on p. 390.
16See Sec. 6.3.1, 320.

378 CHAPTER 8. PLAYING WITH TAG SYSTEMS

by v, although it is possible that the periodic string (A or B) standing at the be-

ginning of a concatenation of these two periodic strings is entered with a shift

different from 0.

Now, it can indeed be proven for T2 that the only possible periodic string which

follows these restrictions is a period 2 string. In the following table, the strings re-

sulting from every 2-combination of w0 and w1, in every possible shift (0 to 5) are

shown. If the resulting string is not the same as the combination it is produced

from, it is marked with X. If a string is not marked, there are two possibilities: the

resulting string has a length which is or is not divisible by v. If it is not divisible

by v, the additive complement of the remainder is mentioned.

w1w0 w0w1 w0w0 w1w1

0 w1w0 w0w0X |w0w0| mod v = 2 w1w0w1X

1 w1w1X w0w1 w0w1X w0w1w0X

2 w1w0 w1w1X w1w0X w1w0X

3 w0w0X w0w0X w1w1X |w1w1| mod v = 1

4 w1w1X w1w1X w1X w0w1X

5 w0w0X w1w0X w0X w1w0X

If a string is marked it follows that the string it is produced from is not self-

reproducing when entered with the given shift Sx. From the table it is clear that

from the 4x5 possibilities considered, 15 do not lead to self-reproduction. There

are thus 5 possibilities left that might lead to the kind of periodic strings we are

searching for: (0, w1w0), (2, w1w0), (1, w0w1), (0, w0w0), (3, w1w0), where (s, c) is

the result from entering combination c with shift s. The first three of these cou-

ples are the three possible period 2 strings for T2, since they have a length divisi-

ble by v. Concatenating the first couple any number of times, always results in a

string of period 2. The same goes for the other two.

But what about (0, w0w0) and (3, w1w1)? Dividing the lengths of both combina-

tions results in a remainder r > 0. This remainder r determines the shift the next

word tagged to w0w0 or w1w1 will be entered with i.e., the first r letters of this

word will be erased (it will be entered with a shift r). Now the only possible way

for w0w0 or w1w1 to become periodic so that Shearer’s proof can be applied to

T2, is that it should be possible to concatenate certain combinations of words

to either w0w0 or w1w1 such that the resulting string is periodic. This possi-

bility is excluded by looking at what happens to w0w0 and w1w1 if we look at

8.4. EXPERIMENT 2 379

what happens in concatenating any of the 2-combinations of w0 and w1 to ei-

ther w0w0 and w1w1. For the case w0w0, whatever of these 2-combinations is

concatenated to it, the 2-combination will be entered with a shift 2. The result of

entering each of these possible combinations with this shift 2 can be read from

row 3. Three out of four will not lead to reproduction. Concatenating w1w0 to

w0w0, however, does lead to reproduction. Does this mean we have found the

two periodic strings necessary for Shearer’s proof to work? No. Suppose we want

to generate the number 8 by concatenating 3 times w1w0 to w0w0. After all the

relevant letters of this string have been scanned we will have the same string, but

now, it will be entered not with the necessary shift 0, but with a shift 1. Indeed,

because the length of w1w0 is divisible by v, the next time w0w0 is entered w0w0

will no longer reproduce itself. Since there is no other 2-combination, besides

w1w0 that leads to self-reproduction when entered with a shift 2, we cannot use

w0w0. Indeed, whatever 2-combination is concatenated to w0w0 it cannot result

in the kind of periodic string we need here. The same reasoning can be applied

for the case w1w1 if entered with a shift 3, by looking at the results in row 1. The

details of this reasoning are left to the reader. There is still one possibility left to

get the periods we need here. Since (0, w1w0), (2, w1w0), (1, w0w1) are the kind of

periodic strings we are searching for, we still have to look at the following possi-

bilities: (0, w1w0w0w1), (2, w1w0w0w1),

(0, w0w1w1w0). As might already be clear now, neither can lead to the right pe-

riodic strings, because of the shifts. If (0, w1w0w0w1) is the case w0w1 will not

be entered with a shift 1, but with a shift 0, thus not leading to the desired re-

sult. The same goes for (2, w1w0w0w1) and (0, w0w1w1w0). We still have to con-

sider the case for which only one word is tagged to any of the 2-combinations

instead of another 2-combination, or a 2-combination is tagged at one of the

words. Again it can be shown that no such 3-combination can lead to the kind

of self-reproduction we are searching for. This follows from the fact that the two

words w0 and w1 have a length that is not divisible by v. The details of the proof

are left to the reader, the method to be used being similar to the one used for

proving the result for 2-combinations. Since the only possible periodic strings

that can be produced by T2 of the kind needed for Shearers’s proof to work are

period 2 strings described, we thus conclude that we cannot apply the method

380 CHAPTER 8. PLAYING WITH TAG SYSTEMS

of the proof to T2.

Besides the fact that it is possible for certain tag systems to construct, for any

number x ∈ P – where P is a given infinite computable sequence of numbers –

a periodic string with period x, another important feature concerning the pe-

riods in T1, already pointed out, is the structure of a period. Indeed, as was

shown, the majority of the periods produced by T1 have a very transparent

structure, the majority of them being compositions of four basic periods, i.e.,

2, 4, 6 and 10. Only two exceptions to the rule were found until now, namely a

string with period p = 44 and one with p = 66. These periods not only lack any

transparent structure, but the length of their structure is much shorter than the

length of the period itself, the lengths of the structures varying between 13-15

(p = 40) rsp. 23-26 (p = 66).

Since we seem to be confronted here with two different types of periodic strings

in T1 one wonders whether there exist any other types of periodic strings. At

least, that is the question we asked ourself. Furthermore, since Shearer’s proof

cannot be applied to T2, one also wonders whether such periodic types can be

used to differentiate between classes of tag systems. The data generated by the

experiment to be described here were, amongst others, used to further investi-

gate these two problems.

8.4.1 Set-up of experiment 2

As was said, this experiment uses data generated by the previous experiment.

For each of the tag systems from Table 8.1 we used one of the files generated in

the previous experiment. This file contains 1) the initial conditions that lead to

periodic behaviour, 2) the last periodic string produced, as well as 3) the length

of the period.

We already know that Post’s tag system allows for a great variety of different pe-

riods ranging over all the even numbers. This does not mean at all that if this

tag system is run with several initial conditions each even number has an equal

chance to be produced. On the contrary, period 6 has a clear dominance over

the other periods, followed by period 10. This observation led me to the ques-

8.4. EXPERIMENT 2 381

tion whether one can also find such dominance in other tag systems. In this

respect, the experiment used the input files to store the different periods found

for each tag system, as well as the number of times each period is produced.

Then, for each period, its probability is calculated by dividing the number of

times the given period appears by the total number of periodic string found.

A related question to be asked is how large the “variety” of periods produced

is for the given sample. Indeed, given the dominance of period 6, one suspects

that the variety of different periods produced by T1 when starting with a certain

sample of initial conditions, will be rather low. In order to measure the variety

of different periods for a given tag system, the program also measured the ratio

between the total number of different periods found and the total number of

periods occurring (times 100 to get a percentage).17

As was said, another (theoretically more interesting) question I wanted to in-

vestigate is whether there exist other types of periodic structures than the two

types found in Post’s tag system, i.e. the “regular” periodic strings, like the pe-

riod 6 strings, and the “irregular”, like the period 40 string found. Maybe such

new types – if they exist at all – can lead to another possibility for applying

Shearer’s proof, using other types.

In order to find at least an empirical answer to such questions, the periodic

strings from each of the input files were taken as initial conditions for the tag

system under study. Then if the period is x, the tag system is run for x iterations.

If the sequence of resulting strings thus produced has not been found before,

it is stored in a file. In this way it is possible not only to find the structures for

each of the different periods, but also, if a period is found more than once, to

see whether one period can have several structures. This was done, because in

Post’s tag system one single period can have several different structures. E.g.

period 12 might be composed out of period 6 + 3 times period 2 or period 4 +

4 times period 2. The several structures found in the different tag systems were

then further analyzed by hand.

But before passing on to the actual results it is important to emphasize again

the problematical character of this experimental approach. Given e.g. a tag

17It should be mentioned here that the data used are those from the first run of experiment

1, and the size of the maximal sample is thus restricted to 989 periods (for T7).

382 CHAPTER 8. PLAYING WITH TAG SYSTEMS

system for which the analysis of the structures results in the conclusion that

all periods are compositions of one or more basic periods of the “regular” type.

If this is the case, one cannot conclude that all its periods will be of this form.

Indeed as will become clear immediately, no period 40 nor 66 of the “irregu-

lar” type was found for Post’s tag system in running experiment 1, although we

know that they exist. The only way to exclude such possibilities is through the-

oretical reasoning, as was e.g. done for T2 in the intermezzo. Of course one

could make the sample file larger and larger, taking lots of computer time to

strengthen certain hypotheses or conjectures. However, for now the sample

file is too small to conclude for hypotheses or conjectures such as tag system x

cannot generate periods of type y.

8.4.2 Discussion of the results

In the following table an overview is given of the different periods found for

each of the tag systems. The last column gives an overview of all the different

periods (put in bold) and their respective probabilities, resulting from the divi-

sion of the number of times a certain period appeared in the sample by the total

number of periods found. The second column (%D.P.) gives the measure of the

variety of the periods, i.e. the ratio between the total number of different peri-

ods and the total number of periods occurring (times 100 to get a percentage).

The third column gives the total number of periods (Tot.) found. Although

these last results were already given in table 8.1, they are repeated here to make

the comparison a bit more easy.

Table 8.3: Overview of the results from Experiment 2.

T.S. %D.P. Tot. Periods and # of each period rel. to Tot. periods

T1 1,772 790 6 (84.2), 10 (9.37), 28 (1.39), 36 (1.27), 34 (0.89), 22 (0.76),

46 (0.38), 16 (0.38), 40 (0.38), 20 (0.38), 32 (0.25), 54 (0.13),

14 (0.13), 70 (0.13)

T2 0,448 891 168 (65.1), 2 (23.8), 5386 (8.53), 6704 (1.68)

Continued on next page

8.4. EXPERIMENT 2 383

Table 8.3 – continued from previous page

T.S. %D.P. Tot. Periods and # of each period rel. to Tot. periods

T3 1,679 893 202 (39.5), 124 (29.1), 8 (12.2), 752 (4.7), 32 (4.37), 40

(3.14), 192 (3.14), 48 (2.13), 4 (0.34), 178 (0.34), 64 (0.22),

56 (0.22), 758 (0.22), 316 (0.22), 1686 (0.11)

T4 2,483 926 48 (48.2), 24 (14.3), 32 (7.34), 8 (6.57), 44 (5.18), 56 (5.18),

52 (2.27), 412 (1.84), 528 (1.84), 64 (1.73), 60 (1.51), 68

(1.19), 2454 (0.65), 1634 (0.54), 1224 (0.54), 286 (0.43),

72 (0.43), 84 (0.32), 80 (0.22), 76 (0.22), 88 (0.11), 12498

(0.11), 40 (0.11)

T5 2,851 982 4 (32.8), 16 (11.9), 34 (10.1), 18 (9.67), 20 (8.35), 26 (5.91),

22 (4.48), 14 (2.85), 30 (2.75), 38 (2.14), 24 (1.93), 28 (1.12),

32 (0.71), 864 (0.71), 10 (0.61), 36 (0.61), 40 (0.51), 50

(0.41), 46 (0.31), 42 (0.31), 52 (0.2), 60 (0.1), 56 (0.1), 74

(0.1), 84 (0.1), 44 (0.1), 48 (0.1), 8 (0.1)

T6 22,22 9 6 (88.9), 138 (11.1)

T7 0,606 989 72 (43.9), 2090 (36.1), 600 (16.2), 2 (1.92), 4440 (1.82), 362

(0.1)

T8 3,099 968 6 (27.1), 18 (19.3), 48 (13.5), 54 (5.58), 24 (3.82), 30 (3.41),

90 (2.76), 60 (2.69), 12 (2.58), 66 (2.38), 78 (2.17), 36 (2.1),

45 (2.1), 84 (1.76), 42 (1.34), 72 (1.14), 33 (1.14), 96 (0.72),

39 (0.62), 276 (0.62), 27 (0.41), 21 (0.41), 9 (0.31), 120

(0.31), 126 (0.1), 57 (0.1), 13446 (0.1), 3 (0.1), 108 (0.1),

102 (0.1)

T9 1,356 958 14 (55.1), 692 (18.7), 28 (5.74), 24 (4.91), 20 (4.28), 12

(3.44), 8 (2.4), 16 (1.88), 36 (1.77), 730 (0.84), 2134 (0.52),

40 (0.31), 32 (0.21)

T10 0,513 973 268 (61.8), 20 (25.3), 46 (10.4), 572 (2.47), 376 (0.1)

Continued on next page

384 CHAPTER 8. PLAYING WITH TAG SYSTEMS

Table 8.3 – continued from previous page

T.S. %D.P. Tot. Periods and # of each period rel. to Tot. periods

T11 2,628 951 4 (36.8), 10 (33.4), 18 (3.79), 12654 (3.58), 22 (3.15), 6

(2.73), 14 (2.63), 40 (1.79), 16 (1.58), 20 (1.37), 32 (1.26), 12

(1.26), 24 (0.95), 34 (0.84), 38 (0.74), 30 (0.74), 42 (0.63), 26

(0.63), 222 (0.53), 28 (0.53), 50 (0.42), 48 (0.21), 44 (0.21),

58 (0.11), 46 (0.11)

T12 9,090 11 6 (100)

T13 0,305 981 2 (97.5), 3784 (1.83), 78110 (0.71)

T14 2,421 950 48 (52.8), 2 (21.3), 84 (8.21), 850 (3.58), 100 (3.16), 68

(2.95), 40 (2.11), 24 (1.16), 132 (1.16), 640 (0.53), 164

(0.42), 180 (0.42), 116 (0.42), 148 (0.42), 16 (0.32), 72

(0.21), 298 (0.21), 80 (0.11), 88 (0.11), 52 (0.11), 212 (0.11),

292 (0.11), 56 (0.11)

T15 4,102 975 48 (20.2), 588 (13.6), 16 (12.2), 60 (10.9), 14 (10.1), 44

(6.56), 56 (4.92), 72 (4.82), 36 (2.56), 32 (2.51), 24 (1.54), 84

(0.92), 64 (0.92), 96 (0.82), 1302 (0.82), 68 (0.72), 88 (0.72),

40 (0.51), 116 (0.41), 92 (0.41), 108 (0.41), 104 (0.41), 52

(0.31), 120 (0.21), 112 (0.21), 188 (0.21), 100 (0.21), 424

(0.21), 128 (0.1), 124 (0.1), 144 (0.1), 184 (0.1), 76 (0.1), 28

(0.1), 136 (0.1), 160 (0.1), 164 (0.1), 132 (0.1), 80 (0.1), 172

(0.1)

T16 0,817 978 10 (81.3), 52 (7.36), 80 (5.83), 62 (3.78), 224 (0.82), 986

(0.51), 66 (0.31), 424 (0.1)

T17 1,021 979 196 (94.3), 2102 (2.42), 2 (2.15), 72 (0.61), 3706 (0.31), 68

(0.2), 1140 (0.1), 80 (0.1), 454 (0.1), 1778 (0.1)

T18 0,514 972 18177 (52.3), 3 (45.4), 282 (1.95), 15 (0.21), 325953 (0.21)

T19 2,254 976 48 (44.8), 54 (14.7), 42 (12.8), 84 (5.33), 36 (5.12), 72 (2.66),

96 (2.15), 90 (1.95), 60 (1.84), 894 (1.74), 6 (1.74), 66 (1.64),

78 (0.92), 108 (0.72), 120 (0.61), 102 (0.41), 114 (0.31), 63

(0.2), 156 (0.1), 132 (0.1), 144 (0.1), 12 (0.1)

Continued on next page

8.4. EXPERIMENT 2 385

Table 8.3 – continued from previous page

T.S. %D.P. Tot. Periods and # of each period rel. to Tot. periods

T20 0,840 833 252 (58.6), 206 (24.2), 848 (12.2), 226 (3.6), 728 (0.48),

18480 (0.48), 48606 (0.36)

T21 1,536 976 38 (505), 17782 (19.7), 46 (10.4), 680 (6.15), 1624 (5.23), 54

(4.1), 42 (1.95), 58 (1.24), 62 (0.61), 50 (0.41), 1982 (0.31),

78654 (0.2), 66 (0.1), 78 (0.1), 96 (0.1)

T22 2,347 639 28 (70.6), 3284 (9.23), 188 (5.79), 8556 (5.16), 22 (2.66), 40

(2.5), 72 (1.1), 84 (0.78), 56 (0.63), 48 (0.47), 36 (0.31), 60

(0.31), 44 (0.16), 68 (0.16), 124 (0.16)

T23 2,296 958 1485 (21.2), 12009 (12.5), 48 (11.7), 60 (11.3), 30 (8.14), 3

(8.14), 66 (4.49), 72 (4.28), 54 (4.18), 90 (3.13), 42 (2.61), 24

(2.51), 78 (1.88), 36 (0.94), 84 (0.84), 96 (0.73), 108 (0.52),

102 (0.42), 126 (0.21), 120 (0.1), 132 (0.1), 114 (0.1)

T24 0,818 977 80 (47.1), 68 (33.2), 38 (11.8), 4 (4.2), 8 (1.94), 14 (1.33), 48

(0.31), 72 (0.2)

T25 1,013 987 3308 (34.2), 10452 (30.5), 118 (29.1), 358 (3.34), 14290

(0.51), 16 (0.51), 410 (0.41), 20290 (0.2), 120 (0.2), 664

(0.1)

T26 0,727 962 504 (71.8), 1954 (23.5), 4474 (3.14), 244 (0.94), 32 (0.42),

2186 (0.21), 1468 (0.1)

T27 0,305 983 2 (99.4), 878 (0.51), 576 (0.1)

T28 0,913 985 10 (80.3), 80 (6.9), 52 (6.5), 62 (3.96), 224 (0.91), 197264

(0.71), 66 (0.3), 986 (0.3), 4116 (0.1)

T29 0,420 952 2 (80.6), 68 (18.8), 798 (0.42), 366 (0.21)

T30 0,921 977 212 (37.3), 2308 (28.4), 616 (27.6), 9370 (3.48), 480 (1.94),

33218 (0.92), 18 (0.41), 164 (0.2), 4216 (0.1)

T31 0,518 965 6 (99.4), 1124 (0.21), 70 (0.21), 30 (0.1), 778 (0.1)

T32 1,884 849 108 (65.5), 140 (7.3), 72 (5.18), 96 (4.83), 40 (3.65), 442

(3.42), 1252 (2.83), 124 (2.24), 92 (1.65), 48 (1.6), 282 (1.6),

49318 (0.71), 156 (0.24), 110 (0.12), 64 (0.12), 148 (0.12)

Continued on next page

386 CHAPTER 8. PLAYING WITH TAG SYSTEMS

Table 8.3 – continued from previous page

T.S. %D.P. Tot. Periods and # of each period rel. to Tot. periods

T33 0,622 964 262 (38.6), 72 (29.7), 2312 (14.2), 274 (11.5), 182 (3.84), 16

(2.18)

T34 0,657 912 3 (52.7), 462321 (26.5), 22302 (17.3), 522 (3.18), 636 (0.11),

465 (0.11)

T35 1,362 954 7 (53.6), 42 (17.5), 28 (10.7), 56 (6.18), 63 (3.46), 126 (2.73),

70 (1.99), 84 (1.47), 2002 (0.73), 784 (0.73), 2709 (0.42),

11760 (0.31), 112 (0.21)

T36 3,731 938 32 (20.1), 28 (19.2), 40 (10.7), 3748 (9.28), 76 (7.46), 48

(6.86), 88 (3.91), 36 (3.73), 6 (3.3), 56 (1.92), 622 (1.76), 52

(1.6), 72 (1.6), 60 (1.49), 92 (1.39), 68 (1.17), 172 (1.17),

64 (0.85), 104 (0.85), 108 (0.64), 80 (0.53), 140 (0.43), 96

(0.43), 120 (0.32), 124 (0.32), 156 (0.21), 6656 (0.21), 224

(0.11), 192 (0.11), 84 (0.11), 112 (0.11), 152 (0.11), 236

(0.11), 128 (0.11), 44 (0.11)

T37 4,161 817 92 (16.9), 2990 (16.5), 84 (14.2), 6 (9.18), 50 (7.1), 42

(5.1), 100 (4.28), 62 (4.28), 108 (3.55), 66 (2.94), 58 (2.2),

70 (1.96), 34 (1.96), 48 (1.35), 94 (1.22), 54 (0.98), 78

(0.73), 74 (0.73), 90 (0.61), 86 (0.49), 4406 (0.49), 46 (0.37),

102 (0.37), 226 (0.24), 106 (0.24), 134 (0.12), 1954 (0.12),

15560 (0.12), 156 (0.12), 110 (0.12), 98 (0.12), 132 (0.12),

1080 (0.12), 164 (0.12)

T38 0,717 975 3 (70.1), 12471 (19.3), 915 (4.72), 2160 (2.87), 2208 (1.13),

71253 (0.92), 150 (0.1)

T39 0,610 983 845 (81.1), 405 (8.14), 2495 (5.19), 90 (3.66), 40 (0.71), 65

(0.31)

T40 0,535 934 18177 (55.1), 3 (41.2), 282 (2.25), 15 (0.43), 325953 (0.11)

T41 3,947 152 26 (57.9), 8 (34.9), 198 (3.95), 2 (1.32), 32 (1.32), 24 (0.66)

Continued on next page

8.4. EXPERIMENT 2 387

Table 8.3 – continued from previous page

T.S. %D.P. Tot. Periods and # of each period rel. to Tot. periods

T42 2,481 927 48 (46.1), 24 (12.5), 32 (7.12), 8 (6.26), 44 (5.93), 56 (5.72),

412 (3.34), 528 (2.91), 64 (2.27), 60 (1.4), 68 (1.4), 52 (1.19),

72 (0.76), 2454 (0.76), 1224 (0.54), 286 (0.43), 76 (0.32), 84

(0.22), 80 (0.22), 96 (0.22), 1634 (0.22), 36 (0.11), 40 (0.11)

T43 0,511 978 32 (74.7), 72 (12.4), 188 (6.44), 4 (4.81), 28548 (1.64)

T44 1,434 976 1808 (38.7), 48 (28.3), 60 (12.6), 72 (9.32), 322 (5.23), 84

(2.66), 36 (0.82), 6 (0.72), 96 (0.51), 488 (0.51), 132 (0.31),

108 (0.1), 408 (0.1), 916 (0.1)

T45 0,406 983 6 (90.9), 142714 (7.83), 16 (1.27), 152 (0.2)

T46 7,748 955 74 (6.18), 70 (5.24), 66 (4.83), 62 (4.82), 34 (4.61), 50 (4.5),

38 (4.29), 58 (3.87), 78 (3.66), 82 (3.25), 94 (3.14), 54 (2.94),

86 (2.83), 98 (2.72), 4 (2.51), 72 (2.2), 42 (2.2), 60 (1.88), 88

(1.68), 64 (1.68), 90 (1.68), 118 (1.57), 52 (1.57), 102 (1.47),

110 (1.36), 5382 (1.36), 236 (1.36), 106 (1.36), 68 (1.36),

76 (1.36), 46 (1.26), 122 (1.15), 114 (1.15), 160 (0.94), 96

(0.94), 84 (0.94), 80 (0.94), 40 (0.84), 56 (0.84), 48 (0.73),

112 (0.63), 36 (0.52), 104 (0.52), 130 (0.52), 134 (0.52), 128

(0.42), 138 (0.42), 180 (0.42), 126 (0.42), 1194 (0.42), 152

(0.42), 100 (0.31), 30 (0.31), 108 (0.31), 166 (0.21), 124

(0.21), 146 (0.21), 32 (0.21), 170 (0.21), 116 (0.21), 178

(0.21), 142 (0.21), 120 (0.21), 136 (0.21), 92 (0.21), 144

(0.1), 154 (0.1), 186 (0.1), 770 (0.1), 132 (0.1), 174 (0.1),

218 (0.1), 148 (0.1), 156 (0.1)

T47 3,981 427 866 (32.8), 18 (18.5), 6 (13.1), 12 (7.49), 24 (7.49), 1836

(5.15), 30 (4.22), 42 (4.22), 36 (2.58), 48 (1.41), 60 (0.94),

54 (0.7), 8 (0.47), 66 (0.23), 72 (0.23), 22 (0.23), 90 (0.23)

T48 0,713 981 2320 (77.6), 177802 (13.4), 183532 (5.3), 224 (2.34), 336

(1.29), 872 (0.31), 178 (0.1)

T49 1,057 946 42 (29.3), 168 (26.5), 18 (26.1), 4200 (16.1), 114 (0.74), 228

(0.63), 24 (0.21), 66 (0.21), 210 (0.11), 144 (0.11)

Continued on next page

388 CHAPTER 8. PLAYING WITH TAG SYSTEMS

Table 8.3 – continued from previous page

T.S. %D.P. Tot. Periods and # of each period rel. to Tot. periods

T50 0,651 921 436 (49.5), 52 (29.4), 24 (11.1), 2044 (8.25), 48 (1.95), 1778

(0.65)

T51 0,863 926 3802 (74.6), 2 (21.7), 60928 (1.94), 1350 (0.65), 2894 (0.43),

44314 (0.32), 248 (0.22), 10580 (0.11)

T52 0,818 977 62 (43.3), 2 (38.9), 138 (15.9), 23792 (0.82), 270 (0.51),

62954 (0.31), 15008 (0.2), 17134 (0.1)

As is clear from this table there is a rich variety present in the different tag sys-

tems tested as far as periodicity is concerned. But before discussing this any

further, it is important to exclude T6 and T12 from our discussion, given the

low number of periods found in experiment 1 for these two tag systems. Look-

ing at the results for the other tag systems, it is clear that there are significant

differences in the variety of different periods relative to the total number of pe-

riods. The maximum variety of periods is found in T46 with no less than 74

different periods, while T13 and T27 have the lowest scores. Between these two

extremes, the variety of periods for each of the tag systems does not allow for a

clear classification, since the different values vary between these two extremes

in a relatively continuous way.

As was said before, there is a clear dominance of period 6 in T1, and the results

from table 8.3 only affirm this, 84.2% of the periods found being a period 6.

This dominance of one period can be is also seen in several other tag systems.

In T13, T17, T27, T31 and T45 for example, there are periods with probabilities

higher than 90%. There are also tag systems where the difference between the

most dominant and the one following it is relatively small, so one could speak

about more than one dominant period. This is for example the case for T11.

There are also tag systems where the probability of the most dominant period

lies significantly low. This is for example the case for T46, the tag system with

the largest variety in the number of different periods found. This does not mean

that there is some correlation between variety and probability of the dominant

8.4. EXPERIMENT 2 389

period. For example, although the variety of different periods in T1, equal to

1.772, lies significantly higher than in T2, equal to 0.448, the probability that

period 6 will occur for T1 lies significantly higher than that for the dominant

period 168 in T2. This becomes even more apparent in comparing the results

for T1 with a tag system for which the relative variety is more or less the same,

such as T3, where the probability of the dominant period 202, equal to 39.5%,

is less than halve of the probability of period 6 in T1.

It should also be noted that there are tag systems that produce periods that

are not even. For example, T35 has produced strings with period 7. In fact all

the different periods found for T35 are divisible by 7. Another example is T38,

where all the periods are divisible by 3. The fact that we have already observed

that for T1, many of the periods are in fact additive compositions of several

different even numbers, while there are clearly also other compositions pos-

sible for other tag systems, illustrates, on a very intuitive level, the number-

theoretical character of tag systems. Indeed, we are convinced that interesting

things might be done on this level if the periodic types in tag systems would be

investigated in more detail. For instance, it would to our mind be interesting if

one would be able to construct composed tag systems, from other tag systems

with different periods, such that one could begin to compute with the periods

themselves. But, as is the case for many of the results described in this disser-

tation, more research is needed here.

Clearly, the results from table 8.3 do not bring us very far theoretically. Although

we have made some observations on the basis of the table, they can only serve

to build up an intuition of the behaviour of periods in tag systems. They do

not directly lead to appealing results. Another source of information however

are the several periodic structures found for each of the tag systems. Here, the

results – it must be said – were rather surprising. We already discussed two dif-

ferent types of periods for T1: the so-called “regular” and “irregular” ones. After

a rather nerve-racking analysis of the several structures found for the remaining

51 tag systems, combining classic pencil-and-paper work with computer work

I found two more types and will now give a detailed description of these types. I

should warn the reader though that a serious formalization is still needed here

in order to make the definitions more immediate. Furthermore, the definitions

390 CHAPTER 8. PLAYING WITH TAG SYSTEMS

should be considered as preliminary definitions. The definitions are meant as

a description, a means for recognizing the different types. This implies that the

definitions are most probably in part redundant, i.e., some of the characteris-

tics may be derived from a smaller set of characteristics. Some more research

time would be needed, to find more elegant and explanatory definitions.

Still, we would like to make some notational conventions. First of all, remem-

ber that a periodic structure is the sequence of relevant letters in a given peri-

odic string Sx . From now on, the periodic structure of a given string Sx will be

denoted as Sx and its length as |Sx |. It should be noted that normally, no index

will be used, so that Sx will be shortened to S. The length of a period will be

indicated as p, while given a periodic string S with period length p, S plus the

next p −1 strings produced from S, i.e., a sequence of p strings with period p,

will be denoted as [P]. If a given string is denoted as Sx then Sx+i denotes the

string that is produced from Sx after i iterations. We would also like to intro-

duce two operations
◦→ and

◦→+
. Given a tag system T, with shift number v and

a string S = a1a2...an . Then, a new string:

S′ = an−(n−1 mod v)b1...bi wa1 wav+1 wa2v+1 ...wan−v−(n−1 mod v)

with i < v −1 is produced from S after all its relevant letters have been scanned

except for the last. The result of applying
◦→+

to S is the string:

wa1 wav+1 wa2v+1 ...wan−(n−1 mod v)

i.e. the string resulting from S after all its relevant letters have been scanned,

but without taking into account the shift induced by lS mod v. A string S′ re-

sulting from a string S by applying
◦→+

to S will be indicated as S+. The result of

applying
◦→ to S is the string S+ minus its first lS mod v leading letters, i.e. the

string resulting from S after all its relevant letters have been scanned, taking

into account the shift induced by the length of S.18

18To explain this with an example, let us apply
◦→+

rsp.
◦→ to 10111011101000000 for T1,

resulting in 110111011101000000 rsp. 10111011101000000.

8.4. EXPERIMENT 2 391

Periodic strings of type 1 Periods of type 1 are those that behave in the same

way as a period 6 string in Post’s tag system. A string with period 6 in T1 is for

example S1 = 10111011101000000. Starting T1 with S as initial condition, we

get the following sequence of productions:

10111011101000000

110111010000001101

1110100000011011101

01000000110111011101

0000011011101110100

001101110111010000

10111011101000000

After 6 iterations, S reproduces itself. There are several features that charac-

terize this kind of periodic strings. First of all, for at least one string S ∈ [P],

|S| ≡ 0 mod p. In the example, the first, second and fifth string have this prop-

erty. These strings are such that they will always produce a string S+ through
◦→+

of length lS+ ≡ 0 mod v. Furthermore, after erasing the first lS mod v letters

from this S+, S results again. I.e. in applying
◦→ to S, with |S| ≡ 0 mod p, it will

reproduce itself. The fact that S+ is of length divisible by v, while |S| ≡ 0 mod p,

is basic for this type. Indeed, this is why the string resulting from concatenating

the string S+ n times erasing the first lS mod v, will always result in that same

string after its first p letters have been scanned.

Let us now define a periodic string of type 1.

Definition 8.4.1 A sequence of periodic strings [P] is said to be of type 1, iff. for

each of these strings, |S| ≥ p and there is at least one string S for which |S| ≡
0 mod p, lS+ ≡ 0 mod v and S

◦→ S.

Given this definition of type 1, it is possible to apply Shearer’s proof to a given

tag system if at least two strings A and B of this type but with different p are

found. For the proof to be applicable, one more condition has to be fulfilled.

Suppose A precedes B, then the shift induced by scanning all the relevant let-

ters in A must be such that it is exactly that shift that allows B to self-reproduce,

392 CHAPTER 8. PLAYING WITH TAG SYSTEMS

and vice versa. Now suppose A is of period pA and B of period pB . Then for any

n and m, it is always possible to construct a string with period nPA +mPB .

Periodic strings of type 2 To explain the second type of periodic strings, we

will use an example produced by T3, i.e. the string

S1 = 111101000010000100001000111111111111010000100001000

Let me remember that the production rules for T3 are: 1 → 01000,0 → 111, v =
4. Starting T3 with S we get the following productions:

111101000010000︸ ︷︷ ︸100001000111111111111010000100001000︸ ︷︷ ︸
0100001000010000100011111111111101000010000100001000

001000010000100011111111111101000010000100001000111

00010000100011111111111101000010000100001000111111

0000100011111111111101000010000100001000111111111

100011111111111101000010000100001000111111111111

1111111111110100001000010000100011111111111101000

11111111010000100001000010001111111111110100001000

111101000010000100001000111111111111010000100001000

As is clear from the productions S1 reproduces itself after exactly 8 iterations.

So in what way does this type of periodic string differ from those of type 1? The

basic difference here is the fact that in a given [P] of type 1 at least one of the

strings S ∈ [P] is such that |S| ≡ 0 mod p and S reproduces itself after one ap-

plication of the operation
◦→. This is not the case for periods of type 2. First of

all, as is clear from the example, none of the periodic structures S (put in bold)

is such that |S| = p, while for any S it is always the case that |S| > p. Further-

more, there is no S ∈ [P] such that S
◦→ S. Instead, for any Sx ,Sy ∈ [P], Sx

◦→ Sy

with Sx 6= Sy . Indeed, in case of the example, starting from S1, applying
◦→ will

first result in the 6th string from the sequence, then in the 3th, the 8th and the

5th. Finally, applying
◦→ one more time to the fifth string, results in S1. We thus

need 5 applications of the operation
◦→ instead of one for S1 to be reproduced.

8.4. EXPERIMENT 2 393

In general, for any periodic strings Sx ∈ [P] of this type, the number of times n

we need to apply
◦→ before Sx is reproduced is such that 1 < n ≤ p. It is also

possible that Sx can never be reproduced through
◦→, but that another string

Sy 6= Sx , Sy ∈ [P] results from Sx after application of
◦→ for a certain number of

times m, 0 < m ≤ p, such that Sy can be produced by applying
◦→ for a certain

number of times n. It is also important to note that if Sx can be reproduced in

applying
◦→ for a certain number of times n, at least one of the strings Sy pro-

duced will be such that lS+
y
6= 0 mod v.

Taking a closer look at the string S1 from the example, it is clear that S1 is pe-

riodic because the last lS1 −24 letters from S1 are the same as the first lS1 −24.

Indeed, after the first 8 · 4 letters from S1 have been processed by T3 the last

lS1 −24 letters from S1 plus the new letters tagged to S1 are again S1. This is not

only valid for S1, but for any string produced in the example.

Periodic strings of type 2 are defined as follows:

Definition 8.4.2 A sequence of periodic strings [P] is said to be of type 2, iff. for

each S ∈ [P], |S| > p, |S| 6= 0 mod p. For each string S ∈ [P] applying
◦→ a certain

number of times n, 1 < n ≤ p starting from S will either result in S, or produce

another string S′ ∈ [P] for which this is the case. If a given string Sx ∈ [P] can be

reproduced in this way, at least one of the intermediary strings Sy ∈ [P] produced,

will be such that lS+
y
6= 0 mod v.

Given a string Sx of type 2 that can be reproduced after x applications of the

operation
◦→. Since at least one of the strings Sy produced during this process

will be such that lS+
y
6= 0 mod v, this type of periodic strings cannot be cannot

be used to find a variant of Shearer’s proof even if we would combine it with

strings of type 1.

Periodic strings of type 3 To discuss periodic strings of type 3 we will give two

examples. Let us first consider the following string:

S1 = 00011101000111

produced by T3. Starting T3 with ST 3,1 we get the following sequence of pro-

ductions:

394 CHAPTER 8. PLAYING WITH TAG SYSTEMS

00011101000111

1101000111111

00011111101000

1111101000111

10100011101000

001110100001000

10100001000111

000100011101000

00011101000111

A second example is produced by T14. When started with:

ST 14,1 = 101001010101010101101001101001010110100110100101

0101011010010101010110100101010101101001101001010

T14, with production rules 0 → 1010,1 → 110100, v = 5 will produce the follow-

ing sequence of strings:19

1010010101010101011010011010010101101001101001010101011010010101010110100101010101101001101001010

10101010101011010011010010101101001101001010101011010010101010110100101010101101001101001010110100

010101011010011010010101101001101001010101011010010101010110100101010101101001101001010110100110100

10110100110100101011010011010010101010110100101010101101001010101011010011010010101101001101001010

100110100101011010011010010101010110100101010101101001010101011010011010010101101001101001010110100

0100101011010011010010101010110100101010101101001010101011010011010010101101001101001010110100110100

010110100110100101010101101001010101011010010101010110100110100101011010011010010101101001101001010

01001101001010101011010010101010110100101010101101001101001010110100110100101011010011010010101010

1010010101010110100101010101101001010101011010011010010101101001101001010110100110100101010101010

10101010110100101010101101001010101011010011010010101101001101001010110100110100101010101010110100

010110100101010101101001010101011010011010010101101001101001010110100110100101010101010110100110100

01001010101011010010101010110100110100101011010011010010101101001101001010101010101101001101001010

0101010110100101010101101001101001010110100110100101011010011010010101010101011010011010010101010

101101001010101011010011010010101101001101001010110100110100101010101010110100110100101010101010

19I apologize for the small font used here, but else it would not be possible to fit the strings

on the page.

8.4. EXPERIMENT 2 395

1001010101011010011010010101101001101001010110100110100101010101010110100110100101010101010110100

10101011010011010010101101001101001010110100110100101010101010110100110100101010101010110100110100

011010011010010101101001101001010110100110100101010101010110100110100101010101010110100110100110100

00110100101011010011010010101101001101001010101010101101001101001010101010101101001101001101001010

1001010110100110100101011010011010010101010101011010011010010101010101011010011010011010010101010

10110100110100101011010011010010101010101011010011010010101010101011010011010011010010101010110100

100110100101011010011010010101010101011010011010010101010101011010011010011010010101010110100110100

0100101011010011010010101010101011010011010010101010101011010011010011010010101010110100110100110100

010110100110100101010101010110100110100101010101010110100110100110100101010101101001101001101001010

01001101001010101010101101001101001010101010101101001101001101001010101011010011010011010010101010

1010010101010101011010011010010101010101011010011010011010010101010110100110100110100101010101010

10101010101011010011010010101010101011010011010011010010101010110100110100110100101010101010110100

010101011010011010010101010101011010011010011010010101010110100110100110100101010101010110100110100

10110100110100101010101010110100110100110100101010101101001101001101001010101010101101001101001010

100110100101010101010110100110100110100101010101101001101001101001010101010101101001101001010110100

0100101010101010110100110100110100101010101101001101001101001010101010101101001101001010110100110100

010101010101101001101001101001010101011010011010011010010101010101011010011010010101101001101001010

10101011010011010011010010101010110100110100110100101010101010110100110100101011010011010010101010

011010011010011010010101010110100110100110100101010101010110100110100101011010011010010101010110100

00110100110100101010101101001101001101001010101010101101001101001010110100110100101010101101001010

1001101001010101011010011010011010010101010101011010011010010101101001101001010101011010010101010

01001010101011010011010011010010101010101011010011010010101101001101001010101011010010101010110100

101101001101001101001010101010101101001101001010110100110100101010101101001010101011010010101010

1001101001101001010101010101101001101001010110100110100101010101101001010101011010010101010110100

01001101001010101010101101001101001010110100110100101010101101001010101011010010101010110100110100

1010010101010101011010011010010101101001101001010101011010010101010110100101010101101001101001010

Let us now look at the features shared by the periodic strings produced from

ST 3,1 (reproduces itself after 8 steps) as well as from ST 14,1 (reproduces itself af-

ter 40 steps). First of all, it is basic to both sequences of periodic strings, that

for any string Sx ∈ [P], with periodic structure Sx that |Sx | < p. Furthermore,

there are at least two strings S ∈ [P] such that p ≡ 0 mod |S|.20 Since for any Sx ,

20In fact, for almost all the sequences of periodic strings [P] of this type we have investigated,

396 CHAPTER 8. PLAYING WITH TAG SYSTEMS

|Sx| < p, applying
◦→ to Sx will not lead to self-reproduction. For those strings

Sx ∈ [P] for which p ≡ 0 mod |Sx | applying
◦→ to Sx will result in another string

Sy ∈ [P], with Sx 6= Sy . Clearly, applying
◦→ to this string Sx ∈ [P] in fact leads to

the string Sx+|Sx |. Furthermore, for each such string Sx , lS+
x
≡ 0 mod v. If Sx is

a string such that p ≡ 0 mod |Sx |, the string Sx+|Sx | will share the same prop-

erties as Sx , with p ≡ 0 mod |Sx+|Sx ||, l+Sx+|Sx |
≡ 0 mod v. For the two examples

given, it is the case for any string Sx ∈ [P] that p ≡ 0 mod |Sx| and lS+
x
≡ 0 mod v.

Note also that for any string in the examples considered, it will be reproduced

after exactly two applications of
◦→. Of course, there are also examples of strings

Sx for other tag systems that need more than two applications of
◦→ before Sx

is produced again, but we did not provide examples, because this would lead

to even longer productions. Note also that the number of times n
◦→ has to be

applied before reproduction, is equal to p/|S|.
We have provided two different examples here, because there is one feature of

the first example not shared by the second, this feature being that S1 and S5 are

mirror images of each other, i.e. the structures 0101 and 1010. We wanted to

mention this here since the feature is shared by almost all the periodic strings

of this type we have studied. It is however by no means a necessary condition

for a sequence of periodic strings to be of type 3.

Let us now turn to a more formal definition of sequences of periodic strings of

type 3.

Definition 8.4.3 A sequence of periodic strings [P] is said to be of type 3, iff. for

each S ∈ [P], |S| < p and there is at least one string Sx , for which p ≡ 0 mod

|Sx |, lS+
x
≡ 0 mod v. Furthermore, for any string Sy that can be produced from

Sx through repeated application of
◦→, y = x + i · |Sx | the same properties hold.

Clearly, if i = p/|Sx |, then Sx = Sy , i.e., p/|Sx | applications of
◦→ starting with

Sx produces Sx .

Contrary to periodic strings of type 2, these strings do allow for the kind of con-

struction of periodic strings necessary to find a variant of Shearer’s proof for a

given tag system. Given a tag system T for which at least two periodic strings Sx

this is the case for every S ∈ [P] (See for instance the examples).

8.4. EXPERIMENT 2 397

and Sy of type 3 are found with different periods pSx and pSy for which the two

extra properties mentioned in the definition hold.21 Then it is always possible,

given m and n, to construct a periodic string with period nPA +mPB . As was

the case for periodic strings of type 1 an extra condition has to be fulfilled, viz.,

that the shifts induced by each of the periodic strings used have to be properly

synchronized.

Periodic strings of type 4 An example of a periodic string of type 4, is the

string:

S1 = 010000000000110111011101001101110111010000

produced by T1, and leads to the following productions:

010000000000110111011101001101110111010000

00000000011011101110100110111011101000000

0000001101110111010011011101110100000000

000110111011101001101110111010000000000

11011101110100110111011101000000000000

111011101001101110111010000000000001101

0111010011011101110100000000000011011101

101001101110111010000000000001101110100

0011011101110100000000000011011101001101

101110111010000000000001101110100110100

1101110100000000000011011101001101001101

11101000000000000110111010011010011011101

010000000000001101110100110100110111011101

00000000000110111010011010011011101110100

0000000011011101001101001101110111010000

000001101110100110100110111011101000000

00110111010011010011011101110100000000

1011101001101001101110111010000000000

11010011010011011101110100000000001101

21I.e. p ≡ 0 mod |Sx |, lS+
x
≡ 0 mod v and p ≡ 0 mod |Sy |, lS+

y
≡ 0 mod v

398 CHAPTER 8. PLAYING WITH TAG SYSTEMS

100110100110111011101000000000011011101

1101001101110111010000000000110111011101

10011011101110100000000001101110111011101

110111011101000000000011011101110111011101

1110111010000000000110111011101110111011101

01110100000000001101110111011101110111011101

1010000000000110111011101110111011101110100

00000000001101110111011101110111011101001101

0000000110111011101110111011101110100110100

000011011101110111011101110111010011010000

01101110111011101110111011101001101000000

0111011101110111011101110100110100000000

101110111011101110111010011010000000000

1101110111011101110100110100000000001101

11101110111011101001101000000000011011101

011101110111010011010000000000110111011101

10111011101001101000000000011011101110100

110111010011010000000000110111011101001101

1110100110100000000001101110111010011011101

01001101000000000011011101110100110111011101

0110100000000001101110111010011011101110100

010000000000110111011101001101110111010000

As is clear, S1 will reproduce itself after 40 iterations. The best way to explain

periodic string of this type is by comparing them with periodic strings of type

3. As is the case for type 3, for each of the strings S ∈ [P] of this type the periodic

structure S is such that |S| < p. The basic difference between these two types is

that no string Sx ∈ [P] of type 4 will be such that Sx will lead to Sy , y = x+i ·|Sx|,
Sx = Sy , after exactly p/|Sx| applications of

◦→ starting from Sx . For example

given S1 from the example, applying
◦→ to S will first result in the 14th then in

the 28th, the 2th, the 16th, 29hth, the 3th and then after one more application

of
◦→ to the 3th string, the 16th is produced again. It should also be noted that

in applying
◦→+

to each of these strings, none of them has a length l 6= 0 mod

8.4. EXPERIMENT 2 399

v. As far as the example is concerned, it is clear that once the 16th string is

produced, the system gets into a cycle by repeated application of
◦→ starting

with the 16th string. Taking into account the length n of the periodic structure

of the 16th string, it is clear that the number of times
◦→ has to be applied is

equal to bp/nc. It will never be the case however for this type of periodic strings

that if one of the strings S has a periodic structure S for which p ≡ 0 mod |S|,
S can be reproduced from S after exactly p/|S| applications of

◦→, starting from

S. Given a string Sx that can be reproduced through
◦→, at least one string Sy

of the strings produced in this sequence going from Sx to Sx , will be such that

lS+
y
6= 0 mod v. In general, for periodic strings of this type, a given string S ∈ [P]

of type 4, will either be reproduced after x applications of the operation
◦→ with

bp/|S|c ≤ x ≤ p, x 6= p/|S| or else, S will lead to a string with this property.

It should be stated explicitly here that although in this example x = bp/nc we

have found examples for which x > bp/nc. Note also that this type has a clear

similarity with strings of type 2.

We can now define a sequence of periodic strings of type 4 as follows:

Definition 8.4.4 A sequence of periodic strings [P] is said to be of type 4, iff. for

each S ∈ [P], |S| < p. For each string S of such sequence of strings, applying
◦→

a certain number of times x, starting from S will either result in S, or produce

another string that can be reproduced after repeated application of
◦→, where it

is always the case that bp/|S|c ≤ x ≤ p, x 6= p/|S|. Furthermore, for those strings

Sx that can be reproduced through
◦→, at least one of the strings Sy produced

through
◦→ will always be such that lS+

y
6= 0 mod v.

Note that, given the last property mentioned in the definition, periodic strings

of type 4 cannot be used to find a variant of Shearer’s proof for a given tag sys-

tem.

Although we did not expect this before we started with this limited investigation

on periods in tag systems, we have found two more types of periodic string in

tag systems. As is clear types 1 and 2 can be differentiated from types 3 and

4 through the relation between the period p and the lengths of the periodic

structures involved. Indeed, for strings of type 1 and 2 it is always the case that

400 CHAPTER 8. PLAYING WITH TAG SYSTEMS

for any string S ∈ [P] of this type, |S| ≥ p, while for strings of type 3 and 4,

|S| < p. The following table summarizes some of the basic characteristics of

the four main types.

Type 1 Type 2 Type 3 Type 4

∀S ∈ [P] : min(p, |S|) p p |S| |S|
∃S ∈ [P] : n

?= p
min(p,|S|) X � X �

In the table min(p, |S|) returns the minimum of one of the two arguments.

Note, that for type 1, it is also possible for some cases that p = |S|. The value n

denotes the minimum number of times
◦→ has to be applied to a given string S

for S to be reproduced. A X indicates that there is an S fulfilling the condition,

a � indicates that there is none.

As for the applicability of Shearer’s proof, if at least two periodic strings A and

B are found for a given tag system, with different periods from either of the

more “regular” types 1 or 3, it is always possible to apply it. In this way, it is

very straightforward to construct an infinite number of different periods for

tag systems that allow this kind of strings. This is clearly in contrast with peri-

odic strings of type 2 and 4, which are more “irregular”, and for which Shearer’s

proof cannot be applied in any direct way, given the fact that for any of the

strings of this type used, at least one string S+ will be produced such that lS+ 6=
0 mod v. Of course, maybe a more complicated construction could be found,

using more sophisticated “synchronization” techniques, for combining these

“irregular” types in order to construct an infinite number of different periods

for a given tag system.

The discussion of the several types was based on a combination of pencil-and-

paper work and the use of the computer. This study resulted in a table, giving an

overview of the different types found for each of the 52 tag systems. Although

we cannot with complete certainty exclude the possibility that errors occurred

in the preparation of this table, it gives an approximate idea about how the dif-

8.4. EXPERIMENT 2 401

ferent types are distributed over the several tag systems. Table 8.5 gives this

overview. A column headed with Tpx indicates the type. The symbol X means

that the specific type was found for a tag system, a � means that it was not

found. The table also included two extra columns headed Sh1, Sh2 and Sh3.

These give an overview of the applicability of Shearer’s proof for each of the tag

systems. If more than two periodic strings of type 1 rsp. 2 were found with dif-

ferent periods for a given tag system, the column headed Sh1 rsp. Sh2 is marked

with X, else it is marked with �. If both type 1 and 3 occur, the column headed

Sh3 is marked with X, indicating that a combination of the two types can be

used.

Table 8.5: Overview of the different types of periods.

T.S. Tp1 Tp2 Tp3 Tp4 Sh1 Sh2 Sh3

T1 X � � � X � �
T2 X � � X � � �
T3 � X X X � X �
T4 � X X X � X �
T5 X X � X X � �
T6 X � � X � � �
T7 X � � X � � �
T8 X X X X X � X

T9 � � X X � X �
T10 � � � X � � �
T11 X X � X X � �
T12 � � � X � � �
T13 X X � X � � �
T14 X � X X � � X

T15 � � X X � X �
T16 � X � X � � �
T17 X X X X � � X

T18 � X � X � � �
Continued on next page

402 CHAPTER 8. PLAYING WITH TAG SYSTEMS

Table 8.5 – continued from previous page

T.S. Tp1 Tp2 Tp3 Tp4 Sh1 Sh2 Sh3

T19 � X X X � � �
T20 � � � X � � �
T21 � � X X � X �
T22 � � X X � X �
T23 � X X X � X �
T24 � X X X � � �
T25 � X � X � � �
T26 � � � X � � �
T27 X X � X � � �
T28 � X � X � � �
T29 X � � X � � �
T30 � � � X � � �
T31 � X � X � � �
T32 � � X X � � �
T33 � X � X � � �
T34 � X � X � � �
T35 � X X X � � �
T36 � X X X � � �
T37 � X X X � X �
T38 � X � X � � �
T39 � � � X � � �
T40 � X � X � � �
T41 X X X X � � X

T42 � X X X � X �
T43 X X � X � � �
T44 � X X X � � �
T45 � � X X � � �
T46 � X X X � X �
T47 X � � X X � �
T48 � � X X � � �

Continued on next page

8.4. EXPERIMENT 2 403

Table 8.5 – continued from previous page

T.S. Tp1 Tp2 Tp3 Tp4 Sh1 Sh2 Sh3

T49 � X � X � � �
T50 � � X X � � �
T51 X X � X � � �
T52 X � � X � � �

As is clear from the table, there are several tag systems for which it is impossible

to find a variant of Shearer’s proof. Of course, this result is based on a sample

of the different periodic strings found for a given tag system from experiment

1, and one should be careful in drawing any definite conclusion here. However,

as we showed for T2 there are clearly tag systems for which only one kind of

periodic string of type 1 can be produced, and it seems probable that a similar

proof might be found for some of the other tag systems. A similar proof might

be found for the impossibility of periodic strings of type 3. As far as our ex-

perience goes with these tag systems, we are convinced that there do exist tag

systems for which a variant of Shearer’s proof cannot be found.

It is also interesting to point out that periodic strings of type 4 occur for all tag

systems. As for T1, we already now that the period 40 found during another pre-

liminary experiment is of type 4. The same goes for the period 66. Despite the

existence of strings of type 4, we did not put a X in the column for T1 since no

period of this type was found for the sample from experiment 1, thus indicat-

ing the problematic character of drawing conclusions on the basis of heuristic

evidence.

Another observation that can be made on the basis of table 8.5 is the fact that

only 3 tag systems are able to produce periodic strings of all four types. Further-

more, in most of the cases, tag systems able to produce strings of type 1 will not

produce strings of type 3 and vice versa.

To conclude this section on periods in tag systems it is important to point out

that much more research is needed here, research that must involve a com-

bination of both pencil-and-paper work, help from the computer, the use of

404 CHAPTER 8. PLAYING WITH TAG SYSTEMS

experimental data and the development of more general methods to prove e.g.

the non-existence of certain periodic types for certain tag systems. In any case,

we think that, although we have not fully explored periods in tag systems, fur-

ther research on such periods might play an important role in any further study

of tag systems. Not only can such research contribute to a better understanding

of these systems but it might allow to connect tag systems to other branches of

mathematics where periods play an important role.

It should also be pointed out here that types 1 (and 3) will play an important

role in the next chapter, when we will consider the possibility of constructing

a universal tag system with two symbols. Although for now, we have failed to

construct one, these periods seem to offer an interesting possibility in this con-

text. In this sense, the fact that there are tag systems for which periods of type

1 and 3 seem impossible, could be an important feature for identifying sub-

classes in the class of tag systems defined through the constraints. Of course,

to really classify a given tag system according to these criteria, one would need

an automated method to prove that it cannot produce periods of type 1 and/or

3.

The fact that there is such a rich variety in the behaviour of tag systems with

µ= 2, v > 2 furthermore illustrates how complicated this class actually is. As far

as our experience goes with the solvable class of tag systems with µ = 2, v = 2,

it is important to point out here that this kind of complexities do not occur in

this class.

8.5 Experiments 3–6: Summary of the results.

As was said, we will not give a detailed description of experiments 3–6 since

these might deter the reader, given the disproportion between the length of

description and analysis of the results and the actual conclusions that can be

drawn from these experiments. Instead, we will merely summarize the main

conclusions from each of the experiments. For more details, the reader is re-

ferred to Appendix C.

8.5. EXPERIMENTS 3–6: SUMMARY OF THE RESULTS. 405

8.5.1 Experiment 3

The purpose of this experiment was to measure Lyapunov exponents for each

of the 52 tag systems for 10 of the initial conditions classified as Immortals? in

experiment 1. A positive exponent is considered as one of the signs of chaos and

measures sensitive dependence on initial conditions. It can thus serve as an in-

dication of the intractability of the system tested. The Lyapunov exponent was

measured with respect to changes in the length and changes of one bit in the

initial condition. Although there are some problems involved with measuring

the Lyapunov exponent in the way we did this for tag systems – it is impossible

to make the error in the initial condition arbitrary small or big – the results in-

dicate a positive Lyapunov exponent for each of the tag systems. Although one

system could be said to be more “sensitive” than the other, it is clear from the

results that all tag systems show sensitive dependence on initial conditions. To

our mind, this has been the least informative experiment we have done, since

it is almost trivial to understand that the tag systems we have considered show

sensitive dependence.

8.5.2 Experiment 4

In this experiment we measured the statistical distribution of the 0’s and 1’s in

the strings produced by the tag systems when started with initial conditions

classified as Immortals? in experiment 1. The question underlying this exper-

iment was whether the proportion of the number of 0’s and 1’s imposed in the

words from the production rules for each of the tag systems through constraint

3, would be statistically represented in the productions of the tag systems. If

the answer to this question would be positive, one could conclude on a heuris-

tic basis that for each of the initial conditions the tag system would ultimately

lead to a halt or periodicity.22

Our main conclusion from this experiment was that, although the distributions

of the 0’s and 1’s seemed to converge to this equilibrium, the mean for the 1’s

produced was always just a little bit higher than the expected value, while the

22Remember the remarks by Minsky and Hayes in this context. See Sec. 6.1.2.

406 CHAPTER 8. PLAYING WITH TAG SYSTEMS

mean for the number of 0’s was always a bit smaller than the expected value. In

other words, the distribution of the 0’s and 1’s produced were such that the tag

systems seemed to have just enough space to grow a little bit, without implying

unbounded growth.

8.5.3 Experiment 5

The goal of this experiment was to further refine the results from experiment

4, and checked the randomness of the distribution of the 0’s and 1’s through

Marsaglia’s battery of tests for randomness called DIEHARD. It was clear from

the results, that the majority of the tag systems considered pass for at least

some of the tests, although there were two that did not pas for any test (T1 and

T34). To summarize the results, although these tag systems seem capable of at

least some randomness, it is clear that when to so-called “harder” tests are con-

cerned almost all the tag systems fail.23 In the end, we could not but conclude

that a more detailed research would be needed here.

8.5.4 Experiment 6

In this last experiment, we measured the information entropy [Sha48] for each

of the tag systems. Since this measure is used to have an idea of the amount

of unpredictability of a given discrete source, a high entropy served as indica-

tion of the intractability of each of the tag systems involved. For most of the tag

systems considered this entropy was relatively high, some even almost attain-

ing the maximum value 1.0. Important to note here is that a side-result of this

measurement was the fact that some of the tag systems were capable to pro-

duce any combination of 1 and 0 for arbitrary length n, with 0 < n ≤ 10. For

most of the tag systems considered however, the total number of combinations

found for each n, seemed to decay with increasing n, but this could be due to

the size of the sample.

23There was only one that passed the difficult birthday spacing test, i.e., T41. This tag system

is the only one that passed for 9 of the 15 DIEHARD tests.

8.6. CONCLUSION 407

8.6 Conclusion

If one is honest about the actual results from this experiment, it must be admit-

ted that, besides the results from experiment 2, no real fundamental theoretical

conclusions can be drawn from these experiments. Does this mean that the ex-

perimental approach on tag systems has failed? Not to our mind.

First of all, although all the conclusions have a clear heuristic basis, and one

should thus be very cautious in drawing conclusions on this basis, it is clear

that all the experiments indicate the difficult character of this class of tag sys-

tems. If we look at the conclusions from experiments 3 – 6, it is clear that these

tag systems have certain (heuristic) properties that are often used in the liter-

ature as indicators of “complexity”, where this notion should here be under-

stood in a vague intuitive sense, and not be confused with complexity as de-

fined in certain branches of computer science like computational complexity

theory or algorithmic information theory. Still, given the results from experi-

ments 3 and 4, these tag systems seem to lack just that little bit more needed

to become completely random. Since statistical randomness would provide a

strong heuristic basis to conclude that all these tag systems should ultimately

halt or become periodic,24 this “just not enough” in fact makes the production

of the difficult Immortals? possible. To put this in an intuitive language, the tag

systems considered here seem very unpredictable, but are not unpredictable

enough to become predictable. Of course, these conclusions are presumptive

and need more research.

The results from experiment 1, on the other hand, are a further indication of the

difficulties involved in studying these tag systems. The plots from the experi-

ment indicate that the hypothetical intersection points with a line y = a seem

to move exponentially fast to the right, with the length of the initial conditions.

Although we can hardly conclude anything more on the basis of the results from

this experiment, this seems to be a clear indication of the intractability (though

not necessary inherent) of this class. To explain this a bit more, even if the nu-

merous conditions tested for T1 always lead to periodicity or a halt, we have

not found any way to prove that this will happen for any initial condition of ar-

24Again, remember the remarks by Minsky and Hayes in this context. See Sec. 6.1.2.

408 CHAPTER 8. PLAYING WITH TAG SYSTEMS

bitrary length. The problems involved for proving this, seem to lie in the fact

that it seems possible for every given value m, to always find an initial condi-

tion that will not have produced a periodic string, nor have led to a halt in less

than m iterations.

To our mind, the results from our heuristic and really nerve-racking research

on periods in tag systems are the most theoretically appealing. However, as

was said, more research is needed here. The results merely offer a preliminary

basis for a more theoretically oriented research on periods in tag systems.

Maybe we had expected too much of the experimental approach when we started

with it. The time it takes to set-up an experiment, and to study the results is of-

ten in complete disproportion with the results one ultimately gets. Still, for us,

these experiments have been invaluable to build up our intuition of tag sys-

tems. It was in this way that we were able to convince ourselves from a very ba-

sic difference between the class of tag systems with v = µ= 2, the class we will

prove solvable in the next chapter, and the tag systems studied here. Although

we are not able to give a definite structural explanation for this difference, we

guarantee the reader that tag systems with v = µ = 2 are really a piece of cake

as compared to the tag systems considered here. Tag systems from this solv-

able class would in fact be completely useless for these experiments, since they

almost immediately lead to one of the three general classes of behaviour, once

the directly traceable effects of the initial conditions has disappeared.

In part I, Sec. 4.2 we discussed Lehmer’s comments on the possibility com-

puters have offered us to disclose the universe of discourse of certain math-

ematical objects. It has also been our experience that the computer is a very

important tool in studying tag systems, and this is not only valid with respect

to the presumptive but also with respect to the more theoretical but “humanly

impractical” results on tag systems that might be attained.

Chapter 9

Universality and Unsolvability in tag

systems: Some questions

concerning the usefulness of small

universal systems.

In any case, the writer feels that in view of the efforts expended on the calcula-

tion of Sigma(3), for instance, it is rather unrealistic to accept the mere existence

of a Turing machine that computes Σ(3) as evidence that Σ(3) can be “effectively

calculated”. This realistic attitude is based, in part, on the writer’s experiences

in actual computer work (involving large and logically intricate programs con-

cerned with the optimal design of automatic systems). In fact, he feels that, in his

work with such programs, he profited greatly from the efforts expended (along

with others) to subdue somehow the exasperatingly elusive BB-3 problem, even

though this problem seems to be merely a nice exercise in a course for beginners.

A very simple and direct answer to the questions raised here may very well be that

the writer misinterpreted the definition of ‘computability’ as stated, for example,

by Kleene (...) or Davis (...). In a way, this would be a very grateful outcome. In-

deed, the BB-n problem would appear than as an instance of non-computability

in its perhaps most primitive form [m.i.] and hence as a potential source of new

insights regarding the extent to which computers can relieve the human mind of

monotonous tasks, setting it free to exercise its powers on the highest level.

409

410 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

Tibor Rádo, 1963.1

One of the main motivations behind this research has been to understand bet-

ter the connection between the general unsolvability of a certain decision prob-

lem of a whole class of systems (and the theory underlying it) and the actual dis-

course of particular (classes of) systems from this class. In this chapter we will

consider this connection by starting from a discussion on the significance of

(small) universal systems. On the one hand, (small) universal systems are par-

ticular instances of systems with an unsolvable decision problem. On the other

hand, research on (small) universal systems can help to gain more insight into

the limits of solvability and unsolvability and thus make it possible to differ-

entiate between particular subclasses with or without an unsolvable decision

problem. Given these two aspects, small universal systems, might help to un-

derstand better the link between the general unsolvability of a class of systems

and the solvability or unsolvability of particular (subclasses) of such systems.

In a first section (Sec. 9.1), we will give a brief overview of the history of (small)

universal systems, and look at some of the arguments from the literature, as to

why research on (small) universal systems is considered interesting. We will

then argue that, although small universal systems are very important in the

context of research on the limits of solvability and unsolvability, they are not

useful for a study that starts from the behaviour and properties of particular

(classes of) systems (Sec. 9.2). To be more specific, it will be shown that if we

want to focus on the actual execution, the known (small) universal systems be-

come theoretical constructions that have no special advantage over systems

not known to be universal or solvable.

In a next section (Sec. 9.3) we will argue, through examples from the literature,

that if one starts from a study of particular (small) systems – lying at the edge of

solvability but not known to be solvable – to understand the limits of solvability

and unsolvability, it is exactly an analysis of properties related to the behaviour

of particular (classes of) systems that is an important ingredient to make fur-

ther progress in this area.

In the last section (Sec. 9.4) this whole discussion will be connected to our re-

1[Rád63], pp. 80–81

9.1. WHY ARE (SMALL) UNIVERSAL MACHINES INTERESTING? 411

search on tag systems. We will describe some theoretical results on tag systems,

that can help to determine their limits of solvability and unsolvability. In the

end, it will be argued that the limits of unsolvability in tag systems lie consider-

ably lower relative to those for Turing machines.

9.1 Why are (small) universal machines interesting?

A historical account

The size of the smallest universal machines remains unknown, however, whether

or not it is of any serious mathematical interest. With our minds remaining open

to the possibility of practical, scientific, or simply philosophical interest we shall

examine the area of simple (...) machines.

Allen H. Brady, 1988.2

In 1936 Alan Turing constructed the first universal Turing machine, and its sig-

nificance, however large and theoretical the encoding was, should never be

underestimated.3 First of all, the universal Turing machine is part of Turing’s

proof of the unsolvability of the halting problem. Basic to this proof is that it

is constructive in a quite literal sense: its implication is that you can actually

construct a theoretical machine with an unsolvable halting problem. Universal

machines are indeed specific instances of formalisms having an unsolvable de-

cision problem.

Secondly, the universal Turing machine can be used to prove other particular

classes of formal systems universal and thus unsolvable. Indeed, by reducing

a given class of Turing machines containing a universal Turing machine to the

class one is investigating, one can prove that that class contains a universal sys-

tem and is thus unsolvable.

The universal Turing machine is not only important on the level of these more

theoretical results, but also because of the techniques Turing developed to con-

struct one. First of all, one has to find a general method for representing any

2[Bra88], p. 260
3It should be noted that there are several “bugs” in Turing’s description of his universal ma-

chine. These were first pointed out by Post in his [Pos47].

412 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

system from a given class of systems in one machine. I.e. one must be able to

find the right translations between the description of and input for a given sys-

tem and the universal machine that has to represent it. Secondly, basic to the

universal Turing machine is the fact that operator and operand, description and

input, are manipulated on one and the same level – they become interchange-

able. Both techniques can be very useful in reductions from formalism A to B.

It are furthermore these techniques that have been important for the influence

of the universal Turing machine on the development of some of the first com-

puters (See Sec. 4.1).

9.1.1 Size and definition of universal machines.

Soon after the publication of Turing’s paper, the Second World War was a fact.

In Sec. 4.1 we already described Turing’s contributions to the victory over Nazi

Germany. His seminal paper though was hardly known to anyone when the war

started. In 1956, a collection of papers, Automata studies [MS56a] was pub-

lished, including many important contributions to the domain of computers

and computability. Whatever few people may have read Turing’s paper when it

was first published, it is clear that about ten years after World War II its influ-

ence could no longer be underestimated. One third of the volume is devoted

to Turing machines, while many of the other papers are clearly influenced by

Turing’s work. Two of the papers of this volume are important here, i.e. Mar-

tin Davis’s [Dav56] and Claude Shannon’s [Sha56]. Davis’s paper has been in-

fluential in the context of universal machines, because it provides an explicit

definition of the notion of universality, that will show significant in 9.3.3, Shan-

non’s paper is significant here because of its proposal of a measure of the size

for Turing machines.

Davis’s definition of universal systems.

In previous chapters the notion of universality has not been defined explicitly.

It was assumed that a universal machine is simply a machine that can com-

pute anything computable by any Turing machine i.e. a feature of universal

machines often interpreted as the ability to simulate any other machine. While

9.1. WHY ARE (SMALL) UNIVERSAL MACHINES INTERESTING? 413

this description of a universal machine is not really wrong, it does not take into

account properties of the encoding functions for the input of the universal ma-

chine, and merely focuses on what the machine itself should be able to do. It is

precisely this aspect that is included in Davis’s definition. Taking into consider-

ation properties of input encoding motivated Davis’s note ([Dav56], p. 167):

The universality of a Turing machine is manifested by its ability, via a suitable en-

coding, to perform any computation which would be performed by any given

Turing machine. However, the condition must surely be added that the encoding

itself be, in some suitable sense, simple. For there would be no such point in

claiming universality for a Turing machine for which the encoding would require,

in essence another universal machine to carry it out. This raises the problem of

explicitly defining universal Turing machine [...]

Davis has, to our mind, correctly pointed out the significance of a simple encod-

ing. Indeed, if one would e.g. need a universal machine to encode description

and input of a given machine T as the input of the universal machine TU , in

order for TU to be able to compute what T computes, the universal character of

TU depends too heavily on the universality of another machine.

Before being able to give the definition proposed by Davis, we need some pre-

liminary definitions, the first being that of a r.e. complete set R.

Definition 9.1.1.1 A set C is r.e. complete if it is recursively enumerable and if for

every recursively enumerable set R, there is a recursive function ρ(x) such that:

R = (x|ρ(x) ∈C)

Definition 9.1.1.2 With each Turing machine T we associate a set DT of instan-

taneous descriptions (ID) defined as follows. An ID α belongs to DT iff. there ex-

ists a sequence of ID’s α=α1,α2, ...,αn =β, such that αi →αi+1, i = 1,2, ..., n −1,

with β terminal. I.e. DT is the set of all ID’s α, for which T , when started with α,

eventually halts.

Definition 9.1.1.3 δT is defined as the set of Gödel numbers of all elements of

DT .

414 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

Given these definitions we are now ready to define the notion of a universal

machine UT

Definition 9.1.1.4 A machine TU is universal of δTU is complete.4

Davis proved that, for any machine TU fulfilling this definition, the encoding

can be entirely accomplished by a non-universal machine. It was exactly this

result that formed the main motivation behind Davis’s definition. Davis proved

this by showing that the encoding can always be done by recursive functions,

and showed that any recursive function can be computed by a non-universal

Turing machine. He in fact proved a stronger result, namely that every recur-

sive function is strongly computable. Basically, a function is considered to be

strongly computable if and only if it is computable by a Turing machine that

has no immortal ID’s, i.e. a Turing machine that always halts. This result will

show very important in the discussion of the proof of the “universality” of the

so-called rule 110 cellular automaton (See Sec. 9.3.3). Since Davis has shown

that the encoding of a universal machine satisfying his definition can be done

by recursive functions, while every recursive function is strongly computable it

follows that the encoding can be done by a non-universal machine.5 From now

on, every time we use the notion of universality, we are using Davis’s definition

of universality, except when explicitly mentioned otherwise.

Measuring the size of Turing machines.

Shannon’s contribution [Sha56] not only contains a proof of the fact that any

Turing machine can be reduced to a Turing machine with only two internal

states or one with two symbols, but proposes a method to measure the size of

4In Davis’s [Dav57], a further restriction was added to this definition in order to restrict the

number of steps performed by TU .
5The notion of strong computability was some years later used by Shepherdson [She65] who

constructed a Turing machine U that always halts iff. the function f it computes is recursive

(computable) i.e. it strongly computes the recursive functions. Similar constructions and the

notion of strong computability underlying it, are nowadays also used in the context of research

on CA in connection to discussions on the classification of CA as proposed by Wolfram (See

[BS00, Sut03, Sut05].)

9.1. WHY ARE (SMALL) UNIVERSAL MACHINES INTERESTING? 415

universal Turing machines. The fact that any Turing machine can be reduced

to two-symbolic machines can be used to simplify certain unsolvability proofs,

since one merely has to look at the 2-symbol machines. Minsky’s second proof

of the universality of tag systems for example uses this feature in order to im-

prove his previous proof: instead of a minimal shift number v = 6, he was able

to reduce it to 2. More important in this context though is Shannon’s measure

for small universal machines: he suggested to use the product of the number

of states and the number of symbols as the measure of the size of Turing ma-

chines: ([Sha56], p. 165):

The results we have obtained, together with other intuitive considerations, sug-

gest that it is possible to exchange symbols for states and vice versa (within cer-

tain limits) without much change in the product. In going to two states, the prod-

uct in the model given was increased by a factor of about 8. In going to two sym-

bols, the product was increased by a factor of about 6, not more than 8. [...] At

any rate, the number of logical elements such as relays required for physical real-

ization will be a small constant (about 2 for relays) times the base two logarithm

of the state-symbol product, and the factor of 6 or 8 therefore implies only a few

more relays in such a realization. An interesting unsolved problem is to find the

minimum possible state-symbol product for a universal Turing machine.

Shannon’s measure is thus rooted in the fact that adding more symbols makes it

possible to reduce the number of states and vice versa, thus leading to the idea

of the interchangeability of number of states and number of symbols. From

now on, a class of Turing machines of size a × b will be indicated as T M(a, b),

where a is the number of states and b the number of symbols, similarly, UTM(a,

b) is the class of universal Turing machines with a symbols and b states.

The quote is ended with, as far as I know, one of the first formulations of the

problem of finding the smallest universal Turing machine – a problem still un-

solved nowadays – however without clearly stating why this kind of research

could be interesting. Shortly after the publication of Shannon’s paper, sev-

eral computer scientists entered the “competition” of finding smallest universal

machines.

416 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

9.1.2 Small universal machines: an overview.

The competition was started around 1958, with Ikeno’s proof of a universal ma-

chine in the class TM(10,6) [Ike58]. Two years later Watanabe proved the exis-

tence of the class UTM(8,6) [Wat60], Minsky improved the result to UTM(7,6).

Watanabe in his turn improved Minsky’s result with a result of UTM(8,5) and

even UTM(6,5) [Wat61], later Minsky proved the existence of the class UTM(6,

6) [Min62b]. Finally Minsky was able to construct a universal machine of size

7x4 and was thus able to prove that the class UTM(7,4) is not empty [Min62,

Min62b]. For some years nobody seemed to be really looking any longer for

smaller machines, but for the last 20 years or so several researchers have searched

and constructed several other small machines. The smallest known classes

containing a universal Turing machines are: TM(18,2) (Neary 2006, mentioned

in [NW06c]), TM(9,3) (Neary 2006, mentioned in [NW06c]), TM(7,4) (Minsky

1961, [Min61]), TM(5,5) (Rogozhin 1982, [Rog82]), TM(4,6) (Rogozhin 1982, [Rog82]),

TM(3,9) (Kudlek and Rogozhin 2002, [KR02]) and TM(2, 18) (Rogozhin 1996,

[Rog96]).

Besides proving for specific classes of Turing machines that they contain a uni-

versal machine, it is of course equally interesting to find classes that can be

shown to be solvable and thus cannot contain universality. Indeed, by looking

at both sides of the problem one can try to bridge the gap between known uni-

versal classes and thus classes that are unsolvable, and known solvable classes.

As far as solvability is concerned, it should be noted that Minsky mentions that

he and Bobrow had been able to prove that the class of machines TM(2,2) is de-

cidable, through a reduction to thirty-odd cases (See [Min67], p. 281), a shorter

proof was published by Pavlotskaya [Pav73]. She also proved that the class of

machines TM(3,2) is solvable [Pav78]. She furthermore proved that the class

TM(2, 3) is solvable (unpublished).

Besides small universal Turing machines, and the associated study of the fron-

tiers of solvability and unsolvability in Turing machines, there are of course

many results for other computational systems in this context, but these will

not be discussed here. An overview for some of these results can be found in

[Mar00].

9.1. WHY ARE (SMALL) UNIVERSAL MACHINES INTERESTING? 417

Now that we have an idea about the smallest universal machines, we are fi-

nally ready to dig into the question as to why such (small) universal systems

are considered interesting. Minsky gave two reasons. First of all, as he writes in

[Min62b], p. 230:

This section is concerned with explaining the encoding for the machine, and how

it is interpreted. As such, the discussion can be regarded as concerned with ques-

tions of digital computer programming. As a matter of “programming apprecia-

tion” it seems interesting that such a small structure can be so complicated.

Indeed, especially in those early years of computing, it must have been quite

surprising that such small structures can be so complicated (sic)! In the same

paper, Minsky furthermore remarks ([Min62b], p. 237):

A very small machine might turn out to be useful in construction of a very simple

unsolvable decision problem, e.g., one in elementary number theory.

Minsky clearly believed at that time that research on (small) universal machines

might show useful in finding simple examples of unsolvable decision problems.

While Minsky was, for some time, convinced of the significance of doing re-

search on (small) universal systems, he stated only some years later ([Min67],

p. 277):

The reader is welcome to enter the competition (...) although the reader should

understand clearly that the question is an intensely tricky puzzle and has essen-

tially no serious mathematical interest.

As is pointed out by Brady, around 1964 John McCarthy had a similar reversal

of opinion (John McCarthy in a private conversation with Allen Brady ca. 1964,

cited in [Bra88], p. 648):

We thought if we were to find the smallest universal universal machine then we

could learn a great deal about computability – of course that wouldn’t be so

Despite the negative comments by two pioneers, research on smaller universal

systems is still a serious research domain. Nowadays there are different people,

418 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

with different research interests, who work in this domain. One of the main mo-

tivations behind this research is that small machines can help us to understand

better and know the frontiers between solvability and unsolvability.6 Another

reason is pointed out by Stephen Wolfram, who is most famous for his research

on cellular automata ([Wol02], p. 5):

[...] there are systems whose rules are simple enough to describe in just one sen-

tence that are nevertheless universal. And this immediately suggests that the

phenomenon of universality is vastly more common and important – in both ab-

stract systems and nature – than has ever been imagined before.

Since Wolfram is convinced that everything in our world is governed by algo-

rithms, finding very low limits for universality, implies for Wolfram that almost

everything in nature is of the same kind of complexity. Later on in his book

[Wol02] he even talks about a new kind of Copernican revolution, man’s com-

plexity being set equal to the complexity of almost anything else in nature. I will

not discuss Wolfram’s opinions here, because this would automatically shift to

a discussion on the computational character of our world, a discussion which

falls beyond the scope of this text.

In the end, I think the most important reason for doing more research on (small)

universal systems is to determine the boundaries between solvability and un-

solvability. In order to further study this problem, it is very important to have a

look at some of the reasons why (small) universal systems are not interesting at

all.

9.2 Why are (small) universal systems not interest-

ing?

As is clear from the previous section, there are two basic reasons why univer-

sal systems are very important. First of all, they are examples of particular in-

stances with an unsolvable decision problem, and are thus important tools to

6This is one of the objectives of an international research group, including Kudlek, Margen-

stern, Pavlotskaya and Rogozhin running under the heading Small Universal Turing machines.

9.2. WHY ARE (SMALL) UNIVERSAL SYSTEMS NOT INTERESTING? 419

prove certain decision problems unsolvable. Secondly, if one constructs a uni-

versal system, one can determine upper limits for unsolvability.

There are basically two ways to construct a universal system:

1. One can construct one specific universal system in class B, by finding a

way to represent any system of class A, containing a universal system,

into a system of class B. This system must be encoded in a way that it will

compute what any system from A computes, following the restriction of

Davis’s definition. In this case, one does not use a general scheme for

compiling any system from A into some system of B, but rather a general

scheme to encode both description as well as input of any system in A,

into the input of one and the same system from B, constructed such that

it is able to interpret both instructions and input of any system from class

A and is thus universal. Typical here is that the description of B itself is a

kind of interpreter of the encoding of description and input of a system

from A.

2. One can provide a general compiling scheme which can then be used to

translate any system and its input from class A to some system of class

B. One can then apply the scheme to a universal system from class A

in order to construct a universal system of class B. A typical feature of

this method is that the description (instructions) of a system in A will be

encoded in the description (instructions) of a system in B, while the input

will be encoded as the input. This process is more closely connected to

compiling, than to interpreting: once the encoding has been fixed, the

system runs, without having to interpret the description of the system it

simulates.

As was said, in using one of these methods, it is possible to demarcate the lim-

its of solvability and unsolvability for a given class of formal systems. It should

be noted that it is the first method that is normally used in constructing small

universal Turing machines.

For now however, there is still a rather large gap between the classes of Tur-

ing machines known to be solvable and those that contain a universal Turing

420 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

machine and are thus unsolvable. It are the in-between classes that thus of-

fer the greatest challenge. For now, there is no clear method for constructing a

universal Turing machine for these in-between classes like e.g. TM(2, 10). Nei-

ther is there a clear indication of the solvability of many of these classes. Given

this problem, the question indeed arises whether the kind of encodings to be

discussed here – starting from the encoding itself rather than from an exist-

ing (class of) machines – can help us to find the correct boundaries, bridging

the now existing gap between known solvable classes and known unsolvable

classes?

In Ch. 7 we saw how one can define certain constraints for tag systems, that

help to generate tag systems that seem very intractable, there being no obvious

way to decide their behaviour. Many of the experimental results found in the

previous chapters indicate that these tag systems are indeed very hard to get

a grip on. These results however can only be used as heuristic support for the

possibility of unsolvability of a given class of systems. Also in case of Turing

machines, it is believed that the known limits of unsolvability can be lowered.

But neither in the case of Turing machines has one been able to prove univer-

sality for relatively small classes.7

This problem becomes even more intricate in the light of Post’s problem (first

stated by Post in [Pos44]) solved independently by Friedberg [Fri57] and Much-

nik [Muc56], the problem of whether there can be two recursively enumerable

sets that are non-recursive, such that the first is recursive relative to the other,

but not vice versa, i.e., an oracle for solving the decision of the first would not

result in a solution for the second, while the oracle for the second would give

solutions for both problems. To put this in the context of universal machines,

the problem asks for the existence of a recursively enumerable set that is not

recursive and not Turing complete, i.e., universal. The method developed by

Muchnik and Friedberg, i.e. the priority method, is important in the context of

research on degrees of unsolvability. However, as is pointed out by Sutner, who

has studied Post’s problem in the context of cellular automata ([Sut05], p. 50):

Alas, the sets constructed via priority arguments appear somewhat ad hoc and

7More will be said about this in Sec. 9.3.

9.2. WHY ARE (SMALL) UNIVERSAL SYSTEMS NOT INTERESTING? 421

artificial. It is therefore tempting to search for “natural” examples of intermediate

degrees, examples that would presumably arise as a side-effect of a less compli-

cated construction. By natural we here mean that the generating device should

admit a very simple description as opposed to, say, invariance under automor-

phisms of the semilattice of c.e. degrees. Of course, there are well-known results

to the effect that every c.e. degree appears in a certain mathematical context.

For example, all c.e. sets are Diophantine and can thus be defined by an integer

polynomial. Similarly, every c.e. set is Turing equivalent to a finitely axiomatiz-

able theory and word problems in finitely presented groups may have arbitrary

c.e. degree. But the point here is to obtain a specific example of an intermediate

degree using a reasonably simple mechanism to do so.

Sutner has asked whether it is possible to find “natural” examples of an inter-

mediate degree of unsolvability. To explain a bit better what he means with

“natural”, it is interesting to mention that he e.g. thinks it possible that a cer-

tain cellular automaton, known as rule 30,8 could be such a natural example

of an intermediate degree [Sut03]. The behaviour of this formally very sim-

ple automaton, is very complicated and is used as the default random number

generator in Mathematica. Its behaviour has been identified as class 3 cellular

automaton behaviour by Wolfram [Wol02], which is characterized by random,

non-periodic patterns. The other classes identified by Wolfram are classes 1, 2

and 4. Class 1 behaviour evolves to a fixed homogeneous state, class 2 behav-

iour converges to separated periodic structures while class 4 behaviour, also

identified as “complex” behaviour by Wolfram, is characterized by complex pat-

terns of localized structures that interact with each other against a periodic

background. Rule 110, which we will discuss in Sec. 9.3.3, is considered to be

in class 4. Cellular automata in this class, are considered universal. As was said,

according to Sutner, rule 30 might be a “natural” example of an intermediate

degree ([Sut03], p. 367):

8See [Wol02]. Some sample pictures of the behaviour of this automaton as well as the de-

scription of the rues are available through the Wikipedia entry on rule 30. One can of course

also very easy implement the automaton on one’s computer to study the behaviour of this au-

tomaton.

422 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

[...] the orbits of rule 30, or, at the very least, of similar Class 3 automata, could

be of intermediate degree: undecidable, yet less complicated than the Halting

problem.

In the light of the possibility of finding “natural” very simple examples of inter-

mediate degree, we are faced with a double problem in the context of study-

ing limits of solvability and unsolvability. We are confronted with a number of

classes of Turing machines for which it is not known whether they are solvable

or unsolvable, and we do not know whether these in-between classes, if unsolv-

able, are universal or not. Especially those classes for which it is known to be

very hard to find methods to predict them, while it is far from clear in what way

they could be shown to be universal, given the size of their description, offer to

our mind the greatest challenge here.

We will consider two approaches here that can be useful to tackle this problem.

One can use the more classic technique of proving or arguing for certain prop-

erties of a given class, by constructing systems in that class that encode specific

functions, like the construction of a universal machine. Or, one can start from

a detailed analysis of the behaviour of several specific instances from a given

class.9

Both methods – encoding through construction or analysis of behaviour – clearly

have their merits. As we will for example see in Sections 9.3 and 9.4 construct-

ing certain systems, encoding specific functions over the integers, can provide

useful information about the difficulties that might be involved in proving a

given class solvable. We are convinced, however, that if we want to bridge the

gap between solvable and unsolvable classes, it is equally useful not to solely

focus on the specific interpretation of a given class of systems in terms of what

functions can be computed through the description of systems from the class,

but rather on the actual discourse of the systems in a given class, (initially) ab-

stracting away from semantics. In analyzing the behaviour one might for ex-

ample find encoding methods rooted in the behaviour of a given system rather

9Of course, these are not the only approaches possible here. In Ch. 7 we already argued for

the significance of constraints for differentiating between tag systems that are solvable, and tag

systems for which this is not known. The more precise notion of a decidability criterium has

already been proven its merits in the literature. See [Mar00] for an overview.

9.2. WHY ARE (SMALL) UNIVERSAL SYSTEMS NOT INTERESTING? 423

than in the description of the rules for the system. It should be noted however,

that both approaches cannot be strictly separated from each other.

In Sec. 9.3 we will discuss some examples from the literature where the analysis

of the behaviour of systems belonging to a given class is basic to certain results

in the context of solvability and unsolvability. This makes the connection be-

tween the general unsolvability of a class of systems and concrete instances of

systems from the class more explicit. In this section we will show that univer-

sal systems, able to compute anything computable by Turing machines, are far

from interesting in the context of studying the behaviour of specific (classes of)

systems, in order to gain new results. We will argue that it is because specific en-

codings are involved in the construction of a universal system (thus focussing

on the computability concept, on the “semantics” of computation), an analysis

of the behaviour of these systems offers no extra’s as compared to an analysis

of the behaviour of particular (classes of) systems for which it is not known

whether they are solvable or not.

We will discuss two examples of universal systems, the first being Minsky’s 4-

symbol, 7-state machine, an example of the first reduction method. The sec-

ond, a universal tag system, is an example of the second reduction method.

9.2.1 Minsky’s 4-symbol, 7-state machine.

All the small universal Turing machines known so far, result from an applica-

tion of the reduction method (method 1). One of these machines is Minsky’s

4-symbol, 7-state machine, shown to be universal because it can represent any

tag system with a shift number v = 2. For this machine, both production rules

as well as input for the tag system to be simulated are encoded on the tape.

The machine is then able to interpret the rules of the tag system encoded on its

tape, repeatedly applying them to the encoding of the strings produced in the

tag system, starting with the initial condition of the tag system. As was already

explained in the intermezzo from Sec. 6.2.3, the tape of the machine is divided

into three regions:

... 0 0 Rules Region Erased Region Sequence Region 0 0 ...

424 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

The rules are encoded in the rules region, and the strings produced (starting

from the initial condition), are encoded in the sequence region. Before explain-

ing the encoding, it is important to add that Minsky assumes that the tag sys-

tems simulated have a special halting letter, that leads the Turing machine to

a halt. In order for Minsky’s encoding to work, it is important that this halt-

ing symbol is the first letter a1 from the alphabet. It should also be noted that

the machine can only represent tag systems with v = 2. However, since it had

already been proven by Minsky that it is possible to construct a universal tag

system with v = 2, this is no problem (See Sec. 6.1).

Now, given a tag system, with µ symbols a1, a2, ..., aµ, and a shift number v = 2,

the production rules all of the following form:

ai → ai ,1ai ,2...ai ,r(i)

The lengths of the words associated with each of the letters ai of the alphabet

are equal to r(i). The production rules encoded on the tape of the Turing ma-

chine are then encoded as strings of 0’s and 1’s as follows. First we calculate for

each ai a number a i :

a i = 1+
i−1∑
j=1

[r(i)+1]

For each letter ai , the encoded word Ri corresponding to it is encoded as:

Ri = 110ai ,r(i) 1...10ai ,2 10ai ,1 1

These encodings are placed in the rules region going from left to right, starting

with R1, ending with Rµ. The strings produced by the tag system are encoded by

a combination of the letters X and B, the B’s being used to mark the end of an

encoding of one of the symbols ai . Given an initial sequence ai ,1ai ,2...ai ,n , each

of the symbols, except for the last is encoded as: X ai , j−1B. The last symbol in the

sequence is encoded in the same way, but without the letter B at the tail. After

production rules and initial condition have been encoded in this way on the

tape, the machine is started in state q1, the reading head being on the square

containing the symbol X to the extreme left of the sequence region. To give an

example, let us use this encoding scheme to the following tag system, based on

9.2. WHY ARE (SMALL) UNIVERSAL SYSTEMS NOT INTERESTING? 425

T1 and introduced as an example by Minsky. The word w1 corresponding to

the halting symbol a1 is set to a1a1a1, w2 = 00, w3 = 1101. Using the encoding

scheme we get: a1 = 1, a2 = 5, a3 = 8,R0 = 11010101,R1 = 11000001000001,R3 =
11000000001000001000000001000000001. If the tag system is started with the

initial condition I = 1001, the machine’s initial tape will be:

...000 11081051081081 11051051 11010101 X 7BX 4BX 4BX 7 000...

So how will our machine interpret these rules? If the encoding of a symbol from

a tag string is encountered by the machine in the sequence region, the Turing

machine must be able to locate the corresponding word in the rules region.

This is done through a i , since the value of a i gives us the number of 1’s the

machine has to traverse to reach the appropriate word, using the double 11 as

a mark of the end of a word. The left 1 from this pair is not taken into account

in this word-locating process, so that the process will always count r(i)+1 1’s

in order to perform this allocation. The symbols contained in the words are al-

ways represented by one extra 0, as compared to the symbol’s representation

in the sequence region, because the copying process, used to perform the tag

operation, skips the first 0 of each symbol copied.

When the machine is started it moves back and forth, counting X’s in the se-

quence region and counting 1’s in the rules region. If the first B is encountered,

the process will have located the representation of the word corresponding with

the representation of the symbol scanned. It then goes again back and forth,

copying each of the symbols of the word, separated by a 1, at the end of the se-

quence represented in the sequence region. Each 0 in the representation of the

symbols of the words (except for one) yields an X in the sequence region, and

each 1 in the rules region yields a B in the sequence region. When the double

1 is encountered, the copying stops, and the machine’s tape is restored. Dur-

ing this process, the encoding of the first two letters in the sequence region will

have been erased. The encoding of the second letter can also be erased, be-

cause, the letter B which separated it from the first had been set to X during the

rule-allocation process. Then, when the process is finishing up, the first X’s at

the extreme left of the rules region are erased, until the first B is encountered

(which will also be erased). It is in this way that the erased region must become

426 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

larger and larger when simulating tag systems that do not halt.

Readers who want a better understanding of the operations of this universal

Turing machine, and are not yet familiar with it, are advised to go through the

movements of the universal machine themselves. They will soon understand

how it does the job. But, before being able to do this, one of course needs the

transition table of the machine. The triples associated with each symbol-state

pair are: symbol written, direction of motion, new state. If a couple is used

instead of a triple, it means that the next state is the same as that which the ma-

chine was in. The machine is started in state 1, scanning the leftmost X in the

sequence region:

Table 9.1: Table of Minsky’s 4x7 universal Turing machine

q1 q2 q3 q4 q5 q6 q7

X 0L 0Lq1 XL XL XR XR 0R

0 0L XR HALT XRq5 XLq3 BLq3 XRq6

1 1Lq2 BR BL 1Lq7 BR BR 1R

B 1L XLq3 1Lq4 1L 1R 1R 0Rq2

The machine will halt iff. it encounters the representation of the halting sym-

bol, i.e. BB. It will then go from state 7, to state 2, to state 3 and result in a halt.

Of course, one does not necessarily need a halting symbol in the tag system one

wants to simulate. One just has to be careful that the encoding of the words, is

always preceded by a sequence of the form 11(01)x , adapting our a i according

to the value of x.

As was said, since this 4 by 7 machine is able to represent any tag system with

v = 2, it is universal. Given its size, it is known as one of the smallest universal

Turing machines ever constructed. Besides its smallness and its consequent

significance for the more theoretically minded programmer, one must dare ask

whether there is any other reason as to why this machine would be more in-

teresting than certain other machines? As far as Minsky’s earlier arguments are

9.2. WHY ARE (SMALL) UNIVERSAL SYSTEMS NOT INTERESTING? 427

concerned, it is far from clear how such machine could help to find simpler ex-

amples of unsolvable decision problems, Minsky himself having seriously re-

vised his opinion here. Its basic significance is that it helps to lower the limits

of unsolvability for Turing machines and it is thus an important theoretical re-

sult in the context of this research. But is it not possible to learn something

more from this specific instance of a Turing machine with an unsolvable deci-

sion problem in relation to limits of solvability and unsolvability?

A good starting point to tackle this question could be a study of the behaviour

of this machine. So, in what way can we learn something from the execution

of a universal Turing machine on a computer? The answer to this question is:

nothing that cannot be learned already from a study of the behaviour of other

machines. There are two main reasons for this answer, the first being coun-

tered in the meantime by a number of recently published papers by Neary and

Woods.

One of the most important disadvantages of working with these small universal

Turing machines, at least until one year ago, was the fact that they exponen-

tially slow down in simulating other Turing machines. This is the case because

the known small universal machines are based on their ability to represent tag

systems with v = 2, while the simulation of Turing machines in this class of tag

systems is itself inefficient. If one then wants to look at the actual execution of a

machine with an unsolvable decision problem, looking at millions of iterations

this inefficiency is a very real obstacle. When I first developed my arguments, I

thought this was a very strong argument against the usefulness of (small) ma-

chines. It was only when I started writing this text that I found a paper by

Neary and Woods in which small polynomial-time universal machines are con-

structed, machines for which the time needed to perform a computation is not

greater than a polynomial function of the size of the input. In [NW06d] they

constructed universal machines that directly simulate Turing machines in the

classes UTM(11,3), UTM(7, 5), UTM(6, 6), UTM(5,7) and UTM(4, 8). These ma-

chines are all a bit larger than the small universal machines that simulate tag

systems. In the meantime, they have also been able to prove that tag systems,

with v = 2, efficiently simulate cyclic tag systems [NW06a], after having proven

that cyclic tag systems efficiently simulate Turing machines [NW06b]. Taking

428 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

these two results together, they showed that for any Turing machine T , one

can construct a tag system that computes the computations of T in polyno-

mial time O(t 4(log t)2). From this result it immediately follows that the small

machines by Rogozhin, Minsky, Baiocchi et. al, are polynomial time simulators

O(t 8(log t)4) of Turing machines.10

Due to the results by Neary and Woods one can no longer hold on to the idea

that an exponential slow down in the execution of universal machines forms

an obstacle for studying their actual execution. There is still a more basic dis-

advantage to be discussed here, summarized by the following question: what

kind of new information can we get from studying the behaviour of universal

Turing machines, as compared to a study of the behaviour of the systems they

can represent? Indeed, since they are specific instances of unpredictable ma-

chines, it might seem interesting to study the machine’s behaviour.

In the previous chapter we studied tag systems without taking into account

what functions can be encoded in these systems. Because of this, we did not

need to structure our initial conditions in any specific way, and could use arbi-

trary conditions. So what would happen to our universal machine when feeded

random initial conditions?11 In order to check this I programmed Minsky’s ma-

chine and tested it for numerous initial conditions, having a random length

between 200 and 400, the starting position of the head also being determined

at random. The machine was always started in state 1. For every of these con-

ditions, the machine always entered a halt, a simple loop or a Christmas tree.

Simple Loops and Christmas trees. Machlin and Stout [MS90] developed sev-

eral methods to detect infinite loops in Turing Machines. These methods were

10As is pointed out by Neary and Woods [NW06c], the advantage of this result is the fact that

one can now really think about applications. In their [NW06c], Neary and Woods sketch sev-

eral examples. One of the examples is the proof of the universality of splicing tissue P systems,

which are studied in the context of computational biology. It was shown by Rogozhin and Ver-

lan [RV96] that one can have small such universal systems, again via tag simulation, these ma-

chines now being able to simulate Turing machines efficiently.
11Note that this question should not be confused with the idea of making sure that the univer-

sal machine strongly computes a recursive function f , i.e. that it halts on the encoding of every

ID from the Turing machine computing f , since the universal machine itself is not recursive!

9.2. WHY ARE (SMALL) UNIVERSAL SYSTEMS NOT INTERESTING? 429

developed in order to easily exclude a large number of Turing machines as pos-

sible Busy Beaver winners.12

For a word W and a state r , Wr means that the machine is in state r examining

the rightmost symbol of W . The symbolic expression 0∗ is used to indicate in-

finite occurrences of 0. A Turing machine T is said to enter a simple loop if the

behaviour of T is one of two following forms.

1. Some tape configuration is repeated infinitely often. That is, there is a state

s and words X and Y such that at some time step the tape configuration

is 0∗Xs Y 0∗ and the same tape configuration is reached at some later time

step.

2. T periodically moves to the right (or left) in that there is some state s, words

X and Y and a nonempty word V , such that at one time the tape con-

figuration is 0∗Xs Y 0∗, while at some later time the tape configuration is

0∗Xs Y V 0∗, and between these times, T never moved left of the right edge

of Y .

For the initial conditions tested, Minsky’s machine always entered a simple loop

when from a given time on, its state remained constant, the machine moving ad

infinitum to the right or left. To give an example, the machine entered a simple

loop of the second form when, from a given time on, the machine never leaves

state 2, never again moving to the left, changing each 0 encountered to X .

The behaviour of a machine T is said to be a Christmas tree if the behaviour

of the machine fulfills two conditions. For the full details of the definition of a

Christmas tree we refer to [Kop81]. Important for us is that, given nonempty

words U ,V, and X , if the tape configuration at some time is 0∗UVs 0∗ it must be

equal to 0∗UX Vs 0∗ at some later time, where the machine sweeps back and forth

growing a periodic middle part. For example if the tape configuration at time i is:

BX 100111BX X BB11B00︸ ︷︷ ︸
U

X X X X X X X ...X︸ ︷︷ ︸
n

BX X 001BX X X X BX 11

︸ ︷︷ ︸
Vs

,

and at some later time j it is equal to

BX 100111BX X BB11B00︸ ︷︷ ︸
U

X X X X X X X ...X X X X X X X X XX︸ ︷︷ ︸
n

BX X 001BX X X X BX 11

︸ ︷︷ ︸
Vs

,

the behaviour is identified as a Christmas tree, of course having checked that this

kind of behaviour remains constant. We did not have the time to write a code that

12For an explanation of the Busy Beaver Game, see 9.3.1.

430 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

is able to correctly detect the several kinds of what Machlin and Stout call infi-

nite loops, since that would probably have taken several weeks, the actual design

and programming having taken up most of Machlin’s PhD [Kop81]. Instead we

developed a code that easily detected a halt or simple loops, interrupting it when

neither a simple loop nor a halt was detected after 1.000.000 iterations. If this

was the case, we were able to conclude for christmas trees based on a more in-

teractive analysis between me and my computer, checking whether the machine

keeps on producing strings of the form 0∗UXi Vs 0∗, where V and U are constant

words and Xi is a repetitive string. After several christmas trees had been de-

tected, we also programmed part of the general structure of the tree most fre-

quently detected to automate the detection. After this was done, we frequently

interrupted the code to again perform our interactive analysis. After this test, we

could not but conclude that the machine always halted, entered a simple loop or

a christmas tree for the thousands of initial conditions tested, although our test

is not completely water-proof.

When Minsky’s machine was tested for thousands of random initial conditions,

all the conditions led to a halt, a simple loop or a Christmas tree after at most

1.000.000 steps. Given the results from experiment 1 for our 2-symbolic tag sys-

tems, one is of course led to the question why this universal machine far more

quickly leads to predictable behaviour as compared to the very simple and not

proven to be universal class of tag systems. An intuitive answer to this ques-

tion is that the inner workings of the machine are in a way too “specialized”: it

was developed to be able to interpret a certain class of specially encoded initial

conditions. The instructions of the machine are developed to be able to com-

pute something very specific i.e. that what can be computed by tag systems

with v = 2. As a consequence, input that does not have the structure needed

for the machine to perform the “simulation”, will in most of the cases lead to

predictable behaviour in a relatively small number of steps.

I will not go into a detailed analysis explaining why one should expect the ma-

chine to lead to such behaviour for the majority of conditions tested, but it is

important to give at least some indications to understand what is meant with

9.2. WHY ARE (SMALL) UNIVERSAL SYSTEMS NOT INTERESTING? 431

“the machine is too specialized”. Let us first look, at what happens if we only

slightly disturb the encoding. For example, let us change the first 1 to the left

of the leftmost X to X or 0, using the example of an encoding of a tag system

as described above. This small change will completely disturb the simulation,

erasing at certain points more than v symbols. The reason for this is very sim-

ple. In counting the number of 1’s to the left, to find the right production rule

to be applied, one 1 will be missing and thus no B will be printed at the end

of the sequence in the sequence region. This means that for any encoding of a

word tagged at the end of the encoding of a string produced in the tag system,

two symbols will have become 1. To explain this, suppose for example that the

last symbol in our sequence is the encoding of 0, i.e. XXXX, the B being omitted

since it is the last symbol of our sequence. If the following word to be tagged is

the encoding of 1101, we would get: XXXXXXXXXXXBXXXXXXXBXXXXBXXXXXXX︸ ︷︷ ︸
1101

.

If it is the case, that XXXXXXXXXXXB is the encoding of a relevant letter, the

counting process of X’s to the left and 1’s to the right, used to identify the right

production rule will fail: there are less 1’s than X’s, so the machine will end up

somewhere to the left of the rules region and consequently get into a simple

loop, as described in the intermezzo. A similar reasoning can be made in set-

ting one of the X’s in the encoding of the first symbol equal to 1 or B.

Of course in using random input, the chance that an initial condition will be

generated that resembles the kind of conditions needed for the simulation, is

very small and it is thus important to ask why the machine will most probably

lead to some kind of predictable behaviour, after a small number of steps when

given such random conditions. Looking in more detail at the instruction table

of Minsky’s universal machine, one quickly understands that it is indeed in a

way too “specialized”, the content of the tape having too fulfill, for each state,

certain constraints for the machine not to get into a loop or halt.

For example, if the machine is in state 1, and it is at the left of the leftmost sym-

bol, it will get into a loop. As we already saw, this will happen if the number of

1’s to the left of the first X scanned in state 1 is less than the number of X’s be-

tween this first X and the first B. Starting with a random initial condition which

already has this form, will lead to this kind of cycle. If the machine is in state

432 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

2, the only way to leave this state is that an X or a B is read. Now, if an X is

scanned, and there are no B’s left to the right of X, the machine must also lead

to a loop, since in the end, all X’s will be set to 0, thus making it impossible to

go from state 2 to state 1, nor to go to state 3 (since there are no B’s). The ma-

chine will get into a simple loop, moving to the right for eternity (theoretically

speaking). This kind of loops are generated by the fact that, while the machine’s

instructions are adapted to some kind of balance between number of 0’s or 1’s

to the left, there is also some kind of balance between the number of moves to

left and right. This will often not be the case for random conditions, causing

the machine to move ad infinitum either to the left or to the right.

Furthermore, the machine always halts when it scans a 0 in state 3. State 3 can

be entered from states 2, 5 and 6. If state 2 was entered from state 1 the transi-

tion to state 3 cannot lead to a halt. This is the case because, state 3 is entered

from 2 if the last symbol scanned was a B. State 2 is entered from state 1 because

a 1 has been scanned. Every symbol between the symbol 2 squares to the left

of this 1, and the B causing the transition to state 3 will be equal to X or B, so

a halt can never occur, since in its movement to the left during state 3, at least

one symbol will be equal to B, i.e. the 1 having caused the transition from state

1 to state 2. However, if state 2 was entered from state 7, it is possible for the

machine to halt: if the machine scans a B in state 7, setting it to 0 and the sym-

bol to the left of this B is also equal to B, the process will terminate. Indeed, the

machine was encoded in order to guarantee a halt if we would have two con-

secutive B’s in the sequence region, in order to simulate a halt in tag systems,

a complication which is to our mind far from necessary since this introduction

of a halting symbol for tag systems is completely artificial and, in my opinion,

too much adapted to Turing computability.13 A halt might furthermore occur if

the machine is in state 5 or 6, and the symbol to the left of the last 0 scanned is

equal to 0.

As is clear from this reasoning, at each state transition the machine must fulfill

13Of course, there are reasons to introduce such a symbol in the framework of tag systems,

e.g. in order to guarantee that a computation halts, but I think that it is better to use the original

formulation by Post of a halt in tag systems. This might complicate any encoding process, but

it is closer to, or in a way even more respectful towards, tag systems.

9.2. WHY ARE (SMALL) UNIVERSAL SYSTEMS NOT INTERESTING? 433

very special conditions in order not to get into an infinite loop or lead to a halt.

While it is guaranteed that this will not happen as long as one is working with

the right encodings, it is very hard to find random conditions that fulfill these

conditions at every iteration step for a long number of iterations. Comparing

this situation with the results from experiment 1, the situation as sketched here

for universal machines is rather disappointing, at least, from the more experi-

mental point of view.

If we want to study the behaviour of particular (classes of) machines we are led

to the conclusion that Minsky’s universal machine will most probably offer us

no more than the information we can already get from running the systems it

simulates. While other small machines, such as those by Rogozhin, were not

tested in this same way, due to a lack of time, it is assumed here that they can

be analyzed in a similar way, given the specialization of the machine to simu-

late tag systems.

A further indication of the fact that these machines are, from a certain point of

view not very interesting, is the fact that these machines offer no challenge as

far as the Busy Beaver game is concerned. The (generalized) Busy Beaver game

is to determine for a given class of Turing machines, defined through the num-

ber of states and symbols, what is the largest number of 1’s Σ(m, n) printed by

one of these machines when started with a blank tape. Minsky’s machine, as

well as all the other small universal Turing machines I know off, always imme-

diately enter a simple loop when started with a blank tape, and can thus not

be winners of the Busy Beaver game in their respective classes. In general, the

Busy Beaver game is unsolvable: there is no effective procedure to calculate the

value of Σ for any arbitrary class of machines. Although the fact that the small

universal machines are no challenge with respect to determining the value of Σ

in their respective classes is, of course, completely unproblematic from a theo-

retical point of view it is, to our mind, from a more intuitive point of view.

To summarize, we hope it is clear that the instructions of the universal machine

as described by Minsky (and a similar reasoning can be applied to the other ma-

chines) are in a way too “specialized” to make it an interesting machine in the

context of an analysis of their behaviour. We will not really get any more infor-

mation from these machines on this level, as compared to the direct execution

434 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

of the tag systems or Turing machines it is able to simulate. It is thus more effi-

cient, avoiding encoding processes and the time needed to simulate one com-

putation step of a tag system or a Turing machine, to look at the behaviour of

the systems directly instead of through the framework of their simulator.

9.2.2 Generating a universal tag system.

In Sec. 6.1.1, it was shown how Minsky proved that any Turing machine can be

reduced to a tag system with a shift number v = 2. He provided a general com-

piling scheme for translating any Turing machine to a tag system. This is thus

an application of the second method mentioned in 9.2 for constructing uni-

versal systems. Fascinated as I was (and still am) with tag systems, I of course

wanted to use Minsky’s scheme in order to construct a universal tag system.

Using e.g. Minsky’s 4-symbol, 7-state machine, I would then be able to have

a tag system able to represent any other tag system with v = 2, since it would

simulate a simulator of such tag systems. However, I soon learned that this uni-

versal tag system is far less interesting than e.g. T1 on the level of the execution

of either of these two systems. To begin with, it was very clear that this univer-

sal tag system would be rather gigantic as compared to e.g. the simplicity of T1.

Secondly, not knowing about the result by Woods and Neary at that time, the

universal tag system would suffer from an exponential slow-down, the length

of its input being determined by the binary number represented on the tape of

the Turing machine. Still, I wanted to program a universal tag system. Given

the fact that one needs hundreds of production rules in order to simulate the

operations of the universal Turing machine constructed by Minsky, I wrote a

program that generated the universal tag system, sparing myself lots of work.

Since the encoding from Turing machines to tag systems is based on 2-symbolic

Turing machines, the tag systems having a shift number v = 2, I first had to

translate the 4 by 7 machine into a binary machine. Minsky himself provided

such a translation, but there are many errors contained in the encoding. Finally

I ended up with a machine in the class UTM(27, 2) – I will not give its instruction

table here – and in the end I decided to use Rogozhin’s UTM(24, 2) machine.

The following method was used to determine the letters of the alphabet for

9.2. WHY ARE (SMALL) UNIVERSAL SYSTEMS NOT INTERESTING? 435

the universal tag system. The letters from Minsky’s encoding without index,

A,α,B,β,C , c,D1,D0, d1, d0, t1, t0, x were given a numerical value going from 42

to 58. For simulating each state-symbol instruction the tag system needs 15

production rules and thus different symbols, (except when the tag system en-

counters a halting state). Each of the letters needed to perform the simula-

tion of one of these instructions, performed by the machine in a given state qi

scanning the symbol si , is determined by concatenating to the number asso-

ciated with each of the symbols A,α,B,β,C , c,D1,D0, d1, d0, t1, t0, x, the index of

the state the machine is in and the symbol scanned. For example 42020 is to

be interpreted as A2,0 – the symbol A used for simulating the instructions when

the Turing machine is in state 2, scanning a 0. Before giving the production

rules for our universal tag system, it should be noted that the words associated

with the letters needed to simulate a halt are all set to the empty string ε. Since

the state leading to this halting state is 11, the symbol being scanned equal to

1, all symbols ending in 111 produce ε. In this way it is guaranteed that the tag

system will halt, when the Turing machine halts. Let us now turn to the instruc-

tion table of a universal tag system. At first I was not sure whether to include

the table given its length, but in the end, I thought it important that the reader

can really see how big this universal tag system actually is.

Table 9.2: Instruction table universal tag system.

42010 → 4601058010 42011 → 46011580114701158011

42020 → 46020580204702058020 42021 → 48021

42030 → 48030 42031 → 48031

42040 → 48040 42041 → 48041

42050 → 46050580504705058050 42051 → 48051

42060 → 48060 42061 → 48061

42070 → 48070 42071 → 48071

42080 → 48080 42081 → 46081580814708158081

42090 → 4609058090 42091 → 48091

42100 → 48100 42101 → 4610158101

Continued on next page

436 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

Table 9.2 – continued from previous page

42110 → 48110 42111 → ε

42120 → 4612058120 42121 → 48121

42130 → 4613058130 42131 → 46131581314713158131

42140 → 48140 42141 → 48141

42150 → 4615058150 42151 → 46151581514715158151

42160 → 4616058160 42161 → 46161581614716158161

42170 → 4617058170 42171 → 46171581714717158171

42180 → 4618058180 42181 → 46181581814718158181

42190 → 48190 42191 → 46191581914719158191

42200 → 46200582004720058200 42201 → 4620158201

42210 → 4621058210 42211 → 46211582114721158211

42220 → 48220 42221 → 46221582214722158221

42230 → 46230582304723058230 42231 → 4623158231

42240 → 4624058240 42241 → 48241

43010 → 47010580104701058010 43011 → 47011580114701158011

43020 → 47020580204702058020 43021 → 49021

43030 → 49030 43031 → 49031

43040 → 49040 43041 → 49041

43050 → 47050580504705058050 43051 → 49051

43060 → 49060 43061 → 49061

43070 → 49070 43071 → 49071

43080 → 49080 43081 → 47081580814708158081

43090 → 47090580904709058090 43091 → 49091

43100 → 49100 43101 → 47101581014710158101

43110 → 49110 43111 → ε

43120 → 47120581204712058120 43121 → 49121

43130 → 47130581304713058130 43131 → 47131581314713158131

43140 → 49140 43141 → 49141

43150 → 47150581504715058150 43151 → 47151581514715158151

43160 → 47160581604716058160 43161 → 47161581614716158161

43170 → 47170581704717058170 43171 → 47171581714717158171

Continued on next page

9.2. WHY ARE (SMALL) UNIVERSAL SYSTEMS NOT INTERESTING? 437

Table 9.2 – continued from previous page

43180 → 47180581804718058180 43181 → 47181581814718158181

43190 → 49190 43191 → 47191581914719158191

43200 → 47200582004720058200 43201 → 47201582014720158201

43210 → 47210582104721058210 43211 → 47211582114721158211

43220 → 49220 43221 → 47221582214722158221

43230 → 47230582304723058230 43231 → 47231582314723158231

43240 → 47240582404724058240 43241 → 49241

44010 → 48010 44011 → 48011

44020 → 48020 44021 → 46021580214702158021

44030 → 4603058030 44031 → 4603158031

44040 → 46040580404704058040 44041 → 4604158041

44050 → 48050 44051 → 4605158051

44060 → 4606058060 44061 → 46061580614706158061

44070 → 4607058070 44071 → 4607158071

44080 → 4608058080 44081 → 48081

44090 → 48090 44091 → 46091580914709158091

44100 → 46100581004710058100 44101 → 48101

44110 → 4611058110 44111 → ε

44120 → 48120 44121 → 46121581214712158121

44130 → 48130 44131 → 48131

44140 → 4614058140 44141 → 46141581414714158141

44150 → 48150 44151 → 48151

44160 → 48160 44161 → 48161

44170 → 48170 44171 → 48171

44180 → 48180 44181 → 48181

44190 → 46190581904719058190 44191 → 48191

44200 → 48200 44201 → 48201

44210 → 48210 44211 → 48211

44220 → 46220582204722058220 44221 → 48221

44230 → 48230 44231 → 48231

44240 → 48240 44241 → 4624158241

Continued on next page

438 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

Table 9.2 – continued from previous page

45010 → 49010 45011 → 49011

45020 → 49020 45021 → 47021580214702158021

45030 → 47030580304703058030 45031 → 47031580314703158031

45040 → 47040580404704058040 45041 → 47041580414704158041

45050 → 49050 45051 → 47051580514705158051

45060 → 47060580604706058060 45061 → 47061580614706158061

45070 → 47070580704707058070 45071 → 47071580714707158071

45080 → 47080580804708058080 45081 → 49081

45090 → 49090 45091 → 47091580914709158091

45100 → 47100581004710058100 45101 → 49101

45110 → 47110581104711058110 45111 → ε

45120 → 49120 45121 → 47121581214712158121

45130 → 49130 45131 → 49131

45140 → 47140581404714058140 45141 → 47141581414714158141

45150 → 49150 45151 → 49151

45160 → 49160 45161 → 49161

45170 → 49170 45171 → 49171

45180 → 49180 45181 → 49181

45190 → 47190581904719058190 45191 → 49191

45200 → 49200 45201 → 49201

45210 → 49210 45211 → 49211

45220 → 47220582204722058220 45221 → 49221

45230 → 49230 45231 → 49231

45240 → 49240 45241 → 47241582414724158241

46010 → 5101050010 46011 → 5101150011

46020 → 5102050020 46021 → 5502154021

46030 → 5503054030 46031 → 5503154031

46040 → 5504054040 46041 → 5504154041

46050 → 5105050050 46051 → 5505154051

46060 → 5506054060 46061 → 5506154061

46070 → 5507054070 46071 → 5507154071

Continued on next page

9.2. WHY ARE (SMALL) UNIVERSAL SYSTEMS NOT INTERESTING? 439

Table 9.2 – continued from previous page

46080 → 5508054080 46081 → 5108150081

46090 → 5109050090 46091 → 5509154091

46100 → 5510054100 46101 → 5110150101

46110 → 5511054110 46111 → ε

46120 → 5112050120 46121 → 5512154121

46130 → 5113050130 46131 → 5113150131

46140 → 5514054140 46141 → 5514154141

46150 → 5115050150 46151 → 5115150151

46160 → 5116050160 46161 → 5116150161

46170 → 5117050170 46171 → 5117150171

46180 → 5118050180 46181 → 5118150181

46190 → 5519054190 46191 → 5119150191

46200 → 5120050200 46201 → 5120150201

46210 → 5121050210 46211 → 5121150211

46220 → 5522054220 46221 → 5122150221

46230 → 5123050230 46231 → 5123150231

46240 → 5124050240 46241 → 5524154241

47010 → 5301052010 47011 → 5301152011

47020 → 5302052020 47021 → 5702156021

47030 → 5703056030 47031 → 5703156031

47040 → 5704056040 47041 → 5704156041

47050 → 5305052050 47051 → 5705156051

47060 → 5706056060 47061 → 5706156061

47070 → 5707056070 47071 → 5707156071

47080 → 5708056080 47081 → 5308152081

47090 → 5309052090 47091 → 5709156091

47100 → 5710056100 47101 → 5310152101

47110 → 5711056110 47111 → ε

47120 → 5312052120 47121 → 5712156121

47130 → 5313052130 47131 → 5313152131

47140 → 5714056140 47141 → 5714156141

Continued on next page

440 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

Table 9.2 – continued from previous page

47150 → 5315052150 47151 → 5315152151

47160 → 5316052160 47161 → 5316152161

47170 → 5317052170 47171 → 5317152171

47180 → 5318052180 47181 → 5318152181

47190 → 5719056190 47191 → 5319152191

47200 → 5320052200 47201 → 5320152201

47210 → 5321052210 47211 → 5321152211

47220 → 5722056220 47221 → 5322152221

47230 → 5323052230 47231 → 5323152231

47240 → 5324052240 47241 → 5724156241

48010 → 5501054010 48011 → 5501154011

48020 → 5502054020 48021 → 5102150021

48030 → 5103050030 48031 → 5103150031

48040 → 5104050040 48041 → 5104150041

48050 → 5505054050 48051 → 5105150051

48060 → 5106050060 48061 → 5106150061

48070 → 5107050070 48071 → 5107150071

48080 → 5108050080 48081 → 5508154081

48090 → 5509054090 48091 → 5109150091

48100 → 5110050100 48101 → 5510154101

48110 → 5111050110 48111 → ε

48120 → 5512054120 48121 → 5112150121

48130 → 5513054130 48131 → 5513154131

48140 → 5114050140 48141 → 5114150141

48150 → 5515054150 48151 → 5515154151

48160 → 5516054160 48161 → 5516154161

48170 → 5517054170 48171 → 5517154171

48180 → 5518054180 48181 → 5518154181

48190 → 5119050190 48191 → 5519154191

48200 → 5520054200 48201 → 5520154201

48210 → 5521054210 48211 → 5521154211

Continued on next page

9.2. WHY ARE (SMALL) UNIVERSAL SYSTEMS NOT INTERESTING? 441

Table 9.2 – continued from previous page

48220 → 5122050220 48221 → 5522154221

48230 → 5523054230 48231 → 5523154231

48240 → 5524054240 48241 → 5124150241

49010 → 5701056010 49011 → 5701156011

49020 → 5702056020 49021 → 5302152021

49030 → 5303052030 49031 → 5303152031

49040 → 5304052040 49041 → 5304152041

49050 → 5705056050 49051 → 5305152051

49060 → 5306052060 49061 → 5306152061

49070 → 5307052070 49071 → 5307152071

49080 → 5308052080 49081 → 5708156081

49090 → 5709056090 49091 → 5309152091

49100 → 5310052100 49101 → 5710156101

49110 → 5311052110 49111 → ε

49120 → 5712056120 49121 → 5312152121

49130 → 5713056130 49131 → 5713156131

49140 → 5314052140 49141 → 5314152141

49150 → 5715056150 49151 → 5715156151

49160 → 5716056160 49161 → 5716156161

49170 → 5717056170 49171 → 5717156171

49180 → 5718056180 49181 → 5718156181

49190 → 5319052190 49191 → 5719156191

49200 → 5720056200 49201 → 5720156201

49210 → 5721056210 49211 → 5721156211

49220 → 5322052220 49221 → 5722156221

49230 → 5723056230 49231 → 5723156231

49240 → 5724056240 49241 → 5324152241

50010 → 580104205058050 50011 → 580114202058020

50020 → 580204201058010 50021 → 580214203058030

50030 → 580304204058040 50031 → 580314202058020

50040 → 580404212058120 50041 → 580414209058090

Continued on next page

442 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

Table 9.2 – continued from previous page

50050 → 580504201058010 50051 → 580514206058060

50060 → 580604207058070 50061 → 580614207058070

50070 → 580704208058080 50071 → 580714206058060

50080 → 580804207058070 50081 → 580814202058020

50090 → 580904219058190 50091 → 580914204058040

50100 → 581004204058040 50101 → 581014213058130

50110 → 581104204058040 50111 → ε

50120 → 581204219058190 50121 → 581214214058140

50130 → 581304210058100 50131 → 581314224058240

50140 → 581404215058150 50141 → 581414211058110

50150 → 581504216058160 50151 → 581514217058170

50160 → 581604215058150 50161 → 581614210058100

50170 → 581704216058160 50171 → 581714221058210

50180 → 581804219058190 50181 → 581814220058200

50190 → 581904203058030 50191 → 581914218058180

50200 → 582004218058180 50201 → 582014218058180

50210 → 582104222058220 50211 → 582114223058230

50220 → 582204210058100 50221 → 582214221058210

50230 → 582304221058210 50231 → 582314221058210

50240 → 582404213058130 50241 → 582414203058030

51010 → 4205158051 51011 → 4202158021

51020 → 4201158011 51021 → 4203158031

51030 → 4204158041 51031 → 4202158021

51040 → 4212158121 51041 → 4209158091

51050 → 4201158011 51051 → 4206158061

51060 → 4207158071 51061 → 4207158071

51070 → 4208158081 51071 → 4206158061

51080 → 4207158071 51081 → 4202158021

51090 → 4219158191 51091 → 4204158041

51100 → 4204158041 51101 → 4213158131

51110 → 4204158041 51111 → ε

Continued on next page

9.2. WHY ARE (SMALL) UNIVERSAL SYSTEMS NOT INTERESTING? 443

Table 9.2 – continued from previous page

51120 → 4219158191 51121 → 4214158141

51130 → 4210158101 51131 → 4224158241

51140 → 4215158151 51141 → 4211158111

51150 → 4216158161 51151 → 4217158171

51160 → 4215158151 51161 → 4210158101

51170 → 4216158161 51171 → 4221158211

51180 → 4219158191 51181 → 4220158201

51190 → 4203158031 51191 → 4218158181

51200 → 4218158181 51201 → 4218158181

51210 → 4222158221 51211 → 4223158231

51220 → 4210158101 51221 → 4221158211

51230 → 4221158211 51231 → 4221158211

51240 → 4213158131 51241 → 4203158031

52010 → 4305058050 52011 → 4302058020

52020 → 4301058010 52021 → 4303058030

52030 → 4304058040 52031 → 4302058020

52040 → 4312058120 52041 → 4309058090

52050 → 4301058010 52051 → 4306058060

52060 → 4307058070 52061 → 4307058070

52070 → 4308058080 52071 → 4306058060

52080 → 4307058070 52081 → 4302058020

52090 → 4319058190 52091 → 4304058040

52100 → 4304058040 52101 → 4313058130

52110 → 4304058040 52111 → ε

52120 → 4319058190 52121 → 4314058140

52130 → 4310058100 52131 → 4324058240

52140 → 4315058150 52141 → 4311058110

52150 → 4316058160 52151 → 4317058170

52160 → 4315058150 52161 → 4310058100

52170 → 4316058160 52171 → 4321058210

52180 → 4319058190 52181 → 4320058200

Continued on next page

444 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

Table 9.2 – continued from previous page

52190 → 4303058030 52191 → 4318058180

52200 → 4318058180 52201 → 4318058180

52210 → 4322058220 52211 → 4323058230

52220 → 4310058100 52221 → 4321058210

52230 → 4321058210 52231 → 4321058210

52240 → 4313058130 52241 → 4303058030

53010 → 4305158051 53011 → 4302158021

53020 → 4301158011 53021 → 4303158031

53030 → 4304158041 53031 → 4302158021

53040 → 4312158121 53041 → 4309158091

53050 → 4301158011 53051 → 4306158061

53060 → 4307158071 53061 → 4307158071

53070 → 4308158081 53071 → 4306158061

53080 → 4307158071 53081 → 4302158021

53090 → 4319158191 53091 → 4304158041

53100 → 4304158041 53101 → 4313158131

53110 → 4304158041 53111 → ε

53120 → 4319158191 53121 → 4314158141

53130 → 4310158101 53131 → 4324158241

53140 → 4315158151 53141 → 4311158111

53150 → 4316158161 53151 → 4317158171

53160 → 4315158151 53161 → 4310158101

53170 → 4316158161 53171 → 4321158211

53180 → 4319158191 53181 → 4320158201

53190 → 4303158031 53191 → 4318158181

53200 → 4318158181 53201 → 4318158181

53210 → 4322158221 53211 → 4323158231

53220 → 4310158101 53221 → 4321158211

53230 → 4321158211 53231 → 4321158211

53240 → 4313158131 53241 → 4303158031

54010 → 4405058050 54011 → 4402058020

Continued on next page

9.2. WHY ARE (SMALL) UNIVERSAL SYSTEMS NOT INTERESTING? 445

Table 9.2 – continued from previous page

54020 → 4401058010 54021 → 4403058030

54030 → 4404058040 54031 → 4402058020

54040 → 4412058120 54041 → 4409058090

54050 → 4401058010 54051 → 4406058060

54060 → 4407058070 54061 → 4407058070

54070 → 4408058080 54071 → 4406058060

54080 → 4407058070 54081 → 4402058020

54090 → 4419058190 54091 → 4404058040

54100 → 4404058040 54101 → 4413058130

54110 → 4404058040 54111 → ε

54120 → 4419058190 54121 → 4414058140

54130 → 4410058100 54131 → 4424058240

54140 → 4415058150 54141 → 4411058110

54150 → 4416058160 54151 → 4417058170

54160 → 4415058150 54161 → 4410058100

54170 → 4416058160 54171 → 4421058210

54180 → 4419058190 54181 → 4420058200

54190 → 4403058030 54191 → 4418058180

54200 → 4418058180 54201 → 4418058180

54210 → 4422058220 54211 → 4423058230

54220 → 4410058100 54221 → 4421058210

54230 → 4421058210 54231 → 4421058210

54240 → 4413058130 54241 → 4403058030

55010 → 4405158051 55011 → 4402158021

55020 → 4401158011 55021 → 4403158031

55030 → 4404158041 55031 → 4402158021

55040 → 4412158121 55041 → 4409158091

55050 → 4401158011 55051 → 4406158061

55060 → 4407158071 55061 → 4407158071

55070 → 4408158081 55071 → 4406158061

55080 → 4407158071 55081 → 4402158021

Continued on next page

446 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

Table 9.2 – continued from previous page

55090 → 4419158191 55091 → 4404158041

55100 → 4404158041 55101 → 4413158131

55110 → 4404158041 55111 → ε

55120 → 4419158191 55121 → 4414158141

55130 → 4410158101 55131 → 4424158241

55140 → 4415158151 55141 → 4411158111

55150 → 4416158161 55151 → 4417158171

55160 → 4415158151 55161 → 4410158101

55170 → 4416158161 55171 → 4421158211

55180 → 4419158191 55181 → 4420158201

55190 → 4403158031 55191 → 4418158181

55200 → 4418158181 55201 → 4418158181

55210 → 4422158221 55211 → 4423158231

55220 → 4410158101 55221 → 4421158211

55230 → 4421158211 55231 → 4421158211

55240 → 4413158131 55241 → 4403158031

56010 → 4505058050 56011 → 4502058020

56020 → 4501058010 56021 → 4503058030

56030 → 4504058040 56031 → 4502058020

56040 → 4512058120 56041 → 4509058090

56050 → 4501058010 56051 → 4506058060

56060 → 4507058070 56061 → 4507058070

56070 → 4508058080 56071 → 4506058060

56080 → 4507058070 56081 → 4502058020

56090 → 4519058190 56091 → 4504058040

56100 → 4504058040 56101 → 4513058130

56110 → 4504058040 56111 → ε

56120 → 4519058190 56121 → 4514058140

56130 → 4510058100 56131 → 4524058240

56140 → 4515058150 56141 → 4511058110

56150 → 4516058160 56151 → 4517058170

Continued on next page

9.2. WHY ARE (SMALL) UNIVERSAL SYSTEMS NOT INTERESTING? 447

Table 9.2 – continued from previous page

56160 → 4515058150 56161 → 4510058100

56170 → 4516058160 56171 → 4521058210

56180 → 4519058190 56181 → 4520058200

56190 → 4503058030 56191 → 4518058180

56200 → 4518058180 56201 → 4518058180

56210 → 4522058220 56211 → 4523058230

56220 → 4510058100 56221 → 4521058210

56230 → 4521058210 56231 → 4521058210

56240 → 4513058130 56241 → 4503058030

57010 → 4505158051 57011 → 4502158021

57020 → 4501158011 57021 → 4503158031

57030 → 4504158041 57031 → 4502158021

57040 → 4512158121 57041 → 4509158091

57050 → 4501158011 57051 → 4506158061

57060 → 4507158071 57061 → 4507158071

57070 → 4508158081 57071 → 4506158061

57080 → 4507158071 57081 → 4502158021

57090 → 4519158191 57091 → 4504158041

57100 → 4504158041 57101 → 4513158131

57110 → 4504158041 57111 → ε

57120 → 4519158191 57121 → 4514158141

57130 → 4510158101 57131 → 4524158241

57140 → 4515158151 57141 → 4511158111

57150 → 4516158161 57151 → 4517158171

57160 → 4515158151 57161 → 4510158101

57170 → 4516158161 57171 → 4521158211

57180 → 4519158191 57181 → 4520158201

57190 → 4503158031 57191 → 4518158181

57200 → 4518158181 57201 → 4518158181

57210 → 4522158221 57211 → 4523158231

57220 → 4510158101 57221 → 4521158211

Continued on next page

448 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

Table 9.2 – continued from previous page

57230 → 4521158211 57231 → 4521158211

57240 → 4513158131 57241 → 4503158031

As is hopefully clear from the table, the universal tag system based on Rogozhin’s

encoding is very large, to be more precise µ= 768, v = 2. The fact that we need

so many productions is a result of the method used. We do not have one tag

system which is able to interpret description and input of a Turing machine

in a direct way, as was the case for the first method, but we have to construct

for each Turing machine separately a tag system, its number of productions

depending on the number of states of the Turing machine. A further negative

feature of this encoding is its exponential slow down. However, as mentioned

earlier, Neary and Woods have been able to construct tag systems that simu-

late Turing machines in polynomial time, also applying this second method.

I did not have the chance to look at their encoding in more details, and am

very much embedded to Neary for having provided me with an estimate of the

number of symbols the universal tag system would need. It is clear from this

estimate that their encoding cannot be used to construct smaller tag systems.

However, it should be noted that their goal was of course not to find small tag

systems (as was neither Minsky’s purpose) but efficient universal Turing ma-

chines and that it is probably possible to reduce the number of symbols.14

The largest problem in connection to this universal tag system is that it suffers

14Personal communication. To compute the number of symbols the tag system needs, Neary

provided me with the following estimate. The simulation can be done by reducing the Turing

machine first to a clockwise Turing machine, to a binary clockwise Turing machines, to a cyclic

tag systems to a tag system with v = 2. To compute the number of symbols, it is very important

to keep track of the increase in the number of states needed for every further reduction. Neary

provided me with estimates for computing the number of states needed in the cyclic tag system

to simulate a Turing machine, but we will skip the details of this calculation here. Let me merely

note that if one starts with a Turing machine in n states, this number will definitely increase

throughout the reductions. Then, if QC T denotes the number of states needed by the cyclic tag

system – where QC T is 60 times the number of states needed by the binary clockwise Turing

machine – to encode the Turing machine with Q states, then the number of symbols needed

9.2. WHY ARE (SMALL) UNIVERSAL SYSTEMS NOT INTERESTING? 449

from the disadvantage that a study of its behaviour can only be interesting if

it is simulating Turing machines, and possibly tag systems. Indeed, if we feed

the tag system a condition that is not structured in a particular way so that the

tag system can perform the simulation, its behaviour is very predictable and it

will either halt, become periodic or show unbounded growth depending on the

word assigned to the letter x used in the encoding. As was already explained

in Sec. 7.3.3, x is merely used as a kind of separator in the encoding and is not

intended to ever become a relevant letter. Still, it is the symbol most frequently

used in the words for the universal tag system. One merely has to look at how

many times the number 58, encoding x, is used in its production rules to see

this. If the system is started with a condition that allows x to be scanned, it will

quickly become the dominant symbol and determine the behaviour of the tag

system. Assigning a word with length smaller than v to x quickly leads to a halt.

A similar reasoning can be applied in assigning a word of length v or a word

longer than v to x, leading very quickly to periodicity rsp. unbounded growth.

To summarize, our universal tag system is exponentially slow, very large and

furthermore completely uninteresting if it is not simulating other tag systems or

Turing machines. It thus seems more interesting to look at tag systems directly,

instead of indirectly studying them through the universal tag system described

here.

9.2.3 Conclusion

To conclude this section, although (small) universal systems are basic to the

theory of solvable and unsolvable decision problems, and can help to deter-

mine limits of unsolvability, it is clear that if one starts from a study of the be-

haviour of (classes) of systems, these universal systems have no special advan-

tage over the systems they are able to represent, since they are, although uni-

versal, in a way too “specialized”. Of course, this should not come as a surprise

because universal machines are usually not intended to be implemented on a

computer.

in the tag system to simulate the cyclic tag system is equal to 190(QC T +122). This number of

symbols is clearly very large, but it must be emphasized that this is merely an estimate.

450 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

9.3 Studying the “universe of discourse”. Small uni-

versal systems, Busy Beavers and Collatz-like func-

tions.

At present it seems technically challenging to further reduce the size of our ma-

chines so we suspect that a radically different approach is required.

Turlough Neary and Damien Woods, 2005.15

In the introduction of the previous section, we already pointed out that shifting

attention from constructing certain systems in a given class that encode spe-

cific functions to the discourse of the systems, abstracting away from interpre-

tation, can be a useful approach to study limits of solvability and unsolvability.

We will now look at some examples from the literature where the analysis of the

behaviour of systems belonging to a given class is basic to certain results in this

context. Several of the examples to be discussed make more explicit the con-

nection between the general unsolvability of a class of systems and concrete

instances of systems from the class.

It is important to emphasize that this approach seems to become particularly

useful in studying relatively small classes of computational systems. Indeed,

the examples to be discussed involve proving or conjecturing theoretical results

for very small (classes of) systems. Although constructing a given system that

encodes a specific function is still an important approach in this context, one

could say that a study based on the discourse of specific (classes of) systems

becomes more and more important the smaller the systems under considera-

tion. Especially if one wants to prove a given class – between the known limits

of unsolvability and solvability – universal the usual method for constructing

a universal system seems to fall short. The last example we will discuss in this

section illustrates how other methods, based on the analysis of the behaviour,

could be used to prove specific instances universal.

15[NW06d], p. 29

9.3. STUDYING THE “UNIVERSE OF DISCOURSE” 451

9.3.1 The Busy Beaver Game

As was said, in this section we will discuss an approach to unsolvability (solv-

ability) that relies on the actual discourse of (classes of) systems. We should not

forget though that, even if e.g. the developments put forward by Post, Church

and Turing are part of a theoretical branch of mathematics, we already traced

in each of their work a close connection between the discourse of the systems

they each considered and the general theoretical results for these classes of sys-

tems. In this sense, as was already pointed out, one cannot strictly separate this

approach from any other so-called more theoretical approach.

In Sec. 4.2, we showed how the computer has allowed us to study the behav-

iour of the objects of mathematics to an extent hardly possible without it. In

this way, the computer has given us direct access to the behaviour of the sys-

tems it is itself a physical realization of. A study of the limits of the computer it-

self inspired Tibor Rádo ’s formulation and negative solution of the Busy Beaver

problem. As he states in one of his papers on the Busy Beaver Game ([Rád63],

p. 76):16

Let us note that our main objective is to observe the phenomenon of non-comput-

ability in its simplest form, so that we can use the insight we achieve to see bet-

ter what tasks we can delegate to computers. Actually, the comments to be pre-

sented here originated with the writer’s studies relating to the optimal design of

automatic systems, and specifically with efforts to use computers to the limit of

their capabilities for this purpose.

There are many reasons why Rádo’s work is, for me, closest to the ideas I have

tried to explain this far, this quote merely being one of many showing how im-

portant it was to him to search for methods to “observe the phenomenon of

non-computability in its simplest form”.

16Tibor Rádo was already rather old when he got involved with the subject. He was actually

more famous for solving Plateau’s problem, the problem to show the existence of a surface of

minimal area with a given boundary curve. Dipping a frame in the shape of the curve into a

soap solution will produce a film which takes the form of this minimal surface. It was only in

1962, that the paper containing the formulation of the Busy Beaver Game as well as the proof

of its unsolvability, was published. Three years later Rádo died.

452 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

The definition of the Busy Beaver function and the proof of its non-computability

were indeed intended as more simple or intuitive examples of unsolvable deci-

sion problems. As Rádo states in the abstract of his [Rád62], p. 877:

The construction of non-computable functions used [...] is based on the princi-

ple that a finite, non-empty set of non-negative integers has a largest element.

Also, this principle is used only for sets which are exceptionally well-defined by

current standards. No enumeration of computable functions is used, and in this

sense the diagonal process is not employed. Thus, it appears that an apparently

self-evident principle, of constant use in every area of mathematics, yields non-

constructive entities. The purpose of this note is to present very simple instances

of non-computable functions.

As we already know, the generalized Busy Beaver game is to find, for a given

class of Turing machines with n states and m symbols, the one that will pro-

duce the largest number of 1’s before halting, when started with a blank input

tape. Thus, the function Σ(m, n), is indeed based on the principle of finding the

largest element of a finite set of non-negative integers, a principle that occurs

in every area of mathematics. In this sense, Rádo’s function is “defined in an

extremely primitive sense” ([Rád62], p. 877). Furthermore, the proof of its non-

computability does not use a diagonal argument, but exactly this principle of

largest elements. This resulted in a very simple if not primitive proof as Rádo

calls it at a given time,17 the non-computability of the Busy Beaver function be-

ing rooted in the fact that, in a way, it can be proven to grow faster than any

computable function.

Proof of the non-computability of the BB-function (after Rádo)

Since Rádo merely considered binary machines, the number of symbols is not

taken into account, and the classes are defined through the number of states.

The function Σ(n) denotes the maximum number of 1’s produced by machines

with n states when started with blank input tape, before halting. S(n) denotes

the maximum number of moves (shifts) made by one of the machines with n

17“[...] the proof turned out to be surprisingly primitive.” ([Rád63], p. 78)

9.3. STUDYING THE “UNIVERSE OF DISCOURSE” 453

states before it halts, when started with a blank tape.18

For two functions f (x) and g (x),

f (x) >−g (x)

is used to denote that f (x) > g (x) for x greater than a certain minimal value.

Rádo proved that for any computable function f :

Σ(x) >− f (x)

This result indeed implies that the non-computability of the function Σ results

from the fact that the function grows faster than any computable function,

since for any function f (x), the value of Σ(x) will be greater than the value of

f (x) (with x greater than a certain minimal value).

Now, consider any computable function f (x). The function F (x) is then defined

as follows:

F (x) =
c∑

i=0
[f (i)+ i 2] (9.1)

and is also computable. Then:

F (x) ≥ f (x) (9.2)

F (x) ≥ x2 (9.3)

F (x +1) > F (x) (9.4)

On the basis of Turing’s thesis, since F (x) is computable, there exists a binary

Turing machine MF that computes F . Let us denote the number of states of MF

by C . Now, given the successor function O(x) = x + 1 over the integers. Then

we can also construct a binary Turing machine M (x) which, when started on a

blank tape, prints x+1 consecutive 1’s and then halts, scanning the rightmost of

these 1’s. For any x, such a Turing machine can be constructed with x+1 states.

Now consider the following Turing machine M (x)
F F its operation described by the

following scheme:

M (x)
F F : M (x) → MF → MF

18It is important to note that Rádo uses the quintuple description of Turing machines so that

the machines always makes a move (left or right) for each configuration, at each step.

454 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

This machine when started on a blank tape, first prints a string of x+1 consecu-

tive 1’s, then, beyond a 0 to the right of this string, it prints F (x) + 1 consecutive

1’s, and finally, again beyond a 0 to the right of that string, it will print F (F (x))+1

1’s. After this is done, it halts. Clearly, M (x)
F F will have 1+ x +2C states, and it is

thus one of the machines to be taken into account when trying to determine

Σ(1+x +2C). Furthermore, we know its score which is equal to:

3+x +F (x)+F [F (x)]

Thus the maximum score Σ(1+ x +2C) is at least as large as the score of Σ(1+
x +2C), and we thus have the following inequality:

Σ(1+x +2C) ≥ 3+x +F (x)+F [F (x)] (9.5)

Now, since clearly x2 >−(1+x +2C) and F (x) ≥ x2 (from Eq. 9.3), we have:

F (x) >−(1+x +2C) (9.6)

Since F (x) is monotone increasing (see Eq. 9.4), the following follows from Eq.

9.6:

F [F (x)] >−F (1+x +2C) (9.7)

From Eq. 9.5 and 9.7 it then follows that:

Σ(1+x +2C) >−F (1+x +2C) (9.8)

hence (by Eq. 9.2) we get:

Σ(1+x +2C) >− f (1+x +2C) (9.9)

in replacing 1+x +2C by n we finally get:

Σ(n) >− f (n) (9.10)

Rádo has thus proven that for any computable function f (n), (10) holds and

Σ(n) is thus a non-computable function. Furthermore, since with every print-

ing operation the machine moves to the left or right, we also have:

S(n) ≥Σ(n) (9.11)

9.3. STUDYING THE “UNIVERSE OF DISCOURSE” 455

thus from (10) and (11) we get:

S(n) ≥ f (n) (9.12)

for every computable function f (n), thus S(n) is also a non-computable func-

tion.

As is clear, the proof of the non-computability of Σ(n) does not use a diago-

nal argument, but is rooted in one of the most basic principles of mathemat-

ics i.e. the idea of a largest element in a finite set of integers. In this way, the

Busy beaver function can be considered as a more natural example of a non-

computable function, relying as it does on an almost primitive idea used in

every area of mathematics.

The proof of the non-computability of the BB-function did not stop Rádo from

doing further research on the BB-function. On the contrary, he and a number

of other researchers began to develop methods to determine Σ(n) for particular

values of n. So why would one try to determine specific values of a function that

is proven to be non-computable in general? As far as Rádo is concerned there

is a very clear answer: he began to wonder whether it is possible to find specific

n for which Σ(n) is non-computable, hoping that calculating Σ(n) from below,

starting from n = 1, might help to gain a better understanding of this problem.

In the following quote, Rádo explicitly states the problem of finding particular

values for n that render Σ(n) non-computable, and situates it in a more general

setting ([Rád63], p. 80):

[...] the (formal) non-computability of the function Σ(n) [...] is directly trace-

able to the definition of Σ(n) for each individual n as the largest element of a

non-empty, finite set of non-negative integers [...] Now if one phrases this type

of definition in terms of logical formulas, it is seen that we are faced with log-

ical expressions of the type ∀∃∀ [...] It is well known that logical expressions

of this type correspond, generally, to unsolvable decision problems. Hence, if

Σ(n0), for example is computable for some particular n0, then one would expect

that the reason should be some particular feature exhibited by machines with

n0 cards, rather than a general theorem applicable to every n. This expectation

is perhaps strengthened by the observation that in the extensive researches on

456 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

solvable cases of decision problems [...] the issue is the identification of special

features which make a particular decision problem of this type solvable. Let us

alone recall the halting problem [...], not only is this problem undecidable for

all Turing machines, but, [...] there exists an individual Turing machine whose

halting problem is undecidable. Hence one would rather expect that in a similar

manner there may exist particular and individual positive integer n0 for which

Σ(n0),S(n0) are non-computable.

At first sight it seems rather counterintuitive to ask for specific values n for

which Σ(n) is non-computable. Indeed, one merely has to check a finite num-

ber of Turing machines, i.e. those with n states with one and the same input:

a blank tape. However, given the general unsolvability of the halting problem,

how will we decide for each machine individually that it will halt for this one

specific input?

As we of course know, the general unsolvability of the halting problem means

that there is no general method to decide for every Turing machine whether

it will halt. In the context of finding particular values of n for which Σ(n) is

computable or non-computable this general theorem – important though as it

is – will not bring us very far, since it does not say anything about particular

decision methods for particular machines with particular inputs. As a conse-

quence, since we do not have a general method, we must search for more par-

ticular methods that make it possible to decide for each machine individually

from a given class, whether it will halt when started with a blank input tape. The

value of Σ(n) for specific n can be calculated iff. we have been able to prove for

every machine individually from the class of machines with n states, that it will

halt or not halt. This is exactly what Rádo is asking for in the quote: he asks for

specific features exhibited by machines from a given class, rather than a gen-

eral theorem, that makes it possible to calculate Σ for the class. The existence

of certain decidability criteria as e.g. proven by Margenstern and Pavlotskaya

[MP95, Pav73] is a good example of how particular features that are not implied

by the general theorem can be used to determine solvable classes.

Conversely, if we want to find a particular value n for which Σ(n) is uncom-

putable, we must also find a way to show that there exist classes of Turing ma-

9.3. STUDYING THE “UNIVERSE OF DISCOURSE” 457

chines with n states, for which there are specific features that make it impos-

sible to decide for each machine individually whether it will halt when started

with a blank input tape. In other words, for Σ(n) to be non-computable for

particular n, there must exist machines with n states for which one can prove

that there exists no effective method to predict whether that machine will halt

when started with a blank input tape. We already know that there exist specific

instances of Turing machines with an unsolvable halting problem, i.e. universal

machines. However, as we already mentioned in the previous section, none of

the machines we have looked at, offers any challenge whatsoever with respect

to the Busy Beaver Game. One of the problems here might be that for now the

only way to prove for a given specific machine that it is unsolvable is to prove it

universal. As is stated by Sutner ([Sut03], p. 366–367)

As a matter of experience, concrete and natural r.e. problems in mathematics

and computer science all appear to be either decidable or complete.

If one would find a method to prove a given instance unsolvable, without it be-

ing Turing complete, one would have proven that it is of an intermediate degree

of unsolvability. Maybe if one would be able to find such proofs, one would be

able to determine particular values n that render Σ(n) non-computable, but of

course this is a mere speculation from our side. Until now it is still an open

problem to prove for specific machines (with or without particular inputs) that

they are unsolvable without being universal (i.e. Turing complete). As is stated

by Michel, whose research will be discussed later on in this section [Mic04]:

It is well known that there are recursively enumerable sets that are neither m-

complete, nor recursive. So, there are Turing machines that are not universal,

but have an undecidable halting problem. [...] Presently, we can settle the halt-

ing problem for a given Turing machine either by producing an algorithm to

prove it decidable, or by simulating a universal machine to prove it undecidable.

When facing an instruction table for a Turing machine which is neither decid-

able, nor universal, we have no method available to prove it undecidable, and

no more method to prove it not universal. Therefore, studying the undecidabil-

ity line independently of the universality line would require a breakthrough in

computability science.

458 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

As was said, in order to gain a better understanding of how one could find spe-

cific n for which Σ(n) is non-computable, Rádo (in collaboration with Shen Lin)

began to compute specific Σ(n).

Computing Σ(n)

The first most obvious way to find specific values n for which Σ(n) is non-

computable, is to try to effectively calculate Σ(n) for increasing n. With n given

one must then determine for each machine with n states individually whether

it will halt or not. Trying to do this by hand, very quickly becomes an unreason-

able job, since the number of machines N(n) with n states is equal to:

N(n) = [4(n +1)]2n

For n = 1, it is easily determined that Σ(n) = 1. Also the case where n = 2 is

rather easy to solve by hand, Σ(n) = 4,S(n) = 6. However, to determine Σ(3)

or S(3) with N(3) = 16777216, the computer seems to become an indispens-

able instrument. Even with a computer it is very hard to determine Σ(3) if one

has not some kind of method to exclude a large number of machines. Together

with Shen Lin, Rádo began to develop several methods to compute Σ(3) and

S(3). These methods were programmed. The computer could then be used

to exclude machines as possible winners, and to study the behaviour of those

that were not excluded by the initial methods. In this way Rádo indeed imple-

mented the idea of finding particular features of machines to decide whether

they will halt on a blank input tape.

A first reduction of the number of machines with 3 states (N(3) = 16777216)

was accomplished through a method called tree normalization, and can be de-

scribed as follows. First of all, given a machine M , consider its mirror image

M∗, the machine obtained by replacing each right shift in M by a left shift, and

each left shift by a right shift. Clearly, M∗’s behaviour is equivalent to that of M ,

if M halts after t steps, having printed x 1’s, M∗ will halt in the same number of

steps, having printed the same number of 1’s. Given this symmetry, we merely

have to look at those machines which go to the right when in state 1, scanning

a 0 (or, equivalently, those that go to the left).

9.3. STUDYING THE “UNIVERSE OF DISCOURSE” 459

Secondly, since the machines are always started in state 1, scanning a 0, if the

instruction is to go to the halting state (called state 0) then the machine will halt

after one step. If the machine goes to state 1 from state 1 after having scanned a

0, it gets into a simple loop. Therefore, we only have to take into account those

machines that go to a new state from state 1 after having scanned a 0, different

from the halting state. Since the labels of the states are arbitrary, we can fur-

thermore restrict attention to those machines going from state 1 to 2.

A final reduction is achieved by only taking into account those machines that

print a 1 in state 1, scanning a 0. If it does not print a 1 in state 1, let us look at the

further operations of the machine, until it prints its first 1. Let us then restart

the machine in this state. In this new start the machine will halt iff. the original

machine did, and both machines will produce the same number of 1’s.19

Taking all these considerations together, Lin and Rádo could thus restrict their

attention to machines for which the first instruction to be performed is to print

a 1, go to the right and then to state 2. This approach was generalized by Mach-

lin [Kop81] and Brady [Bra83], but the details will not be discussed here. Using

this normalization, Rádo and Lin were able to reduce N(3) to 82844. While this

is a considerable reduction, we are still left with a large number of machines.

This number was further reduced as follows. Each of the individual machines

was run on a computer. Those that halted in less than 21 steps were also dis-

carded, storing their number of steps and number of 1’s printed before halting.

The remaining machines were then run, printing out the behaviour of the first

50 in the list.

The behaviour of each of these 50 machines was then further examined, to de-

termine whether they show patterns indicating that the particular machine will

never stop, and has entered an infinite loop. From the analysis of these ma-

chines, they observed a certain recurrent pattern, i.e. simple loops. This pat-

tern was programmed, and the remaining machines showing this kind of pat-

tern could also be excluded. “As a matter of luck”, it turned out that the recur-

rent pattern found disposed of all but 40 machines. These 40 “holdouts” were

19However, the new start will take fewer steps than the original, so this reduction might un-

derestimate S(n) by n −1. The solution of this problem will not be discussed here. The inter-

ested reader is referred to [MS90].

460 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

then further examined, and it turned out that all showed another kind of pat-

tern we are already familiar with, i.e. Christmas trees, which made it possible

to decide that these “holdouts” were also “never-stoppers”. In this way Rádo

and Lin were able to prove that Σ(3) = 6, S(3) = 21. Later, these methods were

further refined by e.g. [Bra83], [Kop81] and [MS90], further differentiating be-

tween the different patterns, but we will not discuss the details of this research

here.

More important here is the fact that in studying the Busy Beaver function, try-

ing to determine Σ(n), one starts from existing classes of machines, and, as

a consequence, uses an approach combining a more abstract analysis of the

rules with an analysis of the behaviour of the machines. Within this approach

one does not care about what kind of functions are actually computed. Rather

one tries to determine for each machine individually whether it will halt or not,

combining human and machine work, developing both theoretical as well as

more heuristic methods.

As is noted by Brady, after having used the normalization method to exclude

a large number of machine to calculate Σ(4), one has to rely on pure heuristic

methods, that nonetheless lead to rigorous proofs ([Bra83], p. 647):

The four-state case has previously been reduced to solving the blank input tape

halting problem of only 5820 individual machines. In this final stage of the k

= 4 case, one appears to move into a heuristic level of higher order where it is

necessary to treat each machine as representing a distinct theorem. [...] The proof

techniques, embodied in programs, are entirely heuristic, while the inductive

proofs, once established by the computer, are completely rigorous and become

the key to the proof of the new and original mathematical results: Σ(4) = 13 and

S(4) = 107.

Once one has excluded a considerable number of machines through (a gener-

alized method of) tree normalization, each machine has to be treated individu-

ally. The only way left for Brady to determine Σ(4), as was the case for Σ(3), is to

analyze the behaviour of several machines individually, trying to find every pos-

sible pattern that implies infinite loops, and then program the patterns found

in a way the pattern can be detected for other machines. Using these methods,

9.3. STUDYING THE “UNIVERSE OF DISCOURSE” 461

Brady was able to calculate Σ(4) = 13 and S(4) = 107. This result was also found

independently by Kopp (Machlin’s girl name) using similar methods [Kop81].

On the problem of determining specific n for which Σ(n) is uncomputable

Returning to Rádo and Lin, after having described the methods they used to

solve the case Σ(n), they make explicit one of the problems involved when try-

ing to calculate Σ(n) for particular n ([LR65], p. 199):

We may stress here a certain point of interest. Even though only 40 holdouts were

left, it was not clear a priori that it can be decided as to whether they are never-

stoppers or not, for a given machine may exhibit such a bizarre operating record

or exhibit patterns that occur only after a prohibitive number of shifts that no

human being could be expected to decide that it will never stop. It is also entirely

conceivable that we may have on our hands a machine which is undecidable for

some logical reason.

Suppose we are working on a given class of Turing machines with n states and

we are left with only 1 holdout. We have looked at the behaviour of the machine

for billions of steps, still we have not detected any clear pattern that allows us

to eliminate it from our list, rendering the values Σ(n) and S(n). Neither has it

halted. So how will we ever calculate Σ(n) and S(n)?

There are only two possible ways out of this problem. One can try to show by

one or the other rigorous method that the holdout will in the end halt or get

into an infinite loop. Or, one concludes one has found a particular value for

n for which Σ(n) and S(n) are non-computable, because you have proven that

there exists no effective method to decide that it will halt when started with a

blank tape. Although it might halt some day, or get into an infinite loop, there

is no other method but to wait and see. Rádo was well-aware of the problems

involved for determining specific values n for which Σ(n) is non-computable

or computable, and understood how this problem is not only a problem for the

machines and formalisms themselves, but also for us humans ([LR65], p. 211–

462 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

212):20

The reader may surely realize that if one attempts to apply the method described

above to the problem BB−1963, for example, then difficulties of prohibitive char-

acter are bound to arise. In the first place, the number of cases becomes astro-

nomical, and the storage and execution for the computer programs involved will

defeat any efforts to use existing computers. Even if we assume that somehow

we manage to squeeze through the computer the portion of our approach in-

volving partial recursive patterns, the number of holdouts may be expected to

be enormous. Over and beyond such “physical”difficulties, there is the basic fact

of noncomputability of Σ(n), which implies that no single finite computer exists

that will furnish the value of Σ(n), for every n. In the absence (at present) of a

formal concept of “noncalculability” for individual well-defined integers, it is of

course not possible to state in precise form the conjecture that there exist values

of n for which Σ(n) is not effectively calculable.

As was said, in order to get a more formal grip on the idea of proving Σ(n) non-

computable for specific values of n, Rádo and Lin began to explicitly calculate

Σ(n) for particular n:

Our interest in these very special problems was motivated by the fact that at

present there is no formal concept available for the “effective calculability” of

individual well-defined integers like Σ(4),Σ(5), (We are indebted to Professor

Kleene of the University of Wisconsin for this information) We felt therefore that

the actual evaluation of Σ(3),SH(3) may yield some clues regarding the formula-

tion of a fruitful concept for the effective calculability (and noncalculability) of

individual well-defined integers.

Instead of trying to make progress on this problem in a more theoretical way,

Rádo and Lin started from the execution of the systems themselves, because

the theory itself seemed to fall short. As far as we can see, this indeed seems to

be the best way to at least make a start for tackling such problems.

20The Busy-Beaver game thus offering a clear challenge for Dr. Copeland’s ideas about hy-

percomputability

9.3. STUDYING THE “UNIVERSE OF DISCOURSE” 463

9.3.2 Busy Beavers and Collatz-like Problems

After Rádo and Lin computed Σ(3) and S(3), several other researchers began to

examine the Busy Beaver problem, trying to compute Σ(n) for particular n. I

will not go into the details of further research on the Busy Beaver Game here.21

Let me merely note that after Machlin-Kopp and Brady settled the question for

the actual values ofΣ(4) and S(4), no new such values have been determined for

any other n, nor for any class of Turing machines with more than two symbols,

there “only” being many conjectured values or proven lower bounds. This fur-

ther illustrates the intractability of the Busy Beaver problem. An overview of the

current records can be found at the website of Pascal Michel, http://www.logique.

jussieu.fr/ michel/bbc.html.

In two papers [Mic93], [Mic04] Pascal Michel proved that certain instances of

Collatz-like functions including the famous 3n + 1-problem, are reducible to

very small Turing machines. For some of these reductions, Michel did not use

the more “traditional” methods for encoding functions into Turing machines,

i.e. constructing a Turing machine that computes the function, but started from

conjectured Busy Beaver winners, and proved the reduction through an analy-

sis of the behaviour of the machines.

These results are important here for two reasons. First of all, as was said, for

some of the reductions, Michel started from an analysis of the behaviour of

particular machines. Secondly, these reductions can be used to gain new in-

sights in the limits of solvability and unsolvability in Turing machines. Before

further discussing this work by Pascal Michel, it is important to define Collatz-

like functions. We will also discuss a result by John Conway. He proved that

Collatz-like functions are generally unsolvable, i.e. it is possible to construct a

universal Collatz-like function.

21A bibliography on the Busy Beaver Game can be found on the internet [Wij].

464 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

Collatz-like functions and the Polygame

Let C :N→N be defined by:

C (n) =
{

n
2 if x is even

3n +1 if x is odd

The 3n + 1-problem is to determine for any n ∈ N, whether C (n) will end in

a loop 4, 2, 1 after a finite number of iterates. Most mathematicians agree

that this is indeed the case for any natural number n, but the result was never

proven and is still in a conjectural phase. There is clear heuristic support for

the truth of this conjecture. It has been verified for any number n ≤ 224X250 ≈
2 ·52X1017. Furthermore, there is a heuristic probabilistic argument supporting

the conjecture. Choose an odd integer n0 at random and iterate the function

T until another odd integer n1 is found. Then in 1
2 of the time, n1 = (3n0)/2, 1

4

of the time n1 = (3n0)/4, ...If one presupposes that the function T is sufficiently

“mixing” in that successive odd integers in the trajectory of n behave as though

they were drawn at random (mod 2k) from the set of odd integers (mod 2k) for

all k, then the expected growth in size between two consecutive odd integers

is the multiplicative factor 3
4 . This argument suggests that on the average the

iterates in a trajectory tend to shrink in size.22

Despite the existing heuristic support for the conjecture, it is still not proven.

This is due to the known intractability of the 3n +1-problem, as one e.g. sees

in looking at the behaviour of the number of iterates needed before entering

the loop for increasing integers. The 3n +1-problem, also known as the Collatz

problem, after its inventor Lothar Collatz,23 is one of these problems in math-

ematics the solution of which seems as difficult to find as the formulation of

the problem is simple. For years several researchers have studied the 3n + 1-

problem and some of its generalizations without any success of finding a solu-

tion. Besides its known intractability, it is considered interesting because it is

connected to several other branches of mathematics, including ergodic theory,

22This argument was first formulated by Crandall [Cra78]. The explanation of the argument

given here is based on Lagarias’ general overview of the 3n +1-problem [Lag85].
23Lothar Collatz first defined this function in the thirties. There are still several other names

for the problem.

9.3. STUDYING THE “UNIVERSE OF DISCOURSE” 465

Markov chains and computability theory. I will not discuss the details of the re-

search on this problem.24 To illustrate the difficulty of the problem, let me add

the following statement by Kakutani25

For about a month everybody at Yale worked on it, with no result. a similar phe-

nomenon happened when I mentioned it at the University of Chicago. A joke

was made that this problem was part of a conspiracy to slow down mathematical

research in the U.S.

In [Mic04] Pascal Michel considers generalized functions of C , called Collatz-

like functions. These are based on the following equivalent form of the 3n +1-

function:
C (2m) = m,

C (2m +1) = 3m +2.

Given integers d ≥ 2; a0, a1, ..., ad−1; r0, r1, ..., rd−1; x ∈N a Collatz-like function is

defined as follows:26

G(n) =


m0 If n ≡ 0 mod d

m1 If n ≡ 1 mod d
...

md−1 If n ≡ (d −1) mod d

where mi is either undefined or denotes an operation of the following form:

ai (n −mi)

d
+ ri

Similar generalizations were already considered by Conway. In 1972 he pre-

sented a paper Unpredictable Iterations at a conference on number theory [Con72].

He proved that there is no general decision procedure for Collatz-like functions,

24Good introductions on Collatz-like functions can be found in [Lag85,

Lag95], an annotated bibliography is available on the net via Arxiv at:

http://www.cecm.sfu.ca/organics/papers/lagarias/paper/html/paper.html [Lag06]. Note

that [Lag95] is a more recent and seriously extended version of [Lag85].
25Quoted in [Lag95], from a private conversation dated 1981, Kakutani describing what hap-

pened after he circulated the problem around 1960
26It should be noted that Michel extends these functions to functions of pairs of integers.

466 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

i.e. a procedure that decides for any given Collatz-like function whether it will

yes or no result in the value 1 after a finite number of iterates for each integer n.

The formulation of these generalized Collatz-like functions for which Conway

proved the result, is different from the one given above. He considered func-

tions g (n):

g (n) = ai n n ≡ i mod P

where a0, ..., ap−1 are rational numbers chosen such that g (n) is always integral,

i.e. the denominator of each ai must be a divisor of the greatest common divi-

sor of P and i .27

Conway proved this class of functions unsolvable, by showing that any regis-

ter machine can be represented by a Collatz-like function, but did not provide

an explicit construction of a universal Collatz-like function in this paper. In

[Kas92], Kas̆c̆ák provided a method for constructing a universal Collatz-like

function. Its encoding is rather complicated: one first has to reduce a uni-

versal Turing machine to a two register machine. Reduce that machine to a

specially constructed 6 register machine, which is then reduced to a 1 regis-

ter machine with 66 instructions (but needing exponential encodings). Finally,

it is shown how this machine can be reduced to a Collatz-like function. The

resulting Collatz-like function has a modulus 396. About 15 years after the

publication of his Unpredictable Iterations also Conway constructed a univer-

sal function, that can be reformulated in terms of Collatz-like functions, called

the Polygame, by using his encoding methods from [Con72].

In 1987, Conway published the paper FRACTRAN- A Simple Universal Comput-

ing Language for Arithmetic that explores his 1972 result, containing a specific

example of a universal, and thus generally unsolvable, Collatz-like function. In a

subsection called Avoid brand X, Conway writes ([Con87], p. 8)

Works that develop the theory of effective computation are often

written by authors whose interests are more logical than computa-

tional, and so they seldom give elegant treatments of the essentially

computational parts of this theory. Any effective enumeration of the

27It is important to point out that these functions can be rewritten in the form for Collatz-like

functions given above, by setting the modulus P equal to the product of the denominators.

9.3. STUDYING THE “UNIVERSE OF DISCOURSE” 467

computable functions is probably complicated enough to spread

over a chapter, and we might read that “of course the explicit com-

putation of the index number for any function of interest is totally

impracticable.” Many of these defects stem from a bad choice of the

underlying computational model. Here we take the view that it is

precisely because the particular computational model has no great

logical interest that it should be carefully chosen. The logical points

will be all the more clear when they don’t have to be disentangled by

the reader from a clumsy program written in an awkward language,

and we can then “sell” the theory to a wider audience by giving sim-

ple and striking examples explicitly.

As is very clear from this quote, Conway’s Fractran, based on Collatz-like func-

tion, was developed from a very specific point of view. To Conway, it is not at

all obvious that Turing machines or partial recursive functions are the dominant

framework in computability theory. Indeed, as was argued in previous chapters,

despite the theoretical equivalences between e.g. Turing machines and tag sys-

tems, it is very important to be aware of the many intricate differences between

these different formalisms, and one must be very careful in choosing one com-

putational model over the other, depending as it does on what one wants to do.

Let us now turn to Fractran, a programming language based on the fraction game.

The game is played with a given list of fractions

f1, f2, ..., fk

and a starting integer n. You repeatedly multiply the integer you have at any stage

by the first fi in the list for which the answer is integral. If there is no such fi , the

game stops. Using this kind of framework, Conway defines several games called

the primegame, the pigame and the polygame. The primegame uses a sequence

of fractions, such that if the game is started with 2, the sequence of powers of 2

that is generated by the iterative application of the primegame is the sequence of

prime numbers.

The pigame is such that when started at 2n , the next power of 2 to appear is the

n-th bit in the decimal expansion of π. The polygame is a universal game, and

can be rewritten in terms of Conway’s definition of Collatz-like functions. It is

described by the following list of fractions:

583
559

629
551

437
527

82
517

615
329

371
129

1
115

53
68

43
53

23
47

341
41

41
43

47
41

29
37

37
31

299
29

47
23

161
15

527
19

159
7

1
17

1
13

1
3

Now, define the function fc (n) = m, if polygame, when started at c22n
stops at

468 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

22m
and otherwise leave fc (n) undefined. Then it can be shown that every com-

putable function appears among f0, f1, f2, For example, f37485 is equivalent to

subtraction over the positive integers, where 1 → 0, and n +1 → n. The pigame

can be simulated by setting c = 3 ·5 ·5289·101!+290·101! ·17101!−1 ·23. I will not go into

the details of the proof of the universality of polygame here, nor will I give the

details for finding specific c for specific computable functions. Let me merely

note that one of the further advantages Conway sees in this game is the fact that

the input of polygame is always one single integer ([Con87], p. 8):

The entire configuration of a FRACTRAN machine at any instant is

held as a single integer – there are no messy “tapes” or other foreign

concepts to be understood by the fledging programmer

Of course, there is one clear disadvantage to Conway’s fractran. When started,

the input of Polygame grows exponentially with n. Furthermore, the values c

needed to compute particular functions can be very large.

Although the example of Polygame can be compared to the construction of uni-

versal Turing machines as discussed in the previous section, we wanted to men-

tion it here because it is rooted in a problem further removed from mathematical

logic, and still, through the general unsolvability of Collatz-like functions, very

closely connected to this domain.

Small Busy Beaver machines and Collatz-like functions.

Now that we know what a Collatz-like function is, we can finally look at their

connection with Turing machines. In [Mic93], Pascal Michel proved that the

3n+1-problem is reducible to the class TM(6, 3) of Turing machines. In [Mar00],

Margenstern proved that it can be reduced to the classes TM(11,2), TM(5,3),

TM(4,4), TM(3,6) and TM(2,10) and calls the set of these machines the present

3n+1-line. This line is drawn by connecting the points of the machines known

to be able to compute the 3n + 1 function, the machines being arranged in a

symbol-state diagram (see fig. 9.1). The line is situated between the present

solvability and universality line. Margenstern furthermore mentions that Baioc-

chi has improved upon this result, through reduction to the classes TM(10,2),

9.3. STUDYING THE “UNIVERSE OF DISCOURSE” 469

TM(3, 5), and TM(2, 8).

None of these encodings however was obtained by an analysis of a given ma-

chine, i.e. the machines were constructed. Michel also proved that the halting

problem for some other Turing machine classes depend on the decision prob-

lem of some other Collatz-like functions. He proved this for the classes TM(5,2)

[Mic93], TM(2,4), TM(3,3) and TM(5,2) [Mic04] and calls this set of machines

the present Collatz-like line, situated between the present 3n+1-line and solv-

ability line. The method used for these last reductions however is in contrast

with the methods he used to reduce the 3n + 1-problem. The machines were

not constructed with the aims of computing certain Collatz-like functions. On

the contrary, Michel started from machines the behaviour of which had already

been studied by other researchers in the context of the Busy Beaver Game. The

Collatz-like functions considered, are now defined over pairs of integers, in-

stead of over one single integer.

Given a Turing machine M over a finite alphabet Σ, and let Σ∗ denote the set

of finite words from alphabet Σ. If x ∈ Σ∗, let us define x0 as the empty word,

and for any n >≥ 1, xn+1 = xn x. an infinite number of 0’s to the the right string

of 0’s is denoted by 0ω, similarly ω0 denotes an infinite number of 0’s to the

left string of 0’s. A configuration on the tape of a machine M is then denoted as
ω0x(Z a)y0ω where Z is the state the machine is in, a ∈Σ is the symbol scanned,

x, y ∈Σ. If C1 and C2 are two configurations of M , then C1 ` (p)C2 if the machine

goes from C1 to C2i np* steps. M , then C1 ` (p)END is used if configuration C1

leads in p steps to the halting state H .

The following instruction table describes the Busy Beaver record holder MBB(4,2)

in the class of Turing machines with 4 symbols and 2 states (Σ(4,2) = 90,S(4,2) =
7195):

0 1 2 3

A 1RB 2LA 1RA 1LA

B 3LA 1RH 2RB 2RA

Michel proved the following proposition.

470 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

Proposition 1 : Let us denote the following configuration of MBB(4,2). For every

n ≥ 0,C1(n,0) =ω (A0)2n0ω, and C1(n,1) =ω (A0)2n30ω Then for every k ≥ 0,

C1(3k,0) ` (15k2 +7k +3) C1(5k +1,1)

C1(3k +1,0) ` (15k2 +22k +11) END

C1(3k +2,0) ` (15k2 +27k +13) C1(5k +4,0)

C1(3k,1) ` (15k2 +28k +16) END

C1(3k +1,1) ` (15k2 +33k +19) C1(5k +5,0)

C1(3k +2,1) ` (15k2 +43k +33) C1(5k +7,1)

This proposition indeed shows that the machine MBB(4,2) computes a Collatz-

like function over two integers. Michel thus concludes that the halting problem

for MBB(4,2) involves a study of the functions g defined by:

g (3k,0) = (5k +1,1)

g (3k +1,0) = undefined

g (3k +2,0) = (5k +4,0)

g (3k,1) = undefined

g (3k +1,1) = (5k +5,0)

g (3k +2,1) = (5k +7,1)

As is noted by Michel, the behaviour of g is still an open problem in that it is

unknown whether g will always lead to an undefined value (although Michel

conjectures that it does).

What makes this proposition so interesting here is that “[t]he result is given by

a tedious analysis of the behaviour” of the machine [Mic04]. This illustrates

that starting from an analysis of the behaviour of specific machines, can in-

deed be a very useful approach, one that clearly does not remain restricted to

the heuristic domain, but leads to rigorous results. As was said before, this ap-

proach seems particularly interesting if one studies ever smaller systems, as is

clear from the example given here, and might thus contribute to lowering the

limits of unsolvability, or increasing the limits of solvability. As was said, Michel

found similar results for some other small machines, that are not all current

Busy Beaver record holders, but I will not give the details of the results.

Looking at the 3n + 1 line in Turing machines as well as the universality line,

9.3. STUDYING THE “UNIVERSE OF DISCOURSE” 471

Michel concludes that both lines could be lowered by future work. He also notes

that the present Collatz-like line is already on its lowest level, any lower level

implying their solvability, with the possible exception of 4-state, 2-symbols ma-

chines. Michel furthermore conjectures that these smaller machines – simulat-

ing Collatz-like functions in a way standing in clear contrast with e.g. the simu-

lation of tag systems in Minsky’s 4 by 7 machine – can be shown to be solvable.

Still, given the known intractability of many Collatz-like functions this reduc-

tion to small Turing machines shows how hard it might be to prove these classes

solvable. The more “traditional” reduction of the 3n +1 problem to small ma-

chines by Baiocchi, Margenstern and Michel further strengthens this.

While Michel’s work shows that both the more “traditional” encoding techniques,

as well as an analysis of the behaviour of Turing machines, can be useful to un-

derstand the problems that might be involved in proving a given class of Tur-

ing machines solvable, depending as it does on problems known to be hard

to solve, we still do not have an example of some kind of machine, consider-

ably smaller than the known universal ones, that is proven to be universal by

using methods that clearly differ from the ones discussed in the previous sec-

tion. Such examples have been established rather recently by Matthew Cook

[Coo04], proving the existence of small “universal” machines in the following

classes (5, 2), (4,3), (3,4) and (2,7). The proofs are based on a similar result,

already mentioned, in the domain of cellular automata, i.e. the proof of the

“universality” of rule 110.

9.3.3 On the “universality” of cellular automaton rule 110.

In [Wol02] Wolfram gives the description of the proof of the universality of a

1-dimensional, 2-state cellular automaton (CA) with radius 1, known as rule

110, which is due to Matthew Cook [Coo04]. In Sec. 9.1 we already pointed

out that Wolfram has identified four general classes of behaviour for cellular

automata, the class 4 automata considered as the most “exciting” ones, con-

taining the so-called “complex” automata which are considered to be “univer-

sal”. Rule 110 is in class 4, and the proof of its “universality” is used by Wolfram

to support his more philosophical so-called Principle of Computational Equiv-

472 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

alence, of which one of the implications is that something is either universal

or solvable, where this “something” is not restricted to the abstract world, but

applies equally well to the physical world.28 Given the “universality” and the

formal simplicity of rule 110, Wolfram goes on to conclude that there is a very

low threshold in our world for something to attain universality and in this sense

to be of a highest degree of “complexity”, i.e., nothing can exceed the observed

complexity of rule 110’s behaviour.

In turning our attention to the proof of the “universality” of rule 110, it should

be noted that Cook’s construction is very ingenious and deserves special at-

tention here. As was said, using the methods of this proof, Cook was able to

prove that there exist very small “universal” Turing machines. We will first give

a description of the general structure of the proof, followed by a discussion of

the method used. It will then be explained why the word universality has been

placed between double quotes here.

General structure of the proof

Wolfram classified rule 110 as class 4 CA. This class contains CA that show be-

haviour lying at the edge between very simple repetitive behaviour and random

behaviour, automata which are neither too repetitive nor too random and are

for this reason considered “complex”.29 What one observes in looking at the

evolution of CA 110, is a complex interaction between several structures, on

the background of a simple repetitive pattern.

The proof of the universality of rule 110 is rooted in its ability to simulate any-

thing calculable by cyclic tag systems. This variant on tag systems was devel-

oped by Matthew Cook and shown to be universal through reduction of tag

systems to cyclic tag systems. A cyclic tag system is defined over a 2-symbol

alphabet. Furthermore one has a finite list of n words w1, w1, ..., wn , which have

to be tagged sequentially, starting from the first word. If the last word in the list

has been tagged, one starts again with the first word. Now given an initial string

28Note that Wolfram’s principle thus excludes the possibility of natural examples of interme-

diate degrees, as is pointed out by Sutner [Sut05].
29The terminology used is of course that used by Wolfram. Thus, if we use the word random

here, we mean random as interpreted by Wolfram, i.e., statistical randomness.

9.3. STUDYING THE “UNIVERSE OF DISCOURSE” 473

A. If its left-most symbol is 1, w0 is tagged at the end of the string, and the first

symbol is erased, if the first symbol is 0, the empty word is tagged at the end of

A, and the first symbol is erased. In general, given a string produced at iteration

step x, if its first symbol is 1, tag the word wx mod n at the end of the string and

erase the first symbol. If the leftmost symbol is 0, the empty word is tagged and

the first symbol is erased.

To show the universality of rule 110, we need an infinite number of certain lo-

calized patterns embedded in an infinitely repeating background. The back-

ground pattern has length 14, and repeats itself every 7 iteration steps and is

equal to: 00010011011111. There are three localized patterns which are basic

to the proof.

The first structure S1 shifts two cells to the right, and repeats itself every three

iterations. It is the sequence 0001110111. The second structure S2 shifts 8 cells

to the left and also repeats itself after 3 iterations. The last structure S3 is sta-

tionary, it never moves to the left or right, it repeats itself every 6 iteration steps.

The representation of the cyclic tag system has three main components. First

of all, there is the data string, representing the strings produced in the cyclic

tag systems, which always remains stationary, i.e. it repeats itself every n steps,

but does not move to the left or right. Secondly, we need an infinite sequence

of production rules. I.e. in rule 110 it is necessary that the encoding of the se-

quence of words to be used is repeated infinitely often to the right of the data

string. These rules pass through the data string, coming from the right. Finally,

there is a infinitely repeated sequence of clock pulses which start from the left

and move to the right. They are used to make sure that the right words are

tagged at the end of the data string. The spacing between these three compo-

nents is basic for the simulation to work. The encoding of the initial condition

is very complicated and must be such that the different localized structures can

interact with each other at the perfect time.

The data string processed by the cyclic tag system is encoded through the rep-

etition of S3 for a certain number of times equal to the length of the data string.

The letters of the string, 0 and 1 are differentiated from each other by vary-

ing the horizontal space between two consecutive such S3’s. Furthermore, it

should be noted that the encoding of the data string is reversed, i.e. the left-

474 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

most symbol in the data string processed by the cyclic tag system is the right-

most structure S3 in rule 110, and vice versa. Now in simulating one iteration

step of the cyclic tag system, rule 110 must be able to always destroy the en-

coding of the first symbol of the data string (the rightmost structure S3), and

to tag the right word if the first symbol encoded is 1, and the empty word if the

first symbol is 0. Now, as was said, a structure S2 always moves to the right,

repeating itself. This structure is used in the encoding of the sequence of words

defining the cyclic tag system. Each word wi is represented by the repetition of

S2 for a certain number of times equal to the length of wi , where 0 and 1 are

again differentiated by varying the spaces between the S2. Furthermore, every

word is separated by the so-called rule separator, a localized structure which

moves to the left at the same speed as S2.

Now, the encoding of the set of words of the cyclic tag system must be repeated

infinitely often to the right of the data string, constantly shifting further and

further to the left. Then, when a rule separator, coming from the right, col-

lides with the encoding of the first symbol in the data string, i.e. its leftmost

S3, this symbol will be destroyed. Depending on the spacings between the left-

most S3 and to the left of it, the rule separator in colliding with this spacing, is

transformed into one of two new structures. If the spacing between these two

rightmost S3 is such that the rightmost symbol is identified as 0, the rule sepa-

rator is changed into a structure that blocks the incoming word from the right.

This transformed rule separator is destroyed when the next rule separator en-

ters from the right.

If the spacing between the rightmost and next symbol was that used for the en-

coding of 1, the rule separator is transformed into a new structure that does not

block the incoming word. This new rule separator will also have been destroyed

when the new separator enters from the right, however not before having al-

lowed a series of structures to pass through towards the left, i.e. the encoding

of the word to be tagged. These structures will then be tagged at the leftmost

symbol of the data string. This is done by using the above mentioned clock

pulses, which are encoded though S1. This S1 is repeated infinitely many of-

ten to the left of the data string, always moving to the right. If the encoding of

our word, allowed to pass through by the transformed rule separator, reaches

9.3. STUDYING THE “UNIVERSE OF DISCOURSE” 475

the left end of the data string, these clock pulses are used to tag the right bits

in the proper encoding. If the encoding of a bit from this word is 1, the clock

pule meeting it will transform this S2 and its spacing in a stationary S3 with the

proper spacing needed for the encoding of a 1 in the data string. A similar pro-

cedure is performed when the incoming symbol is 0.

Using this kind of transformations, rules coming from the right, colliding with

the data string, the clock pulses coming from the left, to arrange the right tag-

ging operation, it can be shown that any cyclic tag system can be simulated by

rule 110.

Discussion of the proof

As is hopefully clear, the methods used by Cook differ significantly from those

discussed in the previous section. Although one needs perfectly encoded initial

conditions, the respective structures being spaced such that their collisions are

synchronized, the method used is clearly based on a “tedious analyses of the

behaviour” of rule 110. Indeed, in order to achieve what Cook has done one

must be very familiar with the things rule 110 is capable of. The proof itself

does not start from the instruction table of rule 110, it starts from the structures

which can be produced by rule 110 and how these structures evolve depend-

ing on what kind of other structures they ‘collide’ with within the CA. Evidently,

Cook did not find this proof by starting from cyclic tag systems to construct a

universal CA which happened to be rule 110. Rather it was on the basis of a long

sequence of observations, that the conjecture of the universality of rule 110 was

made. Then Cook started to investigate rule 110, probably having tested differ-

ent kind of structures and their collisions to finally end up with this very com-

plicated proof. The significance of the computer in this context can hardly be

underestimated. We have thus new support for the idea that focussing on the

behaviour of certain computational systems rather than on the specific func-

tions they compute, can lead to important results in the context of limits of un-

solvability. Again it is clear that this method is used when a very small system

is involved the behaviour of which indicates that it might be a very powerful

computational tool, while its rules can give us hardly any information here.

476 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

Despite the fact that this proof by Cook further supports some of the ideas put

forward here, there is one problem with the proof: it doesn’t satisfy Davis’s defi-

nition of universality. Let us recall that the reason for Davis to write his note was

to give a definition for universal devices, for which the encoding can always be

done by a non-universal machine. The proof that Davis’s definition of univer-

sality, in terms of what is now often called Turing completeness, indeed satisfies

this condition, is based on the fact that the encoding can always be done by re-

cursive functions, which in their turn can be proven to be strongly computable.

I.e. they can be computed by a Turing machine that always halts.30 Now, in

order to generate the proper input for rule 110 to simulate a given cyclic tag

system, we cannot use a Turing machine that strongly computes the encoding

function, since the input for rule 110 is infinite and can thus not be the out-

put of a machine that halts in a finite number of steps. The “universality” of

rule 110 is thus not covered by Davis’s definition of universality. The follow-

ing reasoning clarifies the significance of the problem. Before starting rule 110

simulating a cyclic tag system, the initial condition must be encoded by say a

Turing machine. However, rule 110 can never be started because it has to wait

until the production rules and the clock pulse have been encoded an infinite

number of times. The only other possibility left is that neither clock pulses nor

production rules are repeated infinitely many often. The simulation can then

only succeed if one knows in advance what will happen with the cyclic tag sys-

tem, i.e. if one knows that it will halt, or become periodic. However, in order to

know this one must first solve the halting problem for cyclic tag systems. And

even if we would be able to solve the halting problem, we would still need infi-

nite repetition of production rules and clock pulses when cyclic tag systems are

involved that never halt nor become periodic.

Moreover, a major problem for me personally with this kind of encoding is that

the class of computational systems the universality of rule 110 is based on,

cyclic tag systems and indirectly tag systems, seem not to be capable of this

kind of encoding, since these systems do not allow for this kind of infinite en-

30It is maybe interesting to note that Post’s definition of 1-giveness also required that a given

problem should be encoded by a finite procedure that always terminates (See Sec. 3.1.3, p.

135).

9.3. STUDYING THE “UNIVERSE OF DISCOURSE” 477

codings. Of course one could say that, virtually, there are infinitely many 0’s

to the right of a tag string, but this still doesn’t help us any further here. If we

would have an encoding of the production rules of one or the other system by

repeating them infinitely often, we are confronted with two problems. First

of all, tagging something at the end of an infinite string, can at least be called

problematical. Secondly, even of we would allow this, it would take infinite time

before the word tagged at the end of our infinite string would be processed and

the tagging operation would thus have no effect at all on the future behaviour

of the process.

Tag systems and cyclic tag systems are not the only class of computational sys-

tems for which this kind of encoding is impossible. For example, also register

machines do not allow such encoding, since one would have to use an infinite

number of registers, or an infinite number representing the infinite sequence of

production rules. In general, one can conclude that the special kind of encod-

ing used by Cook can only be applied to computational systems which operate

on infinite tapes in some or the other way, like Turing machines or cellular au-

tomata. Tag systems, on the other hand, seem to have a kind of “built-in” pro-

tection against such problematic intrusions of the infinite.

To conclude, while the proof given by Cook of the universality of rule 110 is very

interesting from the perspective of this section, based as it is on the behaviour

of this system, there are some clear problems with the encoding used, involving

the infinite repetition of the production rules. Still Cook’s proof is worth more

research and is rather ingenious. I for myself am not completely sceptic about

the proof, because, without taking into account Davis’s (realistic) definition of

universality and the remarks about this encoding in relation to tag systems, one

cannot neglect the fact that, intuitively, rule 110 is indeed able to simulate the

computations of any cyclic tag system, be it under conditions which are not

that intuitive. The system needs to be remembered time and time again about

what rules it is actually simulating, and is not able to self-reproduce the rules

in a finite way.

478 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

9.3.4 Conclusion

This chapter started from the idea that small universal systems might enhance

our understanding of the connection between the general unsolvability of a

class of systems, and the actual discourse of each of these systems. Although

small universal systems are very important in this context – as particular exam-

ples of systems with an unsolvable decision problem they help us to draw limits

of unsolvability – we concluded from Sec. 9.2 that a study of the behaviour of

these machines offers us no extra advantage over a study of the behaviour of

other systems not known to be universal or solvable. In this section we showed

that research closely connected to limits of solvability and unsolvability often

involves some kind of study of the behaviour of particular systems and shows

itself very useful to prove certain theoretical results in this context.

As is clear from the examples discussed, research based on an analysis of the

behaviour of certain (classes of) systems, shows itself particularly important

when smaller systems are concerned. Indeed, once one starts to work with

smaller systems, starting from existing instances rather than deliberate con-

structions, an analysis of behaviour is often the only way out to get the desired

result or to at least build up an intuition of the problems involved. It is also

clear that the computer is often an indispensable instrument in this context.

It is the computer that has made the behaviour of these several computational

systems it is the physical realization of, accessible to us humans to an extent

impossible before. The fact that one needs a computer to study the behaviour

of these systems is not merely connected to our slowness as far as computa-

tions are concerned, but is also rooted in the fact that the systems whose be-

haviour is studied, are by no means trivial to predict: if we would know what

would happen with a given system when started with certain initial conditions,

we wouldn’t need our computer to study its behaviour because we would know

it in advance. In other words, the computer becomes an indispensable part of

the process of finding mathematical results in the research context considered

here, when systems are concerned for which it is hard to make predictions on

the basis of an analysis of their description. As is clear, these comments are

very close to some of the remarks made by Lehmer and von Neumann in this

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 479

context (See Sec. 4.2).

This last feature explicates the link between the general theoretical result of a

class of systems being unsolvable, and their actual discourse. For example, the

problem posed by Rádo to find particular values n that render Σ(n) computable

or uncomputable, is more related to problems connected to the execution of

particular machines. In fact, as we showed, it is the analysis of the behaviour

of the machines, made accessible through the computer, that makes it possi-

ble to compute particular values of Σ(n). Of course, the fact that we must shift

attention to the behaviour of the machines, is a consequence of the general un-

solvability of the halting problem for Turing machines, but this is exactly where

the connection between discourse and theoretical results lies.

It is now time to relate this discussion to Post’s form of “Tag”.

9.4 On the limits of solvability and unsolvability in

tag systems.

As was shown in the previous sections, both theoretical constructions encod-

ing certain functions, as well as a study of the behaviour of specific (classes

of) systems, are two important approaches in the context of studying limits of

solvability and unsolvability. Often it is the combination of the more theoret-

ical encodings, such as the reduction of the 3n +1-problem to relatively small

Turing machines, and other more theoretical results, with a study of the behav-

iour of certain classes of systems that helps to study these limits. To our mind,

you cannot do without the theoretical encodings and results nor without the

analyses of behaviour to make further progress in this domain.

Tag systems, lying at the basis of many known small universal systems, will be

the main subject of this, rather lengthy, section. In Sec. 2.2.5 it was shown that

tag systems played an important role in Post’s work. They were not only signif-

icant with respect to the formulation of his important systems in normal form,

but furthermore first led him to the idea that there might exist unsolvable deci-

sion problems in logic and mathematics. As was argued, Post “experimented”

480 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

with these systems. He tried out several cases in order to deduce more general

properties, i.e. a study of the behaviour of these systems has been basic for his

theoretical conclusions. As Post did not have a computer, he had to use paper

and pen to study his tag systems, a truly exhausting task.

As was pointed out by Post, he considered the class of tag systems with µ =
2, v > 2 intractable – possibly rooted in his experiences with T1 – while he char-

acterized the class with µ > 2, v = 2 as being of “bewildering complexity”. In

the previous chapter we already saw that Post had every reason to consider the

class µ = 2, v > 2 intractable, the fact that T1 is still not known to be solvable

nor unsolvable only further strengthens this observation. In this section we

will show that Post was also completely correct in calling the class µ > 2, v = 2

complex, i.e. we will prove that the solvability of the class µ= 3, v = 2 depends

on a solution of the 3n + 1-problem (Sec. 9.4.1). Given the simplicity of the

encoding used in the proof, we will have an argument supporting Post’s obser-

vation concerning the connection between tag systems and number theory.

In a next section (Sec. 9.4.2) we will prove that the class of tag systems with

µ = v = 2 is solvable. After a summary of the known limits of solvability and

unsolvability in tag systems and Turing machines, we will tackle the question

of whether there exist universal tag systems in the class µ = 2, v > 2. We will

describe an abstract method that might be used to encode a universal two-

symbolic tag system, and the reader is warned here in advance that this method

is rather intricate and speculative, if not a bit obscure. Combining these more

theoretical results on the limits of solvability and unsolvability in tag systems

with some of the experimental results from the previous chapter, we will con-

nect our results on tag systems with the previous discussions and argue that

their limits of unsolvability are very low relative to Turing machines.

9.4.1 Tag systems and Collatz-like problems

The tag problem has a tantalizing resemblance to another famous little stinker,

generally known as the 3X +1 problem.[...] Like the tag problem„ the 3X +1 prob-

lem is unsolved. Is there any close connection between them?

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 481

Brian Hayes, 1986.31

In Sec. 9.3.2 we considered Collatz-like functions, the definition of which is

based on a reformulation of the 3n +1-problem, with C (2m) = m,C (2m +1) =
3m + 2. In this section we will show that C can be reduced to a tag system

TC with µ = 3, v = 2. The method will be generalized to any Collatz-like func-

tion, thus proving that any Collatz-like function can be reduced to a tag system.

Since Conway proved that Collatz-like functions are generally unsolvable we

thus obtain an alternative proof of the unsolvability of tag systems.32

Reduction of the 3n +1-function to a tag system

In this section we will prove the following theorem:

Theorem 9.4.1 The function C (n) is reducible to a tag system TC with µ = 3,

v = 2.

Let Ai denote a string A repeated i times, A
◦→ B is the string B produced from

A, after all the letters from A have been erased. Let the alphabet be Σ= {α, c, y}

and n ∈ N. Then, each iteration of C (n) corresponds to the production of a

string αC (n) from a string αn in TC . The production rules are:

α → c y

c → α

y → ααα

Now, if n is of the form 2m, TC produces α
n
2 from αn :

αn ◦→ (c y)
n
2

(c y)
n
2

◦→ α
n
2

31[Hay86], p. 27
32The results to be described here, are based on a paper Tag systems and Collatz-like functions

[Mol07] I submitted to Theoretical Computer Science and is now under revision. They were

also presented at CIE06, as part of a general talk on the usefulness of small universal systems

[Mol06c].

482 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

If n is of the form 2m +1, TC produces α3(n−1
2)+2 (= α3m+2) from αn :

αn ◦→ y(c y)
n−1

2

y(c y)
n−1

2
◦→ α3(n−1

2)+2

This encoding allows for efficient simulation of C (n) for any n. If n is even, CT

needs n iterations, with n uneven, n +1, to simulate one iteration of C (n). The

reason for the simplicity of this encoding is that C (n) relies on modulo opera-

tions, while tag systems themselves can be regarded as some kind of modulo

systems. Indeed, the encoding is based on this one feature of tag systems. Con-

sider a string A of length |A|, and let A
◦→ B. Clearly, the length of B depends

on |A| mod v, in that the “original” length of B (the addition of the lengths of

the words produced from A) will be decreased by the additive complement of

|A| mod v.33In this respect, |A| mod v determines what sequence of letters in B

will and will not be scanned by the tag system. This feature is not only basic

to our encoding, but is also the main ingredient in Minsky’s and Cocke’s proof

of the universality of tag systems with v = 2 (See Sec. 6.1.1). To return to our

encoding of C in TC , if |αn | is even, |αn | ◦→ (c y)
n
2 , with |(c y)

n
2 | mod v = 0, guar-

anteeing that only the letter c will be scanned in B. Similarly, since |(c y)
n
2 | is

even, no letter from α
n
2 will have been erased after all the letters of |(c y)

n
2 | have

been erased. In case |αn | is uneven, |αn | ◦→ B, with |B| mod v = 1, the first lead-

ing c being erased when the last α in αn has been scanned. As a result, the tag

system will scan the sequence of letters y . Although, taking together all the y ’s

results in α3(n−1
2)+3, the oddness of y(c y)

n−1
2 guarantees that the leading α will

be erased after the last y has been scanned, thus leading to the desired result.

It should be noted here that TC satisfies the minimal condition discussed by

Maslov (Sec. 6.1.1). Indeed, lmi n = v −1 and lmax = v +1.

Furthermore, the problem to decide for any n, whether C (n) will ever lead to

1 after a finite number of iterations, reduces to the question of whether TC will

ever produce α. In other words, the 3n +1-problem can be reduced to a reach-

ability problem for TC .

33For the definition of additive complement, see Sec. 6.3.2.

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 483

Generalization of the method to arbitrary Collatz-like functions

By generalizing and slightly changing the encoding from the previous section,

we were able to prove the following theorem:

Theorem 9.4.2 Given an arbitrary Collatz-like function G(n), with modulus d.

Then, there is always a tag system TG with v = d,µ≤ 2d+3,Σ= {h,α,α0,β0,β1, ...,

βd−1, b0, b1, ..., bd−1} that simulates G(n) for any n.

Note that µ and v are completely determined by the modulus. The symbol h

functions as a kind of halting symbol, used for those cases when G(n), n = dm+
i , 0 ≤ i < d, is undefined for i . It is also important to note that the encoding of

the present section needs the extra symbols α0,β0,β1, ...,βd−1.

Each iteration of G over a number n corresponds to the production of a string

α0α
G(n) from a string α0α

n . The production rules for α0,α are:

α0 → βd−1βd−2...β0

α → bd−1bd−2...b0

If G(n) is defined, with n = dm + i , 0 ≤ i < d, the production rules for βi and bi

are :
βi → (α) jα0(α)ri

bi → (α)ai

where j is the additive complement of (i +1) relative to d [i.e. :− (i +1) mod d

evaluated to its least positive remainder], with i = n mod d.

If G(n) is undefined, n = dm + i , 0 ≤ i < d, the production rules for βi and bi

are:
βi → h

bi → h

The production rule for h is:

h → ε

Now, applying the production rules of TG to a given string α0α
n , in case G(n) is

defined, we get:

α0α
n ◦→βiβi−1...β0(bd−1bd−2...b0)

n−i
d (9.13)

484 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

Note, that we again use the property, mentioned in Sec. 9.4.1, that the length

of a string B produced from a string A, through
◦→, is completely determined

through |A| mod v, i.e. if the additive complement c of |A| mod v > 0, then the

first c letters of the first word(s) produced from A will be erased, when the last

letter of A has been scanned. Note that because the number of letters erased

is equal to c, the order of the indices of the letters in the words produced from

α0,α,βi , bi ,0 ≤ i < d is reversed, so that we are able to keep track of the re-

mainder. Furthermore, by adding the extra symbol α0, the rules assure that

bd−1bd−2...b0 will be repeated m = n−i
d times.

After the application of one iteration on the string produced in (9.13), TG pro-

duces:

bi bi−1...b0(bd−1bd−2...b0)
x−i

d −1(α) jα0(α)ri (9.14)

From (9.14), TG produces

bi bi−1...b0(α) j︸ ︷︷ ︸
d

α0(α)ai (n−i
d −1)+ri (9.15)

after (n-i)/d - 1 iterations. As is clear, the symbol βi produced through α0 is

used to assure the tag system will start scanning α0 after one iteration of G has

been completed, through the addition of j times α, since

i +1+ j = d.

Furthermore, βi is used to add ri if G(n) is defined and ri > 0. The letter bi

is used to perform the multiplication of m with ai , since bi is repeated m =
(n − i)/d times.

From (9.15) TG finally produces:

α0(α)ai
n−i

d +ri (9.16)

after one more iteration.

If we apply the production rules to a string α0α
n , in the case G(n) is undefined,

the production given in (9.13) remains unchanged. Then

βiβi−1...β0(bd−1bd−2...b0)
n−i

d
◦→ h

n−1
d +1 (9.17)

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 485

From (9.17) we finally get:

h
n−1

d +1 ◦→ ε (9.18)

leading the tag system to a halt.

The encoding of Collatz-like functions into tag systems is thus very straightfor-

ward, the input n for G being directly encoded as a string of length n+1. As was

the case for the reduction of the 3n +1-problem, the simulation of Collatz-like

functions is efficient, where one iteration of G(n) maximally takes 2(bn/dc +1)

iterations in TG .

Given the fact that any Turing machine can be reduced to a Collatz-like func-

tion, the reduction of the present section serves as another proof of the exis-

tence of a universal tag system. Furthermore, the unsolvable problem to deter-

mine whether a Collatz-like function G , given an integer n, will ever produce

the number 1 after a finite number of steps, reduces to the reachability prob-

lem to determine for any tag system TG whether it will ever produce the string

α0α.

In comparing the encoding of the present section with that from Sec. 9.4.1,

it is clear that the encoding of the present section leads to the simulation of

the 3n + 1-problem in a larger tag system, with µ = 6. This is due to the use

of the symbol α0. One might thus wonder whether there is a condition under

which a tag system TG , encoding a function G(n) using α0, can be reduced to a

smaller tag system T ′
G , without α0.34 The following theorem gives such a con-

dition as well as the production rules of T ′
G , which are based on the encoding of

the 3n +1-problem from Sec. 9.4.1 in TC .

Theorem 9.4.3 Given a Collatz-like function G(n) with modulus d, where for

each n, G(n) is either undefined or equal to ai (n−i)
d +ri , i = 0,1, ..., d−1. Then G(n)

can always be reduced to a tag system T ′
G with v = d,µ≤ 2+d,Σ= {h,α, b0, b1, ...,

bd−1} iff. for every i defined, i < ai , if i > 0, ri = ai − i , if i = 0, ri = 0, where i is

the additive complement of i . For each i defined, the production rules of T ′
G are:

α→ b0bd−1..b2b1; bi → αai . For i undefined, the production rules are bi → h;

h → ε

The details of the proof are left to the reader.

34I am indebted to Pascal Michel for pointing out this problem to me.

486 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

Discussion of the result

The 3n+1-problem is known as a highly intractable problem, and, as we already

argued, proving the reducibility of the 3n + 1-problem to classes of machines

considerably smaller than the known universal ones, can serve as an indication

of the difficulties that might be involved in proving machines from this class

solvable. Given the intractability of the 3n +1-problem, Margenstern [Mar00]

conjectured that all classes of Turing machines to which the 3n + 1-problem

can be reduced, i.e. all points on the 3n + 1-line, contain a machine with an

unsolvable halting problem or an unsolvable reachability problem or an un-

solvable modified reachability problem (a conjecture that assumes of course

nothing about the status of the 3n+1-problem). In drawing from this research,

the reduction of the 3n +1-problem to a tag systems with µ= 3, v = 2, strongly

suggests that proving the solvability of this class of tag systems will be very hard.

It is also important to note that the tag system TC is considerably smaller than

the size of the known Turing machines to which the 3n +1-problem can be re-

duced. Furthermore, whereas the class of tag systems TS(3, 2), where TS(µ, v)

denotes the class with µ symbols (and production rules) and a shift number v

(cfr. Sec. 6.1.1), contains TC , the class of Turing machines TM(3, 2) and TM(2,3)

is known to be solvable. This result suggests that the limits of unsolvability

might be significantly lower in tag systems as compared to those for Turing ma-

chines.

The simplicity and efficiency of the encoding of the 3n +1-problem to TC , and

the general encoding scheme for Collatz-like functions to tag systems serves as

an indication that tag systems might be used as a kind of bridge between prob-

lems in number theory and problems in computer science or computability

theory. Indeed, as was shown, this encoding is so simple because tag systems

themselves are a kind of remainder systems. We have not been able to fur-

ther explore this connection, but it seems possible that in further investigating

this connection, one might be able to find new methods to prove certain prop-

erties for tag systems, drawing from remainder arithmetic. For now however,

this connection remains rather intuitive and is in need of further investigation.

Maybe a search in the Post archive might lead to something. Indeed, as is clear

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 487

from two of the quotes from Sec. 2.2.5, Post must have made such a connection.

To be more exact, there are three quotes in which Post mentions this connec-

tion. In the third quote, Post states ([Pos65], p. 386):

Now we mentioned [...] how an extended attempt to solve the simplified form

of this finiteness problem “Tag” led to ever increasing difficulties, with all the

complexities of number theory in the offing.

In one of the quotes from Sec. 2.2.5, Post also indicates that he considered the

regularity of always removing v elements, i.e. the shift number, as responsible

for “the intrusion of number theory in the development [...]”.35

We are not sure whether there are any notes left on Post’s more detailed research

on tag systems, but are planning to visit the archive hoping we might find such

notes. The fact that the connection between tag systems and remainder arith-

metic seems so obvious, serves as a further argument for the significance of

doing more research on tag systems, although we cannot predict the outcome

of such research.

9.4.2 Solvability of the class µ= v = 2.

PROBLEM. Choose any two-symbol, two-state machine and show that it is not

universal. Hint: Show that its halting problem is decidable by describing a pro-

cedure that decides whether or not it will stop on any given tape. D. G. Bobrow

and the author did this for all (2,2) machines [1961, unpublished] by a tedious

reduction to thirty-odd cases (unpublishable).

Marvin Minsky, 1967.36

During his research on tag systems, Post proved the solvability of the class of tag

systems µ = v = 2. Although he mentions this result in [Pos65], the proof was

never published. Now, I am completely sure that when Post says that he had

this proof, he really had this proof. Still, to convince the sceptical reader, it was

considered important to find such a proof. Since Post understood this result as

35[Pos65], p. 382
36[Min67], p. 281

488 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

the major success of his project to prove the problem of “tag” solvable, during

his Procter fellowship, it was also a challenge and an experience to search for

this proof. In a footnote Post writes that “the special case µ = v = 2 involved

considerable labor.”37 We are not completely sure how to interpret this quote,

we have not seen Post’s proof, but as will become clear through the proof, the

one we found indeed involves considerable labor.

In Sec. 6.2.1 we described how Post differentiates between three classes of be-

haviour a tag system can converge to, i.e., a tag system can halt, it can become

periodic, or it can show unbounded growth. The reachability and halting prob-

lem, the two forms of the problem of tag, can be proven solvable, if one can

determine for any initial condition, for a given tag system, that it will lead to

one of these three classes of behaviour after a finite number of steps. Remem-

ber that in case of unbounded growth, one should be able to prove that for any

given number n the tag system will always produce a string Ai of length lAi > n

after a finite number of iterations i , such that no string A j , j > i , will ever be

produced again for which lA j ≤ n.

In the proof following hereafter, we will show that for any tag system from the

class µ = v = 2, one can indeed determine whether it will become periodic,

halt or show unbounded growth after a finite number of steps, and we will thus

prove the following theorem:

Theorem 1 For any given tag system T , if µ = v = 2 then the halting problem

and the reachability problem for T are solvable.

First of all, it should be noted that we only have to consider those cases with

lmin < 2, lmax > 2, given the theorem proven by Wang mentioned in Sec. 6.1.1.

In the remainder, we assume that lmax = lw1 , lmin = lw0 , the symmetrical case of

course being equivalent to this case.

There are three global cases to be taken into account, i.e., w0 = ε, w0 = 1, w0 = 0.

Each of these cases is subdivided into several subcases, determined by the fol-

lowing parameters: the parity of w1,38 the length lw1 of w1 and the total number

of 1’s in w0 and w1 (indicated as #1). It should be noted that, contrary to classes

37[Pos65], p. 362
38The parity of a number x is the property of being even or odd.

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 489

of Turing machines TM(m, n), the three global cases to be considered contain

an infinite number of tag systems. In this sense it has been basic for this proof

that it is possible to determine certain threshold values for the last two of these

parameters, i.e., lw1 and #1. If the values of these parameters are larger than a

given number the infinite class of tag systems determined by the parameters

will always show unbounded growth except for a specific class of initial strings.

If these values are smaller or equal to these parameters, the tag systems will

always halt or become periodic, except for a determined class of initial condi-

tions.

There is one specific method that has been basic to solve the majority of cases

to be considered, i.e., the table method (See Sec. 7.3.4). Remember that what

one basically does with this method is to look at a certain number of substrings

that can be produced theoretically in a given tag system, by starting from the

possible productions from the respective words w0, ..., wµ−1. The table method

is applied to the tag system by looking at all possible strings v that can be pro-

duced from each of the words wi , 0 ≤ i < µ, by concatenating the words corre-

sponding to the letters of each of the v different sequences in each of the wi ,

sequences which are determined by the shift wi is entered with, i.e., the num-

ber of leading letters in wi that are erased but not scanned. If one of these new

strings produced is equal to one of the words wi it is marked. If all strings pro-

duced in this way are marked or equal to ε it follows that the tag system will

always halt or become periodic, since the length of the strings that can be pro-

duced from the respective words is bounded. If this is not the case, the same

procedure is applied to all strings left unmarked and not equal to ε,...

As will become clear in the proof, the table method is not only useful if, for

a given tag system, all the strings become marked or are equal to ε at a given

time, but can also be used to e.g. prove that a tag system will either halt or show

unbounded growth.

In should be noted that from now on, ẋ denotes that x is uneven, similarly, a

non-dotted number x denotes an even number. Furthermore lw0 and lw1 are

abbreviated as l0 rsp. l1. In our outline, we will separate the three global cases,

which are in their turn to be subdivided into the respective subcases.

490 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

Case 1. w0 = ε
Case 1.1. #1 = 0. Irrespective of the length of w1 it is trivial to prove that tag

systems from this class will always halt, since only 0’s can be scanned.

Case 1.2. #1 = 1, l1 ≡ 0 mod 2. Let w1 = 0ẋ1 10y1 . The following table proves the

lemma:

w1

S0 HALT

S1 w1X

The row headed with S0 (shift 0) gives the string produced from a given string

S (in this case w0 or w1) when the first letter of the string S is scanned by the

tag system. Similarly, the row headed S1 (shift 1) gives the possible productions

from a given string S when its first letter is erased without being scanned.

As is clear from the table, a tag system from this class will either halt or become

periodic. It will always become periodic when at least one 1 is scanned in the

initial condition, such that the first letter in w1 resulting from this 1 will not be

scanned. This can be determined through the parity of the length of the initial

condition. In all other cases, tag systems from this class always halt. A similar

proof can be given for the case w1 = 0x1 10ẏ1 .

Case 1.3. #1 = 1, l1 ≡ 1 mod 2 The table that can be constructed for this class

of tag systems, is identical to the previous table, with w1 = 0ẋ1 10ẏ1 . Despite the

table being identical, tag systems from this class can be proven to always halt.

Given an arbitrary number n of 1’s scanned in the initial condition, which are

separated by a certain number of 0’s, such that all w1’s produced from these 1’s

will be entered with a shift 1. After all the letters of the initial condition have

been scanned, the following string is produced:

0x2 10ẏ1 0ẋ1 10ẏ10ẋ1 10ẏ1︸ ︷︷ ︸
n

(9.19)

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 491

where x2 = x1 or x2 = x1 −1. From (9.19) the tag system will then produce the

following string:

0x ′
2 10ẏ1 0ẋ1 10ẏ10ẋ1 10ẏ1︸ ︷︷ ︸

b n
2 c

(9.20)

Clearly, whatever the number of 1’s in the initial condition might be, they will

more or less be reduced by a factor 1/2, for each application of
◦→, thus ulti-

mately leading to the production of ε. This is the case, because for every pair

of w1’s one of them will be erased due to the fact that ẏ1 + ẋ1 is always even. It

thus follows that tag systems from this class will always halt, whatever the initial

condition might be. A similar proof can be given for the case w1 = 0x1 10y1 .

Case 1.4. #1 = 2, l1 ≡ 0 mod 2. To prove the case we have to differentiate be-

tween two subcases, i.e. the case with w1 = 0x1 10y1 10z1 and w1 = 0ẋ1 10ẏ1 10z1

(the proof for the case with w1 = 0ẋ1 10y1 10ż1 is similar to the first case, the proof

with w1 = 0x1 10ẏ1 10ż1 is similar to the second case).

Subcase 1.4.1. w1 = 0x1 10y1 10z1 . The first case is proven through the fol-

lowing table:

Table 9.5: w1 = 0x1 10y1 10z1

w1

S0 w1X

S1 w1X

From this proof it follows that any tag system from this class of cases will always

become periodic, except when no 1 is scanned in the initial condition, then it

always halts.

Subcase 1.4.2. w1 = 0ẋ1 10ẏ1 10z1 . The proof of the solvability of the second

case follows from the following table:

492 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

Table 9.6: w1 = 0ẋ1 10ẏ1 10z1

w1 w1w1 ... (w1w1)n−1

S0 HALT HALT ... HALT

S1 w1w1 w1w1w1w1 (w1w1)n

Tag systems from this class will either halt or show unbounded growth depend-

ing on the parity of the length of the initial condition.

Case 1.5. #1 = 2, l1 ≡ 1 mod 2. The tables for the proof are almost identi-

cal to those for case 1.4., except that now we have to consider the cases w1 =
0x1 10ẏ1 10z1 (or similarly w1 = 0ẋ1 10ẏ1 10ż1) and w1 = 0ẋ1 10y1 10z1 (or similarly

w1 = 0x1 10y1 10ż1). Contrary to lemma 1.4.2., the tag system will always become

periodic when w1 = 0x1 10ẏ1 10z1 , if at least two 1’s are scanned in the initial con-

dition. This is the case, because, for each two consecutive w1’s, the tag system

produces two consecutive w1’s, since z1 + x1 is even. If only one 1 is scanned

in the initial condition, the system will either halt or become periodic depend-

ing on the parity of the length of the initial condition. In case w1 = 0ẋ1 10y1 10z1

tag systems from this class will always become periodic when at least one 1 is

scanned in the initial condition since for every w1 produced, one and only one

w1 will be produced. In all other cases, tag systems from this class halt.

Case 1.6. #1 = 3, l1 ≡ 0 mod 2. Again we have to consider several cases, de-

pending on the spacings between the 1’s, i.e. the number of 0’s between the

consecutive 1’s. If all spacings are uneven, i.e. if w1 = 0ẋ1 10ẏ1 10ż1 10t1 (or, w1 =
0x1 10ẏ1 10ż1 10ṫ1) the proof is similar to the one for case 1.4.2., the tag system

leading to unbounded growth or a halt, depending on the parity of the initial

condition and the position of the 1’s in w1. The proof of the second case fol-

lows from cases 1.4.1. and 1.4.2., since either two 1’s are scanned or one 1. An

example of such case is w1 = 0x1 10ẏ1 10z1 10t1 . Based on the proofs from case

1.4., we conclude that tag systems from this second subclass will either become

periodic or lead to unbounded growth, depending on the parity of the initial

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 493

condition and the position of the 1’s. Of course, all tag systems from this class

will always halt, when no 1 is scanned in the initial condition.

Case 1.7. #1 = 3, l1 ≡ 1 mod 2. Again we have to differentiate between two

cases: w1 = 0s1 10x1 10y1 10t1 (and all variants) or w1 = 0s1 10ẋ1 10ẏ1 10t1 (plus all

variants).

Case 1.7.1. w1 = 0s1 10ẋ1 10ẏ1 10t1 . If all 1’s are unevenly spaced, i.e. if one

1 is scanned in w1 all others will also be scanned, it can be proven that the

tag system will always grow, when at least one w1 is produced from the initial

condition such that all its 1’s are scanned, thus producing w3
1 . The following

table shows that in case w3
1 is produced, a tag system from this class will always

lead to unbounded growth.

Table 9.7: Case w1 = 0s1 10ẋ1 10ẏ1 10t1

w1 w3
1 w6

1 ... w2m
1 w2m+1

1

S0 w3
1 w6

1 w9
1 ... w3m

1 w3m+3
1

S1 w1X w3
1X w9

1 ... w3m
1 w3m

1

Note that although in shift 1, w3
1 produces w3

1 , the tag system will not become

periodic. Indeed, if the tag system produces the string w3
1 and it is entered with

a shift 1, the next time w3
1 is produced, it will be entered with a shift 0, given the

fact that its length is odd.

Case 1.7.2. w1 = 0s1 10x1 10y1 10t1 . Tag systems from this class, i.e., those

for which only two 1’s will be scanned in the same shift, will always lead to

unbounded growth if at least one 1 is scanned in the initial condition. The table

proving the result, will not be given here, since it can be easily replaced by the

following reasoning. First of all, note that once two consecutive w ′
1s have been

produced, the tag system will always lead to unbounded growth grow, since two

494 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

consecutive w1’s always lead to the production of at least 3 consecutive w ′
1s. If

only one 1 has been scanned in the initial condition, leading to the production

of one time w1, the tag system will always lead to the production of two times

w1 because of the fact that l1 is odd. Indeed, either w1 will immediately lead to

the production of two consecutive w1’s (depending on the parity of the length

of the initial condition), or two consecutive w1’s will be produced the next time

w1 is produced. If no 1 is scanned in the initial condition, tag systems from this

class always lead to a halt.

Case 1.8. #1 > 3, l1 ≡ 0 mod 2. In general, any tag system with #1 > 3 from this

class will either halt become periodic or lead to unbounded growth. For each

#1, there are always three different cases to be taken into consideration. In the

first case, all 1’s are separated by an odd number of 0’s. In generalizing Table 9.6

it follows that tag systems from this class will always halt or lead to unbounded

growth, depending on the length of the initial condition and the position of the

1’s in w1.

The second case applies when w1 = 0s1 10x1 10ẋ2 10ẋ3 1...0ẋn 10t1 , when either one

1 is scanned or #1−1 1’s are scanned, depending on the parity of the length of

the initial condition. It easily follows from case 1.5. that a tag system from this

class will either become periodic or show unbounded growth depending on the

parity of the length of the initial condition and the position of the 1’s in w1.

The last case concerns those cases where, whatever shift w1 is entered with,

at least two 1’s will be scanned. Clearly, tag systems from this class will always

lead to unbounded growth, except when no 1 is scanned in the initial condition,

since whatever shift w1 is entered with, it will always lead to the production of

at least two w1’s.

Of course for all cases, a halt will result when no 1 is scanned in the initial con-

dition.

Case 1.9. #1 > 3, l1 ≡ 1 mod 2. In case all 1’s are unevenly spaced, all 1’s being

scanned if one 1 is scanned in w1, the tag system will always show unbounded

growth if at least one 1 is scanned in the initial condition. This follows from gen-

eralizing the proof from case 1.7.1. In case all 1’s are unevenly spaced except for

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 495

1, tag systems from this class can also be proven to always lead to unbounded

growth, if at least one 1 is scanned in the initial condition. The result follows

from the proof of case 1.7.2. If at least two 1’s are scanned, whatever shift w1 is

entered with, it is clear that also in this case the tag systems will always lead to

unbounded growth, if at least one 1 is scanned in the initial condition.

To summarize, all tag systems from this class will always lead to unbounded

growth, except when no 1 is scanned in the initial condition, leading to a halt.

Case 2. w0 = 1.

Case 2.1. #1 = 1. In this case the length of w1 is a determining factor to predict

the behaviour of a tag system from this class. We have to differentiate between

the following two cases: 2 < l1 < 5 or 5 ≤ l1.

Subcase 2.1.1. 2 < w1 < 5. If 2 < l1 < 5 the tag system will always become

periodic, except when the initial condition is equal to 0, then it will halt. Note

that since w0 = 1,#1 = 1, w1 does not contain 1, and consists merely of 0’s. The

result follows from the following tables. It is important to note that in the case

l1 = 3, although w1 can lead to the production of w0 and thus to a halt, this will

never occur given the parity of w1:

Table 9.8: Case l1 = 3

w0 w1 w0w0

S0 w1 w0w0 w1X

S1 HALT w0X w1X

Table 9.9: Case l1 = 4

w0 w1 w0w0

S0 w1 w0w0 w1X

S1 HALT w0w0 w1X

496 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

Subcase 2.1.2. 5 ≤ w1. If l1 = 5 tag systems from this class always become

periodic if the initial condition is equal to: 1, 00, 10, 01, 11, 000, 001, 110, 100,

011, 010, 0000 and 0101. If it consists of only one 0, it will halt. This can easily be

checked by hand. In all other cases it leads to unbounded growth. This follows

from the following table:

Table 9.10: Case l1 = 5

w0 w1 w2
0 w3

0 w2
1 w5

0 ... wn
0

S0 w1 w3
0 w1X w2

1 w5
0 w3

1 ... wdn/2e
1

S1 HALT w2
0 w1X w1X w5

0 w2
1X ... wdn/2e

1 −1X

Although the table seems to allow for periodicity, the fact that w1 is odd guar-

antees that once w2
1 is produced, the tag system will always lead to unbounded

growth. This can be easily checked by hand.

Clearly, if l1 > 5, the tag systems will always show unbounded growth (if the

length of the initial condition is longer than 1). The proof can be found by con-

structing a table similar to Table 9.10 and is left to the reader. Note that once

l1 > 7, the proof becomes very simple, since whatever shift w1 is entered with,

it will always lead to the production of at least 4 1’s, and thus to the production

of w1w1.

Case 2.2. #1 = 2, l1 = 3. It can be determined for any tag system from this class

that it will either halt or become periodic. There are three different tag systems

to be taken into account here:

0 → 1 1 → 100

0 → 1 1 → 010

0 → 1 1 → 001

In the following tables it is shown that all three tag systems will always become

periodic, except when the initial condition is equal to 0. It should again be

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 497

noted that although w1 can lead to the production of w0 and thus to a halt, this

will never occur given the parity of w1

Table 9.11: Case 0 → 1,1 → 100

w0 w1 w1w0 w0w1

S0 w1 w1w0 w1w0X w1w0X

S1 HALT w0X w0w1 w1w0X

Table 9.12: Case w0 = 1, w1 = 010

w0 w1 w0w0

S0 w1 w0w0 w1X

S1 w1 w1X w1X

Table 9.13: Case w0 = 1, w1 = 001

w0 w1 w0w1 w1w0

S0 w1 w0w1 w1w0 w0w1X

S1 w1 w0X w0w1X w0w1X

Case 2.3. #1 = 2, l1 > 3. For any tag system from this class it can be determined

that it will either halt, become periodic or lead to unbounded growth. To prove

this, we will only consider the case l1 = 4 in more detail. We will first prove that

once the tag system produces w1w0, scanning the first letter of w1 the system

will always grow. There are four different tag systems in this class, i.e. w1 =
1000, w1 = 0100, w1 = 0010, w1 = 0001. We will only prove the first case, the

498 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

proofs of the other cases being similar to the first case. The following table

illustrates why the tag system will always lead to unbounded growth, once it

has produced w11, scanning the leftmost letter in w11.

Table 9.14: Case 0 → 1,1 → 1000

w11 11 w1 w11w1

S0 w11w1 w1 w11X w11w111

S1 11 w1 11X 11w11

w11w111 w11w111w1 w11w111w111

S0 w11w111w1 w11w111w111 w11w111w111w1

S1 11w11w1 11w11w1w11 11w11w1w11w1

w11(w111)n−1 w11(w111)n−1w1 11w11 w111

S0 w11(w111)n−1w1 w11(w111)n w1 w11w1︸ ︷︷ ︸ w11w1

S1 11w1(1w1w1)n−21w1 11w1(1w1w1)n−11 w111 11w1

11w1 w1w11 1111 w1w1

S0 w1w11 w11w1︸ ︷︷ ︸1w1 w1w1 w11w1︸ ︷︷ ︸1

S1 w111X 1111 w1w1 1111X

11w11w1 w111w11 11w111 w111w1

S0 w1 w11w1︸ ︷︷ ︸11 w11w1︸ ︷︷ ︸1w11 w1 w11w1︸ ︷︷ ︸ w11w1︸ ︷︷ ︸w11

S1 w111w11 11w111 w111w1 11w111X

Although the table seems to allow for some periodicity, it should be noted that

this can never occur once w11 is produced and entered with a shift 0. Suppose

our initial condition is w11, then:

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 499

w11
S1→ w11w1

S0→ 11w11
S1→ w1 w11w1︸ ︷︷ ︸

S0→ w11︸︷︷︸w11w111︸ ︷︷ ︸ S0→ w11w1︸ ︷︷ ︸11w11w1︸ ︷︷ ︸ S0→ w11w111︸ ︷︷ ︸w1w11w111︸ ︷︷ ︸
S0→ w11w111w1︸ ︷︷ ︸1111 w11w1︸ ︷︷ ︸ S0→ w11w111w111︸ ︷︷ ︸w1w1 11w11︸ ︷︷ ︸
S0→ w11w111w111︸ ︷︷ ︸1111 w111︸ ︷︷ ︸ .

where
Sx→ X

Sy→ Y means that Y results from X , if X is entered with shift Sx, i.e.,

its first x letters are erased without being scanned. Whatever shift the last string

produced in this sequence is ever entered with, the tag system will always lead

to unbounded growth. If the shift 0 remains a constant, the table shows that

this must indeed happen. If the shift changes at one time to 1, it is guaranteed

that the string produced will contain w11w1w11w1 as a substring (See table).

Since the length of w11w1 is uneven, whenever the first sequence of w11w1 is

entered with a shift 0, w11w1 will be entered with a shift 1, and vice versa and it

is thus guaranteed that the system must lead to unbounded growth (See Table).

This reasoning still does not result in a proof of the fact that this tag system will

always lead to unbounded growth once w11 is produced, and entered with a

shift 0, since we have merely shown it for the case where the initial condition

is equal to w11. If we would e.g. add only one 0 to the condition, the shifts

completely change. Still, our reasoning remains valid. Indeed, based on the

table, one can deduce that there are only three possibilities for periodicity:

1111
S1→ w1w1

Sx→ 1111

11w111
S1→ w111w1

S1→ 11w111

w111
S1→ 11w1

S1→ 11w1

Any other path through the table that does not lead to any of these periodic

strings, will lead to unbounded growth, producing a string containing w11w1w11w1

as a substring. However, these periods can only be produced if the tag system

500 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

is started with initial conditions of one of the following forms:

111(1111)n

0001000(w1w1)n

1100011(11w111)n

000111000(w111w1)n

00011(w11)n

11000(11wn
1)

or any combination of these strings, with n = {0,1, ...}. As is clear, for neither

of these conditions can w11 be entered with a shift 0. Any other initial con-

dition, containing w11 entered with a shift 0, will lead to unbounded growth.

Indeed, although any such condition might still allow for the production of a

string containing one of these periodic strings as a substring, they will always be

combined with strings that grow or strings for which the shift does not remain

constant. This follows from the productions as given in the table. Indeed, if we

look at the different paths in the table leading to periodicity, it is clear that the

lengths of the strings leading to the periodic strings change from odd to even

(and vice versa). It is this fact that makes it impossible for strings to become

periodic, except when the initial condition is in one of the forms as described

above. If the initial condition is not a combination of these periodic strings, the

fluctuation of the parity of the lengths of the several substrings, makes it im-

possible for the whole string to become periodic.

To summarize, the tag system analyzed through the table will always show un-

bounded growth, once w11 is produced by the system, scanning its leftmost

letter. The system only halts when the initial condition is equal to 0. The sys-

tem becomes periodic for the following initial conditions: 000, 1, 00, 01 and the

set of periodic strings described above. All other conditions will lead to the pro-

duction of w11, entered with a shift 0 and thus to growth. A similar proof can

be found for the remaining cases for which l1 = 4.

The general solvability of the class of tag systems with #1 = 2, w0 = 1, l1 > 4 fol-

lows from the following considerations. First, suppose the 1 in w1 is at an un-

even position. Then, if w1 is entered with a shift 0, it will always lead to a string

longer than w1, consisting of w1 and b l1−1
2 c times 1. If w1 is entered with a shift

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 501

1, it will result in a string consisting of b l1
2 c 1’s.

Then, if l1 = 5, the tag system will always show unbounded growth if w1w1 is

produced at least once from the initial condition. Indeed, if w1w1 is produced,

it will always lead to the production of a string consisting of one time w1 and

four times 1 (whatever shift w1w1 is entered with) a string which will lead to

the production of at least two times w1 and two times 11, a string which clearly

leads to unbounded growth.

If l1 = 6 then the tag system will also always lead to unbounded growth, if w1w1

is produced as a substring at least once. The proof is similar to the case l1 = 5

and is left to the reader.

If l1 > 6, once w1 is produced from the initial condition, tag systems from this

class will always lead to unbounded growth. This is the case because, what-

ever shift w1 is entered with, it always leads to the production of at least 4 1’s,

and thus to the production of at least two w1’s or the production of one w1 plus

at least three 1’s, in its turn leading to the production of at least two w1’s. To

summarize, for all tag systems from this class, with l1 > 4, it is clear that all

but a finite number of initial conditions will always lead to unbounded growth.

The remaining (finite number of) initial conditions can be easily calculated for

each of the subcases, and lead to either a halt or periodicity in a finite number

of steps.

Case 2.4. #1 > 2. We have to distinguish two cases, l1 = 3 and l1 > 3

Subcase 2.4.1. l1 > 3 For l1 > 3, if all 1’s are unevenly spaced – implying

that if one 1 is scanned, the other(s) will also be scanned – each of the tag

systems from this class will either halt, become periodic or show unbounded

growth after a finite number of steps.

In case l1 = 4, there are two possible tag systems to be taken into consideration:

either w1 = 1010, or w1 = 0101. Both tag systems will halt if the initial condi-

tion is equal to 0. For all other conditions, the tag systems will always lead to

unbounded growth or become periodic. Indeed, once w1 is produced, and this

will always happen for initial conditions different from 0, the tag system cannot

halt. This is the case because w1 always leads to the production of either w0w0

502 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

or w1w1. If w0w0 is produced, it will always lead to the production of w1, while

w1w1 will lead to the production of w4
0 or w4

1 . Whether any of these two tag

systems will become periodic or show unbounded growth then depends on the

length of the string S1 produced from the initial condition after all the relevant

letter of the initial condition have been processed. Clearly, in case w1 = 0101,

if lS1 odd, the system will show unbounded growth, if lS1 even, it will become

periodic. For the case w1 = 1010, if lS1 even, the system will show unbounded

growth, if lS1 odd, it will become periodic. This can easily be checked through

the table method.

If l1 > 4, tag systems in this class, with the 1’s in w1 unevenly spaced, will always

lead to unbounded growth, except when the initial condition is equal to 0. This

result follows from the proof of case 2.3. for those cases with l1 > 4. The details

of the proof are left to the reader.

If all 1’s are unevenly spaced except for one, it is trivial to prove that tag systems

from this class will always lead to unbounded growth once w1 is produced from

the initial condition, i.e., for all initial conditions except for 0. Indeed, whatever

shift w1 is entered with, it will always lead to the production of at least one w1

plus one 1.

If w1 is such that whatever shift it is entered with, at least two 1’s are scanned,

it trivially follows that any tag system from this class will always lead to un-

bounded growth once w1 is produced from the initial condition, i.e., it will lead

to unbounded growth with any initial conditions except for 0. Indeed, whatever

shift w1 is entered with, it will always lead to the production of at least two w1’s.

Subcase 2.4.2. Case l1 = 3 We still have to show that in case l1 = 3, one

can determine that a tag systems will either halt, become periodic or lead to

unbounded growth. There are four different tag systems in this class:

0 → 1 1 → 110

0 → 1 1 → 101

0 → 1 1 → 011

0 → 1 1 → 111

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 503

As for the last tag system of this list, it trivially follows that it will always lead to

unbounded growth, except when the initial condition is equal to 0.

To prove the remaining cases, let us look at some of the possible productions

from w1, for the first tag system from the list with w1 = 110 (ṅ denotes that n is

odd):

Table 9.15: Case 0 → 1,1 → 110

w1 w11 w2
1 w11w1

S0 w11 w11X w11w1 (w11)2

S1 w1X w2
1 w2

1 1 w3
1

(w11)2 w2
1 1 w11w2

1 (w11)2w1

S0 (w11)2X w11w2
1 (w11)2w1 (w11)3

S1 w4
1 w2

1 1X w4
1 1 w5

1

(w11)3 w3
1 w11w2

1 1 (w11)2w2
1

S0 (w11)3X w11w2
1 1 (w11)2w2

1 (w11)3w1

S1 w6
1 w2

1 1w1 w4
1 1X w6

1 1

(w11)n (w1)2n (w11w1)n , ṅ (w11w1)n , n

S0 (w11)nX (w11w1)n ((w11)2w3
1)n−1(w11)2 ((w11)2w3

1)n

S1 w2n
1 (w2

1 1)n (w3
1 (w11)2)n−1w3

1 (w3
1 (w11)2)n

(w2
1 1)n , n (w2

1 1)n , ṅ w3n
1 , ṅ (w11w2

1)n

S0 (w11(w2
1 1)2)

n
2 (w11(w2

1 1)2)
n−1

2 w11w2
1 (w11w1)

3n−1
2 w11 ((w11)2w1)n

S1 (w2
1 1w11w2

1 1)
n
2 (w2

1 1w11w2
1 1)

n−1
2 w2

1 1 (w2
1 1)

3n−1
2 w1 (w4

1 1)n

((w11)2w1)n , n ((w11)2w1)n , ṅ

S0 ((w11)3w5
1)

n
2 ((w11)3w5

1)
n−1

2 (w11)3

S1 (w5
1 (w11)3)

n
2 (w5

1 (w11)3)
n−1

2 w5
1

The table shows that the length of a string produced in this tag system can never

shrink once w1 is produced. Although the table allows for some periodicity, the

tag system will always lead to unbounded growth, except when the initial con-

dition is equal to 0, leading to a halt, or when the initial condition is of the form

504 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

(w11)n always leading to periodicity. Although w2
1 1 is self-reproducing when

entered with a shift 1, it is not a periodic string, because its length is uneven,

i.e. a string that is a concatenation of w2
1 1 is not periodic. We thus conclude

that this tag system will always grow unboundedly for all but a finite class of

initial conditions. Similar proofs can be given for the other two cases of tag

systems, with l1 = 3. The details of the proofs are left to the reader.

Case 3. w0 = 0.

Case 3.1. #1 = 0, l1 > 2. It is trivial to prove that any tag system from this class

will halt, since any sequence of 0’s always leads to ε.

It should be noted that from now on, since w0 = 0, any substring of 0’s part of a

given string produced by a tag system from the classes considered, will always

ultimately lead to ε. In this respect, the size of any number of consecutive 0’s is

in a way irrelevant. Of more significance is the parity of such sequences of 0’s.

In the remaining sections, the sequence of 0’s preceding the first 1 in w1 and the

sequence of 0’s following the last 1 in w1 will, respectively, be denoted through

the indexed variables sn and tn (we will not e.g. use 0tn to avoid confusing no-

tations). The intermediate sequences of 0’s, separating two 1’s will be denoted

through indexed variables xn , yn and zn . Note that for any sn , tn , xn , yn , zn :

sn+1 < sn , tn+1 < tn , xn+1 < xn , yn+1 < yn .

Case 3.2. #1 = 1, l1 > 2. For all tag systems from this class it can be determined

that they will always halt. In the following table, it is shown that the lengths of

any string produced by any of these tag systems, are bounded, irrespective of

the length of w1.

w0 w1 s2w1t2 ... sn w1tn

S0 HALT s3t3 → HALT s5t5 → HALT ... ε→ HALT

S1 0 s2w1t2 s4w1t4 ... w1

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 505

From this table, it is clear that the lengths of the strings produced in these tag

systems, are bounded. The reason why these systems will always halt, follows

from the fact that, whatever the length of w1, the system will ultimately pro-

duce a string in which no 1’s will be scanned. This is due to the fact that the 0’s

surrounding the 1 in w1 always lead to ε, while any sequence of 0’s following a

1 will at some point become even thus leading to the erasure of the 1, following

the previous 1. A more detailed proof of this last feature, i.e., that any odd se-

quence of 0’s always leads to the production of an even sequence of 0’s, will be

given in the proof of case 3.3.2.1.

Case 3.3. #1 = 2, l1 > 2, l1 ≡ 0 mod 2. It can be determined for any tag system

from this class that it will either halt, become periodic or lead to unbounded

growth. We have to take into account two cases. The 1’s can be unevenly or

evenly spaced i.e. w1 = t11x11s1 or w1 = ṫ11ẋ11s1.39

Subcase 3.3.1. w1 = t11x11s1. The following table proves that any tag sys-

tem from this class either halts or becomes periodic after a finite number of

steps.

Table 9.17: Case w1 = t11x11s1

w0 w1 A1 A2 ... An

S0 w0 t2w1x2s2 = A1 t4 A1x4s4 = A3 t6 A1x6s6 ... tk xk An sk = tp xp A1spX

S1 HALT t3x3w1s3 = A2 t5x5 A2s5 = A4 t7x7 A2s6 ... tl An+1xl sl = tq A2xq sqX

As is clear from the table, a tag system from this class will always become pe-

riodic – except for those initial conditions in which no 1 is scanned – since the

number of 0’s surrounding A1 becomes bounded, while, whatever shift w1 is

entered with, it will lead to the production of w1.

39The proofs for the other possible combinations, w1 = ṫ11x11ṡ1 or w1 = t11ẋ11ṡ1 are identical

to the proofs for these two forms.

506 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

Subcase 3.3.2. w1 = t11ẋ11ṡ1 For any tag system from this class it can be

determined that it will either halt, become periodic or grow. The proof of this

case is more complicated, and we have to subdivide the case in two cases: t1,

ẋ1 or ṡ1 > 1; t1 = 0, ẋ1 = 1, ṡ1 = 1.

SubSubcase 3.3.2.1. t1, ẋ1 or ṡ1 > 1. For any tag system from this class it

can be determined that it will either halt or become periodic. Set w1 = t11ẋ11ṡ1.

In shift 1, the tag system will produce a sequence of 0’s from w1, ultimately

leading to a halt. In shift 0, we get:

A1 = t2w1 bẋ1/2cw1s2 (9.21)

Depending on the shift, if ṡ1 +bẋ1/2c+ t1 is even, we get:

t3 A10n1 (9.22)

or:

t30n1 A1 (9.23)

It thus follows that if ṡ1+bẋ1/2c+t1 even, the tag system must ultimately become

periodic, since the lengths of the possible strings produced from w1 in this case

are bounded, but never produce the empty string. Note that the tag system will

always become periodic if at least one w1 is produced, such that the tag system

will scan the first letter of w1. In any other case, it halts.

If ẋ1 +bẋ1/2c+ t1 uneven, the tag system produces:

A2 = t4 A1 bẋ1/4cA1s3 (9.24)

from (9.21), or a string merely consisting of a certain number of 0’s (ultimately

converging to ε), depending on the shift. If ẋ1+ s2+bẋ1/2c+ t2+ t1 even, we get:

t5 A20n2 (9.25)

or:

t50n2 A2 (9.26)

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 507

again depending on the shift. Thus if ẋ1+s2+bẋ1/2c+t2+t1 even, the tag system

will always halt or become periodic. A halt occurs, if no A2 is produced. If this

is not the case, but ṡ1 + s2 + (x1 −1)/4 uneven, the tag system produces:

A3 = t6 A2b(x1 −1)/8cA2s4 (9.27)

from (9.24), or a sequence of 0’s depending on the shift.

Generally, tag systems from this class will always become periodic or halt once

a sequence ṡ1 + s2 + s3 + ...+ sn +b(x1 −1)/2nc+ tn + ...+ t2 + t1, separating two

consecutive An−1 in An (n ∈ N, A0 = w1) becomes even. Indeed, given a string

An = ti An−1 bẋ1/2ncAn−1 ṡi , with ṡ1 + s2 + s3 + ...+ sn +bẋ1/2nc+ tn + ...+ t2 + t1

even, the tag system will produce either ti An0n j or ti 0n j An , with the number of

0’s surrounding each An being bounded. Once this string An is produced in a

tag system it must thus become periodic.

Now, it can be proven that for any w1 in the class of tag systems we are consid-

ering, there always exist an n such that the number of 0’s ṡ1 + s2 + s3 + ...+ sn +
bẋ1/2nc+ tn + ...+ t2+ t1 separating two consecutive An−1 in An is even. The first

thing to be noted is that, since the first 0 in ṡ1 + s2 + s3 + ...+ sn +bẋ1/2nc+ tn +
...+ t2+ t1 is always erased, the number of 0’s ṡ1+ s2+ s3+ ...+ sn +bẋ1/2nc+ tn +
...+ t2 + t1 −1 must be even if the number of 0’s separating the two consecutive

An−1 in An is uneven. We thus have:

0000...000︸ ︷︷ ︸
i≡0 mod 2

(9.28)

Now, given an initial condition consisting of n 0’s, n > 1 with n even. Processing

such string, will always lead to the production of a string with uneven length.

Either an uneven number of 0’s is produced, or the last sequence produced

consists of two 0’s, leading to one 0 and thus uneven length. Since any sequence

of 0’s ultimately converges to 0, we can thus conclude that 000...000︸ ︷︷ ︸
i≡0 mod 2

ultimately

becomes uneven, and we can thus conclude that for any w1 there always exist

an n such that the number of 0’s ṡ1 + s2 + s3 + ...+ sn +bẋ1/2nc+ tn + ...+ t2 + t1

separating two consecutive An−1 in An is even. We have thus proven that tag

systems from this class either become periodic or halt. A halt occurs when all

Ai have been entered with a shift 0, before An is produced.

508 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

SubSubcase 3.3.2.2. t1 = 0, x1 = 1, s1 = 1 It can be proven that the only

tag system in this class, with w1 = 1010, will either halt or lead to unbounded

growth. Clearly, if w1 is entered with shift 0 we get w1w1, if entered with shift 1,

it will lead to a string of two 0’s, and thus ultimately to ε. Now given An . Since

there is always only one 0 between two consecutive An−1 in An , the number of

0’s separating such An−1 is always uneven, and it is thus always the case that

any An will either lead to the production of a string consisting of 0’s, or An+1

with lAn+1 > lAn . In other words, this tag system will always show unbounded

growth, once all 0’s separating consecutive 1’s from the initial condition have

been erased, and there is at least one w1 remaining in this string produced.

Otherwise it will halt.

Case 3.4. #1 = 2, l1 > 2, l1 ≡ 1 mod 2. It can be determined for any tag system

from this class that it will always halt or become periodic. Again we have to

consider two cases, depending on the parity of the spacing between the two 1’s,

i.e. w1 = ṫ11x11s1s and w1 = t11ẋ11s1.40

Subcase 3.4.1. w1 = ṫ11x11s1 The table that proves the result is identical to

Table 9.17, and it thus follows that any tag system from this class will either halt

or become periodic. It will always become periodic once w1 is produced and

entered with a shift 1, in all other cases it halts. A similar proof can be given for

the case w1 = t11x11ṡ1.

Subcase 3.4.2. w1 = t11ẋ11s1. For any tag system from this class, it can

be determined it will either halt or become periodic. We have to differentiate

between two cases: t1, x1 or s1 > 1 and t1 = 0, x1 = 1, s1 = 0. We will not give the

proof for the first case, since it is almost identical to the (rather complicated)

proof of case 3.3.2.1.

In case t1 = 0, x1 = 1, s1 = 0 we only have to consider one tag system, with w1 =
40The proofs for the two other possible w1 are almost identical to the proofs of these two

forms.

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 509

101. For this tag system it can be determined that it will either halt or become

periodic. This is shown through the following table:

Table 9.18: Case w0 = 0, w1 = 101

w0 w1 w1w1 w1w1w0

S0 w0X w1w1 w1w1w0 w1w1w0w0

S1 w0‘X w0X w0w1w1 w0w1w1X

w1w1w0w0 w0w1w1w0 w0w0w1w1 w0w1w1

S0 w1w1w0w0X w0w0w1w1 w0w1w1w0X w0w0w1w1X

S1 w0w1w1w0 w1w1w0w0X w0w0w1w1X w1w1w0X

This tag system will always become periodic, once it has produced w1, entered

with a shift 0. In all other cases it will halt.

Case 3.5. #1 > 2, l1 > 2, l1 ≡ 0 mod 2. It can be determined for each tag system

from this class that it will lead to unbounded growth, become periodic or halt.

To prove this, we merely have to show this in detail for the case #1 = 3. There

are two possible cases here: all 1’s are unevenly spaced, i.e.,w1 = t11ẋ11y11s1, or,

only two of them are unevenly spaced, i.e., w1 = t11ẋ11ẏ11ṡ1.41 The third case

we will consider here, is the generalization of the results for #1 = 3 to #1 > 3.

Subcase 3.5.1. w1 = t11ẋ11y11s1, #1 = 3. Depending on the shift w1 is en-

tered with, the tag system will produce one of the following two strings:

A1 = t2w1 bẋ1/2cw1
⌊

y1/2
⌋

s2 (9.29)

or:

B1 = 0n1 w1s2 (9.30)

41The proofs for all other w1’s, with all or not all 1’s evenly spaced, are of course almost iden-

tical to the proofs to follow.

510 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

this second string, being again a case of w1 (surrounded by 0’s) thus allowing

for the possibility of periodicity. If A1 is produced and s1+bẋ1/2c+ t1 is odd one

of the following strings is produced from A1:

A2 = t3 A1 bẋ1/4cA1
⌊

y1/4
⌋

s4 (9.31)

or:

B2 = t4B1 bẋ1/4cB1
⌊

y1/4
⌋

s5 (9.32)

else, if s1 +bẋ1/2c+ t1 is even, we get:

C1 = t3 A1 bẋ1/4cB1
⌊

y1/4
⌋

s5 (9.33)

or:

D1 = t4B1 bẋ1/4cA1
⌊

y1/4
⌋

s4 (9.34)

If B2 is produced, and the sequence of 0’s between the two consecutive B′
1s is

odd it is clear that the tag system will produce either a string of the same form as

B2, the number of 0’s between two consecutive B’s being decreased [see (9.35)

and (9.36)], or a string of a form similar to A2, depending on the shift. If this

sequence of separating 0’s is even, we get one of the two following strings from

B2:

E1,B2 = t5
⌊

0n1 /2
⌋

B1s6 bẋ1/8c⌊0n1 /2
⌋

A1
⌊

y1/8
⌋

s7 (9.35)

or:

F1,B2 = t5
⌊

0n1 /2
⌋

A1s7 bẋ1/8c⌊0n1 /2
⌋

B1
⌊

y1/8
⌋

s6 (9.36)

Now, in the proof case 3.3.2.1. we showed that any number of 0’s = ṡ1 + s2 + ...+
sn +bẋ1/2nc+ tn + ...+ t2 + t1 will in the end always become even. Similarly, we

can prove for this case that, starting from A1, there always exist n rsp. m such

that in An respectively Bm the sequence of 0’s separating the two An−1’s rsp. the

two Bn−1’s becomes even. The proof is identical to that for case 3.3.2.1. We can

thus conclude that once A1 is produced, the strings that can be produced from

a certain An−1, n > 1 will ultimately be in one of the two following forms:

Cn = ti1 An−1
⌊

ẋ1/2n⌋
Bn−1

⌊
y1/2n⌋

s j1 (9.37)

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 511

or:

Dn = ti2 Bn−1
⌊

ẋ1/2n⌋
An−1

⌊
y1/2n⌋

s j2 (9.38)

Similarly, the strings that can be produced from a certain Bi , n > 1, will ulti-

mately either lead to a string of a form similar to an A j [and will thus lead to

one of the forms (9.37) or (9.38)] or to one of the two following forms:

En,Bi = 0ni ,1 Bn0n j ,1 An0nh,1 (9.39)

or:

Fn,Bi = 0ni ,2 An0n j ,2 Bn0nh,2 (9.40)

Now, given strings of the form Cn ,Dn ,En,Bi and Fn,Bi . If the sequence of con-

secutive 0’s between the several A’s and B’s is odd, these string will always grow,

the proofs being left to the reader. If this sequence of separating 0’s is even, the

strings will also always grow. In case of Cn or Dn , the strings produced from ei-

ther of these strings will always consist of a string An > An−1 and a string Bn−1,

independent of the shift.

Given strings of the forms En,Bi or Fn,Bi , the strings produced from these strings

will also always consist of a string An+1 > An and a string Bn , independent of the

shift. It is important to note, that once strings of the forms Cn ,Dn ,En,Bi ,Fn,Bi

are produced, the sequence of 0’s separating the several A’s and B′s can also

be proven to always become even, and so these new strings will in their turn

lead to growth. We can thus conclude that once a tag system from this class

produces a string of the form A1 it will always grow. The system will always be-

come periodic if strings B1 are produced, such that the number of 0’s separating

consecutive B′
1s remains odd, the first B1 in a string produced by the tag system

being entered with a shift 1.

We still have to consider the case where all 1’s are unevenly spaced. Let us sup-

pose w1 = t11ẋ11ẏ11ṡ1. We can then determine for any tag system in this form

that it will either halt, become periodic or lead to unbounded growth.

Subcase 3.5.2. w1 = t11ẋ11ẏ11ṡ1, #1 = 3 We have to consider two cases. The

first case concerns one tag system, i.e. the tag systems for which t1 = 0, x1 =

512 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

1, y1 = 1, s1 = 1. It can be proven that this tag system, with w1 = 101010 will ei-

ther halt or lead to unbounded growth. The proof is identical to Case 3.3.2.1.

with w1 = 1010 and we will thus not repeat this here.

For the second case, tag systems from this class will produce the following string

from w1:

A1 = t2w1 bx1/2cw1
⌊

y1/2
⌋

w1s2 (9.41)

or a string consisting of 0’s, depending on the shift. If ṡ1 +bx1/2c+ t1 even, ṡ1 +⌊
y1/2

⌋+ t1 uneven from A1 we get:

t3 A10n1 (9.42)

or:

t30n2 A1b(y1 −1)/4cA1s3 (9.43)

depending on the shift A1 is entered with. Similarly, if ṡ1 +bx1/2c+ t1 uneven,

ṡ1 +
⌊

y1/2
⌋+ t1 even we get:

t30n3 A1s3 (9.44)

or:

t3 A1 bx1/4cA10n4 (9.45)

depending on the shift. If both ṡ1 +bx1/2c+ t1 and ṡ1 +
⌊

y1/2
⌋+ t1 are even, the

tag system produces either:

t3 A10n5 A1s3 (9.46)

or:

t30n6 A10n7 s3 (9.47)

depending on the shift A1 is entered with. If both ṡ1+bx1/2c+t1 and ṡ1+
⌊

y1/2
⌋+

t1 are uneven, the tag system either produces a string solely consisting of 0’s, or:

A2 = t3 A1 bx1/4cA1
⌊

y1/4
⌋

A1s3 (9.48)

from A1. For this last case, we know from case 3.3.2.1. that there always exists

an An – produced from a sequence An−1 starting from A1 – such that at least

one of the sequences of 0’s between two consecutive An−1’s will be even.42 As

42These sequences are: ṡ1 + s2 + s3 + ...+ sn +bx1/2nc+ tn + tn−1 + ...+ t2 + t1 and ṡ1 + s2 + s3 +
...+ sn +⌊

y1/2n
⌋+ tn + tn−1 + ...+ t2 + t1.

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 513

long as none of these sequences becomes even, strings produced from A1 can

lead to the empty string ε when one of the Ai leading to An is entered with a

certain shift. Whether a halt occurs within tag systems from this class then de-

pends on the parity of 0’s separating consecutive w1 in the initial condition, as

long as no An is produced.

We now still have to prove that in all other cases tag systems from this class will

always lead to unbounded growth grow or become periodic. Let us suppose

that at least one of the sequences ṡ1+s2+s3+...+sn+bx1/2nc+tn+tn−1+...+t2+t1

or s1+s2+s3+...+sn+
⌊

y1/2n
⌋+tn+tn−1+...+t2+t1 has become even, once An , is

produced, with n ∈N and A0 = w1. In properly replacing all indices, the strings

that can be produced from An will all be in one of the (generalized) forms (9.42)

– (9.47). In case at least one string is produced of forms (9.43), (9.45) or (9.46) it

easily follows that the tag system will always lead to unbounded growth, since

it can be proven that each of the sequences of 0’s separating two consecutive

An−1 in An will ultimately become even. Let us suppose this is already the case

for An . Then, if the first An−1 is entered with a shift 0, the second An−1 will be

entered with a shift 1 and vice versa, thus resulting in the production of a string

consisting of three An−1, of which two are again separated by an even num-

ber of 0’s. If the number of 0’s separating two An−1’s in An only becomes even,

when Ai+n is produced, at least three An−1’s will be produced from Ai+n . It thus

follows that once any tag system from this class produces strings of the forms

(9.43), (9.45) or (9.46) it will always grow. The proof that any such sequence

separating two consecutive An−1 in An will in the end become even, is (almost)

identical to the proof of case 3.3.2.1. and will not be given here.

If strings of the forms resulting from (9.42), (9.44) or (9.47) by replacing the in-

dices in the proper way, are produced, tag systems from this class will either

grow or become periodic. If a string is produced in a tag system, consisting of

a combination of these forms, the tag system can only remain periodic if the

parity of the number of 0’s separating consecutive An remains constant, such

that every such form is entered with a shift that guarantees its periodicity. In

all other cases, tag systems from this class will always grow, since in the end at

least one of the forms (9.42), (9.44) or (9.47) will lead to the production of a form

514 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

(9.43), (9.45) or (9.46).43

Subcase 3.5.3. #1 > 3. On the basis of the proofs of the solvability of the cases

w1 = t11x11y11ṡ1, #1 = 3 and w1 = t11ẋ11y11s1, #1 = 3 we can now prove that

we can determine for any tag system with #1 > 3, w0 = 0, l1 > 3, l1 ≡ 0 mod 2,

that it will either halt, become periodic or lead to unbounded growth. Clearly

if whatever shift w1 is entered with, at least two 1’s will be scanned, it can be

determined that the tag system will either halt or show unbounded growth, a

halt only occurring when no 1 is scanned in the initial condition.

The two other cases are that either all 1’s are unevenly spaced, or all but one are

unevenly spaced. The proofs of these two cases immediately follow from the

two cases w1 = t11ẋ11ẏ11ṡ1, #1 = 3 and w1 = t11ẋ11y11s1, #1 = 3.

Case 3.6. #1 > 2, l1 > 2, l1 ≡ 1 mod 2. The proof of this case is very similar to

the proof of case 3.5., and is thus left to the reader.

Given Cases 1–3 we have thus proven theorem 9.4.2

�

Discussion of the proof

As is clear from the proof, proving the solvability of the halting and reachability

problem for the class TS(2, 2) indeed involves considerable labor, despite the

fact that once one has established some basic methods, the proofs for the sev-

eral cases become rather straightforward. Most probably some of the proofs

might be simplified. For example,the solvability of the cases 1.2, 1.4, 1.6., 1.8.

easily follows from theorem 6.3.1, which states that the decision problem for

any tag system for which the length of the respective words and v are not rela-

tive prime can be reduced to a certain number (the G.C.D. of v and the lengths

of the words) of other tag systems. It follows from this theorem that the halting

and reachability problem for all the tag systems with w0 = ε, lw1 ≡ 0 mod 2 from

43In order to determine whether a tag system will become periodic or not, one merely has to

run the tag system until the number of 0’s surrounding each of the An in any of these forms has

become constant or until a form (9.43), (9.45) or (9.46) is produced.

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 515

the class TS(2, 2) can be reduced to the halting and reachability problem of tag

systems with v = 1. Since Wang has proven that these problems are solvable for

any tag system with v = 1 (See Sec. 6.1.1), the result easily follows.

As was said, there is one important difference between proving this class of tag

systems solvable as compared to solvability proofs for Turing machines: one

has to prove the result for an infinite class of tag systems. In this respect, it was

fundamental in this proof that there always exists a class of boundary cases,

marking the difference between tag systems that will always halt or become

periodic (except for a determined class of initial conditions), and tag systems

that will show unbounded growth (except for a determined class of initial con-

ditions). These boundary cases are partially determined by the total number

of 1’s in w1 and w0, since every time a 1 is scanned a string produced in a tag

system must become longer. In this respect this proof seems closely connected

to constraint 3 from Sec. 7.

Although we already concluded that this constraint can never be valid in gen-

eral, it is clear that this method might be applied to certain infinite classes of

tag systems to prove them solvable even if we have not yet been able to develop

a general method to do this. Now, in assuming that this constraint can indeed

be refined in a way that it can be used as a kind of criterium for differentiating

between solvable classes and unsolvable classes, it might be used to seriously

simplify our proof of the solvability of the class TS(2, 2). If we do not take into

account the case for which w0 = ε, i.e., the more easy case, it can in fact be

proven that for the class of tag systems TS(2, 2) there is but a finite subclass

of tag systems for which the constraint is valid, i.e., the class l1 = 3,#1 = #0 = 2,

which can be easily proven solvable through the table method.44 For the classes

v ≥ 2,µ > 2 or v > 2,µ ≥ 2, there is always an infinite class of tag systems for

which the constraint can be applied. We consider this as a fundamental dif-

ference between the class TS(2,2) and the classes TS(3,2), TS(2,3) and suspect

that further research on this constraint might help to considerably simplify the

44We will not prove this here, because the proof is very trivial. Remember that for the con-

straint to work in this case, the following equation x+(l1−2)x = l1+1 must have a solution over

the integers. Clearly, this equation is only solvable if either l1 = 2 or l1 = 3. The case l1 = 2 was

already excluded from the proof, given Wang’s condition.

516 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

proof of Theorem 1.

The significance of constraint 3 is furthermore illustrated by the role of the pa-

rameters #1 and #0 in the proof. In fact, the estimates one can calculate on the

basis of constraint 3 for determining the frontier values for #1 and #0, marking

the difference between tag systems that lead to periodicity or a halt and those

that lead to unbounded growth (except for some specific class of initial condi-

tions), gives a good approximation for case 1. Using the equation:

#0(l0 − v)+#1(l1 − v) > 0 (9.49)

we get that #1 > 2 for case 1 to obtain tag systems that show unbounded growth.45

Except for some of the subcases (those for which l1 ≡ 0 mod 2) this estimate in-

deed fits the results of the proof for the case. In cases 2 and 3, we get l1#1 >
l1 +#1+1. For case 3, the estimate only works by approximation. I.e. it gives

a correct estimate in the sense that if #1 > 2 one should expect unbounded

growth. However, it also implies that if l1 > 3, #1 = 2 unbounded growth should

also be expected. This does not fit the results completely, and illustrates some

of the problems connected with the constraint. As for case 2, we get the same

estimate. In this case, the estimate on the basis of the constraint is completely

incorrect since we already get unbounded growth once l1 > 4, #1 = 1 (except

for some special initial conditions). Of course, there is a clear explanation for

the fact that tag systems from this class will show unbounded growth once l1

exceeds a certain value. This is due to the fact that w0 = 1. Although scanning

a 0 has the immediate effect of a decrease in the length, if the letter 1 produced

by w0 is scanned, it has, indirectly an effect of growth. This example illustrates

that constraint 3 is in need of a further refinement.

To conclude, although it is clear that constraint 3 could be used to simplify the

proof in this section, it is equally clear that this will only be possible after it has

been more seriously investigated.

45Indeed, since #0 = l1 −#1, v = 2, the equation becomes −2l1 +#1l1 = x

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 517

9.4.3 Universality in tag systems.

The known limits of solvability and unsolvability in tag systems and Turing

machines: a comparison

One of the first things to be noted with respect to limits of unsolvability in tag

systems, is that their known limits of unsolvability are very high. Although in

Minsky’s encoding, v remains equal to 2, the number of symbols (and thus pro-

duction rules) needed to simulate a Turing machine is rather high. Indeed,

given a Turing machine with 2 symbols, and n states, the tag system needs 16n

symbols. Applying this to the smallest universal machine known with two sym-

bols, i.e. UTM(2, 18) (mentioned in [Nea06]), we get a universal tag system with

v = 2, µ = 288, the smallest class of universal tag systems thus being TS(288,

2). Even if we would accept Matthew Cook’s universal Turing machine with 2

symbols, 7 states, based on the proof of the universality of rule 110, we get uni-

versality in the class TS(112, 2) which is still rather large.

The limits of solvability on the other hand are very low. Given the proof from

Sec. 9.4.2 as well as the results by Wang and Post [Pos65, Wan3a], the classes of

tag systems known to be solvable are TS(1,1), TS(2, 1), TS(1, 2) and TS(2,2).

In Fig. 9.1 and 9.2 an overview is given of the known limits of solvability and

unsolvability in Turing machines rsp. in tag systems. As is clear from these

figures, the gap between known solvable and unsolvable classes in Turing ma-

chines is significantly smaller than in tag systems. The 3n +1-line however in

tag systems is lower as compared to that in Turing machines. Furthermore,

given our experimental results from the previous chapter, there is no clear rea-

son to assume that the class of tag systems with µ= 2, v > 2 is solvable. Add to

this the fact that tag systems lie at the basis of some of the smallest universal

systems known and the question naturally follows whether it is not possible to

lower the unsolvability line in tag systems to classes that are equal or close to

the classes TS(2, 3) and TS(3,2). The first most obvious thing to try to lower this

unsolvability line is to construct smaller universal tag systems.

518 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

States

S
y
m

b
o
ls

Figure 9.1: Limits of solvability and unsolvability in Turing machines. A full line

denotes the solvability line, with � indicating the known solvable classes. The

dotted line denotes the 3n + 1-line, � denoting the class of Turing machines

to which the 3n +1-function was reduced. The dashed line is the current un-

solvability line, i.e. universality line, where � denotes the classes for which a

universal machine has been constructed.

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 519

28
5

28
6

28
7

28
8

28
9

29
0

29
1

29
2

29
3

29
40 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Symbols µ

S
h
if
tn

u
m

b
er

v

3n + 1

T1

Figure 9.2: Limits of solvability and unsolvability in Tag systems. The full line

indicates the solvability line, with � indicating TS(2,2). The dotted line is the line

indicating the line formed by Post’s tag system T1 – indicated by ♦ – the dashed

dotted line indicates the 3n + 1-line in tag systems, � indicating the class of

tag systems to which the 3n +1-problem was reduced. The dashed line is the

current universality line in tag systems, with � denoting the class in which a

universal tag system was constructed.

520 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

Universality in tag systems with µ= 2?

Given my experiences with 2-symbolic tag systems, I became more and more

convinced that the class of tag systems with µ= 2 is unsolvable, and I began to

search for methods to encode the large universal tag system, based on Minsky’s

encoding and thus indirectly on the encoding of Turing machines, to this class

of tag systems. Maybe it would have been more convenient if I had first tried

to simply find rather small universal tag systems, without them being necessary

binary, but due to my stubbornness with respect to proving the universality of a

tag system with µ= 2, I never spend any time on this, possibly, more interesting

problem.

In this section, we will, regretfully, not give a proof of the universality of the class

of tag systems with µ= 2 but sketch two methods that might lead to such proof

and argue that although an explicit encoding is lacking right now, there are clear

reasons why one should expect universality on this level. It should be noted that

the first method gives a kind of general scheme of how such an encoding might

work, while the second is more specific, using the existence of different periodic

structures in tag systems as discussed in Sec. 8.4. For both methods, the goal

for now is to simulate a universal tag system based on Minsky’s encoding.

§1. Method 1 To explain how this encoding might work, it is interesting to

shortly illustrate how it is possible to encode any class of Turing machines TM(m,

n) into the class TM(2, s).46 Given for example Minsky’s universal 4-symbols, 7-

states machine. We can then encode each of the four symbols in binary form.

For example set B to 11, x to 01, 1 to 10 and 0 to 00 and then rewrite the ma-

chine table. I will not go into the details of how to rewrite such a table. Let

me merely point out that it is a rather trivial though laborious matter to do this

if one does not take into account the number of states. In a similar way, one

could try to encode any tag system from a class TS(µ, v) to a class TS(2, v ′) by

encoding the m symbols into some kind of binary form. At first, drawing from

the method for reducing n-symbolic Turing to 2-symbolic Turing machines, it

seemed rather straightforward to prove the result. However, when applied in

46This was proven by Shannon [Sha56].

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 521

a direct fashion, this method cannot work for tag systems. Let me explain this

through an example.

Given a tag system with 4 symbols, v = v4 that we want to encode into a tag sys-

tem with 2 symbols, with shift number v. Let us suppose that each of the four

symbols has to be encoded by two symbols. Given v, our four symbols could

then e.g. be encoded as:

0 → 0x0,1...x0,v−10y0,1...y0,v−1

1 → 1x1,1...x1,v−10y1,1...y1,v−1

2 → 0x2,1...x2,v−11y2,1...y2,v−1

3 → 1x3,1...x3,v−11y3,1...y3,v−1

with xi , j , yi , j ∈ {0,1}. There is however one problem with this kind of encod-

ing: how will one simulate in this the erasure of the first v4 symbols from the

4-symbolic tag system? This kind of encoding never erases encodings of sym-

bols. If we for instance concatenate the encoding for 2 and 3, the tag system

will process both encodings.

Let us denote the encoding of v4, the respective symbols and words of a tag sys-

tem we want to simulate in the 2-symbolic tag system as: v4, a0, ..., aµ−1, wa0 , ..., waµ−1 .

Then, the only possible way to solve this erasure problem is that all lai
, are such

that no combination of a length smaller than v4 of these a i is such that the

length of this combination is divisible by v, while a combination of length v4

is. Suppose that we e.g. have the following sequence of symbols in our two-

symbolic tag system:

x1,1x1,2x1,3...x1,na1,i︸ ︷︷ ︸
a1,i

x2,1x2,2x2,3...x2,na2,i︸ ︷︷ ︸
a2,i

x3,1x3,2x3,3...x3,na3,i︸ ︷︷ ︸
a3,i

...... xs,1xs,2xs,3...xs,nan,i︸ ︷︷ ︸
an,i︸ ︷︷ ︸

la1,i a2,i a3,i ...an,i
≡0 mod v,s=v4

(9.50)

with xi , j ∈ {0,1}. This encoding should be such that the tag system will only be-

gin to scan the first symbol in any a i , j once j = s +1. In this way one can con-

trol the simulation of v4. Indeed, it is only when the encoding of as,i has been

scanned, that the next letter scanned will again be the first symbol of as+1,i , and

the system can again start scanning a sequence of 0’s and 1’s.

522 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

The encoding of the ai should be thus that given such a string of the form (9.50)

the sequence of 0’s and 1’s scanned throughout this sequence results in a se-

quence of words w0 and w1 such that their combination results in the encod-

ing of wa1,i . Although this kind of encoding seems theoretically possible we are

confronted with the problem that given a tag system of µ symbols, any com-

bination of 0’s and 1’s being encodings of the sequence of symbols ai ,2...ai ,v

following the encoding of a specific symbol a1,i should lead to a combination

of words w0 and w1 that results in the encoding of wai ,1 . For example, if the

tag system we want to simulate contains 10 symbols, with v = 3. Suppose that

we would encode each of these symbols by binary combinations of length 4

in a binary tag system, with shift number v2. We must now determine v2 and

the length of the encodings for our binary tag system such that the lengths of

the encodings and v2 are such that any combination of 3 encodings is divisible

by v2 while no shorter combination is. A solution to this problem is to encode

any symbol by a binary string of length 10, and set v2 = 3. Then, for each such

encoding, 3 or 4 letters will be scanned. Given a string in this binary tag sys-

tem consisting of a number of encodings of length 10. When the first 0 or 1 in

this string is entered, and thus the encoding of the first symbol, the tag system

indeed has to go through 3 encoded symbols before the first letter of an en-

coded symbol is scanned again. However, since each encoding of a symbol can

be followed by any combination of 2 encoded symbols, while we have 10 dif-

ferent symbols, any combination of 2 encodings following the encoding of the

first symbols, should lead to the same combination of 0’s and 1’s, to correctly

encode the word corresponding to the encoding of the first symbol. For this

specific example, this means we have 100 possible combinations of encodings

of symbols that can follow the first symbol!47

Still, given the encoding of the universal tag system, this kind of encoding is

not necessary a problem, since the number of combinations of two symbols is

highly restricted. Indeed, for the simulation to work, for each of the symbols,

there is only one combination. For example, any Ai is always followed by an x,

47Indeed, if we denote our symbols from the 10-symbolic tag system as the decimal digits,

going from 0 to 9, it immediately follows that we have 100 different combinations of these digits,

of length 2 (starting with 00, ending with 99.

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 523

so the encoding should only work for Ai x. If such an encoding would be pos-

sible we would have found a two-symbolic tag system that can simulate any

Turing machine, and is thus universal. For this abstract method to work how-

ever, we have to find the right encodings for all symbols ai such that any of the

possible combinations of two symbols a i in the binary tag system that is pos-

sible in the universal tag system when started with the right initial conditions,

leads to the right combination of words w0 and w1. We have not really searched

for such an encoding, but we suspect that any such encoding can only be found

with the help of a computer. Indeed, since one needs 288 different encodings

which each have to lead to the right encodings – where each resulting encoding

in its turn has to lead to the right encoding – it might be a rather intractable

problem to find such an encoding if one would not use some kind of search al-

gorithm that searches for the right words w0 and w1 and a shift number v, ful-

filling certain constraints. In this respect it should be noted that although this

encoding does not start from an existing tag system, but is used to construct

one, the hypothetical algorithm that might be used to find such encoding will

most probably involve some kind of analysis of behaviour of the tag systems

constructed.

§2. Method 2 The idea of the second method resulted from the observation

that a tag system can produce several periodic structures (See Sec. 6.1.2 and

8.4). For example, in Post’s tag system T1 one can construct an infinity of peri-

odic structures which are all combinations of a finite number of periodic struc-

tures. The method to be described here might be used to simulate a universal

tag system constructed through Minsky’s encoding. As is clear from the de-

scription of Minsky’s encoding (See Sec. 6.1.1), there are three basic operations

such universal tag system must be able to perform: it must be able to recognize

whether a given substring is of even or uneven length, it must be able to half or

double substring and it must be able to produce new symbols.

It is important to remember here, that every instruction (print symbol, move to

left or right, goto state t ′) of a Turing machine, performed in state t scanning

524 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

symbol s, is simulated in the tag system by starting from a sequence:

At ,s x(αt ,s x)nBt ,s x(βt ,s x)m

from which the tag system, after the instructions have been performed, pro-

duces a sequence:

At ′,s′x(αt ′,s′x)n′
Bt ′,s′x(βt ′,s′x)m′

where t ′ and s′ are the new state and the symbol scanned, and m′ and n′ are the

result of doubling and halving m rsp. n (or vice versa, depending on whether

the machine step simulated included a move to the left or to the right).

In Minsky’s encoding, v = 2, and the use of pairs of symbols is thus an important

aspect of the encoding. Although the second symbol of a pair is not scanned, it

is fundamental for the recognition of the parity of a substring. In the theoretical

encoding to be discussed here, we will not differentiate between first and sec-

ond symbol of a pair: in this encoding, a pair of symbols that leads to a string

of half or double length is encoded as a binary string that halves or doubles

through the production rules of the tag systems. As a consequence, the differ-

entiation between first and second symbol is completely arbitrary.

The parity of a given substring is recognized, in that an even number of a given

class of binary strings will lead to a different shift as compared to an odd num-

ber of binary strings. It should also be noted that where one has to differentiate

between several αt ,s x and βt ,s x depending on t and s in Minsky’s encoding,

this will not be done in the encoding to be discussed here, since any αt ,s x and

βt ,s x is encoded in the same way. We will thus use αx and βx. Furthermore

in Minsky’s encoding each symbol At ,s ,αt ,s ,Bt ,s ,βt ,s results in a sequence of

productions of new symbols – (αt ,s x) e.g. first produces ct ,s xct ,s x or st ,s , these

symbols in their turn producing new symbols in their turn producing αt ′,s′x –

finally leading to At ′,s′x, (αt ′,s′x),Bt ′,s′x, (βt ′,s′x). In our encoding we will not dif-

ferentiate between the original pair of symbols and the sequence of symbols it

leads to. In other words, every time we e.g. use αx this not only indicates αt ,s x

but also any symbol resulting from it e.g. st ,s st ,s , dt ,s,1dt ,s,0 (or dt ,s,0dt ,s,1) and

αt ′,s′ . This is done for the ease of notation. It will always be clear from the con-

text what stage of the simulation we are discussing.

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 525

As is the case with Minksy’s encoding, in general there will be two classes of

symbols: the pairs of symbolsαx and βx that have to be halved or doubled and

the symbols Bx and Ax that are used as symbol producing symbols and further-

more assure that, irrespective of whether a certain substring has become odd

or even, after the machine’s configuration has been changed, the new resulting

sequence is of the form At ,s x(αt ,s x)nBt ,s x(βt ,s x)m .

In our theoretical encoding the symbols Ax and Bx will play a very special role:

they will serve as a kind of shift controlling devices and are furthermore used

to simulate the operation of printing symbols when necessary. Indeed, the role

of At ,s x and Bt ,s x is such that the sequences of αx and βx are entered with

the right shifts for a certain number of times. Furthermore, it are the symbols

At ,s x and Bt ,s x that are used for making the right state transitions depending

on whether in the simulation a 0 or a 1 was identified (by using the parity of a

given substring).

As was said, this encoding relies on the existence of certain periodic structures

in several tag systems, such as those which are the most common in T1. The

idea of using such periodic structures here is based on the fact that the peri-

ods of these structures can remain constant, while their length is a product of

the period.48 For example, there is an infinite number of strings with period

6, e.g. all strings (10111011101000000)n , with n > 0. One can then wonder

whether it is possible for a tag system to produce (10111011101000000)2n or

(10111011101000000)n/2 from (10111011101000000)n , once (10111011101000000)n

is entered with a shift different from 0. In other words, given (10111011101000000)n ,

can one find a sequence of shifts which lead to a string with the same period,

of double or halved length. In general, given a tag system T , this problem is

to find periodic structures with letters x1x2...xt , xi ∈ Σ, such that T can pro-

duce (x1x2...xt)2n or (x1x2...xt)bn/2c from (x1x2...xt)n when entered with a cer-

tain shift.

For the encoding to work, we can use periods of type 1, and the method thus

only works for tag systems for which this type exists. It should however be noted

that a similar kind of encoding might be found for periods of type 3 since these

48For more details, the reader is referred to the discussion on periodic structures in tag sys-

tems of Sec. 6.1.2 and 8.4.

526 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

structures easily allow for the construction of an infinite number of periodic

strings, having certain properties also shared by periods of type 1, properties

that are basic for the encoding to work. We have not studied this possibility, so

for now we will restrict our attention to periods of type 1.

In order to check whether the halving and doubling operation is possible for

T1, I started from (111000)2 and then applied the table method, described in

Sec. 7.3.4, to this string. In other words, I looked at all the theoretically possible

productions from (111000)2. I did not construct this table by hand, but used an

algorithm implementing the method, to generate these production, and then

checked whether there existed any path through the resulting table that lead to

111000 or (111000)4 (or any of the other 5 variants of a period 6, i.e. 011100,

001110, 000111, 100011, 110001). This is indeed the case . For example, 111000

is produced from (111000)2 as follows:

S0→ (w3
0 w3

1)2 S0→ w2
1 w0w1w2

0
S0→ (w2

1 w4
0)2 S1→ w2

1 w5
0 w1w3

0
S2→ w3

1 w3
0 w1w2

0
S2→

w0w3
1 w4

0
S0→ w2

1 w0w1w3
0

S1→ w2
1 w5

0
S1→ w3

1 w3
0

where
Si→ y

S j→ x means string x results from string y , when y is entered with a

shift i and all its relevant letters have been scanned. Let us call the sequence

of shifts leading from string A to string B the path from A to B. In table 9.19

some of the paths leading from (111000)2 to period 6 structures of double or

half length are shown. These are put in bold.

Table 9.19: Some possible productions from the periodic

structure (111000)2.

w3
1 w3

0 w3
1 w3

0 , L =1

S0 w2
1 w0w1w2

0 w2
1 w0w1w2

0

S1 w3
1 w3

0 w3
1 w3

0

S2 w0w3
1 w3

0 w3
1 w2

0

w2
1 w0w1w2

0 w2
1 w0w1w2

0 , L =2

S0 w2
1 w4

0 w2
1 w4

0

S1 w5
1 w0w5

1 w1

S2 w0w1w0w1w3
0 w1w0w1w2

0

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 527

w2
1 w4

0 w2
1 w4

0 , L =3

S0 w2
1 w5

0 w1w3
0

S1 w3
1 w2

0 w2
1 w4

0

S2 w0w1w3
0 w3

1 w2
0

w5
1 w0w5

1 w1, L =3

S0 w2
1 w0w3

1 w3
0 w3

1 w0w1w1

S1 w3
1 w0w5

1 w0w3
1 w2

0

S2 w0w3
1 w0w1w0w3

1 w0w3
1

w2
1 w5

0 w1w3
0 , L =4

S0 w2
1 w4

0 w2
1 w2

0

S1 w3
1 w3

0 w1w2
0

S2 w0w1w7
0

w3
1 w2

0 w2
1 w4

0 , L =4

S0 w2
1 w0w1w3

0 w1w3
0

S1 w3
1 w2

0 w2
1 w4

0X

S2 w0w3
1 w0w3

1 w2
0

w0w1w3
0 w3

1 w2
0 , L =4

S0 w0w1w2
0 w2

1 w0w1w2
0

S1 w4
0 w3

1 w2
0

S2 w2
1 w3

0 w3
1 w1

w2
1 w0w3

1 w3
0 w3

1 w0w1w1, L =4

S0 w2
1 w3

0 w3
1 w3

0 w5
1

S1 w5
1 w0w1w2

0 w2
1 w0w1w0w1w1

S2 w0w1w0w3
1 w3

0 w3
1 w4

0

w3
1 w3

0 w1w2
0 , L =5

S0 w2
1 w0w1w2

0 w2
1 w1

S1 w3
1 w3

0 w1w2
0X

S2 w0w3
1 w4

0

w0w1w7
0 , L =5

S0 w0w1w5
0

S1 w7
0X

528 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

S2 w2
1 w4

0

w2
1 w0w1w3

0 w1w3
0 , L =5

S0 w2
1 w5

0 w1w2
0X

S1 w5
1 w5

0

S2 w0w1w0w1w2
0 w2

1 w2
0

w0w1w2
0 w2

1 w0w1w2
0 , L =5

S0 w0w1w3
0 w1w0w1w2

0

S1 w3
0 w2

1 w4
0

S2 w2
1 w0w5

1 w1

w4
0 w3

1 w2
0 , L =5

S0 w3
0 w3

1 w2
0

S1 w4
0 w3

1 w1

S2 w2
0 w2

1 w0w1w2
0

w2
1 w3

0 w3
1 w3

0 w5
1 , L =5

S0 w2
1 w3

0 w3
1 w3

0 w3
1 w0w3

1

S1 w3
1 w3

0 w3
1 w3

0 w3
1 w0w0

S2 w0w1w2
0 w2

1 w0w1w2
0 w2

1 w0w3
1 w1

w5
1 w0w1w2

0 w2
1 w0w1w0w1w1, L =5

S0 w2
1 w0w3

1 w4
0 w2

1 w6
0

S1 w3
1 w0w5

1 w0w7
1

S2 w0w3
1 w0w1w0w1w3

0 w1w0w1w0w1w1

w0w3
1 w4

0 , L =6

S0 w0w3
1 w4

0X

S1 w2
0 w3

1 w2
0

S2 w2
1 w0w1w3

0

w2
1 w4

0 , L =6

S0 w2
1 w4

0X

S1 w3
1 w2

0

S2 w0w1w3
0

w0w1w0w1w2
0 w2

1 w2
0 , L =6

S0 w0w1w0w1w3
0 w1w2

0

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 529

S1 w5
0 w2

1 w2
0

S2 w4
1 w0w3

1 w1

w3
0 w2

1 w4
0 , L =6

S0 w2
0 w2

1 w4
0

S1 w2
0 w3

1 w2
0X

S2 w3
0 w1w3

0

w3
0 w3

1 w2
0 , L =6

S0 w2
0 w2

1 w0w1w2
0X

S1 w2
0 w3

1 w2
0X

S2 w3
0 w3

1 w1

w2
0 w2

1 w0w1w2
0 , L =6

S0 w3
0 w1w0w1w2

0X

S1 w0w2
1 w4

0

S2 w0w5
1 w1

w2
1 w3

0 w3
1 w3

0 w3
1 w0w3

1 , L =6

S0 w2
1 w3

0 w3
1 w3

0 w3
1 w3

0 w3
1

S1 w3
1 w3

0 w3
1 w3

0 w5
1 w0w0

S2 w0w1w2
0 w2

1 w0w1w2
0 w2

1 w0w1w0w3
1 w1

w3
1 w0w5

1 w0w7
1 , L =6

S0 w2
1 w0w1w0w3

1 w0w5
1 w0w3

1 w0w3
1

S1 w3
1 w3

0 w3
1 w0w1w0w3

1 w0w3
1 w0w0

S2 w0w5
1 w0w3

1 w3
0 w3

1 w0w3
1 w1

w2
0 w3

1 w2
0 , L =7

S0 w3
0 w3

1 w1X

S1 w0w2
1 w0w1w2

0X

S2 w0w3
1w2

0

w2
1 w0w1w3

0 , L =7

S0 w2
1 w5

0

S1 w5
1 w2

0X

S2 w0w1w0w1w2
0

w3
1 w2

0 , L =7

530 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

S0 w2
1 w0w1w2

0

S1 w3
1 w2

0X

S2 w0w3
1 w1

w5
0 w2

1 w2
0 , L =7

S0 w5
0 w1w2

0

S1 w3
0 w2

1 w2
0

S2 w3
0 w3

1 w1X

w2
0 w2

1 w4
0 , L =7

S0 w3
0 w1w3

0X

S1 w0w2
1 w4

0X

S2 w0w3
1w2

0X

w3
0 w3

1 w1, L =7

S0 w2
0 w2

1 w0w1w1X

S1 w2
0 w3

1 w2
0X

S2 w3
0w3

1

w0w2
1 w4

0 , L =7

S0 w0w3
1w2

0X

S1 w2
0 w1w3

0

S2 w2
1 w4

0X

w3
1 w3

0 w3
1 w3

0 w5
1 w0w0, L =7

S0 w2
1 w0w1w2

0 w2
1 w0w1w2

0 w2
1 w0w3

1 w3
0

S1 w3
1 w3

0 w3
1 w3

0 w3
1 w0w5

1

S2 w0w3
1 w3

0 w3
1 w3

0 w3
1 w0w1w0w0

w3
1 w3

0 w3
1 w0w1w0w3

1 w0w3
1 w0w0, L =7

S0 w2
1 w0w1w2

0 w2
1 w0w1w0w1w0w3

1 w3
0 w5

1

S1 w3
1 w3

0 w3
1 w5

0 w5
1 w0w1w0w0

S2 w0w3
1 w3

0 w7
1 w0w1w0w3

1 w3
0

w0w5
1 w0w3

1 w3
0 w3

1 w0w3
1 w1, L =7

S0 w0w3
1 w0w5

1 w0w1w2
0 w2

1 w0w1w0w3
1 w2

0

S1 w2
0 w3

1 w0w1w0w3
1 w3

0 w3
1 w3

0 w3
1

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 531

S2 w2
1 w0w3

1 w3
0 w3

1 w3
0 w5

1 w0w1w1

w0w3
1 w2

0 , L =8

S0 w0w3
1w2

0X

S1 w2
0w3

1w0

S2 w2
1 w0w1w2

0X

w2
1 w5

0 , L =8

S0 w2
1 w4

0X

S1 w3
1w3

0

S2 w0w1w4
0X

w0w3
1 w1, L =8

S0 w0w3
1w2

0X

S1 w2
0 w3

1

S2 w2
1 w0w1w1

w3
0 w2

1 w2
0 , L =8

S0 w2
0 w2

1 w2
0X

S1 w2
0w3

1w0X

S2 w3
0 w1w2

0X

w3
0 w3

1 , L =8

S0 w2
0 w2

1 w0w0X

S1 w2
0w3

1w0X

S2 w3
0w3

1X

w3
1 w3

0 w3
1 w3

0 w3
1 w0w5

1 , L =8

S0 w2
1 w0w1w2

0 w2
1 w0w1w2

0 w2
1 w0w1w0w3

1 w0w3
1

S1 w3
1 w3

0 w3
1 w3

0 w3
1 w3

0 w3
1 w0w0

S2 w0w3
1 w3

0 w3
1 w3

0 w5
1 w0w3

1 w1

w0w3
1 w3

0 w7
1 w0w1w0w3

1 w3
0 , L =8

S0 w0w3
1 w3

0 w3
1 w0w3

1 w0w1w0w1w0w3
1 w3

0

S1 w2
0 w3

1 w3
0 w3

1 w0w3
1 w5

0 w3
1 w2

0

S2 w2
1 w0w1w2

0 w2
1 w0w3

1 w0w7
1 w0w1w2

0

w2
0 w3

1 w0w1w0w3
1 w3

0 w3
1 w3

0 w3
1 , L =8

S0 w3
0 w7

1 w0w1w2
0 w2

1 w0w1w2
0 w2

1 w0w0

532 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

S1 w0w2
1 w0w1w0w1w0w3

1 w3
0 w3

1 w3
0 w3

1 w1

S2 w0w3
1 w5

0 w3
1 w3

0 w3
1 w3

0 w3
1

w2
0 w3

1 w1, L =9

S0 w3
0w3

1X

S1 w0w2
1 w0w1w1

S2 w0w3
1w2

0X

w3
1 w3

0 , L =9

S0 w2
1 w0w1w2

0X

S1 w3
1 w3

0X

S2 w0w3
1w2

0X

w3
1 w3

0 w3
1 w3

0 w3
1 w3

0 w3
1 w0w0, L =9

S0 w2
1 w0w1w2

0 w2
1 w0w1w2

0 w2
1 w0w1w2

0 w2
1 w0w1w0w0

S1 w3
1w3

0w3
1w3

0w3
1w3

0w3
1w3

0

S2 w0w3
1 w3

0 w3
1 w3

0 w3
1 w3

0 w5
1

w2
0 w3

1 w3
0 w3

1 w0w3
1 w5

0 w3
1 w2

0 , L =9

S0 w3
0 w3

1 w3
0 w5

1 w0w1w5
0 w3

1 w1

S1 w0w2
1 w0w1w2

0 w2
1 w0w1w0w3

1 w4
0 w2

1 w0w1w2
0

S2 w0w3
1w3

0w3
1w3

0w3
1w3

0w3
1w2

0

w0w3
1 w5

0 w3
1 w3

0 w3
1 w3

0 w3
1 , L =9

S0 w0w3
1 w4

0 w2
1 w0w1w2

0 w2
1 w0w1w2

0 w2
1 w0w0

S1 w2
0w3

1w3
0w3

1w3
0w3

1w3
0w3

1w0

S2 w2
1 w0w1w5

0 w3
1 w3

0 w3
1 w3

0 w3
1

As is clear from the table, there are paths of several length leading from (111000)2

to a periodic 6 structure of half or double length. Note, that not all possible

paths were tested. In the table only paths of maximum length 9 were tested. We

did not give a complete table of all possible paths of length 9, since this would

result in a table of over 100 pages long. The strings marked, are strings that

were already produced through another path, possibly not completely repre-

sented in the table.

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 533

As was said, more research is needed here. Other tag systems containing peri-

odic structures such as those in T1 should be tested. Furthermore, other peri-

odic structures in T1 should be tested. For now, we use the example of (111000)2

to explain the idea behind the encoding.

To halve or double the length of a string in any tag system is rather trivial. How-

ever, if we want to apply the halving and doubling capacities of a tag system to

simulate a universal tag system, this operation must be controlled in some or

the other way. This is indeed the case when halving or doubling with periodic

structures. Given a string consisting of n times a periodic structure P , one must

find paths that lead from each pair of P ’s to four P ’s or only one P . As is clear

from the example of T1 this possibility indeed exists.

There are however several problems with this kind of encoding that have to be

taken into account. First of all, given a sequence of pairs of PP ’s, the shifts nec-

essary to transform one PP in either P or PPPP , do not necessarily lead to the

right sequence of shifts to transform the next pair of PP in P rsp. PPPP . In-

deed, given e.g. the sequence of shifts leading from (111000)2 to 111000, i.e.

00012211. If (111000)2, divisible by 3, is entered with a shift 0, the resulting

string is again of a length divisible by 3. Entering this string with a shift 0 how-

ever, gives a structure (11000)2 resulting in a string of length 32, not divisible

by 3. From this point on, there are four more structures produced that result

in strings with lengths not divisible by 3. If we would then e.g. have PPPP ,

the first two P’s might lead to the desired result, but the last two might not, be-

cause from a given point on the shifts, necessary for P to be produced from PP ,

change.

There are two possible solutions to this problem. A first solution would result

if one would find paths in a certain tag system such that the structures result-

ing from it lead to strings with lengths divisible by v. A second solution could

be that the new sequence of shifts resulting from going from PP to P , or from

PP to PPPP , is a path that also leads from PP to P rsp. PPPP , i.e. one should

find paths of shifts that are in a way synchronized with each other, taking into

account the lengths of the strings resulting from the structures. For example

given the path 00012211, taking into account the lengths of the strings pro-

duced from the structure, the following paths should also lead to the structure

534 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

111000: 001000111 and 002222211. This is not the case, so, despite the fact that

(111000)2 can lead to 111000 in Post’s tag system, given a certain path, it won’t

work for the encoding we want here. Still, we do not see any reason why one of

the two solutions would not be possible in a tag system with µ= 2.

Supposing this is possible, we also need means to control these paths. It are the

encodings of the symbols At ,s x and Bt ,s that are used to serve this goal. As was

said before, part of the function of these encodings is that they should be re-

garded as a kind of shift controlling devices. What do we mean with this? First

of all, given an operation of a Turing machine in state t , scanning symbol s,

At ,s x and Bt ,s should be thus that they are transformed in a sequence of strings,

such that their respective lengths result in the right shift at the right moment.

Suppose for example that (αx)n should be halved and (βx)m doubled (simula-

tion of a move to the left), and that a halve occurs through the path 00012211 of

shifts, with v = 3. Then, the length of At ,s x and the shift At ,s x is entered with,

determines the shift (αx)n is entered with. To be more precise, the shift induced

by a string Axt ,s is always equal to the additive complement of (lAt ,s x−s) mod v,

where s is the shift At ,s x is entered with. The same goes for any Bt ,s x. Now given

e.g. the path 00012211, the strings produced from At ,s x, taking into account

the shifts they are entered with as well as their lengths, should be thus that they

give rise to this same path. Furthermore, after the simulation of an operation

– in state t , scanning symbol s – is completed, At ,s x and Bt ,s x should be trans-

formed into At ′,s′x and Bt ′,s′x such that each of these new strings in their turn

give rise to the right paths of shifts.

Given the operations of a universal tag system using Minsky’s encoding, these

shift controlling strings, are then also self-reproducing in a specific way. In-

deed, in simulating a universal tag system it is clear that the encoding of e.g.

the symbol A1,0 should be such that after a certain number of different trans-

formations, the symbol A0,1 is produced again after it has led to the encoding of

a number of other symbols Ai , j . What one thus actually needs is one basic bi-

nary string for encoding A1,0 and one for encoding B1,0, such that each of them

can be transformed in the right symbols Ai , j and Bi , j , giving rise to the right se-

quences of shifts at the right time. This is most probably not a problem in itself

since, in applying the method used for producing table 9.19, it was observed

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 535

that there is always a wide variety of different paths of different lengths that,

starting from a given string, will in the end produce the same string.

The main problem is that the several paths necessary to go from e.g. A1,0 to A1,0

are in their turn determined by the shifts induced by the sequences of encod-

ings of symbols βx. The same goes for B1,0. Indeed, in a way, the shifts induced

by the encodings of As,t , Bs,t , αx and βx have to be perfectly synchronized at

every step, where the problem of finding the right encoding for A1,0 and B1,0,

heavily depends on the several possible shifts resulting from the productions

from the sequences of αx and βx. If we would not be able to find paths go-

ing from periodic structures PP to P or PPPP , such that any string resulting

from these structures is divisible by v, we are confronted with a very basic prob-

lem. Suppose that v = 3 and that at a given time the path going from (111000)2

to 111000 results in the production of a string of length 32. Then, clearly, the

shift At ,s x or Bt ,s x is entered with is not under control, it heavily depending on

whether the number of strings n of length 32 is divisible by 3 or not, irrespec-

tive of whether n is odd or even. E.g. 6 times such strings will result in a shift 0,

while 8 times such strings, results in a shift 2.

A possible solution to this problem is that the encoding of the At ,s x and Bs,t

is such that the shifts they induce remain invariant under the several possible

shifts it can be entered with during the process of doubling or halving. This

not only means that the paths induced by the symbols At ,s x and Bs,t x leading

to the doubling or halving operation should remain invariant under different

shifts in simulating a certain operation of a Turing machine in state t , scanning

symbol s, but also that any other symbol At ′,s′x and Bt ′,s′ produced from At ,s x

and Bt ,s should have this property. Finding such encodings might be very hard,

and the problem becomes even harder when taking into account that At ′,s′x

and Bt ′,s′ resulting from At ,s x and Bt ,s depends on whether the sequence of αx

(or βx) has become even or odd. Before further discussing this problem, let us

first look at a possible solution to the problem for recognizing the parity of se-

quences of αx (or βx).

There is one clear solution to the problem of recognizing the parity of the num-

ber of αx (or βx). Suppose that it would be possible to halve any sequence of

(111000)2n in the appropriate way. Then, a solution would follow if the path

536 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

leading from (111000)2 to 111000 when applied to 111000, not followed by an-

other 111000, leads to a string S of length not divisible by v. Then, if n even,

once (111000)n/2 is produced, the string representing Bxt ,s (or At ,s x) would be

entered with a fixed shift, leading to Bxt ′0,s′0 (or At ′0,s′0 x). If n odd, Bxt ,s (or At ,s x)

would be entered with another shift, such that Bxt ′1,s′1 (or At ′1,s′1 x) is produced,

by using S.

The information on the parity of a sequence of αx (or βx) however, must also

be transferred to the next At ,s x (or Bxt ,s). Indeed, given the parity of αx this

information can be directly transferred to Bt ,s x depending on the shift. This

shift however, will also be transferred to At ,s , in passing through the sequence

of symbols βx following Bt ,s x (since the encoding of any βx is of length divis-

ible by v). In other words, depending on the parity of the number of αx, the

sequence of βx will be entered with a different shift and one must thus find a

way for the βx to remain invariant under these two possible shifts. This is not

necessary a problem. For example, given the string resulting from the struc-

ture 111000. If entered with a shift 1, the structure reproduces itself. When

entered with a shift 0, it result in a structure 110100, which is clearly not a pe-

riod 6 structure. If entered with a shift 2 though, we get 011100, which is again

a period 6 structure. Given 011100, one will then need other paths to halve or

double (011100)2.

In general, there are three different solutions to the problem of keeping the en-

codings of the αx and βx invariant under certain different shifts. First of all,

it might be possible that the string resulting from a given periodic structure,

can e.g. be entered with two different shifts but will still give rise to that self-

same structure. If this is not the case, but the resulting strings are of the same

length and are still periodic, but with different structure, there are two possible

solutions. Let us return to the example of Post’s tag system and the structures

111000 and 011100. Then a solution follows if the next Bt ′1,s′1 produced is such

that it gives rise to the right paths for doubling or halving (011100)2 instead of

(111000)2. This solution might give some advantages for the encoding of the

At ,s x and Bt ,s x, since it allows for a greater variety of different paths, induced

by the encodings of these symbols. Another solution would follow if it is possi-

ble to go back from 011100 to 111000 in one shift. This is not the case for this

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 537

specific example, but it e.g. works for 011100 and 001110. Indeed, if the peri-

odic string with structure 011100 is entered with a shift 0 it results in a string

with structure 011100. When entered with shift 1 it results in 001110. Then, if

the string with structure 001110 is entered with a shift 2 it again results in the

periodic string with structure 011100.

Now, returning to the problem of finding the right encoding for At ,s and Bt ,s .

If one of the strings produced in going from structures PP to P or PPPP is not

divisible by v, we saw that we cannot control the shift the symbols At ,s or Bt ,s

are entered with, and we should thus find encodings for these symbols such

that the shifts they induce remain invariant whatever shift they are entered

with, when this situation occurs. In taking into account our possible solution of

recognizing whether a given sequence ofαx or βx is odd, together with the fact

that not all the strings produced in the path going from PP to P or PPPP are

divisible by v, the encoding of At ,s and Bt ,s should be thus that the shifts they

induce are at certain points invariant under the shifts they are entered with, and

at other times not. Any such encoding might be very difficult to find. Although

its possibility is not at all excluded here, it might be more effective to search for

periodic structures PP , such that any string produced in the path from going to

PP to P or PPPP is of length divisible by v. Then, given the encoding of a string

At ,s x(αx)nBt ,s x(βx)m the shift any symbol At ,s x rsp. Bt ,s x is entered with, is

completely determined by the shift induced by the shift the strings (βx)m rsp.

(αx)n were entered with through the previous Bt ,s rsp. At ,s .

There are two more problems left to solve, before this encoding scheme is com-

plete: we must find a way to simulate a printing operation and we must be able

to encode the halting state. There are two possible solutions for the encoding

of a halting state. One can interpret a halt as the production of a very specific

string that is periodic, or one can understand it as a tag system producing the

empty string. In case one wants to produce a very specific periodic string, to

encode the halting state, one can use the periodicity of the strings αx and βx.

Since these strings are already periodic, only At ,s and Bt ,s must become peri-

odic. In other words, if a Turing machine halts in state t scanning s, the sym-

bols At ,s and Bt ,s should be thus that they produce periodic strings At ′,s′ and

Bt ′,s′ , such that the shifts induced by At ,s and Bt ,s are such that once At ′,s′ and

538 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

Bt ′,s′ are produced, the αx and βx are each of the structure P . Furthermore,

At ′,s′ and Bt ′,s′ should have periodic structures of the same type as P , having

length divisible by v, their lengths inducing the right shift for the αx and βx to

remain periodic. Then, once the string At ′,s′(αx)nBt ′,s′(βx)m is produced, the

tag system will always produces the same sequences of strings, which can then

be interpreted as the encoding of the halting symbol.

If a halting state in a tag system is interpreted as the tag system producing the

empty string, one must find encodings for At ,s and Bt ,s that leads to a sequence

of shifts such that At ,s ,Bt ,s ,αx,βx result in the empty string. As is clear from ta-

ble 9.19, it is possible in Post’s tag system to find a path going from (111000)2 to

07, a string that finally results in the empty string. One of the problems involved

here is that there exist tag systems that never halt, as is e.g. the case for T2. In

this respect it might be more effective to identify a halting state with a specific

periodic string.

We now still have to find a method for simulating a printing operation. As was

said before, the symbols At ,s and Bt ,s should not only be used as shift control-

ling devices, but must furthermore be able to simulate the operation of printing

a symbol. In this respect, we will split each of the strings At ,s and Bt ,s into two

substrings CA,t ,s and DA,t ,s , rsp. CB,t ,s and DB,t ,s where CA,t ,s (or CB,t ,s) can be the

empty string and is only used, when combined with DA,t ,s (or DB,t ,s) to result in

the right shifts for the doubling or halving operation. From now on, we will only

consider the scheme for encoding the string CA,t ,s and DA,t ,s , the scheme for

encoding CB,t ,s and DB,t ,s being similar. Any binary string CAt ,s should be such

that there exist different paths, through which CAt ,s can produce either another

string of the form CA′,t ′,s′ or CA′′,t ′′,s′′P . In Post’s tag system it is indeed possi-

ble to construct such sequences of strings. For example, the string 0110110 can

lead to 0110101010 or 0110110111000, where 0110101010 in its turn can lead

to the production of 0110101010111000. What we need for the printing oper-

ation to work is a subclass of strings CA,t ,s for which CA,t ,s can produce either

CA,t ′,s′ or CA,t ′,s′P , through different paths. In general, it seems to be possible to

find a tag system for which there exists a finite set of strings CA,t ,s such that in

simulating a Turing machine, started in state 1, scanning a 0, there exist several

paths starting from strings of type CA,1,0 that lead to other strings CA,t ,s of this

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 539

type, of which some lead back to CA,1,0 (where necessary for the simulation).

Again however, we are confronted with the problem that although it might be

possible to find such encodings, they have to fit in the general encoding scheme.

First of all, it should be noted that independent of whether a 1 or a 0 has to be

printed, the sequence of productions going from DA,t ,sCA,t ,s to DA′,t ′,s′CA′,t ′,s′

must always lead to the necessary sequence of shifts to double.49 Then CA,t ,s

might be encoded as a string that is transformed into CA′,t ′,s′P or CA′,t ′,s′ in the

same number of steps as the sequence (αx)n is changed to (αx)2n . In this re-

spect DA,t ,s could be used to control the shifts CA,t ,s should be entered with

to produce either CA′,t ′,s′P or CA′,t ′,s′ , while the lengths of the strings produced

from CA,t ,s leading to CA′,t ′,s′P or CA′,t ′,s′ , taking into account the shifts induced

by DA,t ,s , should be such that the sequence (αx)n is changed to (αx)2n .

We now have a very theoretical encoding scheme that might be used to con-

struct a universal tag system with µ = 2 by simulating a universal tag system.

More research however is needed to make this scheme more convincing and

more detailed.

§3. Discussion If it would be possible to find a tag system T with µ = 2, for

which there exist binary strings DA,s,t ,CA,s,t ,DB,s,t ,CB,s,t ,αx,βx, for each of the

strings At ,s x,Bt ,s x,αt ,s x,βt ,s x of a universal tag system TU using Minsky’s en-

coding, such that if TU produces At ′,s′x(α′x)n′
Bt ′,s′x(β′x)m′

from At ,s x(αx)nBt ,s x

(βx)m T produces DA′,t ′,s′CA′,t ′,s′(αx)n′
DB′,t ′,s′CB′,t ′,s′(βx)m′

from DA,t ,sCA,t ,s(αx)n

DB,t ,sCB,t ,s(βx)m we would have proven that there exists a universal tag system

T for which µ= 2.

The encoding scheme proposed here, however, is very theoretical and as long

as no universal tag system is found that is encoded by it, we cannot be sure

whether it is a valid scheme. The hardest problem with this encoding is not the

individual encoding of the symbols, but rather the synchronization of all the

shifts induced by each of these encodings. As far as each encoding in itself is

concerned there seem to be no fundamental problems. As was shown, it is per-

fectly possible to construct a periodic string that can halve or double, given a

49Remember that in Minsky’s encoding, the simulation of printing a 1 or a 0 takes place in the

substring Ax(αx)n or Bx(βx)m for which the doubling operation has to be performed.

540 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

certain sequence of shifts. The problem is that we have to find encodings for

the doubling and halving operations, such that the shifts induced by each pair

of such periodic strings, are perfectly adapted to each other. In supposing this

would be possible – and we are convinced that there exist tag systems withµ= 2

for which such periodic strings exist, using one of the two solutions described

for this problem – we are confronted with the problem of finding encodings for

At ,s and Bt ,s such that the shifts necessary to perform this doubling and halv-

ing operation can be controlled. Now, it is not difficult to construct a string, that

will for one simulation cycle lead to the right sequence of shifts. The problem

is that the encoding of each symbol At ,s and Bt ,s should result in a sequence of

productions resulting in the correct At ,s and Bt ,s , where, again, all shifts of each

individual, encoded symbol should be perfectly synchronized with the others.

At ,s and Bt ,s do not only control the shift, but they should also be encoded such

that they can produce the periodic strings used for the encoding of αx and βx,

when a printing operation has to be simulated. While it is not a problem to

construct or find such strings that are capable to do this when entered with the

right shifts, it is not clear whether we can find such strings that perfectly fit into

the general scheme.

In general, the hardest problem one would face in trying to effectively find a tag

system through this method, is that every encoding of a symbol results in a shift

that completely determines what will happen to the encoding of the symbol

next to it and the question naturally poses itself what could be a good method to

tackle this problem. A method might be to develop an algorithm that constructs

tag systems in a very specific way, using general forms based on the method in

which one (the algorithm) should then try to fit a tag system. Clearly, this al-

gorithm should contain an automated method to determine whether a given

tag system constructed is capable of producing periods of type 1. Implement-

ing the method used to construct table 9.19, one can then further analyze the

behaviour of the tag system constructed, to check whether it is suitable for the

encoding proposed here and is thus universal yes or no. If one would be able to

develop such program that indeed results in tag systems that are able to simu-

late a universal tag system, one would have a program to generate universal tag

systems. But clearly, more research is needed here.

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 541

It should also be pointed out here that the abstract encoding scheme proposed

here has clear similarities with Cook’s proof of the universality of rule 110. It

was only after we had developed this abstract encoding that we became aware

of this similarity. As is the case with Cook’s proof, the success or failure of this

method heavily depends on the encoding of the initial condition, where the

periodic structures and the shifts they give rise to must be perfectly synchro-

nized to each other. There is however one fundamental difference between the

method sketched here, and Cook’s proof. If we would find a tag system with

two symbols that follows the scheme, we would have a tag system that satisfies

Davis’s definition of universality, since we do not need the infinite repetition of

certain periodic strings.

Shannon showed that there is a certain kind of interchangeability between num-

ber of states and number of symbols in Turing machines and this was further

confirmed by Fig. 9.1. One could then wonder whether there also exists this

kind of interchangeability between the shift number v and the number of sym-

bols µ in tag systems, and whether e.g. method 2 would result in a tag system

with µ = 2 but with a very large shiftnumber v. For now there is no obvious

reason why this should be the case. The encoding scheme does not exclude

the possibility of tag systems using a small number of symbols and a small shift

number. Furthermore, if one would take the approach that the encoding of a

symbol x from a certain tag system T into a binary string – as is done for en-

coding n-symbolic Turing machines into 2-symbolic Turing machines – is de-

termined by the number of symbols of T , the shift number v does not seem to

play a significant role. This is affirmed by the results from experiment 6, where

it was shown that there are several tag systems able to produce any binary com-

bination of arbitrary length. The problem of course is how to control the pro-

duction of such combinations, but we do not see how a larger v, and thus larger

words w0 and w1 would make this problem less hard to solve.

Do there exist universal tag systems with two symbols? This question stood at

the beginning of this research section, and has not been given a definite answer.

It is clear that if any of the two methods described here could lead to a result, it

will involve a combination of theoretical encoding schemes and most probably

tedious analyses of the behaviour of certain tag systems, clearly involving the

542 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

help of the computer.

9.4.4 Discussion on the limits of solvability and unsolvability

in tag systems

In this last section we have seen that the known limits of unsolvability in tag

systems are still very high, while their limits of solvability are very low. The fact

that tag systems lie at the basis of many known small universal systems makes

one wonder whether it is not possible to significantly lower these limits of un-

solvability. Indeed, given their significance in this context it would be counter-

intuitive that the size of the smallest universal tag system would be gigantic as

compared to the smallest known universal systems that are based on a simula-

tion of these systems.

But why do tag systems actually lie at the basis of certain small universal sys-

tems? The only reasonable explanation I can think of is that tag systems are

formally much more simple relative to e.g. Turing machines. That tag systems

are formally very simple is one thing that should be clear by now, and we think

Post was correct in characterizing these systems as primitive forms of mathe-

matics. We believe that it is because of this formal simplicity that, despite the

existing high limit of unsolvability in tag systems, this limit is in fact very low.

The limits of unsolvability in tag systems. Two conjectures.

Given the experimental results from the previous chapter, and the results from

Sec. 9.4.1 and Sec. 9.4.3 there are indeed some very clear reasons to suppose

that the limits of unsolvability in tag systems are significantly lower as com-

pared to those in e.g. Turing machines. And although these reasons remain

heuristic, they are, to our mind, very convincing.

First of all, our encoding from the 3n +1-problem into the tag systems TC with

µ= 3, v = 2 shows how hard it might be to prove this class of tag systems solv-

able. Indeed, the fact that a large number of researchers have worked on the

3n +1-problem without having solved it, shows how hard the problems really

are for this class of tag systems.

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 543

Given this reduction of the 3n + 1 problem to TC , we would like to state the

following conjecture, along the lines of the conjecture stated by Margenstern

[Mar00] in this context (See Sec. 9.4.1):

Conjecture 9.4.1 There exists at least one tag system with an unsolvable reach-

ability problem or an unsolvable halting problem in every set of tag systems for

which µ> 2, v = 2

In comparing the 3n +1-line for Turing machines and tag systems (See Fig. 9.1

and 9.2) it is clear that TC is considerably smaller than the size of the known

Turing machines to which the 3n + 1-problem can be reduced. Furthermore,

whereas the class of tag systems TS(3, 2), contains TC , the class of Turing ma-

chines TM(3, 2) is known to be solvable. This clearly indicates that the limits

of unsolvability in tag systems might indeed be lower as compared to those in

Turing machines.

Since the 3n + 1-problem is one of those problems for which a large part of

the research is based on computer experiments and heuristic arguments, this

reduction indicates that a study that starts from an analysis of the behaviour

might offer valuable new insights for this class of tag systems.

In section 9.4.3 we described two abstract methods, to construct a universal tag

system with µ= 2. Although we were not (yet) able to construct such a univer-

sal tag system, we argued that there are no fundamental obstacles for proving

the universality for the class of tag systems with µ = 2. Since we defined the

size of a tag system as the product of µ with v (See Sec. 6.1.1), constructing a

universal tag system with µ= 2 however does not guarantee anything about the

size of such tag systems and thus a lower limit of unsolvability in tag systems.

There is, however, no indication that one should need a large v when the num-

ber of symbols is small. As was already mentioned, the fact that tag systems

with a small shift number v seem to be capable of producing binary combina-

tions of arbitrary length (see Experiment 6), strengthens the idea that one does

not necessary need a large shift number for tag systems with only two symbols,

to prove them universal. Furthermore, our encoding scheme for constructing a

universal tag system with µ = 2, if it could be made effective, does not exclude

the idea of a universal tag system with µ= 2, v relatively low. Indeed, there is no

544 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

reason to assume that one needs large shift numbers to find a tag system with

the kind of periodic strings and their synchronization needed for the scheme to

work.

Besides the theoretical possibility of constructing a relatively small universal

tag system withµ= 2, the results from the experiments from the previous chap-

ter, add further support to the following conjecture:

Conjecture 9.4.1 There exists at least one tag system with an unsolvable reach-

ability problem or an unsolvable halting problem, i.e. the two forms of the prob-

lem of tag, in every set of tag systems for which µ= 2, v > 2

There is indeed heuristic support for the unsolvability of the class of tag sys-

tems µ= 2, v > 2. Some further arguments will be given here.

First of all there is of course Post’s tag system. Given my own experiences with

this tag system, together with those by other researchers, one cannot but con-

clude that it is far from trivial to prove this tag system solvable. Although it is

far from clear how to encode any computable function into this tag system, the

least one can say about T1 is that it is intractable on a practical level. One only

has to consider the results on the periodic structures in this tag system to un-

derstand how fascinating it actually is. Watanabe’s failure to get a grip on T1

by starting from these periodic structures suggests that proving T1 solvable will

ask for new methods, if proving its solvability is possible at all. In general, the

rich variety of the kind of periodic structures found in the different tag systems,

serves as an indication of their complexity, understood intuitively. It would in

fact be interesting to study the class TS(2,2) in this context. We believe, on the

basis of the proof of the solvability of this class, that one will not find this same

kind of variety in this class.

Contrasting the results from experiment 1 with our proof of the solvability of

the class TS(2,2) indicates that there is a clear difference between this solvable

class and the class µ = 2, v > 2. While any initial condition for any tag sys-

tem from the class TS(2,2) can be proven to lead to one of the three classes of

behaviour after a very small bounded number of iterations,50 determined by the

length of the initial condition, it is clear that for any of the 52 tag systems tested,

50This is implied by the proofs of the several subcases.

9.4. SOLVABILITY AND UNSOLVABILITY IN TAG SYSTEMS 545

there exist initial conditions for which it is unclear whether the tag system will

ever lead to one of these classes, and if yes, when this will happen.

It should also be pointed out here that the results from experiment 1, and the

problems connected to it, have a certain resemblance to the 3n+1-problem, al-

though this of course does not say anything about the unsolvability of this class

of tag systems, but rather about their practical intractability. As we discussed,

given the plots, we were led to the problem whether for each class of initial

conditions of length l the plot will intersect the x-axis at a finite point, thus in-

dicating that all of these tag systems will ultimately lead to a halt, periodicity or

unbounded growth. On the assumption that the plots can be generalized, we

concluded that this hypothetical intersection point moves exponentially fast to

the right for increasing l , which implies that for any point x on the X -axis one

can always find an initial condition of length l that will not have led to one of

the three classes of behaviour after x iterations.

We tested numerous initial conditions for Post’s tag system T1, and all these

conditions led to periodicity or a halt. Given the plots of some of the other tag

systems, one would most probably come to the same conclusion. In this re-

spect T1 and several of the other 51 tag systems studied, indeed seem to be

closely connected to the 3n +1-problem: although all conditions seem to ulti-

mately converge to a halt or periodicity, there seems to be no general method

available to decide this. The reason for this seems to lie in the behaviour that

precedes the halt or periodicity: it is completely intractable, at least as far as my

experience goes with these tag systems.

Although there is heuristic support for conjectures 9.4.1 and 9.4.1, more re-

search is needed here. As long as we do not have any rigorous proof of the

unsolvability of this class of tag systems, we cannot be sure about the truth of

the conjectures. Still, the several “structural” and “heuristic” differences be-

tween the solvable class of tag systems TS(2, 2) with this class, shows that even

if this class would be solvable, we will probably need new and more advanced

techniques to prove this. We believe it could be interesting to further investi-

gate this problem by combining several different approaches.

546 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

Some possible approaches to further study small tag systems.

There are several possible approaches for further study of small tag systems,

and we will point out some of them here.

First of all, more research is needed on the methods described in Sec. 9.4.3 to

encode a universal tag system in a two-symbolic tag system. A starting point

would be to develop a computer program that can help to study the problem of

whether the encoding schemes can work for small tag systems.

Secondly, some of the experiments should be extended to a larger sample space,

and new experiments should be performed. One of the things that should be

tested is whether there exists some kind of rate that determines how fast a given

tag system converges to a halt or periodicity, when started with initial condi-

tions of length l .

Thirdly, we believe that the table method described in Sec. 7.3.4 might lead

to interesting theoretical results. To give two examples of what kind of results

it can lead to, the reader is referred to the proof of the solvability of the class

TM(2,2) and the proof that Shearer’s proof cannot be applied to T2 (Sec. 8.4).

This method might be used to deduce general forms of substrings that can be

produced in theory by a given tag system.51 In analyzing these forms it is per-

haps possible to gain a better understanding of certain cases in the class of tag

systems with µ= 2, v > 2 or µ> 2, v = 2.

The periodic structures as described in Experiment 2, to our mind, beg for more

research. Maybe it might be possible to define classes of tag systems by differ-

entiating between the different types of periods that can be produced within a

given tag system. One of the things that should still be done here is to develop

automated methods that can be used to check for a given tag system what types

of periods it can produce. Furthermore, it might be interesting to connect this

property of tag systems with other domains in mathematics where periods play

an important role. Possibly connected to studying the periodic structures in tag

systems, is a detailed study of the connection between tag systems and number

theory, as pointed out by Post. This is yet another approach on tag systems that

might lead to new results.

51See for example Table 9.15.

9.5. CONCLUSION. 547

Another approach could be to search for more criteria or features for differen-

tiating between solvable and unsolvable classes of tag systems, or to further

refine the ones already found. For example, further research on the (non gen-

erally valid) constraint 3 might be used to make a clear distinction between the

class of tag systems with µ= 2, for which v = 2 and v > 2 and to seriously sim-

plify the solvability proof of the class TS(2,2).

A last approach we want to mention here, is the approach taken by Church,

Kleene and Rosser at a given point during their research on λ-calculus. To en-

code as many functions over the integers one can think of in very small tag

systems is a challenge we really want to face.

Concluding: These approaches, only summarily indicated here, amount to a

rather large research programme on tag systems.

9.5 Conclusion.

This chapter was started from the question in what way small universal systems

might help us to better understand the link between the theory underlying the

unsolvability proofs for several classes of system and the actual discourse of

these systems. The main starting point has been the question of the signifi-

cance of such small universal systems for a study of the limits of solvability and

unsolvability. A basic problem in this context is that there are several classes

of Turing machines that are still not known to be solvable, nor to be universal.

A fundamental question to be asked here, is whether there exist between the

solvable and the universal classes, classes that are neither solvable nor univer-

sal, i.e., classes containing Turing machines of a lower degree of unsolvability

than the universal machine.

As we argued throughout Sections 9.1 and 9.2, although the significance of

constructing (small) universal systems in this context should not be underesti-

mated, a study of the behaviour of such machines offers us no extra advantage

over a study of the behaviour of the machines they simulate.

A study that starts from such analyses however, can be very important in this

548 CHAPTER 9. UNIVERSALITY AND UNSOLVABILITY IN TAG SYSTEMS

context. Especially when relatively small systems are involved, a study of the

behaviour leads to valuable results. This was illustrated in Sec. 9.3, through

some examples from the literature. We concluded there that the best way to

further investigate the problem of determining limits of solvability and unsolv-

ability, is in combining both approaches.

In the last section we studied limits of solvability and unsolvability in tag sys-

tems. Given the several results from this section, it was shown that also in case

of tag systems a combined approach seems the most promising to study these

limits. We argued in this section that the limit of unsolvability in tag systems is

probably lower as compared to Turing machines and conjectured that this limit

is in fact very low. Also here however, one has to take into account that unsolv-

ability does not necessarily imply universality. I.e. it might well be that the

smallest classes here conjectured to be unsolvable are classes of a lower degree

of unsolvability, non-universal but unsolvable.52 But, clearly, more research is

needed here.

One might well ask at this point: So, why study tag systems in the mathematical

context of computability and unsolvability, and not the better researched Tur-

ing machines? We cannot give a definite answer to this question. There is not

one fundamental theoretical reason at this point to study tag systems instead

of Turing machines, and in this sense, our choice for tag systems might be re-

garded as a more or less subjective choice. Still, we believe that the results from

this and the previous chapters are in fact reason enough to study tag systems.

To our mind, it is clear from these results that given their abstract character,

tag systems indeed allow for a greater freedom of method and technique and

in this sense can be regarded as a complementary framework that can help to

gain new results in the domain of computability and unsolvability.

52In fact, as far as our experience goes with T1 we are tempted to believe that this tag system

might be such an example. We do not think that it is universal. Still, we have every (heuristic)

reason to believe that its halting and reachability problem are unsolvable.

Chapter 10

Conclusion. Tracing Unsolvability

with a special focus on tag systems.

In the introduction to this dissertation we stated that our research did not re-

ally start from one or the other specific research question. Rather it was a plain

fascination with computability and unsolvability that motivated this research

and has given rise to a whole sequence of research questions.

The first thing I did when I started with this research was to read some of the

papers by Church, Gödel, Post and Turing. I soon decided to focus on unsolv-

ability rather than on undecidable propositions, because it were the unsolvable

problems that attracted me the most. One of the things that fascinated me here

was how the theoretical results concerning unsolvability and the theses under-

lying them are actually connected to the discourse of the systems these results

are about. Although, from a certain point of view, it is rather trivial to see how

this connection functions, it is not, if one wants to understand solvability and

unsolvability on a more individual level.

After having read several papers by Post, I was convinced that the problem of

“tag” must have played an important role in Post’s earlier research. Having or-

dered the 2004 republication of Davis’s [Dav65b], and read the Account of an

anticipation, I was deeply impressed by Post’s earlier work. Not only because

of the results themselves, but, maybe even more, because of Post’s method of

generalization and abstraction and his way of describing things and noticing

549

550 CHAPTER 10. CONCLUSION. TRACING UNSOLVABILITY

certain fundamental problems.

In the meantime, I also got more involved with the computer. I had already

planned to learn to program before I started with my research. As was explained

in Sec. 8.2.1, I never found the time to learn this in any decent way but started

to program with rather specific goals in mind. During that time I experimented

with several formal systems, but, under the influence of Post’s work, I got more

and more attracted to tag systems. There are several reasons why I chose tag

systems over other systems, but I guess the main reason was and still is that

they were furthest removed from anything recognizable. One of the things that

very much attracted me in using a computer for studying certain problems, was

the element of surprise, i.e., the fact that whatever I expected from the output,

there was often something I could not have anticipated. It is exactly because

their abstract character, that tag systems are capable to maximize this element

of surprise.

Now that I have finished this dissertation I can only conclude for myself that

although I have not succeeded in everything I wanted to do, and have clearly

not managed to integrate everything into a nice coherent whole, I am still quite

satisfied about what I actually did. For me the combination of a more histor-

ical and philosophical part with a more theoretical part has been basic to this

research. Throughout most of my research time, both sides have been in con-

stant interaction with each other.

In the first part of this dissertation we started from the earlier work by Church,

Post and, to a lesser extent Turing (Ch. 2). One of the main conclusions from

this chapter has been the fact that both Church’s and Post’s theoretical results

clearly have their roots in the use and study of their respective formalisms.

Contrary to Turing, they did not start from the idea of finding a proper iden-

tification between the intuitive notion of computability and a formalism, the

formalism resulting from an analysis of the intuitive notion it is supposed to

capture. Rather the formalisms were already there, and it was through a study

of these formalisms that they first formulated their theses. For Post, his study

of tag systems, the construction of normal form and the possibility of reducing

canonical form C to normal form, lay the ground for formulating his then rev-

551

olutionary results. In Church’s case it was his becoming more and more aware

of what λ-calculus is actually capable of that first led him to his thesis.

Chapter 3 started from the 1936 papers of Church, Post and Turing. Basic here

has been our discussion of their respective theses. As was shown, the argu-

ments they each put forward and the interpretation they attached to the the-

ses, clearly differed from each other. In this context the “direct appeal to intu-

ition” argument has played a prominent role. Because it could not be applied to

general recursiveness or λ-definability, i.e., they do not directly result from an

analysis of the notions they are supposed to capture, Church and Gödel, and

with them many others, were led to the conclusion that Turing’s thesis is the

most convenient. However, in the light of Post’s and Kleene’s position in this

context, emphasizing the hypothetical character of any such thesis, it is clear

that although the “direct appeal to intuition” argument is very important, it is

only one among many arguments supporting the theses. On the basis of this

more historical study we argued that, although it is important to go through an

analysis as was done by Turing, but also by Post, it is equally important to take

serious the argument by confluence, both on the level of the formalisms as well

as on the level of the intuitive notions underlying the several theses. To realize

the true power of any of the theses it is to our mind basic to not restrict one’s

attention to that which is intuitively appealing. By studying several formalisms,

especially those that are further removed from the intuition, one can only real-

ize how general the notion of a computation actually is.

Only some years after the publication of the 1936 papers, the world was at war.

The military agencies soon realized the advantages “computability” could of-

fer for warfare, and in this sense the war most probably had an accelerating

effect on the development of the first computers. As a physical realization of

“computability”, the computer itself has contributed to a further generalization

of computability. Nowadays, “computability” as manifested in the computer

is no longer restricted to pure calculations, but has become part of our society

and our way of living. It is used to communicate, to play games, to study bio-

logical systems, to win wars,... As was argued in Sec. 4.1 the computer can be

regarded as a confluence of engineering and logical work. It resulted from the

experiences and abstract thinking of both the logicians and the engineers, or

552 CHAPTER 10. CONCLUSION. TRACING UNSOLVABILITY

the logician-engineers (like Turing and Zuse) when developing this device. In

this sense, the physical realization of computability should be taken quite lit-

eral.

The computer has also given rise to new developments in the domain of com-

putability and unsolvability itself. We showed, in discussing two different such

developments, how the computer has made explicit the limits of computabil-

ity in the physical world. Besides revealing physical limits of computability

however, we also argued that, from its early use on, the computer was used

as a means to make available the “universe of discourse” as it was called by

Lehmer, of certain objects of mathematics, to an extent that was impossible

before. When these objects are instances of the formalisms considered in the

several theses, the computer can be used to study the formalisms it is consid-

ered to be the physical realization of. As was shown throughout part II, the

computer has indeed played exactly this role in studying such formalisms, i.e.,

making available certain aspects of the “universe of discourse”.

Drawing from our conclusions of the first part on computers, computability

and unsolvability, the purpose of the second part was to explore the universe of

discourse, sometimes with, sometimes without, the help of the computer, fo-

cussing on a class of systems which is known to be very far removed from the

so-called intuition, i.e., Tag Systems.

As we tried to show through the second part of this dissertation, tag systems are

very abstract systems and it is exactly in this respect that they have played an

important role for me personally to understand the full generality of the the-

ses as proposed by Church, Post and Turing. They are indeed rather difficult to

“program”. As Minsky remarked ([Min61] p. 450):

It would be desirable to reduce the exponentiation level in this representation

but the “Tag” systems seem intractable in regard to lower level manipulations.

We have been unable even to find productions which can reduce the length n > P

of a string to n −1, for arbitrary n.

Although it is actually rather straightforward to define this operation in a very

small tag system,1 the quote illustrates how far tag systems are removed from

1The production rules for a tag system that subtracts 1 from a given natural number, are:

553

the intuitive idea of computing something specific. But it is, to our mind, ex-

actly because they are far removed from anything more intuitive, that they are

particularly well-suited to show how an intuition can be very restrictive. Is it re-

ally true that tag systems are more difficult to program than Turing machines?

In a way yes. However, as the simplicity of the encoding of the 3n +1-problem

shows (Sec. 9.4.1), they are actually more suitable to encode certain functions

than Turing machines.

Through the several chapters of part II we have taken several different approaches

to study computability and unsolvability in the context of tag systems, with a

strong emphasis on a study of these notions for more concrete instances and

their behaviour. In this way we hoped to further explicate the connection be-

tween the theoretical result of the general unsolvability of a class of systems and

the actual discourse of these systems.

In Chapter 6 we showed how the solvability of the halting and reachability prob-

lem for a given tag system depends on the possibility of determining for that tag

system and any given initial condition that it will converge to one of the three

general classes of behaviour (halting, periodicity and unbounded growth) in a

finite number of steps. We illustrated through an example how such solvability

proof might proceed, and were able, on the basis of the example, to prove that

the decision problem for any tag system for which the lengths of the words and

v are not relative prime depends on the decision problem of a certain number

(the G.C.D. of these lengths and v) of other tag systems.

Chapter 7 considered the possibility of determining certain heuristic, theoret-

ical and conjectural criteria to select tag systems the behaviour of which is

v = 2, 1 → 11, h → ss, s → ε. Then given a number x, starting the tag system with h(1)x , results

in 1x−1 after application of the production rules. There is even a more trivial way to encode the

predecessor function in a tag system, i.e. in a tag system from the class TS(2,2). Its production

rules are: v = 2, 0 → ε, 1 → 11. This tag system produces 1x−1 when started with 0(1)x . For

both encodings, the result of the computation is a periodic string, and will thus be repeated

ad infinitum. Of course, it is not very hard to arrange the production rules such that the tag

system “halts” through the production of a halting symbol after the result of the computation is

generated. In order to do so, one only has to regard s as a halting symbol in the first encoding.

While encoding the predecessor function is rather straightforward, to construct a tag system

that subtracts arbitrary numbers is far less trivial.

554 CHAPTER 10. CONCLUSION. TRACING UNSOLVABILITY

considered to be very difficult to predict. Determining decidability criteria as

they were defined by Margenstern [Mar00] is to our mind a very interesting ap-

proach to get a better understanding of what kind of features on a more in-

dividual level, can mark the difference between solvability and unsolvability.

Although we were not able to prove any new decidability criteria, as defined by

Margenstern, we were able to provide certain heuristic means to generate “dif-

ficult” tag systems. As was argued, although constraint 3 has its merits, it needs

more research and refinement in order to really use it on a theoretical level. The

so-called constraint 4, and it should be noted that it is not completely correct

to use the notion of constraint here, resulted in what we have called the table

method. Although the idea underlying it is very simple, it is a powerful method

to study tag systems. It not only played a fundamental role in the proof of the

solvability of the class TS(2,2), but can also be used to establish other results. In

general we believe that this table method is a good tool to study the behaviour

of specific tag systems on a more theoretical level.

On the basis of these “constraints” we then developed algorithms to generate

tag systems that were expected to be hard to predict. The 50 tag systems gen-

erated by the second algorithm described, as well as T1 and T2, were then used

in the experiments of Chapter 8. Our most theoretically appealing result from

the experiments is the classification of the several tag systems according to the

four different periodic types we deduced on a heuristic basis. In Sec. 9.4.3 we

already considered one possible application of periods in the context of con-

structing small universal tag systems, and we believe that a detailed study of

tag systems on the basis of these periods might lead to interesting results. Al-

though the other five experiments did not lead us to more theoretical results,

they give heuristic support for the conjecture proposed in the last chapter of

this dissertation. Indeed, if anything can be concluded on the basis of these

experiments, it is the fact that the class of tag systems studied through the ex-

periments can at least be called intractable on a practical level. The fact that

this experimental approach would not lead to the same results when applied

to tag systems from the class TS(2,2) shows the difficulties that are involved in

proving the class TS(2, 3) solvable.

The main theme of the last chapter 9 was the study of limits of solvability and

555

unsolvability, not only in tag systems but also in Turing machines and cellular

automata. We already know that determining decidability criteria is one way

to approach this problem. In this chapter, we looked at two other approaches:

1. the deliberate construction of certain systems that are universal or encode

certain other functions, or, 2. a study of a given class of systems based on the

behaviour of the systems included in that class. Both approaches are very use-

ful to gain a better insight in limits of solvability and unsolvability. One of the

open problems in this area is that there exist so-called in-between classes, or

particular instances for which it is not known whether they are solvable or not, a

problem which becomes more intricate in the light of the possibility that some

of these classes might be unsolvable but not universal, and are thus of a lower

degree of unsolvability than the universal Turing machine.

This was further affirmed by our study of limits of solvability and unsolvabil-

ity in tag systems (Sec. 9.4). We showed that there is a very simple method

for reducing the 3n + 1-problem to a very small tag system, as well as to re-

duce any Collatz-like function to a tag system. On the basis of this result, we

provided an extra argument for the close connection between tag systems and

certain aspects of number theory, a connection which needs closer inspection.

We furthermore provided a proof of the solvability of the halting and reachabil-

ity problem of the class of tag systems TS(2,2) and considered the possibility of

constructing relatively small tag systems, with µ= 2. Based on these results and

those from previous chapters we proposed two conjectures stating that there

are is a very low limit of unsolvability in tag systems.

Tracing unsolvability on the level of the discourse rather than on the theoret-

ical level was and has remained our main goal. This study is to our mind not

finished. We have not been able to study all the consequences of this approach.

For us, there are now three challenges. First of all, we would like to develop a

more coherent framework for tag systems. For now, we have the feeling that we

have merely built up a kind of tool box for studying tag systems, but it has not

been applied to its full extent. Secondly, we are very much attracted to Lehmer’s

ideas about using computers in the context of mathematics. If we will be al-

lowed to develop a theoretical framework for tag systems, developing methods

556 CHAPTER 10. CONCLUSION. TRACING UNSOLVABILITY

for using my computer for finding theoretical results is one challenge I want to

take up. Finally, and this is very closely connected to the two previous points,

I am very much fascinated by interactions between man and machine or the

formalism of computability underlying it. Nowadays, one focuses very much

on man, the user, as far as this interaction is concerned. If there is one thing

I learned from my research, it is that in integrating the formalism itself in this

interactive process, accepting that you cannot completely control it, can only

lead to very fascinating results. To think about this issue on a more philosophi-

cal level is yet another challenge we want to accept.

A. Algorithm 3 for generating Tag

Systems: N-ary tag systems.

The algorithm described here, generates n-symbolic tag systems, satisfying con-

straints 1, 2, 3 and 5. This program is thus a further generalization of algorithms

1 and 2 from chapter 7. To generate the shift number v, the same method of al-

gorithms 1 and 2 was used. The number of symbols is determined at random,

the maximal number of symbols being 6. Of course, one merely has to change

a parameter in order for this algorithm to generate tag systems with µ> 6.

The lengths of the respective words, are also generated at random. The largest

and smallest length found in this way are rsp. identified as lwmax and lwmin . If

lwmin ≥ v or lwmax ≤ v, new lengths are determined (constraint 2).

Once all the lengths and v have been fixed, the total number of times #ai each

symbol ai is used in the words, has to be calculated in a way constraint 3 is

satisfied. This is done through the following set of equations:

(v − lw0) ·#a0 + (v − lw1) ·#a1 + (v − lw2) ·#a2 + ... + (v − lwµ−1) ·#aµ−1 = 0 (1)

#a0 +#a1 +#a2 + ... +#aµ−1 = lw0 + lw1 + lw2 + ... + lwµ−1 (2)

where 1 is the implementation of constraint 3. Equation 2 guarantees that the

sum of all #ai equals the sum of the lengths of all words wi . Now, as might be

clear from these equations, it is not possible to find unique solutions because

there are too much variables involved. It is thus necessary to implement a kind

of trial and error method in the algorithm. The number of trials is restricted in

the algorithm as follows. The first equation is reordered by changing places be-

tween the term #aiMin · (v − lwi ,Min) – containing the smallest positive coefficient

557

558A. ALGORITHM 3 FOR GENERATING TAG SYSTEMS: N-ARY TAG SYSTEMS.

– and (v − lw0) · #a0. After this reordering, 2 is multiplied with (v − lwi ,Min) and

subtracted from 1. In the resulting equation, all the terms, except the first, are

put to the right hand-side, resulting in:

#a1(wi ,Min −w1) = (lwi ,Min − v)(lw0 + lw1 + lw2 + ... + lwµ−1)− [(#a2(wi ,Min

−w2)+ ... +#a0(wi ,Min −w0)+ ... +#aµ−1(wi ,Min −wµ−1)]
(3)

Furthermore, all the terms, except for the first (v − lwi ,Min) ·#aiMin of 1 are put to

the right-hand side, resulting in:

(v − lwi ,Min) ·#aiMin =−((v − lw2) ·#a2 + (v − lw3) ·#a3 + ... + (v − lw0) ·#a0+
... + (v − lwµ−1) ·#aµ−1)

(4)

Now it should be clear that the maximum value of any #ai is equal to the sum

of the lengths of all words, minus (µ− 1), otherwise, it would not be possible

for all #ai to have a value greater than 0, thus resulting in a tag system with a

number of symbols smaller than µ. Then, all possible combinations of positive

values for #ai , bounded by (µ−1), which are at the right-hand side of equation

3 are tried out: the algorithm tests for any such combination, whether it leads

to a solution over the integers for both Eq. 1 and 2, using Eqs. 3 and 4. For any

such combination for which this is the case, thus satisfying constraint 4, the

algorithm creates µ words using a method similar to that used in the previous

algorithm, implementing a biased random number generator based on the val-

ues #ai found. The tag system thus created is then further tested for possible

intractable behaviour through the implementation of constraint 5.

B. Plots from Experiment 1

The 52 plots showed in this appendix, resulted from experiment 1. They show

how fast initial conditions lead to predictable behaviour for each of the tag sys-

tems. The plots show the number of iterations against the number of initial

conditions that have not lead to predictable behaviour for a given number of

iterations (10000000).

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 1: Plot of T1

559

560 B. PLOTS FROM EXPERIMENT 1

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 2: Plot of T2

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 3: Plot of T3

561

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 4: Plot of T4

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 5: Plot of T5

562 B. PLOTS FROM EXPERIMENT 1

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 6: Plot of T6

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 7: Plot of T7

563

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 8: Plot of T8

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 9: Plot of T9

564 B. PLOTS FROM EXPERIMENT 1

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 10: Plot of T10

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 11: Plot of T11

565

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 12: Plot of T12

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 13: Plot of T13

566 B. PLOTS FROM EXPERIMENT 1

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 14: Plot of T14

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 15: Plot of T15

567

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 16: Plot of T16

568 B. PLOTS FROM EXPERIMENT 1

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 17: Plot of T17

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 18: Plot of T18

569

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 19: Plot of T19

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 20: Plot of T20

570 B. PLOTS FROM EXPERIMENT 1

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 21: Plot of T21

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 22: Plot of T22

571

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 23: Plot of T23

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 24: Plot of T24

572 B. PLOTS FROM EXPERIMENT 1

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 25: Plot of T25

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 26: Plot of T26

573

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 27: Plot of T27

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 28: Plot of T28

574 B. PLOTS FROM EXPERIMENT 1

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 29: Plot of T29

575

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 30: Plot of T30

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 31: Plot of T31

576 B. PLOTS FROM EXPERIMENT 1

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 32: Plot of T32

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 33: Plot of T33

577

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 34: Plot of T34

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 35: Plot of T35

578 B. PLOTS FROM EXPERIMENT 1

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 36: Plot of T36

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 37: Plot of T37

579

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 38: Plot of T38

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 39: Plot of T39

580 B. PLOTS FROM EXPERIMENT 1

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 40: Plot of T40

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 41: Plot of T41

581

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 42: Plot of T42

582 B. PLOTS FROM EXPERIMENT 1

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 43: Plot of T43

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 44: Plot of T44

583

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 45: Plot of T45

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 46: Plot of T46

584 B. PLOTS FROM EXPERIMENT 1

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 47: Plot of T47

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 48: Plot of T48

585

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 49: Plot of T49

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 50: Plot of T50

586 B. PLOTS FROM EXPERIMENT 1

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 51: Plot of T51

1
·
10
6

2
·
10
6

3
·
10
6

4
·
10
6

5
·
10
6

6
·
10
6

7
·
10
6

8
·
10
6

9
·
10
6

10
·
10
6

0

100

200

300

400

500

600

700

800

900

1000

Number of Iterations

N
u
m

b
e
r

o
f
Im

m
o
r
t
a
ls

?

Figure 52: Plot of T52

C. Detailed Description of Four

experiments on Tag Systems

This appendix gives a detailed description of the four experiments mentioned

in Ch. 8.

Experiment 3: Sensitive dependence on Initial Con-

ditions

In chapter 7 we discussed several features of tag systems that can mark the dif-

ference, when combined, between tag solvability and unsolvability. The pur-

pose of this experiment is to explore how important certain of these features

are for the actual behaviour of a given tag system. The features to be tested are:

the shift number v, the position and number of the letters in the words and the

length of the words. Although we already know that these parameters play a de-

termining role in the predictability or non-predictability of a tag system, we do

not know how significant they are in the actual execution of a tag system. I.e.

the basic question to be asked here is how sensitive a tag system constructed

by using the constraints from Chapter 7 is to one tiny change in one of these

parameters during execution. How reasonable is it to suppose that changing,

e.g., one letter completely changes the behaviour of a given tag system? There

already exists a measure for finding out how sensitive a given system is to small

changes. It is a measure from chaos theory and is called the Lyapunov expo-

nent.

587

588 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

Tag systems and Chaos Theory In chaos theory one investigates so-called non-

linear dynamical systems. While I am of course not a specialist in the subject,

I did some reading on chaos theory, and the closely connected subject of frac-

tal geometry, during the beginning of my research. One of the best introductory

books I read – and which is not a mere popularization of the subject – is called

Chaos and Fractals [PJS92], where clear definitions are given of e.g. Lyapunov

exponents and several kinds of fractal dimensions. It was this book, that helped

me to implement my first computer experiments in Basic and its influence on

my thinking during the months following my reading of the book should not be

underestimated. At a given time, given my knowledge of chaotical systems and

my knowledge of universal systems and unsolvable decision problems I began

to wonder as to whether one could find a relation between universal (or at least

intractable) systems and chaotical systems, and I thus performed some rather

basic experiments to test this for tag systems.2 Now in [PJS92], a system is con-

sidered chaotic if:3

1. it has a dense set of periodic points

2. it shows sensitive dependence on initial conditions, measured through the

Lyapunov exponent.

3. it shows mixing behaviour (is topologically transitive).

where the first condition is in fact implied by the last two. A periodic point is

an initial condition which leads to periodicity. A dense set of periodic points

means that, if the system is defined over a certain interval of initial conditions,

it must be the case that for any arbitrary subinterval there is at least one peri-

odic point. The mixing property, expressed informally, means that we can get

everywhere from anywhere. This means that for any two open (arbitrary small,

but with non-zero length) subintervals J and I , it is always possible to find initial

2Some months later I stumbled into a very interesting paper by Blondel, Delvenne et. al

[BDK05] in which this connection is closer inspected. In the paper the authors approach the

possible connection between chaotical behaviour and universal computational systems from

a more mathematically rigorous perspective. It should be mentioned that I am indebted to

Delvenne for having motivated me at a certain time during my research. I would also like to

thank him here for his advice on some of the issues related to the question concerning the

connection between chaotical behaviour and tag systems.
3This definition is actually that given by Devaney in his [Dev89]

589

conditions in I which, when iterated under the mapping, will eventually lead to

points from interval J (and vice versa). Now, if one wants to know whether the

intractability in tag systems is in some or the other way connected to chaotical

behaviour one is facing a rather hard problem. First of all, proving that some-

thing is chaotical is very difficult. Besides the fact that there is still no consensus

with regards to the definition of chaotical systems4, it was shown in [dCD90] that

the problem to determine for a given system whether it is chaotic or not is gen-

erally unsolvable. As a consequence one often merely has strong experimental

support to conjecture a certain system chaotic. Besides this problem, trying to

connect chaotic behaviour with tag systems is furthermore problematic because

of the finiteness involved in tag systems. First of all, we cannot work with infinite

initial conditions, while research on chaos, even for discrete systems such as CA,

always involves initial conditions which are infinite. We cannot do this with tag

systems: tagging a word at the end of an infinite string can at least be called a

problematical. Secondly, in order for the mixing property to be valid, we seem

to be in need of initial conditions that do not become periodic, halt or grow after

a finite number of iterations. Still, there are some indications to connect chaot-

ical behaviour to some of the tag systems considered here. First of all, as we al-

ready know, it can be shown for several tag systems (including T1, that they have

periodic points, and it seems probable that there is at least one periodic point

for every class of initial conditions of length l . Furthermore, as will be shown

here, we can experimentally that the 52 tag systems considered here have posi-

tive Lyapunov exponents. As far as mixing is concerned, it should be noted that

if one would be able to prove (or show experimentally) that certain tag systems

are ergodic, one has also shown that they have the mixing property: ergodicity

means that there are infinitely many points in every interval from which one can

reach any other point, i.e. when can get from any point to any point (and thus

also interval). Now a way to prove for discrete systems that they are ergodic, is

by using the definition Shannon gives of ergodicity in his influential [Sha48], pp.

8–9. Here ergodicity is defined for discrete Markov processes. If one considers

the possible transitions between the finite number of states in a graph, a discrete

Markov process is ergodic if:

1. The graph does not consist of two isolated parts A and B such that it is

impossible to go from junction points in A to junctions points in B.

2. The greatest common divisor of the lengths of all circuits in the graph must

be one.

4The one given by Devaney is the most commonly used.

590 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

Now, it seems rather straightforward to apply this definition to tag systems. In

Sec. 10 an experiment will be discussed which could be used to investigate this

property experimentally in tag systems, since it uses the approach of Markov

processes in tag systems. We did not test the ergodicity property however, due

to a general lack of time.

The Lyapunov exponent used in chaos theory measures how sensitive a given

system is to its initial conditions. Informally speaking, if a system shows sensi-

tive dependence, this means that arbitrary small differences in the initial condi-

tions become exponentially large with the evolution of the system. To be more

specific, given two initial conditions, which are arbitrarily close to each other.

Now apply a certain function to both points and measure the difference be-

tween the two new values generated. Then apply the same mapping to these

two new values and again measure the difference between the two newly gen-

erated values,... Now if this difference becomes larger and larger in an expo-

nential way, one says that the map shows sensitive dependence on initial con-

ditions. Indeed, one tiny difference becomes gigantic after some steps. It is

this sensitive dependence which can be a cause of discrete transitions. Think

for example about a die: Taking into account all the (physical) factors which

lead to a certain result (e.g. 6), one small deviation can lead from a throw 6 to a

throw 1. It is the Lyapunov exponent which can tell as how sensitive a system is,

indicating how fast the differences grow. There are several ways to calculate the

Lyapunov exponent but the one I used is based on the method given in [PJS92]:

1

n

n∑
k=1

ln

∣∣∣∣ Ẽk

ε

∣∣∣∣ (5)

where n is the number of iterations performed, ε is a kind of fixed error, and

Ẽk is the difference between the result of iterating the map on the k-th value

produced and the result of iterating the map on the k-the value + ε. Now how

will we measure the Lyapunov exponent in tag systems?

591

Set-up of experiment 3.

In this experiment we will measure how the position of the letters in the words,

the shift number v and the lengths of the words are determining factors in the

behaviour of a tag system. Six different Lyapunov exponents were measured,

each one describing another kind of error development. To calculate these ex-

ponents, the first ten initial conditions classified as Immortals? in experiment

1, for each of the tag systems T1-T52, were used. Then, for each initial condi-

tion, 10000 strings are produced using the operation
◦→. We used this operation,

since using basic tag iterations cannot be used to measure the significance of

e.g. changing the shift. Indeed, the effect of a changed shift, can only be mea-

sured after all letters from a string have been processed.

Lyapunov exponents 1 and 2

The first two exponents, measure the effect of changing one letter. For each

string Sk produced by the tag system, the program creates a new string S̃k by

changing a letter of Sk , at a beforehand determined position. This fixed posi-

tion pfix is calculated for each tag system individually, and is based on the value

of v. More specifically:

pfix =
(⌊ |S0|

5 · v

⌋
· v

)
+1

In this way, one makes sure that the changed letter will be scanned by the sys-

tem. Through pfix the size of the error induced at every iteration step is re-

stricted, in order to guarantee that it is possible for every string produced the

letter at position x will be changed, i.e. all strings produced should never be-

come shorter than x. It seemed reasonable that no string produced by the sys-

tem would become shorter than pfix.5

On the basis of this changed letter, the fixed error ε from the formula for calcu-

lating the Lyapunov exponent, could be calculated as follows:

ε= 2−1·(b pfix
v c+1)

5In order to be completely sure, a subroutine was added in the algorithm to check whether it

is indeed the case that no string becomes shorter than pfix. For each of the tag systems tested,

it was indeed the case that the string used never became shorter than pfix.

592 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

The error induced at every step thus measures the difference between the rele-

vant letters of Sk and S̃k .

Ẽk in its turn is calculated by measuring the difference between the relevant

letters in the strings S′
k and S̃′

k produced by applying
◦→ to S and S̃k . Instead

of first converting these strings from binary to decimal and then measuring the

difference between these decimal values, I choose to use the following differ-

ence measure – completely in line with the calculation of ε:

Ẽk =
dMax

v e∑
p=0

abs
(
av·p+1 ·2−(v·p+1) − ãv·p+1 ·2−(v·p+1)

)
where Max is the length of the longest of the two strings, av·p+1 and ãv·p+1 are

the values of the letters in position vp +1 of S′
k respectively S̃′, i.e. the values

of the relevant letters in these two strings. If it is the case that the lengths of

the strings differ, it is assumed that the letters of the shorter string in a position

beyond the length of this shorter string, are all zero. Knowing Ẽk and the fixed

error ε it is then possible to calculate a Lyapunov exponent using the above

given formula.

There is one problem involved with this kind of measurement. Suppose strings

S′
k and S̃′

k are produced from Sk and S̃k , and, as is the case for all tag systems

having a shift number v = 3, further suppose that ε ≈ 0.0000095367, the let-

ter at position 58 being changed to produce S̃k from Sk . Now, if the letter at

position 58 in S̃′
k is the same as that in S′

k , Ẽk can never become larger than

ε ≈ 0.0000095367. Putting Ẽk and ε into the formula for calculating the Lya-

punov exponent, the error produced at iteration step k will thus not result in

an addition but in a substraction of a given number in our calculation of the

exponent. As a consequence, if there are more strings S′
k and S̃′

k produced for

which the letters at position 58 are the same, even if there are many differences

between S′
k and S̃′

k , the Lyapunov exponent will be a negative number, thus

leading to the conclusion that there is no sensitive dependence on initial con-

ditions. In order to check this, a second Lyapunov exponent was measured. It

is calculated following the same method as that of the first, however, S′
k and S̃′

k

are produced from Sk and S̃k , not after one application of
◦→ but two. If for a

given tag system, the experiment again results in a negative exponent for both

593

measurements, the idea of the significance of the letters for the determination

of the behaviour of a tag system should at least be reconsidered.

Lyapunov exponents 3 and 4

The purpose of Lyapunov exponents 3 and 4 is to measure the effect of the shift

itself, i.e. how large is the impact on a tag process, if one disturbs the shift with

e.g. 1? Instead of looking at the differences between the relevant letters in a

string, we will here look at the difference in the lengths of the strings. One of

the reasons to look at this, is that the length of a string determines the shift af-

ter one application of
◦→. In doing so we actually take into account two of the

above mentioned features of tag systems, i.e. the shift number itself as well as

the lengths of the words. Indeed, slightly changing the length of a string, can

be interpreted as one change of the shift number at a given iteration step, or a

change in the length of one word.

As we already know, the position at which the shift enters a string is determining

for what letters will or will not be scanned, these letters in their turn determin-

ing the shift at a later time. In order to measure its effect, and thus to calculate

the Lyapunov exponent, the program creates for each string Sk produced by the

tag system, two new strings S̃k,0 and S̃k,1, the shift being changed at the begin-

ning as well as at the end of Sk . The shift was changed at the beginning of Sk by

erasing its first letter, thus resulting in S̃k,0. The determination of the change of

the shift at the end of the string depends on the length of Sk . If Sk ≡ 0 mod v

then the v-th letter from the right of Sk is erased else the v−1-th letter from the

right is erased. This was done in order to maintain the same effect of the shift

in both cases. If Sk ≡ 0 mod v, erasing the last v −1 letter from the right cannot

have any effect, since this letter will not be scanned. If, however, the v-th letter

from the right is erased, it is guaranteed that the last letter scanned in Sk and

S̃k,1 can be different in content.

The calculation of ε is very straightforward. Since we want to measure the dif-

ference in the lengths of the strings S′
k , S̃′

k,0, and S̃′
k,1 produced from rsp. Sk ,

S̃k,0, and S̃k,1 through
◦→, the initial error is the difference in length between Sk

and rsp. S̃k,0 and S̃k,1 and thus always equal to 1. Ẽk,0 and Ẽk,1 are thus equal

594 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

to:

Ẽk,0 = Abs(|S̃′
k,0|−

∣∣∣S′
k |)

Ẽk,1 = Abs(|S̃′
k,1|− |S′

k |)

Knowing ε, and rsp. Ẽk,0 and Ẽk,1, it is thus possible to measure the effect of a

shift in the determination of the behaviour of a tag system. There is one ques-

tion which should be posed here: why measure the differences in the lengths

and not in the actual shifts?

“Lyapunov exponents” 5 and 6

It would indeed have been a more logical choice to measure the differences in

the shifts induced by S̃k,0 and S̃k,1 as compared to Sk . There is however a prob-

lem involved here, related to the definition of a Lyapunov exponent. As it has

been defined here, the shift with which a string is entered, determining which

letters will and will not be scanned, always varies between 0 and v−1. Take e.g.

a string of length 14 and a shift number v = 3. If all the relevant letters except

for the last of this string have been processed, a new string will have been pro-

duced. Then if finally the last letter from the original string has been processed,

the first letter of our new string will have been erased. However, the maximal

number of first letters being erased in a string resulting in this way can never

be larger than v − 1. In this respect, the error induced by the shift can never

become arbitrarily small or large. If one identifies the error induced as the shift

it is thus impossible to measure a Lyapunov exponent given its definition, since

both the error induced as well as the error resulting from it are bounded. In

replacing the measurement of the shifts by the measurement of the lengths, it

does become possible to at least make the error arbitrarily large, the smallest

possible error being 1. While not being completely unproblematic, since we

cannot make our error arbitrarily small, this still seems to be the best method

to measure the effect of the shift by calculating the Lyapunov exponent. In the

end, one should not forget that we are working with discrete systems, and one

thus has to find alternative methods to measure sensitive dependence on ini-

tial conditions.

595

Notwithstanding these problems, we also included a measurement using for-

mula 5 for calculating the exponents numbered 5 and 6. The same method was

used as that for calculating exponents 3 and 4. However, instead of measuring

the difference in the lengths, the differences in the shifts induced by S̃k,0 and

S̃k,1 as compared to Sk are calculated. Ẽk,0 and Ẽk,0 are calculated as follows,

using the additive complements of the remainder of the lengths after division

by v:

Ẽk,0 = Abs(|S̃′
k,0| mod v −

∣∣∣S′
k | mod v)

Ẽk,1 = Abs(|S̃′
k,1| mod v −|S′

k | mod v)

The fixed error ε is set to 1. Using ε, Ẽk,0 and Ẽk,1 it is then possible to calculate

a fifth and a sixth exponent. It remains a fact that, although the term “Lyapunov

exponent” is used with respect to exponents 3 to 6, the reader should be aware

of the fact that using this terminology here is a bit tricky. Still, using (5) for mea-

suring such exponents, a positive result gives us a clear indication of the fact

that the shift indeed plays a determining role in the behaviour of tag systems,

one small shift in the initial condition giving rise to large deviations in the future

behaviour of the system. In this respect, while being tricky, the use of the term

Lyapunov exponent is reasonable here, since it exactly measures that which the

Lyapunov exponent is used for: sensitive dependence on initial conditions.

Discussion of the results

In the following table an overview is given of the several different Lyapunov

exponents calculated for each of the 52 tag systems.

Table 1: Overview of the values for the 6 different Lyapunov

exponents calculated.

T.S. L1 L2 L3 L4 L5 L6

T1 0,20986 12,6473 3,13671 0,21505 0,23024 12,6473

T2 -0,51606 5,81639 2,53615 0,37532 0,79774 5,81639

Continued on next page

596 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

Table 1 – continued from previous page

T.S. L1 L2 L3 L4 L5 L6

T3 -0,38830 9,09703 1,93795 0,23201 0,45044 9,09703

T4 -0,23778 5,89286 1,78356 0,24394 0,79310 5,89286

T5 0,21470 4,85625 2,21598 0,31457 0,94651 4,85625

T6 0,24355 13,0258 3,48448 0,59671 0,23158 13,0258

T7 -0,28043 4,43291 2,91542 0,35915 0,94250 4,43291

T8 -0,14530 7,51333 2,60118 0,31845 0,63511 7,51333

T9 0,34157 7,36924 3,49389 0,57887 0,63472 7,36924

T10 -0,34809 9,20602 2,93124 0,27714 0,44619 9,20602

T11 -0,12525 9,68609 2,77962 0,32325 0,44555 9,68609

T12 0,24654 13,0261 3,64890 0,59495 0,23210 13,0261

T13 0,01863 3,21484 3,77603 0,65589 1,17652 3,21484

T14 -0,00993 6,48944 2,70436 0,44110 0,63465 6,48944

T15 -0,26616 6,55209 3,47492 0,32866 0,63334 6,55209

T16 -0,14565 3,78280 3,72553 1,27682 1,18847 3,78280

T17 -0,01439 3,39951 3,32477 0,41777 1,19019 3,39951

T18 0,00763 3,69115 3,73933 1,05045 0,98165 3,69115

T19 0,38320 7,86141 2,68984 0,28661 0,63305 7,86141

T20 0,00101 4,36420 2,13883 0,28047 1,05747 4,36420

T21 -0,00779 3,10876 1,61515 0,22656 1,17244 3,10876

T22 -0,10948 2,63181 3,20627 0,77904 1,37792 2,63181

T23 -0,00836 9,76965 3,05023 0,60139 0,45057 9,76965

T24 -0,34111 6,33215 3,54355 0,53880 0,63407 6,33215

T25 -0,32030 3,36655 1,78095 0,20042 1,17318 3,36655

T26 -0,33586 6,42591 2,03395 0,20469 0,79752 6,42591

T27 0,24441 6,04969 2,27059 0,23823 0,80015 6,04969

T28 -0,14936 3,78191 3,65095 1,00675 1,18414 3,78191

T29 -0,36760 9,52192 2,55202 0,37272 0,44827 9,52192

T30 0,27572 4,88829 1,75367 0,25418 0,94291 4,88829

T31 -0,00584 13,1268 3,56512 0,56356 0,23223 13,1268

T32 -0,21426 1,25821 1,90897 0,34805 1,53561 1,25821

Continued on next page

597

Table 1 – continued from previous page

T.S. L1 L2 L3 L4 L5 L6

T33 -0,15379 6,22818 2,41893 0,33040 0,79669 6,22818

T34 -0,64277 9,31465 3,51719 0,72575 0,45076 9,31465

T35 -0,21476 3,30227 3,56580 1,38173 1,27459 3,30227

T36 -0,17917 6,93520 2,27206 0,40513 0,63462 6,93520

T37 -0,45828 6,63360 1,81005 0,18229 0,63713 6,63360

T38 0,00212 4,72056 2,52954 0,54072 0,94197 4,72056

T39 -0,36713 4,48617 3,71934 1,01565 0,94284 4,48617

T40 0,00830 9,21331 2,76923 0,45992 0,44893 9,21331

T41 0,20195 4,35241 4,06979 0,97182 0,94938 4,35241

T42 0,00108 5,69042 1,81780 0,19552 0,80445 5,69042

T43 0,15567 10,2722 3,25836 0,34293 0,44612 10,2722

T44 -0,26523 6,02164 0,00107 0,00395 0,69426 6,02164

T45 -0,69882 7,61557 3,79718 0,96948 0,63165 7,61557

T46 0,12586 7,63512 2,20026 0,29539 0,63789 7,63512

T47 -0,00204 9,89289 3,94462 1,19387 0,44535 9,89289

T48 -0,35373 2,61741 1,81118 0,22834 1,45931 2,61741

T49 -0,27384 8,90288 2,91498 0,62219 0,44738 8,90288

T50 -0,20170 9,97428 2,37917 0,27435 0,44720 9,97428

T51 0,21810 3,75900 3,05455 0,43194 1,17205 3,75900

T52 -0,43902 6,18305 2,35307 0,28940 0,80082 6,18305

As is clear from these results, tag systems do have a positive Lyapunov expo-

nent. Again, as was also the case for the previous experiments there are clear

variations between the different tag systems. As was expected, the first Lya-

punov exponent has negative values for the majority of the tag systems. How-

ever, as is clear from the second Lyapunov exponents, the exponent becomes

positive in doing the measurement after two applications of
◦→.

The fact that the class of tag systems studied here have positive exponents is

not only a further affirmation of the fact that shift and position of the letters

598 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

are determining factors in the behaviour of tag systems, but it also gives us an

indication of how sensitive a system is to these parameters. Given the fact that

the tag systems used in this experiment all satisfy the same set of constraints,

used to limit the possibility of solvability and thus letting open the possibility

of intractability or even unsolvability, one is led to the conclusion that tag sys-

tems for which all results point into the direction of what can at least be called

intractable behaviour, all show sensitive dependence on initial conditions. So

what about tag systems that do not satisfy these constraints? We have not in-

vestigated this question to its full extent, but as far as the solvable class of tag

systems with µ = 2, v = 2 is concerned, we can only say that they are far less

sensitive to initial conditions. In Sec. 9.4.2 we will give a proof of the solvabil-

ity of this class of tag systems. From the results of this proof it indeed follows

that this class of tag systems is not sensitive to initial conditions. Indeed, the

proof basically differentiates between classes of initial conditions. If a certain

initial condition belongs to a a specific class, changing the shift or a letter will

normally have no effect for the final behaviour of the system.

The fact that the results from the experiment show that the tag systems studied

here are sensitive to small changes, serves as a further indication that these tag

systems might be very hard to prove solvable. Indeed, since positive Lyapunov

exponents are a sign of chaotical behaviour and since systems showing chaot-

ical behaviour are known to be complex and lead to unpredictability – think

about the famous butterfly effect – the results given here only affirm that these

tag systems are, from an experimental point of view, very hard to predict.

Experiment 4: Measuring the distribution of the let-

ters

One of the constraints (constraint 4) implemented in the tag generating algo-

rithm, takes into account the proportions between the total number of times

each letter appears in all the words. Although this constraint is not necessary

valid for certain tag systems that show intractable behaviour, since we have to

exclude certain classes of initial conditions for certain tag systems, it was ar-

599

gued that this constraint can indeed function as a decidability criterion for cer-

tain classes of tag systems. One of the problems with this constraint is that if it

is true that every letter has effectively an equal chance to be scanned, i.e., while

actually executing the system, the tag process must in the end become periodic

or halt, as was argued in 6.1.2 following Hayes and Minsky. This implies that we

are facing a hard theoretical problem here.

If it is indeed true that every letter has an equal chance to be scanned, taking

into account the means of the total number of 0’s and 1’s to be scanned in the

initial condition, it must be predictable through some kind of estimate (taking

into account the average length of the strings produced) the number of steps it

takes a tag system to become periodic or halt.

Let us denote in what follows the mean #0/(l0 + l1) rsp. #1/(l0 + l1) of the total

number of 0’s and 1’s in the words calculated through constraint 4 as µ0 and

µ1. Then, given an initial condition and a tag system T that satisfies constraint

4. After the initial condition has been processed, a certain number of 0’s and

1’s will have been scanned, leading to a string, that is either short, longer or of

the same length as the initial condition. If the mean of the number of 0’s in

the initial condition is larger than µ0 the system will halt or produce a string for

which the mean of the number of 0’s and 1’s is equal to µ0 rsp. µ1 after a certain

number of iterations.6 If relatively more 1’s than 0’s are scanned, the system

will keep on growing until again a string is produced for which the mean of

the number of 0’s and 1’s is equal to µ0 rsp. µ1. The question then of course

is: when will a string be produced for which these means are equal to µ0 and

µ1? As will become clear from the experimental results to be discussed here,

it does not take very long for the tag system to produce a string for this to be

true. Without further tackling this last question, it is clear that once a string

is produced for which the mean of the total number of 0’s and 1’s is equal to

µ0 and µ1 (thus leading to the production of a string through
◦→ that is neither

shorter nor longer than the string it resulted from) we are faced with the prob-

lem of whether or not, on the average, the distribution of the number of 0’s and

1’s scanned, remains equal to µ0 and µ1. If this be true, it should be possible to

6The mean would then be equal to the total number of 0’s and 1’s in a string of length l , each

divided by l .

600 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

find an estimate to predict when exactly the system will either halt or become

periodic.

In order to further study this problem, experiment 4 was set up, effectively mea-

suring the average of the number of times a 0 or a 1 is scanned by each of the

tag systems T1–T52. Before starting with the description of the set-up of the

experiment it is important to point out that if on the average the mean for the

number of 0’s and 1’s scanned is equal to µ0 rsp. µ1, this feature does not make

it impossible for a tag system to produce over 10000000 strings when started

with an initial condition of length 300, before leading to periodicity or a halt,

and thus would not contradict the results from experiment 1. Indeed, given

length l of a string produced, there are about 2l/v possible combinations of

length l the system can range over. Since the tag systems will not merely pro-

duce strings of length 300, µ0 resp. µ1 only being valid on the average, the tag

systems should have enough “space” to produce, for some initial conditions

over 10000000 strings before becoming periodic or halting.

Set-up of experiment 4

We will use 10 of the initial conditions classified as Immortals? in experiment

1. For each of these conditions, the tag system was run for 10000000 iterations.

Thus, the size of the sample space N is thus equal to N = 108.

Each event xi , j is equal to either 1 (true) or 0 (false) depending on whether

the symbol i (i.e. 0, zero, or 1, one) occurs or occurs not on the j th iteration.

After 10 initial conditions have been processed in this way, the experiment de-

termines the mean (expected value) µ0,N and µ1,N for rsp. the number of times

a 0 or a 1 was scanned, using the variables xi , j where:

µi ,N =∑N
j=1

xi , j

N i ∈ {0,1}

Using µi ,N the standard deviations σ0,N and σ1,N are calculated as follows:

σi ,N =
√√√√ N∑

j=1
(xi , j −µi ,N)2

601

This was done for each of the tag systems T1–T52. In order to check whether the

means µ0,N and µ1,N converge or do not converge to specific values, the mean

and standard deviations were calculated after 5000000 respectively 10000000

iterations were performed. The experiment was repeated for another set of 10

initial conditions classified as Immortals? by experiment 1, namely the first 10

found in the second run of experiment 1.

Besides measuring the mean and standard deviations of the number of 0’s and

1’s in the strings produced, a subroutine was included that measured how many

iterations were minimally and maximally needed before a string was produced

for which the ratio of 0’s resp. 1’s scanned, to the total number of symbols

scanned is equal to µ0 = #0/(l0+l1) and µ1 = #1/(l0+l1). This was done to tackle

the problem to know how long it takes before a string is produced for which the

mean of the number of 0’s and 1’s is equal to µ0 rsp. µ1. In this way the possible

influence of an initial imbalance between the total number of 0’s and 1’s on the

actual values of µ0,N and µ1,N can be excluded, as will become clear through

the results.

Discussion of the results of experiment 4

In table the results are given of how many iterations were minimally and maxi-

mally needed, for each of the initial conditions for each of the tag systems, be-

fore a string was produced for which the ratio of 0’s resp. 1’s scanned, to the total

number of symbols scanned is equal to µ0 = #0/(l0 + l1) and µ1 = #1/(l0 + l1).

Table 2: Minimum and maximum number of iterations for

a string to be produced with µ0 and µ1

T.S. Min Max

T1 12 1296

T2 0 196

T3 1 125

T4 1 277

T5 7 157

602 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

T.S. Min Max

T6 2 402

T7 4 141

T8 42 204

T9 0 58

T10 18 278

T11 3 323

T12 4 543

T13 1 73

T14 1 381

T15 1 79

T16 0 19

T17 1 34

T18 6 102

T19 48 192

T20 0 182

T21 1 85

T22 1 105

T23 45 551

T24 6 84

T25 0 128

T26 0 204

T27 0 196

T28 1 40

T29 1 159

T30 10 144

T31 1 110

T32 0 94

T33 0 141

T34 63 648

T35 19 625

T36 0 133

603

T.S. Min Max

T37 1 222

T38 21 355

T39 8 402

T40 60 354

T41 7 33

T42 0 232

T43 9 320

T44 0 110

T45 1 173

T46 3 290

T47 4 669

T48 13 202

T49 60 270

T50 16 191

T51 0 102

T52 4 63

These results show that the minimum and maximum number of iterations be-

fore a string is produced for which the average number of relevant 0’s and 1’s

is equal to µ0 and µ1 is very low. We can thus conclude that whatever the re-

sults for µ0,N and µ1,N might be, the influence on these results of a possible

imbalance between the total number of 0’s and 1’s relative to µ0 and µ1 can be

neglected.

In table 3 the results from experiment 4 are shown. For each tag system there

are four rows with data. The first two rows show means and standard deviations

for the number of 0’s scanned by the tag system, for two runs of the experiment,

the last two rows the results for the number of 1’s scanned.

604 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

Table 3: Means and Standard deviations for the number of

significant letters 0 and 1 for two runs of the same experi-

ment with different initial conditions.

T.S. µ5.106 µ1.107 σ5.106 σ1.107

T1 0,49938814 0,49955107 0,12998921 0,12996718

0,49925946 0,49961642 0,13011946 0,13002905

0,50061186 0,50044893 0,12998920 0,12996718

0,50074054 0,50038358 0,13011946 0,13002904

T2 0,49947212 0,49970484 0,14838064 0,14848491

0,49959620 0,49971658 0,14841034 0,14852215

0,50052788 0,50029516 0,14838064 0,14848491

0,50040380 0,50028342 0,1484103 0,14852215

T3 0,49983170 0,49992785 0,13075027 0,13069996

0,49990816 0,49993954 0,13075214 0,13084408

0,50016830 0,50007215 0,13075027 0,13069996

0,50009184 0,50006046 0,13075214 0,13084408

T4 0,49973474 0,49988311 0,13221058 0,13222642

0,49982328 0,49987309 0,13233494 0,13232892

0,50026526 0,50011689 0,13221058 0,32226417

0,50017672 0,50012691 0,13233494 0,13232892

T5 0,49976184 0,49977215 0,12015511 0,12004122

0,49955336 0,4997634 0,12000163 0,11999297

0,50023816 0,50022785 0,12015511 0,12004122

0,50044664 0,50023654 0,12000163 0,11999297

T6 0,49972618 0,49978999 0,09555880 0,09559299

0,49971438 0,49982279 0,09559107 0,09566045

0,50027382 0,50021001 0,09555880 0,09559299

0,50028562 0,50017721 0,09559107 0,09566045

T7 0,49951472 0,49974622 0,18011528 0,18008183

Continued on next page

605

Table 3 – continued from previous page

T.S. µ5.106 µ1.107 σ5.106 σ1.107

0,49955906 0,49979458 0,17997552 0,18007529

0,50048528 0,50025378 0,18011528 0,18008183

0,50044094 0,50020542 0,17997552 0,18007529

T8 0,33305362 0,33317766 0,09178837 0,09174928

0,33293400 0,33320407 0,09175058 0,09174997

0,66694638 0,66682234 0,09178837 0,09174928

0,66706600 0,66679593 0,09175048 0,09174997

T9 0,49966454 0,49985959 0,13156549 0,13162844

0,49959824 0,49985637 0,13151971 0,13159662

0,50033546 0,50014041 0,13156549 0,13162844

0,50040176 0,50014362 0,13151971 0,13159662

T10 0,49938774 0,49962633 0,15431907 0,15429176

0,49917504 0,49966490 0,15424648 0,15429739

0,50061226 0,50037367 0,15431907 0,15429176

0,50082496 0,50033501 0,15424648 0,15429739

T11 0,49950282 0,49972887 0,12215274 0,12223241

0,49946464 0,49973360 0,12214831 0,12224636

0,50049718 0,50027113 0,12215274 0,12223241

0,50053536 0,50026640 0,12214831 0,12224636

T12 0,49972586 0,49982412 0,09560242 0,09562781

0,49944148 0,49984048 0,09550610 0,09562127

0,50027414 0,50017588 0,09560242 0,09562781

0,50055852 0,50015952 0,09550610 0,09562127

T13 0,49949974 0,49968790 0,15002645 0,14995474

0,49927004 0,49970047 0,14968294 0,14983029

0,50050026 0,50031210 0,15002645 0,14995474

0,50072996 0,50029953 0,14968294 0,14983030

T14 0,49963248 0,49977276 0,13008482 0,13015534

Continued on next page

606 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

Table 3 – continued from previous page

T.S. µ5.106 µ1.107 σ5.106 σ1.107

0,49953060 0,49981012 0,13005642 0,13020544

0,50036752 0,50022724 0,13008482 0,13015534

0,50046940 0,50018988 0,13005642 0,13020544

T15 0,49972884 0,49986530 0,16651339 0,16655761

0,49954180 0,49981591 0,16647819 0,16650336

0,50027116 0,50013470 0,16651339 0,16655761

0,50045820 0,50018409 0,16647819 0,16650336

T16 0,49979408 0,49990788 0,12480711 0,12485622

0,49984036 0,49991851 0,12483387 0,12486723

0,50020592 0,50009212 0,12480711 0,12485622

0,50015964 0,50008149 0,12483387 0,12486723

T17 0,49978560 0,49973714 0,15985869 0,15980832

0,49982562 0,49976360 0,15980718 0,15978938

0,50021440 0,50026286 0,15985869 0,15980832

0,50017438 0,50023640 0,15980718 0,15978938

T18 0,66638342 0,66652311 0,09462977 0,09473888

0,66641522 0,66651897 0,09466949 0,09,47239

0,33361658 0,33347689 0,09462977 0,09473888

0,33358478 0,33348103 0,09466949 0,09472386

T19 0,33308414 0,33320892 0,09175205 0,09173822

0,33311054 0,33316499 0,09173671 0,09174116

0,66691586 0,66679108 0,09175205 0,09173822

0,66688946 0,66683501 0,09173671 0,09174116

T20 0,49974366 0,49973723 0,16357288 0,16352701

0,49986852 0,49978575 0,16361993 0,16354407

0,50025634 0,50026277 0,16357288 0,16352701

0,50013148 0,50021425 0,16361993 0,16354407

T21 0,49981100 0,49987312 0,14490903 0,14491107

Continued on next page

607

Table 3 – continued from previous page

T.S. µ5.106 µ1.107 σ5.106 σ1.107

0,49977838 0,49986938 0,14488041 0,14489612

0,50018900 0,50012688 0,14490903 0,14491107

0,50022162 0,50013062 0,14488041 0,14489612

T22 0,49959102 0,49990204 0,16306324 0,16305483

0,49964138 0,49991681 0,16314762 0,16306462

0,50040898 0,50009796 0,16306324 0,16305483

0,50035862 0,50008319 0,16314762 0,16306462

T23 0,66640374 0,66653087 0,10210538 0,10210400

0,66641296 0,66649893 0,10208961 0,10208835

0,33359626 0,33346913 0,10210538 0,10210400

0,33358704 0,33350107 0,10208961 0,10208835

T24 0,49979174 0,49986252 0,11619561 0,11624656

0,49981954 0,49989120 0,11631582 0,11631089

0,50020826 0,50013748 0,11619561 0,11624656

0,50018046 0,50010878 0,11631588 0,11631089

T25 0,49945316 0,49974298 0,16185312 0,16176421

0,49945262 0,49976761 0,16176812 0,16172444

0,50054684 0,50025702 0,16185312 0,16176421

0,50054738 0,50023239 0,16176812 0,16172444

T26 0,49969278 0,49981653 0,12353910 0,12353606

0,49975510 0,49980258 0,12354148 0,12353893

0,50030722 0,50018347 0,12353910 0,12353606

0,50024490 0,50019742 0,12354148 0,12353893

T27 0,49969210 0,49981332 0,15659398 0,15657887

0,49963414 0,49982193 0,15659637 0,15661223

0,50030790 0,50018668 0,15659398 0,15657887

0,50036586 0,50017807 0,15659637 0,15661223

T28 0,49984624 0,49991003 0,12478911 0,12483193

Continued on next page

608 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

Table 3 – continued from previous page

T.S. µ5.106 µ1.107 σ5.106 σ1.107

0,49979740 0,49990626 0,12480439 0,12483158

0,50015376 0,50008997 0,12478911 0,12483193

0,50020260 0,50009374 0,12480439 0,12483158

T29 0,49978982 0,49981942 0,14841228 0,14844056

0,49974866 0,49986636 0,14855689 0,14854926

0,50021018 0,50018058 0,14841228 0,14844056

0,50025134 0,50013364 0,14855689 0,14854926

T30 0,49970360 0,49981825 0,12880062 0,12874801

0,49973298 0,49979978 0,12872202 0,12873290

0,50029640 0,50018175 0,12880062 0,12874801

0,50026702 0,50020022 0,12872202 0,12873290

T31 0,49980272 0,49988075 0,10384891 0,10392084

0,49978128 0,49989686 0,10389587 0,10391434

0,50019728 0,50011925 0,10384891 0,10392084

0,50021872 0,50010314 0,10389587 0,10391434

T32 0,49982960 0,49986072 0,15392181 0,15399016

0,49979662 0,49981192 0,15383678 0,15393101

0,50017040 0,50013928 0,15392181 0,15399016

0,50020338 0,50018808 0,15383678 0,15393101

T33 0,49945962 0,49962027 0,14452561 0,14457672

0,49963512 0,49980241 0,14461800 0,14458836

0,50054038 0,50037973 0,14452561 0,14457672

0,50036488 0,50019759 0,14461710 0,14458836

T34 0,66620500 0,66637831 0,13500016 0,13500566

0,66604222 0,66633337 0,13495825 0,13496250

0,33379500 0,33362169 0,13500016 0,13500566

0,33395778 0,33366663 0,13495825 0,13496250

T35 0,57117182 0,57132786 0,09933985 0,09941825

Continued on next page

609

Table 3 – continued from previous page

T.S. µ5.106 µ1.107 σ5.106 σ1.107

0,57115694 0,57130930 0,09926328 0,09936833

0,42882818 0,42867214 0,09933985 0,09941825

0,42884306 0,42869070 0,09926328 0,09936833

T36 0,49976804 0,49985907 0,11562680 0,11557620

0,49984234 0,49988718 0,11558913 0,11555868

0,50023196 0,50014093 0,11562680 0,11557620

0,50015766 0,50011282 0,11558913 0,11555868

T37 0,49988144 0,49993118 0,13993679 0,13995524

0,49991570 0,49994972 0,13979562 0,13983142

0,50011856 0,50006882 0,13993679 0,13995524

0,50008430 0,50005028 0,13979562 0,13983142

T38 0,66630288 0,66645279 0,11988668 0,11994058

0,66621214 0,66639295 0,11984015 0,11989572

0,33369712 0,33354721 0,11988668 0,11994058

0,33378786 0,33360705 0,11984015 0,11989572

T39 0,59969032 0,59986344 0,13080099 0,13075185

0,59975322 0,59979177 0,13080073 0,13078377

0,40030968 0,40013656 0,13080099 0,13075185

0,40024678 0,40020823 0,13080073 0,13078377

T40 0,66641428 0,66650411 0,09463214 0,09469003

0,66643667 0,66651491 0,09465528 0,94689283

0,33358572 0,33349589 0,09463214 0,09469003

0,33356330 0,33348509 0,09465528 0,09468928

T41 0,49984712 0,49991314 0,11798523 0,11800486

0,49983632 0,49991098 0,11792113 0,11801989

0,50015288 0,50008686 0,11798523 0,11800486

0,50016368 0,50008902 0,11792113 0,11801989

T42 0,49977064 0,49982939 0,13232168 0,13227383

Continued on next page

610 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

Table 3 – continued from previous page

T.S. µ5.106 µ1.107 σ5.106 σ1.107

0,49984594 0,49987804 0,13225646 0,13226538

0,50022936 0,50017061 0,13232168 0,13227383

0,50015406 0,50012196 0,13225646 0,13226538

T43 0,49953504 0,49966654 0,17514851 0,17516905

0,49938176 0,49966047 0,17521036 0,17519734

0,50046496 0,50033346 0,17514851 0,17516905

0,50061824 0,50033953 0,17521036 0,17519734

T44 0,49988816 0,49996036 0,12527685 0,12524682

0,49987316 0,4999750 0,12523898 0,12522297

0,50011184 0,50003964 0,12527685 0,12524682

0,50012684 0,50002510 0,12523898 0,12522297

T45 0,49967972 0,49982178 0,14709139 0,14714867

0,49970650 0,49980823 0,14701959 0,14705493

0,50032028 0,50017822 0,14709139 0,14714867

0,50029350 0,50019177 0,14701959 0,14705493

T46 0,49980734 0,49987601 0,11822903 0,11820656

0,49983636 0,49990080 0,11818817 0,11815686

0,50019266 0,50012399 0,11822903 0,11820656

0,50016364 0,50009920 0,11818817 0,11815686

T47 0,49977184 0,49987176 0,09156444 0,09157788

0,49975230 0,49986460 0,09161004 0,09160956

0,50022816 0,50012824 0,09156444 0,09157788

0,50024770 0,50013540 0,09161004 0,09160956

T48 0,49956328 0,49963353 0,15639615 0,15635436

0,49956376 0,49961638 0,15644630 0,15636404

0,50043672 0,50036647 0,15639615 0,15635436

0,50043624 0,50038362 0,15644630 0,15636404

T49 0,66638068 0,66649068 0,11605808 0,11606001

Continued on next page

611

Table 3 – continued from previous page

T.S. µ5.106 µ1.107 σ5.106 σ1.107

0,66633558 0,66643564 0,11599395 0,11600792

0,33361932 0,33350932 0,11605808 0,11606001

0,33366442 0,33356436 0,11599395 0,11600792

T50 0,49967284 0,49978430 0,12749461 0,12752230

0,49971274 0,49988220 0,12756446 0,12754785

0,50032716 0,50021570 0,12749461 0,12752230

0,50028726 0,50011780 0,12756446 0,12754785

T51 0,49966630 0,49977212 0,15440620 0,15444849

0,49968416 0,49976963 0,15439637 0,15443534

0,50033370 0,50022788 0,15440620 0,15444849

0,50031584 0,50023037 0,15439637 0,15443534

T52 0,49958554 0,49979053 0,15330951 0,15333547

0,49961964 0,49978397 0,15340843 0,15339744

0,50041446 0,50020947 0,15330951 0,15333547

0,50038036 0,50021603 0,15340843 0,15339744

Looking at the results from the table, it is clear that for the tag systems used

in the experiment, the means measuring the number of times a 0 is scanned

and the number of times a 1 is scanned in actually executing each of these

systems, almost converge with µ0 and µ1, the means of the total number of

0’s and 1’s in the words of each of the tag systems. Take for example T1, for

which the total number of 0’s in the respective words is equal to the total num-

ber of 1’s with means µ0,5·106 = 0,49938814 and µ1,5·106 = 0,50061186, values

which both approximate µ0 = µ1 = 0.5 for T1, but differ from it only slightly.

As an isolated result, this is far from surprising. Given the experimental char-

acter of these results one cannot expect a perfect match of both means with

0.5. In the second run of the experiment, we see again that µ0,5·106 is a tiny

bit smaller than 0.5 and µ1,10·106 a tiny bit larger than 0.5. Still as isolated re-

sults, we cannot draw any conclusions here. However, this kind of observation

612 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

is not only found for T1, but for all the tag systems tested. For example, T8 for

which µ0 = 0.33333...,µ1 = 0.66666... the actual means after 5000000 iterations

are µ0,5·106 rsp. 0,33305362 and µ0,5·106 = 0,66694638. Given the generality of the

observations that each µ0,5·106 and µ0,10·106 is always a tiny bit smaller than the

expected mean µ0 based on the number of 0’s in the words of the tag systems

while each µ1,5·106 and µ1,10·106 is always a bit larger than µ1, we are led to the

conclusion that this observation might be generalizable, at least when initial

conditions are involved that lead to a relatively large number of iterations with-

out leading to one of the three classes of predictable behaviour.

This result illustrates how it is possible for a given tag system to behave in a

very erratic way, showing what we have earlier called “fluctuating” behaviour.

Indeed, in general the tag systems will scan a tiny bit more 1’s than 0’s, thus

leaving the system just enough space to produce new strings. As was explained

before, if this would not be the case, the system must become periodic or halt

after a certain number of iterations, since the total number of strings that can

be produced is finite, because the lengths are limited. Although it is still pos-

sible for the tag systems to become periodic or halt despite these small devi-

ations, this will not necessarily happen. It is also important to point out that

since it is always the case that a bit more 1’s are scanned on the average this

does not imply that the system must lead to unbounded growth. Indeed, al-

though the system grows on the average, it is not necessarily the case that for

arbitrary n, the system will, from a certain point on, never produce a string of

length shorter than n. In a way, given the values of µ0,N being very close to µ0

the system can always return to strings of shorter length. One could maybe say

that both values µ0,N and µ1,N keep each other in balance: µ1,N allows for the

possibility that the system can keep producing new strings without necessary

becoming periodic or halting, while µ0,N assures that the system will not show

unbounded growth.

A further important observation based on the results from table 3 is that, except

for T17 and T20 the values for µ0,N and µ1,N do converge to the values µ0 and

µ1, the larger N becomes. Indeed, except for the two tag systems mentioned

the value for µ0,5·106 < µ0,10·106 and µ1,5·106 > µ1,10·106 . If this result can be gener-

alized, this implies that in the end the tag systems will indeed become periodic

613

or halt. The fundamental question to be asked then is how many iterations this

“in the end” will take. Based on the results in the table we cannot draw any

conclusions of how slow or fast such convergence will take place.

Experiment 5: Tag systems and randomness.

I hope you will inform me of results, good or bad, of new kinds of generators you

have tested, particularly deterministic generators, but also the output of physi-

cal devices.(I have found none of the latter that get past DIEHARD, and would

like to learn of any that do.) Since, in my opinion, there is no true randomness,

collective experience in finding sequences that depart from the theoretical ideal

in a significant way can perhaps lead to better ways for finding those that do not.

George Marsaglia, 1986.7

Given the results from the previous experiment, it seemed interesting to test

whether the distribution of the significant letters in the strings produced through

the tag systems can in any way be considered random or not. Now, given the

fact that µ0,N is always a bit smaller than µ0 and µ1,N always a bit larger than

µ1, at least for the initial conditions tested during the experiment with N ≤
10000000, one expects that the sequence of significant letters produced by these

tag systems cannot be random. If, despite these expectations, the distribution

of the relevant letters in the tag systems considered can from a certain point of

view be considered random, we would have further evidence of the intractabil-

ity of this class of tag systems.

The notion of randomness in the context of deterministic systems is not com-

pletely unproblematic. If we would apply the notion of randomness as defined

in algorithmic information theory, we even wouldn’t have to perform any tests,

since there is a very short algorithm behind the sequence of significant letters

produced by a tag system, and we can thus not regard the sequences of let-

ters generated as being random. However, if one wants to draw any conclusion

about the distribution of the significant letters for the tag systems considered,

7[Mar97], p. 1

614 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

we are forced to take up a more pragmatic point of view. Indeed, without draw-

ing any conclusions about the “true” random character of tag systems, the pur-

pose of this experiment is to check in how far the distribution of the relevant

letters produced by a given tag systems can be called “random”, random in the

sense of: having passed for several statistical tests of randomness.

Set-up of experiment 5.

In order to perform experiment 5, Marsaglia’s Diehard. A battery of random

tests [Mar96] has been an indispensable instrument. This battery contains 15

different classes of tests for randomness.8 I will not give a detailed description

of how the tests work. Our main reasons for using the battery is simply to know

whether one can connect the seeming intractable behaviour of the tag systems

considered here with statistical randomness. We used Marsaglia’s Diehard be-

cause it is nowadays one of the standard tests to check whether a certain sample

is statistically random. It is e.g. often used by programmers who want to check

whether their random number generator is good enough to be used in a pro-

gram.9.

The data Diehard had to process for each of the tag systems, are generated by

the first 15 initial conditions classified as Immortals? by experiment 1. For

each tag system these 15 initial conditions are each run for 10.000.000 itera-

tions. In order for Diehard to check the distribution of the significant letters

in these strings, they are considered in the order in which they are generated

by the tag system. Our data first have to be properly converted to the correct

format Diehard needs in order to work i.e. it only accepts a special kind of bi-

nary files. To be more specific Diehard needs files in binary mode, with 32-bit

integers, using extended ASCII-code. Each 32-integer is thus represented by 4

8The tests are: Birthday Spacings test, Overlapping Permutations test, Ranks of 31x31 and

32x32 matrices, Ranks of 6x8 matrices, Monkey tests on 20-bit words, Monkey tests OPSO,

OQSO, DNA, Count the 1’s in a stream of bytes, count the 1’s in specific bytes, Parking Lot test,

Random Spheres test, The squeeze test, Overlapping sums test, Runs test, The Craps test
9More information on the tests can be found in [Mar84, MZ93]

615

8-bit integers, using the 256 symbols from the extended ASCII-code. We thus

have to convert our sequences of bits generated by the program. To achieve this

goal, the output files are, of course, all opened in binary mode. Now, instead of

directly outputting each bit generated, each 8 relevant letters generated were

stored in a string, then converted to its decimal value. After this, the string was

set to the empty string, so that the above sketched process could be repeated.

Then for each of the decimal values x produced in this way, the following oper-

ation is applied: x mod 256. The result of this operation is a Long data type, a

32-bit integer, which is then stored in the binary file through its ASCII code.

It is generally known that producing the correct format for Diehard asks for

rather involved procedures. In order to check whether the conversion we used

works, we applied Diehard to the random number generator used in VB, using

a randomize timer function. In this respect, the results from the experiment

should be considered relative the VB’s random number generator.

Discussion of the results from experiment 5.

In the following table the results are shown of applying Diehard to each of the

binary files generated for each of the 52 tag systems. Furthermore, the first line

of data in the table shows the same results for VB’s pseudo-random number

generator. Now, if Diehard is applied to a given file it results in a text-file con-

taining the results for each of the tests. To know whether the data in your file

pass a given test you have to look at what is called the p-value, which is in the

interval [0, 1). As is pointed out in the output files from Diehard:

Most of the tests in DIEHARD return a p-value, which should be uniform on [0,1)

if the input file contains truly independent random bits. Those p-values are ob-

tained by p=F(X), where F is the assumed distribution of the sample random vari-

able X—often normal. But that assumed F is just an asymptotic approximation,

for which the fit will be worst in the tails. Thus you should not be surprised with

occasional p-values near 0 or 1, such as .0012 or .9983. When a bit stream really

FAILS BIG, you will get p’s of 0 or 1 to six or more places. By all means, do not, as a

Statistician might, think that a p < .025 or p> .975 means that the RNG has "failed

616 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

the test at the .05 level". Such p’s happen among the hundreds that DIEHARD

produces, even with good RNG’s. So keep in mind that " p happens".

Given this explanation, a tag system does not pass a test when it produces p-

values equal to 0 or 1 to six or more places, such as e.g. 1.000000.

Now, if the output from a given tag system passes for a given test, a 1 is put in

the correct column, else a 0 is added. If a test is actually a set of tests, we use a

string of 0’s and 1’s to indicate for which of the tests the systems failed or not.

For certain tests not one but several p-values are outputted. It is then possible

that some of the p-values are OK while others or not. If this happens, a "?" is

used instead of a 0 or a 1.

Table 4: Overview of the results from Diehard

T.S. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

VB 1 0 11 1 1 000 0 1 1 1 1 0 1 1 0

T1 0 0 00 0 0 000 0 0 0 0 0 0 0 0 0

T2 0 1 11 0 0 000 0 0 0 0 0 0 1 1 ?

T3 0 1 11 0 0 000 0 0 0 0 1 1 1 1 ?

T4 0 1 11 0 0 001 0 0 0 0 1 0 1 1 ?

T5 0 1 11 0 0 000 0 0 0 0 0 0 0 1 0

T6 0 1 11 0 0 000 0 0 0 0 0 1 1 1 1

T7 0 1 00 0 0 000 0 0 0 0 0 0 0 1 ?

T8 0 0 11 0 0 000 0 0 0 0 0 0 1 0 0

T9 0 1 11 0 0 000 0 0 0 0 1 1 1 1 1

T10 0 1 11 0 0 000 0 0 0 0 0 0 1 1 ?

T11 0 1 11 0 0 001 0 0 0 0 0 0 1 1 0

T12 0 1 11 0 0 000 0 0 0 0 0 1 1 1 1

T13 0 0 00 0 0 000 0 0 0 0 0 0 1 1 ?

T14 0 1 11 0 0 000 0 ? 0 0 0 0 0 1 0

T15 0 0 00 0 0 000 0 0 0 0 0 0 1 1 ?

T16 0 1 11 0 0 000 0 0 0 0 0 0 0 1 0

T17 0 1 00 0 0 001 0 0 0 0 0 0 1 1 ?

Continued on next page

617

Table 4 – continued from previous page

T.S. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T18 0 0 11 0 0 000 0 0 0 0 0 0 0 0 0

T19 0 0 11 0 0 000 0 0 0 0 0 0 1 0 0

T20 0 1 11 0 0 001 0 0 0 0 0 0 1 1 ?

T21 0 1 11 0 0 000 0 0 0 0 1 0 1 1 ?

T22 0 0 00 0 0 000 0 0 0 0 0 0 1 1 ?

T23 0 0 11 0 0 000 0 0 0 0 0 0 1 0 0

T24 0 1 11 0 0 000 0 0 0 0 0 0 0 1 0

T25 0 1 11 0 0 000 0 0 0 0 0 0 0 1 ?

T26 0 1 11 0 0 001 0 1 0 0 1 1 1 1 1

T27 0 1 00 0 0 000 0 0 0 0 0 0 1 1 ?

T28 0 1 11 0 0 000 0 0 0 0 0 0 0 1 0

T29 0 1 11 0 0 000 0 0 0 0 0 0 1 1 ?

T30 0 1 11 0 0 000 0 0 0 0 0 0 0 1 0

T31 0 0 11 0 0 000 0 0 0 0 0 1 1 1 1

T32 0 0 11 0 0 000 0 0 0 0 0 0 0 1 ?

T33 0 1 11 0 0 000 0 0 0 0 0 0 1 1 0

T34 0 0 00 0 0 000 0 0 0 0 0 0 0 0 0

T35 0 1 11 0 0 000 0 0 0 0 0 0 1 0 ?

T36 0 1 11 0 0 000 0 ? 0 0 0 0 0 1 0

T37 0 1 11 0 0 000 0 0 0 0 0 0 0 1 0

T38 0 0 00 0 0 000 0 0 0 0 0 0 1 0 0

T39 0 0 11 0 0 000 0 0 0 0 0 0 0 0 ?

T40 0 0 11 0 0 000 0 0 0 0 0 0 0 0 0

T41 1 1 11 0 0 001 0 1 0 0 1 1 1 1 1

T42 0 1 11 0 0 001 0 0 0 0 1 0 1 1 0

T43 0 1 11 0 0 000 0 0 0 0 0 0 0 1 0

T44 0 1 11 0 0 000 0 0 0 0 0 0 0 1 0

T45 0 1 11 0 0 000 0 0 0 0 0 0 1 1 ?

T46 0 1 11 0 0 000 0 0 0 0 0 0 0 1 0

T47 0 1 11 0 0 000 0 ? 0 0 0 1 1 1 0

Continued on next page

618 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

Table 4 – continued from previous page

T.S. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T48 0 1 11 0 0 000 0 0 0 0 0 0 0 1 ?

T49 0 0 11 0 0 000 0 0 0 0 0 0 1 0 0

T50 0 1 11 0 0 001 0 ? 0 0 0 0 1 1 ?

T51 0 0 11 0 0 000 0 0 0 0 0 0 1 1 0

T52 0 1 11 0 0 000 0 0 0 0 0 0 0 1 ?

The majority of the tag systems considered pass for at least some of the tests.

Let us first look at the result for the pseudo-random number generator from VB.

Clearly it passes for only 10 tests, but this might be due to the method of con-

version used. Still, the results for the generator from VB are significantly better

than those for the tag systems.

Looking at the results for the tag systems, there are only two that did not pass

any of the tests, i.e. T1 and T34. In fact, Diehard did not even want to process

the output files for both tag systems. At first we thought this was due to an

error in the program used, but then we applied a very quick test using a visu-

alization to compare the output of these two tag systems with that of the other

tag systems. We will not go into a detailed explanation of this test, but the re-

sults showed that, as compared to the other tag systems T1 and T34 are indeed

far less random.10 T26 and T41 performed best, T26 passing for 8 and T41

passing for 9 tests. T41 even passes for the first test, called the Birthday spac-

ing test known to be a very hard test to pass. For example, one common class

of pseudo-random generators, linear congruential generators, fail for this test.

10The test is in fact a visual test, using a technique from fractal geometry called the chaos

game. This method is used to generate a fractal very quickly. The point is that for the fractal to

be visualized in a good and quick way one needs a good random number generator. I applied

this method to all the tag systems and VB’s pseudo-random number generator for 100000 bits

generated. The generator for VB resulted in the most correct visualization, without any bias in

the result. The images for T1 and T34 were far from perfect, while those for the remaining tag

systems were rather good, but always involving very small biases, visualizing certain parts of

the fractal used more precise than certain other parts of the fractal.

619

Test 2, 3 and 14 are most frequently passed by each of the tag systems. No tag

systems passes tests 4, 5, the first two of the class of tests 15, 7, 9 and 10. On the

average each tag system passes about 3 tests.

Given our rather basic knowledge about tests for randomness and the fact that

our conversion method might not be perfect it is impossible to draw any more

conclusions based on table 4. Still, it remains a fact that the majority of tag

systems passes for at least some of the tests, a fact that surprised us given the

results from the previous experiment. Indeed, given the fact that µ0,N is always

a bit smaller than µ0 makes it very improbable that the tag systems would pass

for all the tests. That the majority of tag systems do pass for some tests illus-

trates again how intractable these systems actually are, at least from an exper-

imental point of view. Furthermore, the fact that T1 does not pass any of the

tests, while it is already known as a very hard nut to crack only further supports

this.

We can only conclude here that more research is needed with respect to the

possible connection between statistical randomness and tag systems.

Experiment 6: Markov analysis

The present experiment was implemented for two reasons. First of all, it was

used to get a better idea about the distribution of the relevant letters 0 and 1

in the tag systems involved, checking what 2-symbol-combinations of given

length are possible. Secondly, the experiment measures their information the-

oretical entropy.

The main technique used in the experiment is that of a Markov process. For the

reader who is not familiar with this concept, the following intermezzo gives a

short explanation of the general idea behind Markov processes.

Markov processes as a way to measure the intractability of tag system In 1948

Claude Shannon wrote his seminal paper on information theory, called A math-

ematical theory of communication [Sha48]. Without going into the details of this

paper it is important to note that the techniques used here are based on the first

620 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

part of this paper on discrete noiseless systems, where a discrete information

source is interpreted as a discrete Markov process. Markov processes are used

to measure the influence of past events on contemporary events, the general

method having many applications in science.11 Now to explain the general idea

a bit, I will use the example Shannon gives i.e. the English language, as a discrete

Markov source. A Markov process is defined by a certain number of states and

a number of transition probabilities. In understanding the English language as

such a source, the states could be the letters of the alphabet plus a space. The

transition probabilities give us an answer to the question of how probable it is

that state x will be followed by state y . Applied to our example, one can for exam-

ple ask how probable it is that the letter a will be followed by the letter z in Eng-

lish. Given a large sample of English texts we can then empirically approximate

all the transition probabilities between all the letters of the English language. A

more complicated Markov process is obtained if one looks at the probabilities of

each letter when preceded by 2 letters, e.g. the probability that z will be preceded

by ak. As far as the example of the English language is concerned it might be in-

teresting to note that if one defines transition probabilities not on the level of

letters but on the level of words, Markov processes can be used to generate small

texts. However, one is quickly confronted with a rather difficult problem, noted

by Chomsky: the longer the (syntactically sound) text one wants to generate the

larger the table of the transition probabilities between words has to be, looking

at larger and larger n, i.e. the probability of word x given n words.

In his [Sha48] Shannon uses Markov processes to define the information theo-

retical entropy of a Markov process. It is measured as follows:12

H =−K
N∑

i=1
pi log2pi

where N is the total number of states and pi the probability of state i . The

constant K merely amounts to a choice of a unit measure. Now what exactly is

11More information on this subject can be found in [LS06].
12log2 is logarithm to base 2.

621

measured by the entropy H of a system? For Shannon, his measure of entropy

was inspired by the following questions ([Sha48], p. 10):

Can we define a quantity which will measure, in some sense, how

much information is “produced” by such a process, or better, at

what rate information is produced? (...) Can we find a measure of

how much “choice” is involved in the selection of the events or of

how uncertain we are of the outcome?

Indeed, H in a certain way is a measure of how unpredictable a certain infor-

mation source is. As was said, in using Markov processes one measures how

probable a certain state is if preceded by a combination of length n of a certain

number of states. Now if we have a system with two states 0 and 1, for which the

probabilities that the system is in state 0 or 1 are both equal to 0.5 whatever the

length n of the combinations preceding the state one is taking into considera-

tion, this implies that both states are uncorrelated. This means that whatever

information one already has about the past behaviour of the system, this will

not give us any information about what will happen next. Applying the formula

to calculate H to this example, the entropy will indeed be maximal and equal to

1. If on the other hand the probability that the system is in state 1 is 0.9 and the

probability that the system will go to state 0 is 0.1, H will be significantly lower,

H ≈ 0.4688. In general, given a system with N states, the maximal entropy, each

state being equally probable, is always equal to N - 1.

Since H can be understood as a measure for how unpredictable a certain system

is, given what one already knows about the system, it is interesting to measure

H for each of the 52 tag systems. If H is close to its maximum value, this serves

as a further indication of the intractability of these tag systems.

Besides measuring the entropy, Markov processes can also help us to add fur-

ther strength to the results from previous experiments. In the experiment we

will look at the probabilities for all possible combinations of n consecutive let-

ters, n ranging from 2 to 10. How is this related to Markov processes? If n = 2,

measuring the probability of all 22 combinations gives us the transition prob-

abilities of rsp. 1 followed by 0, 1 followed by 1, 0 followed by 1 and 0 followed

by 0. The same goes for any n. If e.g. n = 4, measuring the probabilities of

622 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

all 24 combinations of 1 and 0, gives us the probability that 000 will be fol-

lowed by 1, 001 will be followed by 1,...Measuring these probabilities does give

us more information about the actual distribution about the relevant letters in

the tag systems as compared to experiment 4, because here we do not look at

the probability that a relevant letter is equal to 1, but rather at the probability

that a relevant letter is equal to 1 when e.g. preceded by 10011. This indeed

gives us more information about the way the relevant letters are actually dis-

tributed. Knowing that e.g. for T1 both µ0,N and µ1,N are almost equal to 0.5

does not say anything about the way these 0’s and 1’s are actually ordered in

the strings produced. Take for example the strings 0101010101010101010....and

01000101111011001001. Although for both strings the probabilities for both 0

and 1 are equal to 0.5, the way these 0’s and 1’s are actually distributed in these

strings is very different. By using Markov processes one can get a more exact

idea about these actual distribution. In other words, in looking at tag systems

from the perspective of Markov processes we get a more correct view of how the

letters 0 and 1 are actually ordered by looking at the transition probabilities of

0 and 1 when preceded by all possible combinations of a certain length n.

Set-up of experiment 6.

Contrary to the previous experiment, this one does not start from the initial

conditions classified as Immortals? in the first experiment. Instead it works

with the significant letters of every 10000th string produced by the first ten of

these initial conditions, until the 10000000th. This was done to enhance speed,

the sample space still remaining rather large. Furthermore I chose to work with

every 10000th string produced instead of e.g. the first 10000 in order to get a

general idea of the combinations for each length n allowed by a given tag sys-

tem.

For each length n, n going from 2 to 10, each of these 1000000 strings is an-

alyzed in order to find out what combinations occur and which don’t. This is

done as follows. Given a string S and n, the algorithm scans through S start-

ing from the first letter in S until the letter at position lS −n +1. Starting from

every of these letters, going from the first to the lS − n + 1, we can determine

623

all possible combinations of length n in string S. Given such a combination,

the program checks whether the combination has already been found. For this

purpose we used a very efficient search-and-sort algorithm called red-black bi-

nary search trees. I will not go into the details of how this algorithm exactly

works,13 but is interesting to point out that the average and worst-case insert,

delete, and search time is equal to O(lnn), where n is the number of combina-

tions already found.

Then, if a combination has already been found the number of times this string

has already been found is incremented with one. If not, this new string is added

as a new combination of length n, and its counter is set to 1. In this way on

finds how many different combinations there are of length n, as well as the

probabilities of each of these combinations, necessary to calculate the entropy

H . Given a combination Ci of length n that has been found xi times in the

strings processed, where X = x1 + x2 + ...+ xN is the total number of combina-

tions processed, then:

pi = xi

X
Using these pi we can then calculate the entropy H . Once H is calculated it is

normalized to 1, 1 thus becoming the maximum value for each of the entropies

measured. Indeed, since we are not directly measuring the probabilities of 0 or

1 when preceded by a given combination of length n−1 we are actually consid-

ering the tag system as a Markov source with the number of states equal to 2n

measuring the probability of each of these states. As was said before, the maxi-

mum value of H for a Markov source with n states is equal to n. In this respect,

one can normalize the value of H for such Markov source to 1 by dividing H

through n.

Discussion of the results from experiment 6.

In table 5 the results from this experiment are shown. The column headed Cn

shows the total number of different combinations found of length n for each of

13The interested reader can find lots of information on the internet, including red-black trees

animations, descriptions of how they work and several programs in different languages imple-

menting them. The technique was first invented by Rudolf Bayer in 1972 [Bay72].

624 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

the tag system, the column headed H shows the different entropies H found for

each of the tag systems for each n.

Table 5: Overview of the values for H and Cn

T.S. Cn H

T1 4 0,987928353554315

T1 8 0,981430189675427

T1 16 0,958087445055827

T1 30 0,930016548127735

T1 56 0,899877170636265

T1 98 0,867697928688029

T1 174 0,838488499523347

T1 296 0,812424402112214

T1 508 0,789706696472871

T2 4 0,997974833163837

T2 8 0,973515675359684

T2 16 0,958781095838667

T2 32 0,949096145275092

T2 64 0,941740206053233

T2 128 0,935875614335382

T2 256 0,930822072320171

T2 511 0,926118503040237

T2 1019 0,921825423766702

T3 4 0,991453762492224

T3 8 0,987029093263688

T3 16 0,982502677410114

T3 32 0,973024164388446

T3 64 0,963443869192076

T3 127 0,95393676799249

T3 249 0,944638612654986

T3 483 0,935731855285116

Continued on next page

625

Table 5 – continued from previous page

T.S. Cn H

T3 926 0,927656234792737

T4 4 0,999999772038294

T4 8 0,992900939634788

T4 16 0,988800949970723

T4 32 0,984506167904919

T4 64 0,978542816303551

T4 126 0,972541357085492

T4 247 0,966652672598187

T4 482 0,960720227905257

T4 935 0,955181862768562

T5 4 0,999999385403305

T5 8 0,998313860118975

T5 16 0,995094844208773

T5 32 0,989590208847438

T5 64 0,983514087037008

T5 127 0,976835941423444

T5 251 0,969963747716849

T5 491 0,963268409853753

T5 956 0,956957927514029

T6 4 0,993591347641056

T6 8 0,981557760003899

T6 16 0,963487715408458

T6 32 0,942667672752498

T6 64 0,923586518695249

T6 128 0,907118382868144

T6 256 0,891683455198207

T6 512 0,878126587734554

T6 1019 0,8655892532853

T7 4 0,999602636903081

Continued on next page

626 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

Table 5 – continued from previous page

T.S. Cn H

T7 8 0,963648956003519

T7 16 0,933191069675924

T7 30 0,901586673110578

T7 56 0,875172917444588

T7 98 0,851027814819229

T7 173 0,831013380386521

T7 294 0,812745913244989

T7 496 0,797007853764857

T8 4 0,918292702284119

T8 8 0,905915036178863

T8 15 0,897421205528586

T8 29 0,889570302999553

T8 55 0,881854188969423

T8 103 0,872518213086307

T8 195 0,862535478321108

T8 365 0,852900274238313

T8 674 0,843112050717451

T9 4 0,996242923196066

T9 8 0,99246142517034

T9 16 0,988150903075221

T9 32 0,983171381838785

T9 64 0,97819478309671

T9 128 0,973318093316027

T9 256 0,968440630456758

T9 511 0,963659902303373

T9 1020 0,958986428247648

T10 4 0,992897133035027

T10 8 0,960488646988515

T10 16 0,940043450319765

T10 32 0,923469042425438

Continued on next page

627

Table 5 – continued from previous page

T.S. Cn H

T10 64 0,910683172946748

T10 127 0,89963939302559

T10 252 0,889085283298753

T10 494 0,879376379980914

T10 967 0,870584895885724

T11 4 0,999999834551035

T11 8 0,994057793374206

T11 16 0,984844923511867

T11 32 0,969882969472102

T11 62 0,954575669621191

T11 120 0,939074986206634

T11 228 0,924873750666105

T11 434 0,911855101427949

T11 818 0,899969884935122

T12 4 0,993622835384448

T12 8 0,981594952215596

T12 16 0,963512674246496

T12 32 0,942702732773767

T12 64 0,923638106196113

T12 128 0,907172673332963

T12 256 0,891725284725174

T12 511 0,878151431135497

T12 1017 0,865600994583697

T13 4 0,998690033455919

T13 8 0,996487903644725

T13 16 0,982119440350869

T13 32 0,967326304926026

T13 63 0,948060015072296

T13 124 0,930950655704051

T13 241 0,914135044118279

Continued on next page

628 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

Table 5 – continued from previous page

T.S. Cn H

T13 468 0,899656297627606

T13 898 0,886076514155045

T14 4 0,999999853383587

T14 8 0,999999674104788

T14 16 0,999333739391107

T14 32 0,997501667734414

T14 64 0,994485923240983

T14 128 0,990549300343404

T14 256 0,986478188470991

T14 510 0,98192537540557

T14 1016 0,9774106104825

T15 4 0,995586826921479

T15 8 0,971840898795852

T15 16 0,957003229924972

T15 32 0,939545527436431

T15 64 0,92457865834439

T15 126 0,905019388101923

T15 244 0,887795694923577

T15 467 0,872638403205517

T15 887 0,859201894222116

T16 4 0,95913455556819

T16 8 0,940038873541977

T16 16 0,921319645277734

T16 30 0,904321242942122

T16 57 0,887417702000667

T16 105 0,872236156389779

T16 192 0,859207435158048

T16 350 0,847590513700209

T16 635 0,837388511667327

Continued on next page

629

Table 5 – continued from previous page

T.S. Cn H

T17 4 0,999997459424533

T17 8 0,987312537962706

T17 16 0,975103823316272

T17 32 0,963991963210149

T17 64 0,953131940322969

T17 128 0,942250966297885

T17 255 0,932054767209251

T17 506 0,922562601235123

T17 1002 0,913611655655647

T18 4 0,87662465240909

T18 7 0,859790206840416

T18 13 0,843778922710186

T18 23 0,829518144020049

T18 40 0,815122262864398

T18 68 0,801879378750493

T18 118 0,79075625140911

T18 199 0,780867570170298

T18 332 0,771706056168381

T19 4 0,917835616933164

T19 8 0,905481701855163

T19 15 0,897008744371083

T19 29 0,889208529966218

T19 55 0,881529211062088

T19 103 0,872229863710776

T19 195 0,862282730625318

T19 365 0,852685036855781

T19 674 0,842911184539232

T20 4 0,999999585320101

T20 8 0,964309967129064

T20 15 0,934455098865268

Continued on next page

630 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

Table 5 – continued from previous page

T.S. Cn H

T20 28 0,909920749075861

T20 50 0,888450166684052

T20 91 0,870769528095471

T20 161 0,855478307463583

T20 285 0,841926286777364

T20 496 0,829755209416617

T21 4 0,992609504659764

T21 8 0,988613534111605

T21 16 0,98508976653372

T21 32 0,982020568016604

T21 64 0,978896113337104

T21 128 0,976309091596172

T21 256 0,973153696130722

T21 511 0,969873169558847

T21 1017 0,966366626689781

T22 4 0,995028043069428

T22 8 0,967511445381153

T22 16 0,947169507238609

T22 32 0,930235603300027

T22 64 0,916981960478203

T22 127 0,905718704196486

T22 252 0,895612570714664

T22 495 0,886316752405463

T22 974 0,877714545491835

T23 4 0,912558775479252

T23 8 0,909695475588475

T23 15 0,901891785279827

T23 28 0,886677848940112

T23 50 0,874536684375989

T23 89 0,862852686044491

Continued on next page

631

Table 5 – continued from previous page

T.S. Cn H

T23 156 0,852168945881725

T23 270 0,841226710776098

T23 458 0,830897552447702

T24 4 0,999861569470289

T24 8 0,982077509351244

T24 16 0,970533409940886

T24 32 0,955752984899994

T24 63 0,942940923459171

T24 124 0,930821249855123

T24 240 0,917818135249777

T24 459 0,904749265663955

T24 864 0,891663402865024

T25 4 0,95905018826618

T25 8 0,930470725011647

T25 15 0,90712981910863

T25 28 0,888127107786232

T25 51 0,8725423880677

T25 92 0,860147789761333

T25 165 0,849783509253144

T25 296 0,840547449660665

T25 523 0,831536494637734

T26 4 0,999999679044943

T26 8 0,998731082382393

T26 16 0,996885688362023

T26 32 0,991741382305176

T26 62 0,982469770974469

T26 120 0,973816259585423

T26 228 0,964533431755394

T26 434 0,956372584604651

Continued on next page

632 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

Table 5 – continued from previous page

T.S. Cn H

T26 818 0,948510335458434

T27 4 0,998334843239256

T27 8 0,969038273054934

T27 16 0,950401408576968

T27 32 0,935406712643919

T27 63 0,921552549859523

T27 122 0,909275556961472

T27 234 0,897900138832837

T27 447 0,887432817891648

T27 849 0,877783576261407

T28 4 0,959173195787488

T28 8 0,940173319926858

T28 16 0,921433106208743

T28 30 0,904381586562028

T28 57 0,887489146960177

T28 105 0,872307562528013

T28 192 0,859279704647051

T28 349 0,847667441087415

T28 633 0,837467806910853

T29 4 0,993610810092871

T29 8 0,958864583192788

T29 16 0,937674973940885

T29 32 0,919831111538996

T29 64 0,9050637285618

T29 127 0,891998124636528

T29 252 0,880844496357431

T29 497 0,871075948354865

T29 977 0,862145319650549

T30 4 0,959130607099188

Continued on next page

633

Table 5 – continued from previous page

T.S. Cn H

T30 8 0,945589286060826

T30 16 0,931422077180189

T30 32 0,920228301605105

T30 63 0,910802825309898

T30 122 0,901652850864017

T30 231 0,891678135121636

T30 430 0,881668665906777

T30 780 0,871151705853427

T31 4 0,992614578853106

T31 8 0,981079829092837

T31 16 0,951666321773956

T31 29 0,918557455852599

T31 51 0,886594180809282

T31 89 0,858049881566155

T31 154 0,832475129013359

T31 265 0,810523777821311

T31 455 0,791383481448436

T32 4 0,995520467773172

T32 8 0,980975608826621

T32 16 0,973431971835682

T32 32 0,968299138543747

T32 64 0,963985263704641

T32 128 0,960626280580779

T32 256 0,957759857098876

T32 512 0,955169764208116

T32 1024 0,952732733178914

T33 4 0,99263806639173

T33 8 0,984097534242795

T33 16 0,968595296727312

T33 31 0,950235886827746

Continued on next page

634 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

Table 5 – continued from previous page

T.S. Cn H

T33 59 0,935036381578578

T33 110 0,920853780654117

T33 199 0,907142753570386

T33 357 0,894741817259847

T33 629 0,883656807454477

T34 4 0,903202581216562

T34 7 0,8841715339316

T34 13 0,832329589187641

T34 23 0,794487463566085

T34 37 0,766091476235182

T34 65 0,740097379488945

T34 106 0,718348234590988

T34 162 0,700734799347346

T34 270 0,685469994437638

T35 4 0,984327625396006

T35 8 0,981536734922642

T35 16 0,977393826718627

T35 32 0,972851287308702

T35 63 0,967700109040374

T35 123 0,962537187686786

T35 239 0,950044910910541

T35 457 0,938253337512037

T35 870 0,927008358615163

T36 4 0,998402947232386

T36 8 0,996653362225427

T36 16 0,992103576587484

T36 32 0,986852328217664

T36 64 0,980726970202156

T36 127 0,974319556707172

T36 252 0,967971708645817

Continued on next page

635

Table 5 – continued from previous page

T.S. Cn H

T36 497 0,961484163225245

T36 980 0,955225200689269

T37 4 0,990863707071144

T37 8 0,986965536205173

T37 16 0,984105916706379

T37 32 0,979458653026122

T37 64 0,974463048353324

T37 128 0,96889536827068

T37 256 0,963435643869767

T37 508 0,95746956327611

T37 1007 0,951775696333637

T38 4 0,912597137509447

T38 8 0,909103142429943

T38 15 0,898869627595231

T38 29 0,89004207511522

T38 55 0,881843494318672

T38 101 0,873152463849856

T38 189 0,865408760673346

T38 344 0,857897121453458

T38 618 0,850142887390297

T39 4 0,967971522785754

T39 8 0,964441845402299

T39 16 0,961996304861096

T39 31 0,955765182569274

T39 57 0,931879003721963

T39 98 0,90628838437281

T39 165 0,883902472134738

T39 275 0,864745248086901

T39 439 0,84796010848853

Continued on next page

636 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

Table 5 – continued from previous page

T.S. Cn H

T40 4 0,876290626690919

T40 7 0,859439098814319

T40 13 0,843504844480214

T40 23 0,829313858043346

T40 40 0,8149678608291

T40 68 0,801755246646372

T40 118 0,790667297984482

T40 199 0,780811307140945

T40 332 0,771677877429403

T41 4 0,999999695679684

T41 8 0,998500476196571

T41 16 0,996689283864917

T41 32 0,994176927729044

T41 64 0,990523985142974

T41 128 0,986176656727466

T41 256 0,981097064914038

T41 512 0,975773198987587

T41 1024 0,970383519632123

T42 4 0,999999801139809

T42 8 0,992762730050645

T42 16 0,988600785787819

T42 32 0,984290261418228

T42 64 0,978388494705557

T42 126 0,972410600996219

T42 247 0,966530798636443

T42 482 0,960612845242362

T42 935 0,955097361169937

T43 4 0,959058791197194

T43 7 0,898413651380682

T43 12 0,843204978417221

Continued on next page

637

Table 5 – continued from previous page

T.S. Cn H

T43 20 0,804374161629095

T43 33 0,777214467688794

T43 54 0,755473070985423

T43 88 0,737476039805785

T43 143 0,722083181098091

T43 231 0,709162334664677

T44 4 0,992681495685027

T44 8 0,986837450765276

T44 16 0,967086108017654

T44 30 0,939587123224251

T44 56 0,906188114960693

T44 98 0,873544628753868

T44 171 0,84487284571956

T44 285 0,819867591045862

T44 471 0,798543702934792

T45 4 0,99171242962545

T45 8 0,955755576357214

T45 16 0,928982217848665

T45 32 0,906979634446539

T45 63 0,890236387742149

T45 123 0,875241279187015

T45 236 0,861755686306942

T45 453 0,849749743906566

T45 855 0,838907953786991

T46 4 0,999999903219858

T46 8 0,997274986686665

T46 16 0,99159786331985

T46 32 0,982623960888116

T46 64 0,973306729215822

T46 128 0,964871109154055

Continued on next page

638 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

Table 5 – continued from previous page

T.S. Cn H

T46 255 0,9570642959172

T46 505 0,949188327649406

T46 995 0,941646643167942

T47 4 0,981115366723891

T47 8 0,959836325867988

T47 16 0,932954787210515

T47 32 0,912776992920237

T47 64 0,897744591925159

T47 128 0,883128665030557

T47 256 0,869571191653916

T47 512 0,856403117458891

T47 1022 0,844647896273301

T48 4 0,99697019354212

T48 8 0,967783324347551

T48 16 0,950006515987496

T48 32 0,935915037764061

T48 64 0,923981001943398

T48 126 0,913878449120504

T48 246 0,905122881739716

T48 478 0,897626934563903

T48 916 0,89090558980129

T49 4 0,916370224559969

T49 7 0,896226749168512

T49 13 0,876371914561514

T49 23 0,858827034986847

T49 37 0,841971344391714

T49 65 0,826338596583575

T49 108 0,811624060911139

T49 166 0,797664004074768

Continued on next page

639

Table 5 – continued from previous page

T.S. Cn H

T49 279 0,785042052074679

T50 4 0,999999556823011

T50 8 0,986425325206591

T50 15 0,959781159048677

T50 27 0,93459622647331

T50 49 0,911502916162561

T50 88 0,891882147753888

T50 158 0,876110763828353

T50 279 0,862472185401844

T50 486 0,850478313348463

T51 4 0,991112115683411

T51 8 0,985235781133565

T51 16 0,968134969865202

T51 32 0,951103007449003

T51 62 0,936746074006103

T51 118 0,92272469488699

T51 221 0,909911400093967

T51 410 0,898141530448617

T51 754 0,887447334350475

T52 4 0,992483544297284

T52 8 0,978213930211043

T52 16 0,964564176893529

T52 31 0,95020365145023

T52 59 0,935661341441236

T52 110 0,920421368196743

T52 201 0,906573698936217

T52 363 0,89373470890364

T52 654 0,882151716595262

640 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

There are several tag systems for which for each length n, the total number

of different combinations is close or even equal to 2n , resulting in an entropy

very close to the maximum value 1. This adds further strength to the results

from experiment 5. Indeed, one of the typical features of binary strings that

are statistically random is that every combination of a given length n has equal

probability 1/n. As is clear from the results this is not the case, given the fact

that none of the entropies is equal to 1. Since most of the entropies found how-

ever are very close to 1, it is not surprising that many of the tag systems passed

for some of the tests from Diehard. The fact that most of the entropies of the

tag systems considered are close to 1 again indicates how intractable these tag

systems actually are.

There are some tag systems for which H decreases considerably with increas-

ing n. For most of the tag systems there is a very good explanation for this to

happen: for some of the tag systems µ0 6=µ1, thus lowering the number of pos-

sible different combinations of length n. For T1 this is not the case, while H

significantly decreases with n, H = 0,789706696472871. This result only affirms

that T1 cannot pass for any statistical test for randomness. In general however

it is clear that for most of the tag systems considered H is close to its maximum

value.

The fact that for a given n the results indicate that for many of the tag sys-

tems most of the combinations of length n occur at a given time during the tag

process, while the number of times each of these combinations occurs must

be more or less the same for each of the combinations, given the value of H,

further serves as an explanation for the fact that these tag systems can run for

a very long time when started with certain initial conditions. Indeed, this re-

sult implies that the possible combinations of given length n grow exponen-

tially fast. As was said before, one of the preconditions for a tag system not to

become periodic is that when it produces a string of a given length, all possi-

ble combinations of significant letters in strings of that length should not have

been exhausted yet. If all the combinations of a given length, allowed by a tag

system, would have been produced already, the tag system will become peri-

odic the next time it produces a combination of that length. Now if the growth

of combinations as a function of n would be very slow, or even constant, the

641

system in a way has less space to produce strings of a certain length. Indeed,

the fewer the number of possible combinations of a given length, the higher the

chance that the system can become periodic. Of course, this is a purely theo-

retical argument, and slower growth does not necessary imply more periodicity.

As we already know, there are other factors that determine the behaviour of a

tag system. We thus have to wait for the results. If however, a clear difference

in the growth factors between several tag systems agrees with the differences

found in the number of Immortals?, this growth could serve as another kind of

measure of the intractability of tag systems.

642 C. DETAILED DESCRIPTION OF FOUR EXPERIMENTS ON TAG SYSTEMS

Bibliography

[AA93] IRIS LEE ANSHEL and MICHAEL ANSHEL (1993), From the Post-

Markov Theorem through Decision Problems to Public-Key Cryptog-

raphy, The American Mathematical Monthly, 9, 835–844.

[AB71] STAL AANDERAA and DAG BELSNES (1971), Decision problems for tag

systems, The Journal of Symbolic Logic, 36 (2), 229–239.

[AB06] BENEDIKT LÖWE JOHN V. TUCKER ARNOLD BECKMANN, UL-

RICH BERGER (ed.) (2006), Logical Approaches to Computational

Barriers. Second Conference on Computability in Europe, CIE2006,

Swansea, UK, Lecture Notes in Computer Science, vol. 3988, Springer,

Berlin.

[AH28] WILHELM ACKERMAN and DAVID HILBERT (1928), Grundzüge der

theoretischen Logik, Springer, Berlin.

[Alt72] FRANZ L. ALT (1972), Archaeology of Computers – Reminiscences,

1945–1947, Communications of the ACM, 15 (7), 693–694.

[AS96] HAROLD ABELSON and GERALD J. SUSSMAN (1996), Structure and In-

terpretation of Computer Programs, MIT Press, Cambridge, Massa-

chusetts, can be downloaded from: http://mitpress.mit.edu/sicp/.

[Asp84a] WILLIAM ASPRAY (1984), Transcript of an interview with

Alonzo Church by William Aspray on 17 May 1984 at the

University of California, Los Angeles. (The Princeton Math-

ematics Community, transcript number 5. Available at:

643

644 BIBLIOGRAPHY

http://libweb.princeton.edu/libraries/firestone/rbsc/finding

aids/mathoral/ pmc05.htm).

[Asp84b] ——— (1984), Transcript of an interview with Stephen

C. Kleene and J. Barkley Rosser by William Aspray on 26

April 1984 in Madison, Wisconsin. (The Princeton Math-

ematics Community, transcript number 23. Available at:

http://libweb.princeton.edu/libraries/firestone/rbsc/finding

aids/mathoral/ pmc23.htm).

[Bac80] JOHN W. BACKUS (1980), Programming in America in the 1950s –

Some personal Impressions, in: [HMR80], 125–135.

[Bac81] ——— (1981), The history of Fortran I, II and III. Transcript of dis-

cussion, in: [Wex81], 25–73.

[Bar97] HENK BARENDREGT (1997), The Impact of the Lambda-Caclulus in

Logic and Computer Science, The Bulletin of Symbolic Logic, 3 (2),

181–215.

[Bau80] FRIEDRICH L. BAUER (1980), Between Zuse and Rutishauer, in:

[HMR80], 505–524.

[Bay72] RUDOLF BAYER (1972), Binary B-Trees: Data Structure and Mainte-

nance Algorithms, Acta Informatica, 1, 290–306.

[BC01] DAVID H. BAILEY and RICHARD E. CRANDALL (2001), On the ran-

dom character of Fundamental Constant Expansions, Experimental

Mathematics, 10 (2), 175–190.

[BC05] MARK BRAVERMAN and STEPHEN COOK (2005), Computing over the

Reals: Foundations for Scientific Computing, Technical report avail-

able at: http://arxiv.org/abs/cs.CC/0509042.

[BDK05] VINCENT D. BLONDEL, JEAN-CHARLES DELVENNE and PETR KURKA

(2005), Computational Universality in Symbolic Dynamical Systems,

in: MAURICE MARGENSTERN (ed.), Machines, Computations, and

BIBLIOGRAPHY 645

Universality: 4th International Conference, MCU 2004, Saint Peters-

burg, Russia, September 21-24, 2004, Revised Selected Papers, Lecture

Notes in Computer SCience, vol. 3354, Springer Verlag, Berlin, 233–

244.

[Beh22] HEINRICH BEHMANN (1922), Beiträge zur Algebra der Logik, ins-

besondere zum Entscheidungsproblem, Mathematische Annalen,

86, 163–229.

[BF97] CESARE BURALI-FORTI (1897), Una Questione sui numeri transfiniti,

Rendiconti del Circolo matematico di Palermo, 11, 154–164, trans-

lated in English in [vH67], 104–111.

[Boo66] WILIAM W. BOONE (1966), Word problems and recursively enumer-

able degrees of unsolvability. A first paper on Thue systems, Annals of

Mathematics, 83 (3), 520–571.

[Bra83] ALLEN H. BRADY (1983), The determination of the value of Rado’s

noncomputable function Σ for four-state Turing machines, Mathe-

matics of Computation, 40 (162), 647–665.

[Bra88] ——— (1988), The Busy Beaver Problem and the Meaning of Life, in:

[Her88], 259–277.

[BS00] JOHN T. BALDWIN and SAHARON SHELAH (2000), On the classifica-

bility of Cellular Automata, Theoretical Computer Science, 230 (1),

117–129.

[BSS89] LEONORE BLUM, MICHAEL SHUB and STEVE SMALE (1989), On a

Theory of Computation and Complexity over the Real Numbers; NP

Completeness, Recursive Functions and Universal Machines, Bul-

letin of the American Mathematical Society (New Series), 21, 1–46.

[Bul05] M. BULLYNCK (2005), Decimal Periods and their Tables: A Research

Topic (1765-1801), (forthcoming).

646 BIBLIOGRAPHY

[Bul07] MAARTEN BULLYNCK (2007), Eniacisms. Computations on

the ENIAC: Some set-ups with various notes, available at:

http://www.kuttaka.org/.

[Bur66] ARTHUR W. BURKS (1966), Preface, in [vN66], 1–28.

[Bur86] ——— (1986), Introduction to von Neumann’s work on Natural and

Artificial Automata, in: [vN86], 363–390.

[BW72] FRIEDRICH L. BAUER and HANS WÖSSNER (1972), The “Plankalkül”

of Konrad Zuse: A forerunner of Today’s programming languages,

Communications of the ACM, 15 (7), 678–685.

[Can74] GEORG CANTOR (1874), Über eine Eigenschaft des Inbegriffes aller

reellen algebraischen Zahlen, Crelles Journal für Mathematik, 77,

258–262, also published in [Can32], 115–118.

[Can91] ——— (1891), Über eine elementare Frage der Mannigfaltigkeit-

slehre, Jahresbericht der Deutschen Mathematiker Vereinigung, 1,

75–78, also published in [Can32], 278–281.

[Can32] ——— (1932), Gesammelte Abhandlungen mathematischen und

philosophischen Inhalts, Springer, Berlin.

[CD77] BRIAN E. CARPENTER and ROBERT W. DORAN (1977), The other Tur-

ing machine, The Computer Journal, 20 (3), 269–279.

[CD86] BRIAN E. CARPENTER and ROBERT W. DORAN (eds.) (1986), A.M. Tur-

ing’s ACE Report of 1946 and Other papers, MIT Press, Cambridge,

Massachusettes.

[Cha87] GREGORY CHAITIN (1987), Algorithmic Information Theory, Cam-

bridge University Press, Cambridge.

[Chu24] ALONZO CHURCH (1924), Uniqueness of the Lorentz transformation,

American Mathematical Monthly, 31, 376–382.

BIBLIOGRAPHY 647

[Chu25] ——— (1925), On irredundant sets of postulates, Transactions of the

American Mathematical Society, 27, 318–328.

[Chu27] ——— (1927), Alternatives to Zermelo’s assumption, Transactions of

the American Mathematical Society, 29, 178–208.

[Chu28] ——— (1928), On the law of the excluded middle, Bulletin of the

American Mathematical Society, 34, 178–208.

[Chu32] ——— (1932), A set of postulates for the foundation of logic, Annals

of mathematics, 33 (2), 346–366, 2nd series.

[Chu33] ——— (1933), A set of postulates for the foundation of logic (second

paper), Annals of mathematics, 34 (4), 839–864, 2nd series.

[Chu35] ——— (1935), An unsolvable problem of elementary number theory,

Bulletin of the American Mathematical Society, 41, 332–333, ab-

stract of a talk given on 19 April 1935, to the American Mathematical

Society.

[Chu36a] ——— (1936), A Bibliography of Symbolic Logic, The Journal of Sym-

bolic Logic, 1 (4), 121–219.

[Chu36b] ——— (1936), Editorial letter to the review section, The Journal of

symbolic logic, 1 (1), 42.

[Chu36c] ——— (1936), An unsolvable problem of elementary number theory,

American Journal of Mathematics, (58), 345–363, also published in

[Dav65b], 108–109.

[Chu36d] ——— (1936), A note on the Entscheidungsproblem, The journal of

symbolic logic, 1 (1), 40–41.

[Chu36e] ——— (1936), Correction to A note on the Entscheidungsproblem,

The journal of symbolic logic, 1 (3), 101–102.

[Chu37a] ——— (1937), Review of [Pos36], Journal of Symbolic Logic, 2 (1), 43.

648 BIBLIOGRAPHY

[Chu37b] ——— (1937), Review of [Tur37], Journal of Symbolic Logic, 2 (1),

42–43.

[Chu38] ——— (1938), The constructive second number class, Bulletin of the

American Mathematical Society, 44, 224–232.

[Chu41] ——— (1941), The calculi of lambda-conversion, no. 6 in Annals of

Mathematics Studies, Princeton university Press.

[Cli48] RICHARD F. CLIPPINGER (1948), A Logical Coding System

Applied to the ENIAC (Electronic Numerical Integrator and

Computer), ballistic Research Laboratories Report Nr. 673,

Aberdeen Proving Ground, 29 Sept. 1948. Available at:

http://ftp.arl.army.mil/ mike/comphist/48eniac-coding/.

[CM58] NOAM CHOMSKY and GEORGE A. MILLER (1958), Finite state lan-

guages, Information and control, 1 (2), 91–112.

[CM63] JOHN COCKE and MARVIN MINSKY (1963), Universality of Tag sys-

tems with P = 2, artificial Intelligence Project – RLE and MIT Com-

putation Center, memo 52.

[Con72] JOHN H. CONWAY (1972), Unpredictable Iterations, in: Proceedings

of the 1972 Number Theory conference, University of Colorado, Boul-

der, 49–52.

[Con87] ——— (1987), FRACTRAN- A Simple Universal Computing Lan-

guage for Arithmetic, in: T.M. COPER and B. GOPINATH (eds.), Open

Problems in Communication and Computation, Springer Verlag,

New York, 3–27.

[Coo] STEPHEN COOK, The P versus NP problem,

http://www.claymath.org/millennium, clay Mathematics Insti-

tute. Millennium prize problems.

BIBLIOGRAPHY 649

[Coo71] ——— (1971), The complexity of theorem-proving procedures, Pro-

ceedings of the third annual ACM symposium on Theory of com-

puting, 151–158.

[Coo04] MATTHEW COOK (2004), Universality in Elementary Cellular Au-

tomata, Complex Systems, 15 (1), 1–40.

[Cop98] JACK B. COPELAND (1998), Turing’s O-machines, Penrose, Searle, and

the Brain, Analysis, 58, 128–138.

[Cot03] PAOLO COTOGNO (2003), Hypercomputation and the Physical

Church-Turing Thesis, British Journal for the Philosophy of Science,

54, 181–223.

[CP99] JACK B. COPELAND and DIANE PROUDFOOT (1999), Alan M. Turing’s

forgotten ideas in Computer Science, Scientific American, 253 (4),

98–103.

[Cra78] RICHARD E. CRANDALL (1978), On the “3x + 1” problem, Mathemat-

ics of computation, 32 (144), 1281–1292.

[Cur30] HASKEL B. CURRY (1930), Grundlagen der kombinatorischen Logik (I

and II), American Journal of Mathematics, 52 (3–4), 509–536, 789–

834.

[Cur58] HASKELL B. CURRY (1958), Calculuses and formal systems, Dialec-

tica, 12, 249–273.

[Dav56] MARTIN DAVIS (1956), A note on universal Turing machines, in:

[MS56a], 167–177.

[Dav57] ——— (1957), The definition of Universal Turing machine, Proceed-

ings of the American Mathematical Society, 8 (6), 1125–1126.

[Dav58] ——— (1958), Computability and Unsolvability, McGraw-Hill, New

York.

[Dav65a] ——— (1965), Introduction to Post’s [Pos65], in: [Dav65b], 338–339.

650 BIBLIOGRAPHY

[Dav65b] ——— (1965), The Undecidable. Basic papers on undecidable propo-

sitions, unsolvable problems and computable functions, Raven

Press, New York, corrected republication (2004), Dover publica-

tions, New York.

[Dav82] ——— (1982), Why Gödel didn’t have Church’s thesis, Information

and Control, 54, 3–24.

[Dav87] ——— (1987), Mathematical Logic and the Origin of Modern Com-

puters, reprinted in [Her88], 149–174.

[Dav88] ——— (1988), Influences of Mathematical Logic on Computer Sci-

ence, in: [Her88], 315 -326.

[Dav89] ——— (1989), Emil post’s contributions to computer science, in: Pro-

ceedings of the Fourth Annual Symposium on Logic in computer sci-

ence, Pacific Grove, California., 134–137.

[Dav90] ——— (1990), Is mathematical insight algorithmic?, Behavioral and

Brain Sciences, 13 (4), 659–660.

[Dav93] ——— (1993), How subtle is Gödel’s theorem? More on Roger Pen-

rose, Behavioral and Brain Sciences, 16, 611–612.

[Dav94] ——— (1994), Emil L. Post. His life and work, in: [Pos94], xi–xviii.

[Dav95] ——— (1995), Logic in the twenties, The Bulletin of Symbolic Logic,

1 (3), 273–278.

[Dav01a] ——— (2001), The early history of automated deduction, in: ALAN

ROBINSON and ANDREI VORONKOV (eds.), Handbook of Automated

Reasoning, Elsevier, Amsterdam, 3–16.

[Dav01b] ——— (2001), Engines of Logic: Mathematicians and the Origin of

the Computer, W.W. Norton and Company, New York, published in

hardcover as “The Universal Computer. The Road from Leibniz to

Turing”.

BIBLIOGRAPHY 651

[Dav04] ——— (2004), The myth of hypercomputation, in: [Teu04], 195–211.

[Dav05] ——— (2005), What did Gödel believe and when did he believe it?,

The Bulletin of Symbolic Logic, 11 (2), 194–206.

[Dav06a] ——— (2006), The Church-Turing Thesis: Consensus and Opposi-

tion, in: [AB06], 125–132.

[Dav06b] ——— (2006), Why there is no such discipline as hypercomputation,

Applied Mathematics and Computation, 178, 4–7.

[Daw97] JOHN DAWSON (1997), Logical Dilemmas: The Life and Work of Kurt

Gödel, AK Peters, Wellesley.

[dCD90] NEWTON C.A. DA COSTA and FRANCISCO A. DORIA (1990), Unde-

cidability and Incompleteness in Classical Mechanics, International

Journal of Theoretical Physics, 30 (8), 1041–1073.

[Ded32] RICHARD DEDEKIND (1930–32), Gesammelte Mathematische Werke,

vol. I-III, Vieweg, Braunschweig.

[Ded72] ——— (1872), Stetigkeiten und Irrationale Zahlen, Vieweg, Braun-

schweig, also published as [Ded32], 315–334.

[Ded88] ——— (1888), Was sind und was sollen die Zahlen, Vieweg, Braun-

schweig, also published as [Ded32], 335–391.

[Deh11] MAX DEHN (1911), Über unendliche diskontinuierliche Gruppen,

Mathematische Annalen, 71, 116–144.

[Des47] RENÉ DESCARTES (1647), Méditations Métaphysiques, translated

from Latin text (1641) by duc de Luynes (J.M. Beyssade (ed.), Flam-

marion, Paris, 1993).

[Dev89] ROBERT DEVANEY (1989), An Introduction to Chaotic Dynamical Sys-

tems, Addison-Wesley, New York.

[Eck80] JOHN PRESPER ECKERT (1980), The Eniac, in: [HMR80], 525–540.

652 BIBLIOGRAPHY

[Eck87] ROGER ECKHARDT (1987), Stan Ulam, John von Neumann and the

Monte Carlo Method, Los Alamos Science (Special Issue, Stanislaw

Ulam 1909-1984), 15, 131–137.

[EGW04] EUGENE EBERBACH, DINA GOLDIN and PETER WEGNER (2004), Tur-

ing’s ideas and models of computation, in: [Teu04], 159–194.

[ELdlL92] DAVID EPSTEIN, SILVIO LEVY and RAFAEL DE LA LAVE

(1992), Letter from the editor, Experimental Mathe-

matics, 1 (1), 1–3, statement of the Philosophy of

the journal “Experimental Mathematics”, available at:

http://www.math.ethz.ch/EMIS/journals/EM/expmath/philosophy.html.

[End98] HERBERT B. ENDERTON (1998), Alonzo Church and the reviews, Bul-

letin of Symbolic Logic, 4 (2), 172–180.

[End05] ——— (2005), Alonzo Church: Life and work, in: [End05], to appear.

[Eul61] LEONHARD EULER (1761), Specimen de usu observationum in math-

esi pura, Novi Commentarii academiae scientiarum Petropolitanae,

6, 185–230, opera Omnia, Series 1, vol. 2, 459–492.

[Fef88] SOLOMON FEFERMAN (1988), Turing in the land of O(z), in: [Her88],

113–145.

[Fef95] ——— (1995), Penrose’s Gödelian Argment, Psyche, 2 (7), 21–32,

http://psyche.cs.monash.au/.

[FH03] LANCE FORTNOW and STEVE HOMER (2003), A short History of Com-

putational Complexity, in: JOHN DAWSON DIRK VAN DALEN and

AKI KANAMORI (eds.), The History of Mathematical Logic, North-

Holland, Amsterdam.

[Fox63] JEREMY FOX (ed.) (1963), Mathematical Theory of Automata, Mi-

crowave Research Institute Symposia Series, vol. XII, Polytechnic

Press, Brooklyn, NY.

BIBLIOGRAPHY 653

[Fre79] GOTTLOB FREGE (1879), Begriffschrift, eine der arithmetischen

nachgebildete Formelsprache des reinen Denkens, L.Nebert, Halle,

translated in English in [vH67], 5–82.

[Fri57] RICHARD M. FRIEDBERG (1957), Two recursively enumerable sets of

incomparable degrees of unsolvability, Proceedings of the National

Academy of Sciences, (43), 236–238.

[Gan80] ROBIN GANDY (1980), Church’s Thesis and Principles for Mechanism,

in: J. BARWISE, H.J. KEISLER and K. KUNEN (eds.), The Kleene Sym-

posium, North-Holland, Amsterdam, 123–148.

[Gan88] ——— (1988), The confluence of ideas in 1936, 55–111, published in

[Her88].

[Gan06] PAUL GANNON (2006), Colossus. Bletchley Park’s greatest secret, At-

lantic Books, London.

[Gau01] CARL FRIEDRICH GAUSS (1801), Disquisitiones Arithmeticae, Fleis-

cher, Leipzig.

[GBvN46] HERMAN H. GOLDSTINE, ARTHUR W. BURKS and JOHN VON NEU-

MANN (1946), Preliminary Discussion of the Logical Design of an

Electronic Computing Instrument, report prepared for U. S. Army

Ord. Dept. under Contract W-36-034-ORD-7481. Also published in

[vN63] and [vN86].

[GG00] IVOR GRATTAN-GUINNESS (2000), The search for mathematical

roots, 1870-1940: Logics, set theories, and the foundations of math-

ematics from Cantor through Russell to Gödel, Princeton University

Press, Princeton.

[Göd30] KURT GÖDEL (1930), Die Vollständigkeit der Axiome des logischen

Funktionenkalküls, Monatshefte für Mathematik and Physik, 37,

349–360, translated in English in [vH67], 582–591.

654 BIBLIOGRAPHY

[Göd31] ——— (1931), Über formal unentscheidbare Sätze der Principia

Mathematica und verwandtrer Systeme I, Monatshefte für Math-

ematik und Physik, (38), 173–198, republished in English in

[Dav65b], 5–38, and in [vH67], 596–616.

[Göd34] ——— (1934), On undecidable propositions of formal mathemati-

cal systems., in: [Dav65b], 41–71, Based on mimeographed notes on

lectures given by Gödel at the Institute for Advanced Study during

the spring of 1934.

[Göd36] ——— (1936), Uber die Länge der Beweise, Ergebnisse eines mathe-

matischen Kolloquium, 7, 23–24, translated in [Dav65b], 82–83.

[Göd46] ——— (1946), Remarks before the Princeton Bicentennial Conference

on Problems in Mathematics, in: [Dav65b], 84–88.

[Göd51] ——— (1951), Some basic theorems on the foundations of mathe-

matics and their implications. Gibbs lecture, in: [Göd95], 304–323.

[Göd56] ——— (1956), Letter to von Neumann, 20 March 1956, in: [Göd03b],

373–377.

[Göd65] ——— (1965), Postscriptum to [Göd34], in: [Dav65b], 71–73.

[Göd95] ——— (1995), Collected Works III. Unpublished Essays and Lectures,

Oxford University Press, Oxford.

[Göd03a] ——— (2003), Collected Works V: Correspondence A–G, Oxford Uni-

versity Press, Oxford.

[Göd03b] ——— (2003), Collected Works V: Correspondence H–Z, Oxford Uni-

versity Press, Oxford.

[Gol72] HERMAN H. GOLDSTINE (1972), The Computer from Pascal to von

Neumann, Princeton University Press, Princeton.

BIBLIOGRAPHY 655

[Goo80] IRVING J. GOOD (1980), Pioneering work on computers at Bletchley,

in: J.HOWLETT and G.-C. ROTA (eds.), A history of Computing in the

Twentieth Century, Academic Press, New York, 31–45.

[Gre82] ULF GRENANDER (1982), Mathematical experiments on the Com-

puter, Pure and Applied Mathematics, Academic Press, New York.

[GvN46] HERMAN H. GOLDSTINE and JOHN VON NEUMANN (1946), On the

principles of large scale computing machines, in: [vN63], 1–32. Also

reprinted in [vN86], 317–348. This paper was never published in a

journal. It contains material given by von Neumann in a given num-

ber of lectures in particular one at a meeting on May 15, 1946 of the

Mathematical Computing Advisory Panel, Office of Research and

Inventions, Navy Department, Washington D.C.

[GvN47] ——— (1947), Planning and Coding of Problems for an Electronic

Computing Instrument. Part I, report prepared for U. S. Army

Ord. Dept. under Contract W-36-034-ORD-7481. Also published in

[vN63].

[GvN48a] ——— (1948), Planning and Coding of Problems for an Electronic

Computing Instrument. Part II, report prepared for U. S. Army

Ord. Dept. under Contract W-36-034-ORD-7481. Also published in

[vN63].

[GvN48b] ——— (1948), Planning and Coding of Problems for an Electronic

Computing Instrument. Part III, report prepared for U. S. Army

Ord. Dept. under Contract W-36-034-ORD-7481. Also published in

[vN63].

[Hay86] BRIAN HAYES (1986), Theory and Practice: Tag-You’re it, Computer

Language, 21–28.

[Hay6a] ——— (1996a), A question of Numbers,

American Scientist, 84, 10–14, available at:

656 BIBLIOGRAPHY

http://www.americanscientist.org/amsci/issues/Comsci96/compsci96-

01.html.

[Her88] ROLF HERKEN (ed.) (1988), The Universal Turing machine, Oxford

University Press, Oxford, republication (1994), Springer Verlag, New

York.

[Hey59] AREND HEYTING (ed.) (1959), Constructivity in Mathematics. Pro-

ceedings of the Colloquium held at Amsterdam, 1957, North-

Holland, Amsterdam.

[Hil99] DAVID HILBERT (1899), Grundlagen der Geometrie, B.G. Teubner,

Leipzig, authorized translation by E.J. Townsend, The foundations

of Geometry, 1950, La Salle, Illinois.

[Hil01] ——— (1901), Mathematische Probleme, Archiv für Mathematik

und Physik, 1, 44–63, 213–237, lecture delivered before the Inter-

national Congress of Mathematicians at Paris in 1900, Republished

in [Hil32], vol. III, 290–297.

[Hil05] ——— (1905), Über die Grundlagen der Logik und der Arithmetik,

in: Verhandlungen des Dritten Internationalen Mathematiker-

Kongresses in Heidelberg von 8. bis 13. August 1904, Teubner, Leipzig,

174–185, translated in English in [vH67], 130–138.

[Hil26] ——— (1926), Über das Unendliche, Mathematische Annalen, 95,

161–190, translated in English in [vH67], 369–392.

[Hil28] ——— (1928), Die Grundlagen der Mathematik, Abhandlungen aus

dem mathematischen Seminar der Hamburgischen Universität, 6,

65–85, translated in English in [vH67], 464–479.

[Hil30] ——— (1930), Naturerkennen und Logik, Naturwissen, 18, 959–963,

republished in [Hil32], vol. III, 278–385.

[Hil32] ——— (1932), Gesammelte Abhandlungen, Springer Verlag, Berlin.

BIBLIOGRAPHY 657

[HMR80] JOHN HOWLETT, NICOLAS METROPOLIS and GIAN-CARLO ROTA

(eds.) (1980), A History of Computing in the Twentieth Century,

Academia Press, New York, proceeding of the International Re-

search Conference on the History of Computing, Los Alamos, 1976.

[Hod83] ANDREW HODGES (1983), Alan M. Turing. The enigma, Burnett

Books, London, republication (1992), 2nd edition, Vintage, London.

[Hod04] ——— (2004), What would Alan M. Turing have done after 1954?, in:

[Teu04], 43–57.

[Hoo65] PHILIP K. HOOPER (1965), Post normal systems: the unrestricted

halting problem, Notices of the American MAthematical Society,

12 (3), 371.

[Hoo6a] ——— (1966a), The undecidability of the Turing machine immortal-

ity problem, The Journal of Symbolic Logic, 31 (2), 219–234.

[Hoo6b] ——— (1966b), The immortality problem for Post normal systems,

Journal of the ACM, 13, 594–599.

[Hop81] CAPTAIN GRACE HOPPER (1981), Keynote address, in: [Wex81], 7–20.

[HR00] ULF HASHAGEN and RAUL ROJAS (eds.) (2000), The first computers –

History and Architectures, History of Computing, MIT Press, Cam-

bridge, MA.

[HS65] JURIS HARTMANIS and RICHARD STEARNS (1965), On the compu-

tational complexity of algorithms, Transactions of the American

Mathematical Society, (117), 285–306.

[Hug73] CHARLES E. HUGHES (1973), Many-One Degrees Associated With

Problems of Tag, The Journal of Symbolic Logic, 38 (1), 1–17.

[Ike58] SHINICHI IKENO (1958), A 6-symbol 10-state universal Turing ma-

chine, Proceedings Institute of Electrical Communications.

658 BIBLIOGRAPHY

[Jon82] JAMES P. JONES (1982), Universal Diophatine Equation, The journal

of symbolic logic, 47 (3), 549–571.

[Kal59] LÁSZLÓ KALMÁR (1959), An argument against the Plausability of

Church’s Thesis, in: [Hey59], 72–79.

[Kan96] AKIHIRO KANAMORI (1996), The mathematical development of Set

Theory. From Cantor to Cohen., The bulletin of symbolic logic, 2 (1),

1–71.

[Kar72] RICHARD KARP (1972), Reducibility among combinatorial problems,

in: RAYMOND E. MILLER and JAMES W. THATCHER (eds.), Complex-

ity of Computer Computations, Plenum Press, New York, 85–103.

[Kas92] FRANTISEK KASCAK (1992), Small Universal One-state Linear Oper-

ator Algorithm, in: L.M. HAVEL and V. KOUBEK (eds.), Mathemati-

cal foundations of Computer Science, Lecture notes in Computer Sci-

ence, vol. 629, 327–335.

[Kle35a] STEPHEN C. KLEENE (1935), A theory of positive integers in formal

logic. Part I, American Journal of Mathematics, 57 (1), 153–173.

[Kle35b] ——— (1935), A theory of positive integers in formal logic. Part II,

American Journal of Mathematics, 57 (2), 219–244.

[Kle36a] ——— (1936), General Recursive Functions of Natural Numbers,

Mathematische Annalen, 112, 727–742.

[Kle36b] ——— (1936), λ-definability and recursiveness, Duke Mathematical

Journal, 2, 240–253.

[Kle38] ——— (1938), On notation for ordinal numbers, Journal of Symbolic

Logic, 3 (4), 150–155.

[Kle43] ——— (1943), Recursive predicates and quantifiers, Transactions of

the American Mathematical Society, 53 (1), 41–73.

BIBLIOGRAPHY 659

[Kle52] ——— (1952), Introduction to Metamathematics, Van Nostrand,

New York, 13th reprint, 2000, Bibliotheca Mathematica, North-

Holland: Amsterdam.

[Kle79] FELIX KLEIN (1979), Development of mathematics in the 19th cen-

tury (English ed.), Mathematical Science Press, Brookline, Massa-

chusetts, translated by M. Ackerman.

[Kle81a] STEPHEN C. KLEENE (1981), Origins of recursive function theory, An-

nals of the history of computing, 3, 52–67.

[Kle81b] ——— (1981), The theory of recursive functions, approaching its cen-

tennial, Bulletin of the american mathematical society, 5, 43–60.

[Kle87] ——— (1987), Reflections on Church’s thesis, Notre Dame Journal of

formal logic, 28 (4), 490–498.

[Knu62] DONALD E. KNUTH (1962), A History of Writing Compilers, Comput-

ers and Automaton, 11 (12), 8–18.

[Kop81] RONA J. KOPP (1981), The Busy Beaver Problem, Mathematical sci-

ences, State University of New York at Binghamton, girl name of

Rona Machlin.

[KP80] DONAL E. KNUTH and LUIS TRABB PARDO (1980), Early development

of programming languages, in: [HMR80], 197–274.

[KR35] STEPHEN C. KLEENE and BARKLEY J. ROSSER (1935), The inconsis-

tency of certain formal logics, The annals of Mathematics, 36 (3),

630–636.

[KR01] MANFRED KUDLEK and YURII ROGOZHIN (2001), New Small Univer-

sal Circular Post Machines, in: Fundamentals of Computation The-

ory : 13th International Symposium, FCT 2001, Riga, Latvia, August

22-24, 2001., Lecture notes in computer science, vol. 2138, 217–226.

660 BIBLIOGRAPHY

[KR02] ——— (2002), A universal Turing machine with 3 states and 9 sym-

bols, in: G. ROZENBERG W. KUICH and A. SALOMAA (eds.), Proc. 5th

International Conference on Developments in Language Theory, Lec-

tore Notes in Computer Science, vol. 2295, 311–318.

[Krä88] SYBILLE KRÄMER (1988), Symbolische Maschinen: Die Idee der For-

malisierung in geschichtlichem Abriss, Wissenschaftliche Buchge-

sellschaft, Darmstadt.

[Lag85] JEFFREY C. LAGARIAS (1985), The 3x + 1 problem and its general-

izations, American Mathematical Monthly, 92 (1), 3–23, available at:

http://www.cecm.sfu.ca/organics/papers/lagarias/paper/html/paper.html.

[Lag95] ——— (1995), The 3x+1 problem and its generalisations, in: J. BOR-

WEIN ET AL. (ed.), Organic Mathematics. Proceedings Workshop

Simon Fraser University, Burnaby, AMS, Providence, available at

http://www.cecm.sfu.ca/organics/papers/lagarias.

[Lag06] ——— (2006), The 3x + 1 problem: An annotated bib-

liography (1963–2000), available at: http://arxiv.org/PS-

cache/math/pdf/0608/0608208.pdf.

[Lam86] J.H. LAMBERT (1786), Theorie der Parallellinien, Leipziger Magazin

für reine und angewandte Mathematik, 1 (2 & 3), 137–164 (2) & 325–

358 (3), hrsg. von Bernouilli, J. und Hindenburg, C.F.

[Leh33] DERRICK H. LEHMER (1933), Numerical Notations and Their Influ-

ence on Mathematics, Mathematics News Letter, 7 (6), 8–12.

[Leh51] ——— (1951), Mathematical methods in large scale computing

units, in: Proceedings of Second Symposium on Large-Scale Digital

Calculating Machinery, 1949, Harvard University Press, Cambridge,

Massachussetts, 141–146.

[Leh63] ——— (1963), Some high-speed logic, in: Experimental Arithmetic,

High Speed Computing and MAthematics, Proceedings of Symposia

in Applied Mathematics, vol. 15, 141–376.

BIBLIOGRAPHY 661

[Leh74] ——— (1974), The influence of computing on research in number

theory, in: J. P. LASALLE (ed.), The Influence of Computing on Math-

ematical Research and Education, Proceedings of Symposia in Ap-

plied Mathematics, vol. 20, 3–12.

[Leh80] ——— (1980), A history of the sieve process, in: [HMR80], 445–456.

[Lew18] CLARENCE I. LEWIS (1918), A survey of Symbolic Logic, University of

California Press, Berkeley.

[LLMS62] DERRICK H. LEHMER, EMMA LEHMER, W.H. MILLS and JOHN L.

SELFRIDGE (1962), Machine proof of a theorem on Cubic residues,

Mathematics of computation, 16 (80), 407–415.

[LMSS56] KAREL DE LEEUW, EDWARD F. MOORE, CLAUDE E. SHANNON and

NORMAN SHAPIRO (1956), Computability by probabilistic machines,

[MS56a], 183–212.

[Lor55] PAUL LORENZEN (1955), Einführung in die operative Logik und

Mathematik, Grundlehren der mathematischen Wissenschaften,

vol. 78, Springer Verlag, Berlin.

[LR65] SHEN LIN and TIBOR RÁDO (1965), Computer studies of Turing Ma-

chine Problems, Journal of the ACM, 12 (2), 196–212.

[LS06] AMY N. LANGVILLE and WILLIAM J. STEWART (eds.) (2006), MAM

2006: Markov Anniversary Meeting, Boson Books.

[Luc61] JOHN R. LUCAS (1961), Minds, machines and Gödel, Philosophy, 36,

112–127.

[Mah00] MICHAEL S. MAHONEY (2000), The Structures of Computation, in:

[HR00], 17–31.

[Man98] PAOLO MANCOSU (1998), From Brouwer to Hilbert: The debate on

the foundations of mathematics in the 1920s, Oxford University

Press, Oxford.

662 BIBLIOGRAPHY

[Man03] ——— (2003), The Russellian influence on Hilbert and his school,

Synthese, 137 (1–2), 59–101.

[Mar54] ANDREI A. MARKOV (1954), Theory of Algorithms (russian), Academy

of sciences of the USSR, Moscow, Leningrad, translated in English

by Jacques J. Schorr-Kon and PST Staff, Israel Program for Scientific

Translations, Jerusalem, 1961.

[Mar76] DAVID MARR (1976), Artificial Intelligence – A personal view, artifi-

cial Intelligence Project – RLE and MIT Computation Center, memo

355.

[Mar84] GEORGE MARSAGLIA (1984), A current view of random number gen-

erators, in: Proceedings of the 16th Symposium on the Interface be-

tween Computer Science and Statistics (Atlanta), Elsevier, Amster-

dam.

[Mar96] ——— (1996), DIEHARD: A battery of tests of randomness, available

at: http://stat.fsu.edu/pub/diehard/.

[Mar97] ——— (1997), Instructions for using DIEHARD: a battery of tests of

randomness., available at: http://stat.fsu.edu/pub/diehard/.

[Mar00] MAURICE MARGENSTERN (2000), Frontier between Decidability and

Undecidability: A survey, Theoretical Computer Science, 231 (2),

217–251.

[Mas67] SERGEI. J. MASLOV (1967), The concept of strict representability in

the general theory of calculi., Trudy Matematicheskogo Instituta

imeni V.A. Steklova, 93, 3–42, english translation in: American

Mathematical Society Translations Series 2.

[Mas4a] ——— (1964a), Certain properties of E.L. Post’s apparatus of canoni-

cal systems (Russian), Trudy Matematicheskogo Instituta imeni V.A.

Steklova, (72), 57–68, translated in English in American Mathemti-

cal Society Translations, series 2, vol. 97, nr. 2, 1970, 1 – 14.

BIBLIOGRAPHY 663

[Mas4b] ——— (1964b), On E. L. Post’s ‘Tag’ Problem. (Russian), Trudy

Matematicheskogo Instituta imeni V.A. Steklova, (72), 5–56, english

translation in: American Mathematical Society Translations Series

2, 97, 1–14, 1971.

[Mat70] YURI MATIYASEVICH (1970), Solution of the Tenth Problem of Hilbert,

Matematikai Lapok, (21), 83–87.

[Mau80] JOHN W. MAUCHLY (1980), The Eniac, in: [HMR80], 541–550.

[McC60] JOHN MCCARTHY (1960), Recursive Functions of Symbolic Expres-

sions and Their Computation by Machine, Part 1, Communications

of the ACM, 3 (3), 184–195.

[McC81] ——— (1981), History of Lisp, in: [Wex81], 173–183.

[McC99] SCOTT MCCARTNEY (1999), ENIAC: The Triumphs and Tragedies of

the World’s First Computer, Walker & Co, New York.

[Men63] ELLIOTT MENDELSON (1963), On some recent criticism of Church’s

Thesis, Notre Dame Journal of Formal Logic, IV (3), 201–205.

[Met87] NICHOLAS METROPOLIS (1987), The Beginning of the Monte Carlo

Method, Los Alamos Science (Special Issue, Stanislaw Ulam 1909-

1984), 15, 125–130.

[Mic93] PASCAL MICHEL (1993), Busy beaver competition and Collatz-like

problems, Archive for Mathematical Logic, 32 (5), 351–367.

[Mic04] ——— (2004), Small Turing Machines and generalized busy beaver

competition, Theoretical Computer Science, 326 (1–3), 45–56.

[Min61] MARVIN MINSKY (1961), Recursive unsolvability of Post’s problem

of tag and other topics in the theory of Turing machines, Annals of

Mathematics, 74, 437–455.

664 BIBLIOGRAPHY

[Min62a] ——— (1961/1962?), A simple direct proof of Post’s Normal Form

Theorem, artificial Intelligence Project – RLE and MIT Computation

Center, memo 44.

[Min62b] ——— (1962), Size and Structure of Universal Turing Machines us-

ing Tag systems: a 4-symbol 7-state machine, Proceedings Symposia

Pure Mathematics, American Mathematical Society, 5, 229–238.

[Min67] ——— (1967), Computation. Finite and Infinite Machines, Series in

Automatic Computation, Prentice Hall, Englewood Cliffs, New Jer-

sey.

[Min62] ——— (1961/62?), Universality of (p = 2) Tag systems and a 4 symbol

7 state Universal Turing Machine, artificial Intelligence Project – RLE

and MIT Computation Center, memo 33.

[Mol05] LIESBETH DE MOL (2005), Study of Fractals derived from IFS-fractals

through metric procedures, Fractals, 13 (3), 237–244.

[Mol06a] ——— (2006), Closing the circle: An analysis of Emil Post’s early

work., The Bulletin of Symbolic Logic, 12 (2), 267–289.

[Mol06b] ——— (2006), Facing the Computer. Some techniques to understand

technique (abstract), in: COLIN SCHMIDT (ed.), International Con-

ference on Computers and Philosophy (I-C&P), Laval, France, 3–5

May, 2006.

[Mol06c] ——— (2006), Questions concerning the Usefulness of Small Univer-

sal Systems (abstract), in: [AB06], 303.

[Mol07] ——— (2007), Tag systems and Collatz-like functions, submitted to

Theoretical Computer Science (under revision).

[MP43] WARREN S. MCCULLOUGH and WALTER H. PITTS (1943), A logi-

cal Calculus of the Ideas Immanent in Nervous Activity, Bulletin of

Mathematical Biophysics, 5, 115–133.

BIBLIOGRAPHY 665

[MP47] ——— (1947), How we know universals: The perception of auditory

and visual forms, Bulletin of Mathematical Biophysics, 9, 127–147.

[MP95] MAURICE MARGENSTERN and LUDMILA PAVLOTSKAYA (1995), Deux

machines de Turing universelles à au plus deux instructions gauches,

Comptes rendus de l’Académie des sciences. Séries 1, Mathema-

tique, 320 (11), 1395–1400.

[MRvN50] NICHOLAS METROPOLIS, GEORGE REITWIESNER and JOHN VON

NEUMANN (1950), Statistical Treatment of Values of First 2000 Deci-

mal Digits of e and of π Calculated on the ENIAC, Mathematical ta-

bles and other aids to Computations, 4 (30), 109–112, also published

in [vN63].

[MS56a] JOHN MCCARTHY and CLAUDE E. SHANNON (eds.) (1956), Automata

Studies, no. 34 in Annals of Mathematics Studies, Princeton Univer-

sity Press, Princeton, second Printing 1958.

[MS56b] JOHN MCCARTHY and CLAUDE E. SHANNON (1956), Preface, in:

[MS56a], v–viii.

[MS90] RONA MACHLIN and QUENTIN F. STOUT (1990), The complex behav-

iour of simple machines, Physica D, 42, 85–98.

[Muc56] A.A. MUCHNIK (1956), Nerazreshimost’ problemy svodimosti algo-

ritmov (Negative answer to the problem of reducibility of the theory

of algorithms), Doklady Akademii Nauk SSSR, (108), 194–197.

[Mur98] ROMAN MURAWSKI (1998), E.L. Post and the development of mathe-

matical logic and recursion theory, Studies in Logic, Grammar and

Rhetoric, 2 (15), 17–30.

[MZ93] GEORGE MARSAGLIA and ASAD ZAMAN (1993), Monkey Tests for Ran-

dom Number Generators, Computers and Mathematics with Appli-

cations, 26 (9), 1–10.

666 BIBLIOGRAPHY

[Nea06] TURLOUGH NEARY (2006), Small Polynomial time universal Turing

machines, in: Proceedings of MFCSIT 2006, Cork, Ireland.

[Neu06] HANS NEUKOM (2006), The second life of ENIAC (+ web extras), IEEE

Annals of the history of computing, 28 (2), 4–16.

[NW06a] TURLOUGH NEARY and DAMIEN WOODS (2006), On the time com-

plexity of 2-tag systems and small universal Turing machines, in:

Proceedings of the 47th Annual IEEE Symposium on Foundations of

Computer Science, 439–448.

[NW06b] ——— (2006), P-completeness of cellular automaton rule 110, in: In-

ternational Colloquium on Automata Languages and Programming

(ICALP), Lecture Notes in Computer Science, vol. 4051, 132–143.

[NW06c] ——— (2006), Remarks on the computational complexity of small

universal Turing machines, in: Proceedings of MFCSIT 2006, Cork,

Ireland, 334–338.

[NW06d] ——— (2006), Small fast universal Turing machines, Technical re-

port NUIM-CS-2005-TR-11, Department of Computer Science, NUI

Maynooth, accepted for publication in Theoretical Computer Sci-

ence.

[oLAA43] COUNTESS OF LOVELACE ADA AUGUSTA (1843), Sketch of the Analyt-

ical Engine Invented by Charles Babbage, With notes upon the Mem-

oir by the Translator Ada Augusta, Countess of Lovelace, Taylor’s Sci-

entific Memoirs, vol. 3.

[Ove71] ROSS OVERBEEK (1971), Representation of many-one degrees by deci-

sion problems associated with Turing machines, The Journal of Sym-

bolic Logic, 36, 706, abstract.

[Pag70] DAVID PAGER (1970), The categorization of Tag systems in terms

of decidability, Journal of the London Mathematical Society, 2 (2),

473–480.

BIBLIOGRAPHY 667

[Pav73] LUDMILA PAVLOTSKAYA (1973), Solvability of the halting problem for

certain classes of Turing machines (in Russian), Mathematical Notes

Academy of Science USSR„ 13 (6), 537–541.

[Pav78] ——— (1978), Sufficient conditions for the halting problem decid-

ability of Turing machines, Avtomaty i Mashiny, 91–118.

[Pea89] GIUSEPPE PEANO (1889), Arithmetices principia, nova methodo ex-

posita, Bocca, Turin, translated in English in [vH67], 83–97.

[Pen89] ROGER PENROSE (1989), The Emperor’s new Mind. Concerning Com-

puters, minds, and the Laws of Physics., Oxford University Press, Ox-

ford.

[Pen94] ——— (1994), Shadows of the Mind. A search for the missing science

of consciousness., Oxford University Press, Oxford.

[PER79] MARIAN B. POUR-EL and IAN RICHARDS (1979), A computable ordi-

nary differential equation which possesses no computable solution,

Annals of Mathematical Logic, 17, 61–90.

[Pét59] RÓSZA PÉTER (1959), Rekursivität und Konstruktivität, in: [Hey59],

226–233.

[PJS92] HEINZ-OTTO PEITGEN, HARTMUT JÜRGENS and DIETMAR SAUPE

(1992), Chaos and Fractals. New Frontiers of Science, Springer Ver-

lag, New York.

[Por60] J. PORTE (1960), Quelques pseudo-paradoxes de la “calculabilité ef-

fective”, in: Actes de deuxième Congrès International de Cyberne-

tique, Namur, Belgium, 332–334.

[Pos21a] EMIL LEON POST (1921), Introduction to a general theory of elemen-

tary propositions., American Journal of Mathematics, (43), 163–185.

[Pos21b] ——— (1921), On a simple class of deductive systems, Bulletin of the

American Mathematical Society, 27, 396–397.

668 BIBLIOGRAPHY

[Pos36] ——— (1936), Finite Combinatory Processes - Formulation 1, The

Journal of Symbolic Logic, 1 (3), 103–105, also published in

[Dav65b], 289–291.

[Pos40] ——— (1940), Polyadic Groups, Transactions of the American math-

ematical society, 48, 208–350.

[Pos43] ——— (1943), Formal Reductions of the General Combinatorial De-

cision Problem, American Journal of Mathematics, 65 (2), 197–215.

[Pos44] ——— (1944), Recursively Enumerable Sets of Positive Integers and

their Decision Problems, Bulletin of The American Mathematical So-

ciety, (50), 284–316, also published in [Dav65b], 305–337.

[Pos46] ——— (1946), A Variant of a recursively Unsolvable Problem, Bul-

letin of the American Mathematical Society, (52), 264–268.

[Pos47] ——— (1947), Recursive Unsolvability of a problem of Thue, The

Journal of Symbolic Logic, (12), 1–11, also published in [Dav65b],

293–303.

[Pos53a] ——— (1953), A Necessary Condition for Definability for Transfinite

von Neumann-Gĺodel Set Theory Sets, with an Application to the

Problem of the Existence of a Definable Well-Ordering of the Con-

tinuum, Bulletin of the American Mathematical Society, 59, 246.

[Pos53b] ——— (1953), Solvability, Definability, Provability; History of an er-

ror, Bulletin of the American Mathematical Society, 59, 245–246.

[Pos65] ——— (1965), Absolutely unsolvable problems and relatively unde-

cidable propositions - account of an anticipation, in: [Dav65b], 340–

433. Also published in [Pos94].

[Pos94] ——— (1994), Solvability, Provability, Definability: The collected

works of Emil L. Post, Birkhauser, Boston, edited by Martin Davis.

BIBLIOGRAPHY 669

[Rád62] TIBOR RÁDO (1962), On non-computable functions, The Bell System

Technical Journal, 41 (3), 877–884.

[Rád63] ——— (1963), On a simple source for non-computable functions, in:

[Fox63], 75–81.

[Ran80] BRIAN RANDELL (1980), The Colossus, in: [HMR80], 47–92.

[Rei50] GEORGE W. REITWIESNER (1950), An ENIAC determination of pi and

e to more than 2000 decimal places, Mathematical Tables and Other

Aids to Computation, 4 (29), 11–15.

[Rog82] YURII ROGOZHIN (1982), Seven Universal Turing Machines (in

Russian), Mat. Issledovaniya, 69, 76–90.

[Rog96] ——— (1996), Small universal Turing Machines, Theoretical Com-

puter Science, 168, 215–240.

[Roj98] RAÚL ROJAS (1998), How to make Zuse’s Z3 a universal computer,

IEEE Annals of the History of Computing, 20 (3), 51–54, also avail-

able at www.zib.de/zuse.

[Roj00] ——— (2000), Die Architektur der Rechenmaschinen Z1 und Z3,

available at www.zib.de/zuse.

[Rojnd] ——— (n.d.), Plankalkül, available at www.zib.de/zuse.

[Ros35] BARKLEY J. ROSSER (1935), A mathematical logic without variables,

Annals of Mathematics (2nd Series), 36, 127–150.

[Ros82] ——— (1982), Highlights of the history of the lmabda-calculus, in:

Proceedings of the 1982 ACM Symposium on LISP and functional

programming, 216–225.

[Ros84] ——— (1984), Highlights of the history of the lambda-calculus, An-

nals of the history of computing, 6 (4), 337–349.

670 BIBLIOGRAPHY

[Rub88] FRANK RUBIN (1988), The Cryptographic Uses of Post Tag Systems.,

Cryptologia, 12 (1), 25–33.

[Rus02] BERTRAND RUSSELL (1902), Letter to Frege, Published in [vH67],

124–125.

[Rus03] ——— (1903), Principles of Mathematics, Cambridge University

Press, Cambridge.

[Rus08] ——— (1908), Mathematical Logic as Based on the Theory of Types,

American Journal of Mathematics, (30), 222–262, translated in Eng-

lish in [vH67], 153–182.

[RV96] YURII ROGOZHIN and SERGEY VERLAN (1996), On the rule complexity

of universal tissue P systems, in: Proceedings of the 6th International

Workshop on Membrane Computing (Vienna), 510–516.

[RW13] BERTRAND RUSSELL and ALFRED NORTH WHITEHEAD ((1910, 1912,

1913)), Principia Mathematica, vol. I-III, Cambridge University

Press, Cambridge.

[Sad98] ZENON SADOWSKI (1998), On the development of Emil Post’s ideas

in structural complexity theory, Studies in Logic, Grammar and

Rhetoric, 2 (15), 55–59.

[SB96] WILFRIED SIEG and JOHN BYRNES (1996), K-graph machines: gener-

alizing Turing’s machines and arguments, in: P. HAJEK (ed.), Gödel

’96, Lecture Notes in Logic, vol. 6, 98–119.

[Sca63] BRUNO SCARPELLINI (1963), Zwei unentscheidbare Probleme in der

Analysis, Zeitschrifr fur Mathematische LogiK und Grundlagen der

Mathematik, 9, 265–289, republished and translated in English as

“Two Undecidable Problems of Analysis”, Minds and Machines 13,

49Ű77, 2003.

BIBLIOGRAPHY 671

[Sch24] MOSES SCHÖNFINKEL (1924), Über die Bausteine der mathematis-

chen Logik, Mathematische Annalen, 92, 305–316, republished and

translated in [vH67], 357–366.

[SE95] P. STÄCKEL and F. ENGEL (1895), Die Theorie der Parallellinien von

Euklid bis auf Gauss, Teubner, Leipzig.

[Sha38] CLAUDE E. SHANNON (1938), A symbolic analysis of relay and

switching circuits, Transactions of the American Institute of Elec-

trical Engineers, 57, 713–723.

[Sha48] ——— (1948), A mathematical theory of communication, Bell Sys-

tem Technical Journal, 27, 379–423 en 623–656.

[Sha56] ——— (1956), A Univeral Turing Machine with Two Internal States,

in: [MS56a], 157–165.

[She65] JOHN C. SHEPHERDSON (1965), Machine configuration and word

problems of given degree of unsolvability, Zeitschrift für Mathema-

tische Logik und Grundlagen der Mathematik, 11, 149–175.

[She96] JAMES B. SHEARER (1996), Periods of strings (Letter to the editor),

American Scientist, 86, 207.

[Sho96] JOSEPH R. SHOENFIELD (1996), The Mathematical Work of S.C.

Kleene, The Bulletin of Symbolic Logic, 1 (1), 9–43.

[Sho97] PETER SHOR (1997), Polynomial-time algorithms for prime factor-

ization and discrete logarithms on a quantum computer, SIAM jour-

nal on computing, 26 (5), 1484 – 1509.

[Sie94] WILFRIED SIEG (1994), Mechanical procedures and mathematical

experience, in: Mathematics and Mind, Oxford University Press, Ox-

ford, 71–117.

[Sie97] ——— (1997), Step by Recursive Step: Church’s analysis of Effective

Calculability, Bulletin of Symbolic Logic, 3 (2), 154–180.

672 BIBLIOGRAPHY

[Sie99] ——— (1999), Hilbert’s programme 1917–1922, Bulletin of Symbolic

Logic, 5 (1), 1–44.

[Sie05] ——— (2005), Only two letters: The correspondence between Her-

brand and Gödel, The Bulletin of Symbolic Logic, 11 (2), 172–184.

[Sie06] ——— (2006), Computability Theory, available at:

http://www.phil.cmu.edu/summerschool/2006/Sieg/computability-

theory.pdf.

[Sie07] ——— (2007), Church Without Dogma. Axioms for computabil-

ity, available at: http://www.hss.cmu.edu/philosophy/faculty-

sieg.php.

[Sip92] MICHAEL SIPSER (1992), The History and Status of the P versus NP

Question, in: Proceedings of the 24th Annual ACM Symposium on

Theory of Computing, 603–618.

[Sko28] THORALF SKOLEM (1928), Über die mathematische Logik, Norsk

matematisk tidsskrift, 10, 125–142, translated in English in [vH67],

512–524.

[Smu61] RAYMON M. SMULLYAN (1961), Elementary formal systems, Journal

of the Mathematical Society of Japan, 13, 38–44.

[Soa96] ROBERT L. SOARE (1996), Computability and Recursion, The bulletin

of Symbolic Logic, 2 (3), 284–321.

[Sta04] MIKE STANNETT (2004), Hypercomputational models, in: [Teu04],

135–157.

[Sti04] JOHN STILLWELL (2004), Emil Post and His Anticipation of Gödel and

Turing, Mathematics Magazine, 77 (1), 3–14.

[Sut03] KLAUS SUTNER (2003), Cellular automata and intermediate degrees,

Theoretical Computer Science, 296 (2), 365–375.

BIBLIOGRAPHY 673

[Sut05] ——— (2005), Universality and Cellular Automata, in: Machines,

Computations, and Universality: 4th International Conference

(2004), Lecture Notes in Computer Science, vol. 3354, 50–59.

[Swi04] JONATHAN SWINTON (2004), Watching the daisies grow: Turing and

Fibonacci Phyllotaxis, in: [Teu04], 477–497.

[Tar35] ALFRED TARSKI (1935), Der Wahrheitsbegriff in den formalisierten

Sprachen, Studia Philosophica, 1, 261–405, translated in Ger-

man from Polish book Projȩcie prawdy w jȩzykach nauk deduk-

cyjnych, 1933. Republished in Karel Berka, Lothar Kreiser (ed.),

Logik Texte. Kommentierte Auswahl zur Geschichte der modernen

Logik, Akademie Verlag, Berlin, 447–559.

[Teu04] CHRISTOPH TEUSCHER (ed.) (2004), Alan M. Turing: Life and Legacy

of a Great Thinker, Springer Verlag, Berlin.

[Thu14] AXEL THUE (1914), Probleme über Veränderungen von Zeichenrei-

hen nach gegebenen Regeln, Videnskaps-Akademi i Kristiani Skrifter,

10, 3–33.

[Tra88] BORIS A. TRAKHTENBROT (1988), Comparing the Church and Turing

Approaches: Two Prophetical Messages, in: [Her88], 603–630.

[Tur37] ALAN M. TURING (1936–37), On computable numbers with an ap-

plication to the Entscheidungsproblem, Proceedings of the London

Mathematical Society, (42), 230–265, a correction to the paper was

published in the same journal, vol. 43, 1937, 544–546. Both were

published in [Dav65b], 116–151.

[Tur34] ——— (1934), On the Guassian error function, unpublished fellow-

ship Dissertation, King’s College Library, Cambridge.

[Tur35] ——— (1935), Equivalence of Left and Right Almost periodicity, Jour-

nal of the London Mathematical Society, 10, 284–285.

674 BIBLIOGRAPHY

[Tur37] ——— (1937), Computability and λ-definability, The journal of

Symbolic Logic, 2 (4), 153–163.

[Tur39] ——— (1939), Systems of logic based on ordinals, Proceedings of

the London Mathematical society, 45, 161–228, also published in

[Dav65b], 155–222.

[Tur45] ——— (1945), Proposals for Development in the Mathematics Divi-

sion of an Automatic Computing Engine (ACE). Report to the NA-

tional Physics Laboratory, in: [CD86], 20–105. Also published in

[Tur92a], 87–105.

[Tur47] ——— (1947), Lecture to the London Mathematical Society on 20

February 1947., in: [CD86], 106–124. Also published in [Tur92a], 87–

105.

[Tur50] ——— (1950), Computing machinery and Intelligence, Mind, 59,

433–460, also published in [Tur92a], 133–159.

[Tur51a] ——— (1951), Intelligent machinery, a heretical theory, lecture

given at Manchester (2 versions, one numbered 1–10, the other

numbered 96–101). Available at the digital Turing archive at

http://www.turingarchive.org, archive number AMT/B/4.

[Tur51b] ——— (1951), Programmers’ handbook for Manchester electronic

Computer. Mark II. with errata sheets and Programme sheets, avail-

able at the digital Turing archive at http://www.turingarchive.org,

archive number AMT/B/32.

[Tur52a] ——— (1952), Can automatic calculating machines be said to

think?, transcript of a broadcast discussion transmitted on BBC

Third Programme, 14 and 23 Jan. 1952, between M.H.A. New-

man, AMT, Sir Geoffrey Jefferson and R.B. Braithwaite, Available at:

http://www.turingarchive.org, archive number AMT/B/6.

BIBLIOGRAPHY 675

[Tur52b] ——— (1952), The Chemical Basis for Morphogenesis, Philosophical

transactions of the Royal Society of London, 237 (641), 37–72, also

published in [Tur92b], 1–35.

[Tur53] ——— (1953), Some calculations of the Riemann-Zeta function, Pro-

ceedings of the London Mathematical Society, 3 (3), 99–117.

[Tur69] ——— (1969), Intelligent Machinery, in: B. MELTZER and D. MICHIE

(eds.), Machine Intelligence, vol. 5, Edinburgh University Press, Ed-

inburgh, 3–23, report written in 1948, National Physics Laboratory,

Also published in [Tur92a], 107–127.

[Tur92a] ——— (1992), Collected Works of A.M.Turing. Mechanical Intelli-

gence., North-Holland, Amsterdam.

[Tur92b] ——— (1992), Collected Works of A.M.Turing. Morphogenesis.,

North-Holland, Amsterdam.

[Ula80] STANISLAW M. ULAM (1980), von Neumann: The Interaction of

Mathematics and Computing, in: [HMR80], 93–99.

[Usp53] VLADIMIR A. USPENSKY (1953), Gödel’s theorem and the theory of al-

gorithms (Russian), Dokl. Akad. Nauk USSR, 91, english translation

in: American Mathematical Society Translations Series 2, 23, 103–

107, 1963.

[Usp83] ——— (1983), Post’s machine, Mir Publishers (Little Mathematics

Libarary), Moscow, originally published in 1979. Translated from

Russian by R. Alavina.

[Van58] HARRY S. VANDIVER (1958), The Rapid Computing Machine as an

Instrument in the Discovery of New Relations in the Theory of Num-

bers, Proceedings of the National Academy of Sciences in the United

States of America, 44, 459–464.

676 BIBLIOGRAPHY

[vH67] JEAN VAN HEIJENOORT (1967), From Frege to Gödel: A source book in

Mathematical Logic 1879–1931, reprint third printing (paperback),

2002 ed., Harvard University Press, Cambridge, Massachusetts.

[vN27] JOHN VON NEUMANN (1927), Zur Hilbertschen Beweistheorie, Math-

ematische Zeitschrift, 26, 1–46.

[vN45] ——— (1945), First Draft of a Report on the EDVAC, Contract No. W-

670-ORD-492, Moore School of Electrical Engineering, Univiversity

of Pennsilvania, Philadelphia., also published in IEEE Annals of the

History of Computing, Vol. 15, No. 4, 27-75, 1993.

[vN47] ——— (1947), The Mathematician, in: R.B. HEYWOOD (ed.), The

works of the Mind, University of Chicago Press, Chicago, 180–196.

[vN51] ——— (1951), The General and Logical Theory of Automata, in: L.A.

JEFFRES (ed.), Cerebral Mechanisms in Behaviour – The Hixon Sym-

posium, John Wiley, New-York, 1–31, (Also published as [vN63],

288–328).

[vN56] ——— (1956), Probabilistic Logics and the Synthesis of Reliable or-

ganisms from Unreliable Components, in: [MS56a], 43–98. Also pub-

lished as [vN63], 329–378.

[vN58] ——— (1958), The Computer and the Brain, Yale University Press,

Yale.

[vN63] ——— (1963), The Collected Works V. Design of Computers, Theory

of Automata and Numerical Analysis., Pergamon Press, Oxford.

[vN66] ——— (1966), The General and Logical Theory of Automata, Univer-

sity of Illinois Press, Urbana, London.

[vN86] ——— (1986), Papers of John von Neumann on Computers and

Computing Theory, Charles Babbage Institute Reprint Series for the

History of Computing., vol. 12, MIT Press.

BIBLIOGRAPHY 677

[Wan87] HAO WANG (1987), Reflections on Kurt Gödel, MIT Press, Cambridge,

Massachusetts.

[Wan96] ——— (1996), A Logical Journey. From Gödel to Philosophy, MIT

Press, Cambridge, Massachusetts.

[Wan3a] ——— (1963a), Tag systems and lag systems, Mathematische An-

nalen, 152, 65–74.

[Wat60] SHIGERU WATANABE (1960), On a minimal Universal Turing ma-

chine, Mcb report, Tokyo.

[Wat61] ——— (1961), 5-Symbol 8-State and 5-Symbol 6-State Universal Tur-

ing Machines, Journal of the ACM, 8 (4), 476–483.

[Wat63] ——— (1963), Periodicity of Post’s normal Process of Tag, in: [Fox63],

83–99.

[Web80] JUDSON C. WEBB (1980), Mechanism, Mentalism and Metamathe-

matics, Reidel Publishing Company, Dordecht.

[Wei61] MARTIN H. WEIK (1961), A Third Survey of Domestic Electronic Dig-

ital Computing Systems (Report No. 1115, March 1961), Ballistic Re-

search Laboratories, Aberdeen Proving Ground, Maryland, avail-

able at: http://ed-thelen.org/comp-hist/BRL61.html.

[Wex81] RICHARD L. WEXELBLAT (ed.) (1981), History of Programming Lan-

guages, ACM Monograph Series, Academic Press, New York, pro-

ceedings of the first ACM SIGPLAN conference on History of pro-

gramming languages (HOPL), 1978, Los Angeles.

[Wij] MICHIEL WIJERS, Bibliography of the Busy Beaver Problem, available

at: www.win.tue.nl/ wijers/bbbibl.pdf.

[Wol02] STEPHEN WOLFRAM (2002), A New Kind of Science, Wolfram Inc.,

Champaign.

678 BIBLIOGRAPHY

[Yan02] BEN YANDELL (2002), The honors class: Hilbert’s problems and their

solvers., AK Peters, Natick, Massachusetts.

[Zab95] SANDY L. ZABELL (1995), Alan M. Turing and the Central Limit The-

orem, The American Mathematical Monthly, 102 (6), 483–494.

[Zac99] RICHARD ZACH (1999), Completeness before Post: Bernays, Hilbert,

and the development of propositional logic, The Bulletin of Symbolic

Logic, 5 (3), 331–366.

[Zac01] ——— (2001), Hilbert’s finitism: Historical, Philosophical and meta-

mathematical Perspectives, Ph.D. thesis, University of California,

Berkley.

[Zus37] KONRAD ZUSE (1937), Einführung in die allgemeine Dyadik,

available at Konrad Zuse Internet Archive (ZuP 009/004):

www.zib.de/zuse.

[Zus44] ——— (1944), Deutsche Patentanmeldung Z394, 11 October

1944, available at Konrad Zuse Internet Archive (ZuP 005/017):

www.zib.de/zuse.

[Zus45a] ——— (1945), Bericht über meine Rechengeräte, available at Konrad

Zuse Internet Archive (ZuP 010/010): www.zib.de/zuse.

[Zus45b] ——— (1945), Theorie der angewandten Logistik, available at Kon-

rad Zuse Internet Archive (ZuP 007/001): www.zib.de/zuse, indi-

cated as Urschrift des Plankalkl̈s.

[Zus72] ——— (1972), Der Plankalkül, Gesellschaft für Mathematik und

Datenverarbeitung., (63), bMBW-GMD-63.

[Zus80] ——— (1980), Some Remarks on the History of Computing in Ger-

many, in: [HMR80], 611–627.

[Zus93] ——— (1993), The Computer – My Life, Springer Verlag, Berlin,

translated from the German by Patricia McKenna and J. Andrew

BIBLIOGRAPHY 679

Ross. Originally published in German as Der Computer. Mein

Lebenswerk, Verlag Moderne Industrie, Munchen, 1970.

	Thank You
	Introduction
	Undecidability everywhere?
	And now for something completely different?
	Computability and ``Computability''
	Diagonalization and Reducibility

	Questioning unsolvability.
	General Outline and research Questions
	Short Description of the chapters.

	A small note to the reader.

	I Re-Tracing
	The Beginnings
	General Background
	From solvability to unsolvability
	Introduction
	Focus on Form
	The Problem of ``Tag''.
	Further reductions: From tag systems to Post's thesis
	Conclusion

	``To deny what seems intuitively natural''
	Introduction
	Towards variant systems of logic.
	An Inconsistent Set of Postulates
	 - The Ultimate Operator

	From typewriters to universal computing machines
	Introduction
	Typewriters and ``Little wonders''
	The central limit theorem
	Newmann's course on the foundations of mathematics

	Conclusion

	1936
	Different questions, different answers.
	``An Unsolvable Problem of Elementary Number Theory''
	``On computable numbers, with an application to the Entscheidungsproblem''
	``Finite Combinatory processes. formulation 1''

	On the status of the identification
	Church's reviews of Post's and Turing's paper
	On the adequacy of Turing's identification: From definition to theorem.
	The identification as (hypo)thesis or law.
	Some further developments.

	Strategies against intuition.
	The thesis as a definition. On the significance of using the right formalism for the development of the theory.
	Different intuitions, different formalisms
	``Testing in practice'': Studying formalisms instead of intuitions
	Can we trust our intuition?

	The computer.
	The first computers
	The ENIAC and the EDVAC
	Alan Turing's work on computers and programming
	Zuse's Z1, Z2, Z3, Z4 and Plankalkül
	Conclusion.

	Exploring the ``universe of discourse''
	von Neumann and theoretical physics.
	Lehmer's computational work on number theory.
	Conclusion

	Going beyond or not beyond the Turing limit?
	On the practical feasibility of the computable: Computational Complexity Theory.
	The land of Tor'bled-nam. To solve the unsolvable.
	Conclusion

	Conclusion.

	II Tagging
	Why Tag systems?
	Preliminaries
	Discussion of published results on tag systems.
	General Theoretical results
	``Tag -- you are it'': Some concrete research on tag systems.
	Conclusion

	General classes of behaviour in tag systems
	Description of classes of behaviour
	``Unpredictable iterations.''
	Classes of behaviour and the two forms of the problem of ``tag''.
	Conclusion

	Shifting through tags
	An example of a solvable tag system.
	Generalization of the example.

	Constraints for intractable behaviour
	Introduction
	Notational Conventions
	Description of the Constraints
	Constraint 1: Post's condition
	Constraint 2: The Wang condition
	Constraint 3. Proportions between #ai.
	Constraint 4. The table method.
	Constraint 5. On the number of iterations.

	Generating intractable tag systems
	Algorithm 1: Two-symbolic tag systems, v-lw0 = lw1 - v
	Algorithm 2: Two-symbolic tag systems, v-lw0 =lw1 - v

	Playing with Tag Systems
	Purpose of the chapter
	Some further restrictions
	On the programming language used.
	Size of Sample space vs. computation time
	Focus on 2-symbolic tag systems

	Experiment 1
	Set-up of experiment 1
	Discussion of the results

	Experiment 2
	Set-up of experiment 2
	Discussion of the results

	Experiments 3--6: Summary of the results.
	Experiment 3
	Experiment 4
	Experiment 5
	Experiment 6

	Conclusion

	Universality and Unsolvability in Tag Systems
	Why are (small) universal machines interesting?
	Size and definition of universal machines.
	Small universal machines: an overview.

	Why are (small) universal systems not interesting?
	Minsky's 4-symbol, 7-state machine.
	Generating a universal tag system.
	Conclusion

	Studying the ``universe of discourse''
	The Busy Beaver Game
	Busy Beavers and Collatz-like Problems
	On the ``universality'' of cellular automaton rule 110.
	Conclusion

	Solvability and Unsolvability in Tag systems
	Tag systems and Collatz-like problems
	Solvability of the class = v = 2.
	Universality in tag systems.
	Discussion on the limits of solvability and unsolvability in tag systems

	Conclusion.

	Conclusion. Tracing Unsolvability
	A. Algorithm 3 for generating Tag Systems: N-ary tag systems.
	B. Plots from Experiment 1
	C. Detailed Description of Four experiments on Tag Systems

