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CONTENTS 1

[...] the creativeness of human mathematics has a counterpart inescapable lim-
itation thereof — witness the absolutely unsolvable (combinatory) problems. In-
deed, with the bubble of symbolic logic as universal logical machine finally burst,
a new future dawns for it as the indispensable means for revealing and develop-
ing those limitations. For [...] Symbolic Logic may be said to be Mathematics

become self-conscious.
Emil L. Post, 1920-21]T]

Much of modern mathematics is being developed in terms of what can be proved
by general methods rather than in terms os what really exists in the universe of
discourse. Many a young Ph.D. student in mathematics has written his disserta-
tion about a class of objects without ever having seen one of the objects at close
range. There exists a distinct possibility that the new machines will be used in
some cases to explore the terrain that has been staked out so freely and that
something worth proving will be discovered in the rapidly expanding universe

of mathematics.
Derrick H. Lehmer, 1951 E]

The entscheidungsproblem does have practical importance in addition to it’s
philosophical significance. Mathematical proof is a codification of more general
human reasoning. An automatic theorem prover would have wide application
within computer science, if it operated efficiently enough. Even though this is
hopeless in general, there may be important special cases which are solvable.
It would be nice if Church’s or Turing’s proofs gave us some information about
where the easier cases might lie. Unfortunately, their arguments rest on “self-
reference,” a contrived phenomenon which never appears spontaneously. This

does not tell us what makes the problem hard in interesting cases.

Michael Sipser, 1992, 1951

1From [Pos65], footnote 12, p. 343
2From [Leh51], p. 146
3From [Sip92], p. 603



CONTENTS



Chapter 1

Introduction

1.1 Undecidability everywhere?
“es schneit” ist eine wahre Aussage dann und nur dann, wenn es schneif]

When does one state of a problem that it is undecidable? In everyday life one
is undecided if one is not sure about something. You can doubt about the most
divergent things, from what one will eat this evening to the more fundamental
problems of life itself related to jobs, friends,... The reasons for not being able
to make a decision and thus resolve the doubt can be very different. If the more
fundamental decisions of life are involved, one of the main reasons for not be-
ing able to make such a decision is on the one hand a lack of all the relevant
information, and on the other hand, the incapability of foreseeing all the pos-
sible consequences in all their details given a certain decision.

Doubt and the related problem of making decisions, is one of the leading mo-
tives in the history of Western philosophy, with one of the most famous texts
being Descartes’ Méditations Métaphysiques [Des47|]. Starting from the prob-
lem of doubt, one of his main conclusions is the fact that mathematics is the
only branch of human knowledge which is undoubtable, containing truths so
obvious in every circumstance you can think of (like the fact that 3 + 2 will al-
ways equal 5) that it cannot be the subject of uncertainty or mistakes, let alone

1[Tar35], p. 453
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undecidability ([Des47], p. 38):

C’est pourquoi peut-étre que de 1a nous ne conclurons pas mal, si nous dis-
ons que la physique, I'astronomie, la médicine, et toutes les autres sciences qui
dépendent de la considération des choses composées, sont fort douteuses et in-
certaines; mais que I'arithmé-tique, la géometrie, et les autres sciences de cette
nature, qui ne traitent que des choses fort simples et fort générales, sans se met-
tre beaucoup en peine si elles sont dans la nature, ou si elles n'y sont pas, con-
tiennent quelque chose de certain et d’'indubitable. Car, soit que je veille ou
que je dorme, deux et trois joints ensemble formeront toujours le nombre de
cing, et le carré n’aura jamais plus de quatre c6tés; et il ne semble pas possible
que des vérités si apparantes puissent étre soupconnées d’aucune fausseté ou

d’incertitude.

Since Descartes wrote this beautiful text, mathematics has changed a lot. It is
no longer absolutely true that 3 +2 =5, depending as it does on the mathemat-
ical framework you are working inE] The grown understanding of a mathemat-
ical truth being defined relative to a certain framework however, is not the only
reason for these words by Descartes to sound rather naive. About four centuries
after the publication of this text it would be proven that there is undecidability
at the very heart of mathematics - its foundations.

Here one of course does not speak of undecidability in terms of its everyday
meaning since exact mathematical results are involved. Instead one uses unde-
cidable propositions and unsolvable decision problems. Contrary to the every-
day use of “doubt” and “undecidedness” these concepts have been defined for-
mally and thus don’t seem to allow for any doubt as far as their meaning is con-
cerned.

1.2 And now for something completely different?

What do we mean exactly in stating that a certain mathematical system is un-
decidable? There are two possible answers: it can be the case that the formal-
ism considered has an unsolvable decision problem or there exist undecidable

2When working with modulo arithmetic, 3 + 2 can e.g. become 1, with a modulus 4.
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propositions for the formalism (it is incomplete). Here focus will not be put on
undecidable propositions but on unsolvable decision problemsE]

But what exactly is an unsolvable decision problem? Does it mean that for cer-
tain mathematical problems, there is no way to make certain decisions or to
give a definite answer? In a sense yes, although one must be careful here: as
was stated before, we are dealing with mathematics, so in order to make clear
what is intended here, one must give precise and clear definitions of the con-
cepts involved. This was exactly the problem mathematicians were facing in
the late twenties and the early thirties.

In this section we will shortly look at the two pillars that made (and make) it
possible to prove certain decision problems unsolvable. First of all, one needs
a way to formally capture certain intuitive notions. Secondly, on acceptance of
the formalization of these notions, one implements specific methods to actu-
ally prove a certain decision problem unsolvable.

1.2.1 Computability and “Computability”

In their Grundziige der theoretischen Logik, published in 1928, Hilbert and Ack-
erman gave the classic statement of what is now known as the Entscheidung-
sproblem ([AH28], p. 73):

The Entscheidungsproblem is solved if one knows a procedure which will permit
one to decide, using a finite number of operations, on the validity, respectively

the satisfiability of a given [first-order] logical expression

In 1936 Alonzo Church and Alan Turing [Chu36d, |(Chu36e, Tur37] indepen-
dently of each other proved that there exists no “finite procedure” that decides

31 am indebted to Martin Davis for drawing my attention to the significance of explicitly dif-
ferentiating between unsolvable decision problems and undecidable propositions. In the liter-
ature one often uses the term “undecidability”, where it can both refer to undecidable propo-
sitions or unsolvable decision problems. Since this ‘habit’ can give rise to some confusion, it
should be pointed out here that every time the word “undecidability” is used, the author is
actually pointing at unsolvable decision problems unless stated otherwise.

4“Das Entscheidungsproblem is gelést, wenn man ein Verfahren kennt, das bei einem
vorgelegten logischen Ausdruck durch endlich viele Operationen die Entscheidung iiber die All-
gemeingiilltigkeit bzw. Erfiillbarkeit erlaubt.” Translation to English from [Gan88].
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for any given formula in first-order predicate calculus whether it is deducible
within this calculus. This result together with Godel’s completeness theorem
[G0d30] implies the negative answer to the Entscheidungsproblem in its above
formulationE] But what does one exactly mean with an “effective finite decision
procedure”’? What is meant if one states of a problem that it is “(un)solvable by
finite means”?

In order to prove the Entscheidungsproblem unsolvable, one first had to find a
mathematically satisfying answer to these questions. One needed formalisms
that can be considered as proper formalizations of certain intuitive concepts.
This was done by Church [Chu36c], Post [PosSG]E] and Turing [Tur37]. Each pro-
posed their formal equivalent of intuitive notions such as effective calculability
(due to Church), computability (due to Turing), generated set (due to Post) and
solvability (due to Post) — formalisms which were shown to be equivalent to
each other. The Entscheidungsproblem could now be proven unsolvable since
the identification between the intuitive notion of a procedure solving a prob-
lem in a finite number of steps with certain mathematical forms was considered
satisfactory.

The question posed at the beginning of this section can now be answered: an
unsolvable decision problem is a general mathematical problem for which there
exists no formalism, equivalent to those considered to be able to compute any-
thing which is intuitively computable, that can be used to effectively solve each
case of the problem in a finite number of steps — it is a non-computable prob-
lem. The unsolvability of decision problems like the Entscheidungsproblem
however, is merely valid in as far as one accepts the identification between
the intuitive notions and the respective formalisms, i.e., if one accepts “theses”
such as those proposed by Church, Post and Turing. In the remainder of this

SWhile the classic formulation of the Entscheidungsproblem indeed refers to validity and
satisfiability, these terms are normally not involved in the statement of other decision prob-
lems. A general form of decision problems is usually something like: Does there exist a finite
procedure to decide for an arbitrary x, whether y is yes/no the case for x within a certain formal
system (e.g. to decide whether an arbitrary formula (x) in first-order predicate logic is yes/no
provable (y)).

61t should be noted however that Post did not prove the Entscheidungsproblem unsolvable

(See Sec. .
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text we will use the concept of computability to cover the cluster of intuitive
notions captured by the several different formalisms. Still, the reader should
always be aware that “computability” is merely one of the intuitive notions.

1.2.2 Diagonalization and Reducibility

To prove a certain decision problem unsolvable one needs more than a well-
argued correspondence between an intuitive notion and a formalism. There
are two basic methods used in this context, the first being necessary for the
second to work.

The first proofs by Church, Post and Turing that show certain decision problems
unsolvable (relative to their respective formalisms) all rely on some variant of
a Cantorian diagonalization[] Basically, this method can be used to prove for
certain infinite lists of letter or number sequences, that there exist sequences
that are not part of the list.

After the first unsolvable decision problems had been proven to exist, the for-
malisms they are rooted in could in their turn be used to prove the unsolvabil-
ity of (further removed) decision problems. This is done by reducing a known
unsolvable decision problem (call it A) to the problem one wants to prove un-
solvable (called B). This comes down to finding a method for translating A into
B, i.e. one must show that any specific instance of A can be reduced to a spe-
cific instance of B. For example, as Turing showed, any Turing machine can be
expressed in first-order predicate calculus. Based on the unsolvability of the
printing problem, i.e., the problem to determine for any given Turing machine
whether it will ever print a given symbol, he could then show that the Entschei-
dungsproblem is unsolvable.

Although diagonalization lies at the basis of the majority of unsolvable decision
problems, reducing one problem to another has become the standard method.

“Diagonalization was first used by Georg Cantor to prove that there are, in a way, differ-
ent kinds of infinite sequences - the infinite sequence of natural numbers being merely a first
step up to the transfinite. While Cantor had already proven in 1874 that there are, in a cer-
tain well-defined way, more real numbers than there are natural numbers [Can74], he gave an
alternative, shorter proof in 1891 [Can91], using diagonalization.
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Nowadays hundreds of decision problems have been proven unsolvable in sev-
eral branches of mathematics and computer science most of them being (di-
rectly or indirectly) rooted in the problems shown to be unsolvable by Church,
Post and Turing.

1.3 Questioning unsolvability.

As was said, Post, Church and Turing were among the first to prove that there
exist certain unsolvable decision problems. They first defined certain formalisms
considered capable to capture the intuitive notion of a “computation”, and then
used some kind of method of diagonalization to complete the proof. From the
first moments I read those proofs, I felt thrilled and dissatisfied at one and the
same time.

On the one hand I loved almost every aspect of the constructions and methods
leading to the proofs. On the other hand I could not get rid of the idea that the
link between the general unsolvability of a whole class of systems and (the ac-
tual execution of a) specific instance from this general class, is not clear from
the proofs, at least not on an intuitive level. Of course, there is such a link, since
the fact that we are confronted with a class of systems for which their exists no
algorithm to solve every instance of a certain decision problem for that class
implies that there must exist specific instances for which we can in no way find
e.g. a Turing machine that will decide its halting problem. Still, going from
proving a class of systems unsolvable by diagonalization over an infinite list, to
proving a specific instance from that class to have an unsolvable decision prob-
lem or to prove it solvable is a non-trivial step.

The first most obvious way to study this link between the general unsolvability
of a problem and (the execution of) specific instances, is given by the thing we
can hardly live without nowadays: the computer. It is, in the end, a physical
realization of the intuitive notions it is all about here. Furthermore, given the
intractability one is confronted with in executing particular computational sys-
tems, the computer is the perfect tool to study the properties of the systems it
is the physical realization of, on the executional level.
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My first experiences with computers were rather negative, and up to some years
ago I even intensively hated and despised them, trying to avoid them where
possible. But then I started to program. Even the famous first “hello world” ex-
ercise thrilled me, an excitement heavily influenced by my recent explorations
of Martin Heidegger’s philosophy. “From that day on, I became overnight a
supporter of computers.”ﬂ The thing I liked so much about programming is
that I became much more aware of the reciprocal communication process that
is constantly “running” while I am doing something with my computer. Even
now, is I am writing this text, there is a double translation going on, between me
hitting buttons, and my computer translating them back into a visual output
understandable by me, the method behind these translations being basically
the same as the one mentioned in the previous section, of reducing problem A
to B.

One of the first things I did with my computer when I learned to program, was
to simply test out several kinds of specific instances of classes of computational
systems shown to be equivalent to Turing machines. I explored many of these
systems, by simply changing several parameters, visualizing the output in some
or the other primitive way on my monitor, seeing what effect changing a para-
meter has on the behaviour of the system,... For some reason I began to ex-
periment more and more with one specific class of such systems called tag sys-
tems, due to Emil Post who invented them in 1921 [Pos65]. It are these systems
which, for me, clearly exposed the link between the theory of unsolvable deci-
sion problems and the “discourse” of the systems it is based on. As will become
clear later, they began to dominate my whole research.

One of the typical features of tag systems is that they seem to have no clear link
with our intuitive notion of computability. In this respect tag systems are not at
all “good” formalizations of this intuitive notion. Still, since they can “compute”
anything computable by Turing machines they are, from a theoretical point of

8This is a kind of silly annotation of a quote by Kleene, explaining his first reaction when
Church mentioned his thesis to him: “When Church proposed his thesis, I sat down to disprove
it by diagonalization out of the class of the A-definable functions. But, quickly realizing that
the diagonalization cannot be done effectively, I became overnight a supporter of the thesis.”
(IKle81a], p. 59)
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view, equally suitable formalizations. It was this observation, strengthened by
me having worked (a bit) with several different kinds of formalisms, that led me
to the conclusion that, while the identification between “computability” and
computability is basic to any proof of an unsolvable decision problem, one
should be careful in fixing one such identification as being the best one. Al-
though I do not want to doubt Turing’s thesis, or any other equivalent version, it
will be argued here that it is important not to necessarily doubt the formalisms,
but to challenge our intuitions. And it is often in looking at the execution of
such systems that this intuition can be changed.

1.4 General Outline and research Questions

As is clear from the previous, this dissertation never started from one specific
research question, but rather from a general fascination with unsolvable deci-
sion problems, giving rise to many questions. Some of these will be answered
here, others won'’t. The general purpose of this dissertation is triple.

First of all, this dissertation wants to trace back the origin of the first proofs
of unsolvable decision problems and the formulation of several (theoretically
equivalent) theses, in the work of Emil Post, Alonzo Church and Alan Turing. It
will then be shown how the theoretical developments induced by these (and of
course some other) authors is related to the rise of the computer, resulting in
new problems.

Besides this more historical analysis this dissertation also wants to offer new
results in the domain of computer science. In this respect an extensive part
will be added on tag systems. We will describe some results on tag systems, fo-
cussing on the significance of studying specific instances of tag systems for the
abstract results of unsolvability and the closely connected theses of identify-
ing the intuitive notion of computability with a given formalism. Although the
second part of this dissertation is rather extensive, we would like to warn the
reader that the research presented there is merely a start. Many of the results
that will be described should be regarded as initial results that are in need of
more research.
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The main purpose behind this dissertation though remains a philosophical one,
philosophy being understood here as a method to ask questions which do not
necessarily have a clear and exact answer (yet). The most obvious philosoph-
ical aspect of this dissertation is our questioning of the identification between
an intuitive notion and a mathematical form. Tracing the evolution of the sev-
eral forms of this identification through history, including its transformation
induced by the computer, it will be argued that, although finding a “convinc-
ing” such identification — one that has a “direct appeal to our intuition” —is very
basic, starting from formalisms that challenge the intuition is at least worth
more consideration, both from a mathematical as well as from a philosophical
point of view.

In general, I cannot but understand this research as being rooted in my philo-
sophical background. As was said before, although Heidegger will never be
mentioned here again, I know for myself that in a way his philosophy, or how
I understood it, formed the main trigger for me being fascinated with comput-
ers, computations and unsolvable decision problems.

Although I consider this dissertation as philosophical in nature, it is impor-
tant to stress here that the references to any philosophical literature will be
restricted to a minimum. This might sound contradictory, but it isn't. From
the first beginning of this research, I made a choice to stay as far away from any
philosophical texts as possible. The ultimate challenge for me is to see how far
I could get philosophically in restricting myself to papers and books written by
logicians, mathematicians and computer scientists, complemented by my own
thoughts in reading these texts, and the implementation of these thoughts into
programs and forms. It is left to the reader whether I failed or succeeded in this
tricky business of combining mathematics with philosophy, in the way I tried
to do it.

1.4.1 Short Description of the chapters.

This dissertation will be subdivided into two main parts. The first part, called
Re-tracing, includes the analysis and discussion of some of the original pa-
pers by Church, Post and Turing in the context of unsolvable decision prob-
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lems, as well as the connection between these theoretical results and the rise
of the computer. The results from this study will be linked to a more philo-
sophical discussion on the identification between “computability” and certain
formalisms.

The second part, called tagging, is the result of my research on tag systems.
The main purpose of this part is to emphasize the significance of studying spe-
cific (classes of) systems in the context of unsolvability. We will start this part
from the assumption that tag systems are particularly well-suited for this kind
of study because of their focus on form rather than interpretation.

Part I: re-tracing

The first two chapters of part I, focus on the work by Church, Post and Turing.
The third chapter will discuss the rise of the computer, the connection with its
theoretical counterparts, as well as its significance for certain developments in
the context of computability and unsolvability.

Chapter 2: The beginnings. An analysis of Church’s, Post’s and Turing’s work
before 1936. In this first chapter, the following questions will be answered:
How is the work preceding the unsolvability results by Post, Church and Turing
connected to their major results? How did they arrive at their results?

First of all, it should be noted that, although Post published a paper in 1936 in
which a formalism is described that is quasi-identical to Turing machines, he
already arrived at certain unsolvable decision problems in 1921. The analysis
of Turing’s work will be very short with respect to the other two analyses, since
he was only 24 when his 1936 paper [Tur37] was published.

Through the discussion of this earlier work, it will be shown that the way Church,
Post and to a lesser extent Turing arrived at their results, differs significantly.
Despite the ‘confluence of ideas’ in 1936E] an inquiry into the work resulting
into this confluence shows that the systems and ideas then developed origi-
nated in work in which the equivalences are not that evident. Based on these
analyses, it will be argued that the actual use and execution of the respective

9As it was termed by Gandy in [Gan88].
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formalisms developed by Church and Post was an important factor for the for-
mulation of their theses. We will show that, for Church and Post, it was initially
not the theoretical question of finding a proper formalization of computability
to prove certain decision problems unsolvable that actually led them to their
results. Rather it were the results established about the systems they developed
that led them to the idea of such identification. This will be contrasted with
Turing’s work.

Chapter 3: 1936 In this chapter we will discuss the different theses as origi-
nally proposed by Church, Post and Turing. Focus will be put on the fact that,
despite the theoretical equivalences, there are some basic differences between
the theses proposed by each of these authors. In the first section, our start-
ing point will be the 1936 papers by Church, Post and Turing, as well as Post’s
posthumously published manuscript [Pos65]. We will describe and discuss their
several theses as originally put forward, as well as the arguments they each con-
sidered important for supporting their theses. Starting from the reviews Church
wrote on Post’s rsp. Turing’s paper, we will then show in a next section that the
significance one attaches to certain of the arguments underlying the respective
theses is closely connected to the different interpretations of the actual status
of the theses, and discuss in this setting several of the interpretations of the sta-
tus of the theses. In the last (short) section of this chapter we will formulate
some further questions with respect to the status of the theses, drawing from
our results from this and the previous chapter. To be more specific, we will
question in how far it can be interesting philosophically and mathematically to
start from a thesis that is considered to have no serious appeal to intuition, in
contrast with one that does.

Chapter 4: The computer In this chapter we will take into account the physi-
cal realization of computability, the computer. This chapter will be subdivided
into three main sections. In a first section, we will discuss the rise of the com-
puter. Focus here will be on the question in how far the developments sketched
in the previous chapters can be linked to the construction of the first comput-
ers. In a second section, we will argue that already from its first use on, several
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pioneers understood that computers can be used to perform “experiments” not
only in the context of say physics but also in the context of mathematics. With-
out going into much details here, the most important thing to note here is that
the computer made it possible to access certain aspects of the objects studied
in mathematics hardly accessible before. It allowed the analysis of the behav-
iour of certain functions underlying so many mathematical problems. In this
respect, it will be argued that the computer is a suitable instrument to study
the link between general unsolvability and particular (classes of) systems. In
the last section, we will consider some developments in the context of com-
putability and unsolvability, that are very closely connected to the actual exe-
cution of computations on the computer. To be more specific, we will consider
two developments that are connected to the Turing limit of computability, i.e.,
computational complexity theory and hypercomputability. Our main focus in
this chapter is the ongoing discussion on what is sometimes called the phys-
ical Church-Turing thesis [Gan80] and hypercomputability, a discussion that
directly arises from, on the one hand, the theses as proposed by Church, Post
and Turing (although one focuses in most of the cases on Turing computability)
and, on the other hand, from the fact that, in a way, the computer has under-
mined our intuitions of computability, i.e., the computer has not remained re-
stricted to “pure” calculations. What is at stake here is the question of whether
there exist physical processes that cannot be simulated by a Turing machine,
leading one to the question whether there exists procedures that can be effec-
tively implemented but go “beyond” Turing computability.

Part II: tagging

In this second part we will make a huge jump through history, from Emil Post’s
work from 1920-1921 to our own research on tag systems. It should be noted
that Emil Post’s posthumously published manuscript [Pos65] describing this re-
search, has been basic to the ideas put forward in this part. There are several
reasons for this. I will merely give two of them. First, and most obvious, it was
during this period that Post invented his tag systems. Secondly, one of his goals
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was to find the most general form of logic and ultimately mathematics, a fea-
ture that made it possible for him to reduce the presence of any “meaningful”
concept to a minimum. This is exactly the feature that has always attracted me
the most in tag systems. If you just run them on your computer, varying several
parameters, it is terribly hard to superimpose any concrete interpretation on
these systems, let alone, to understand how these systems are capable to com-
pute anything we consider intuitively computable. It is exactly this last feature
that makes tag system well-suited for a study of unsolvability that starts from
an analysis of the behaviour of particular (classes of) systems.

Chapter 6: Why Tag systems? In the first (short) introductory chapter of part
II, we will discuss some general features of tag systems and give an overview of
the several chapters to follow.

Chapter 7: Preliminaries. Some basic aspects of tag systems. In a second
chapter the reader will be made more familiar with tag systems. In a first sec-
tion we will describe most of the existing literature on tag systems. Based on
certain of the results described, we will propose a definition of the size of tag
systems. Furthermore, some of the results will be used to show how hard it ac-
tually is to get a more formal grip on tag systems. In general, this discussion of
the literature on tag systems gives an impression of the kind of approaches and
the problems connected to them, that can be used to study tag systems.

In a second section we will discuss the so-called general classes of behaviour
a tag system can lead to and connect them to the two forms of the problem of
“tag” Post formulated, i.e. two different decision problems for tag systems.

In the next section we will give an example of a solvable tag system, to give a first
idea how one might proceed to prove specific instances of tag systems solvable.
Based on this example, we will prove a certain theorem for tag systems, that
shows for certain tag systems that they can be decomposed in a certain num-
ber of other tag systems, their solvability thus depending on the tag systems
into which they can be decomposed.



16 CHAPTER 1. INTRODUCTION

Chapter 8. Constraints for intractable behaviour. In this chapter, we will
describe several “constraints” which can be used to find examples of tag sys-
tems that might be very hard to prove solvable. Two algorithms implementing
these constraint will be described, and used to generate a whole class of tag
systems. The tag systems generated with the second algorithm are the ones
used in the experiments of chapter[8] Given the tag systems generated through
these two algorithms, we will consider the idea of what will be called tag sys-
tems for which the concatenation of their respective words are rotations of the
same combination. At one time, we believed this approach might result in a
method to define equivalence classes for tag systems. As will be shown how-
ever, there are several problems connected to the approach, and it is in need of
more research.

Chapter 9: Playing with tag systems In this chapter we will describe the re-
sults from 6 computer experiments performed on a class of tag systems gener-
ated by the second algorithm described in the previous chapter. After a short
introduction of the idea of computer experiments in mathematics, we will first
discuss some of the restrictions involved in the computer experiments. These
concern the programming language used, the size of the sample space and the
use of one specific class of tag systems.

The experiments serve several different goals, that will not be discussed here
in any detail. The main purposes behind these experiments are 1. to show
heuristically that the class of tag systems with 2 symbols can at least be called
intractable 2. to get a better idea on what levels this intractability can be ob-
served 3. to search for a method to define classes of tag systems. To spare the
reader at least a little bit, only the first two experiments will be included in the
main text, since they are considered as the most important ones. For the re-
maining four we will merely include the conclusions, the details of the experi-
ments will be described in appendix C. It should be noted that we consider the
result from the second experiment as the most important one. It allows one to
differentiate several tag systems according to the types of periodic structures
that they can generate. Of course, these classes are based on heuristic evidence
and have not been proven, although it seems possible to provide such proofs
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(as will be shown through an example).

Chapter 10: Universality and Unsolvability in tag systems: Some questions
concerning the usefulness of small universal systems. In this last chapter,
we will consider the problem of the connection between general unsolvabil-
ity and the discourse of the systems the unsolvability is proven for, by starting
from questions concerning the significance of small universal systems. These
are considered important in this context because, on the one hand, they are
particular instances of systems with an unsolvable decision problem, and, on
the other hand, they are used in research on the limits of solvability and unsolv-
ability. In a first section, a historical account will be given of some of the results
significant in this context, showing why (small) universal systems are interest-
ing. Very important here for a discussion to follow is Martin Davis’s definition
of universality [Dav56].

In a second section we will look at some of the reasons why the known small
universal systems are in fact uninteresting. It will be argued that if one stud-
ies particular computational systems on the level of their behaviour, the known
universal systems are not able to bring us any further than a study of the sys-
tems they are able to represent. In the next section it will be shown, by dis-
cussing several examples from the literature, that a study of the discourse of
particular (classes of) systems is a very valuable approach, giving rise to new
results in the context of studying limits of solvability and unsolvability.

In the last section, we will study limits of solvability and unsolvability in tag sys-
tems. In this section we will first of all prove the solvability of one specific class
of tag systems. It should be noted that while this result was already proven by
Post, the result was never published. A second result concerns the reducibil-
ity of an intricate problem from number theory, the 3n + 1-problem, to a very
small tag system. This reduction will then be generalized resulting in the re-
ducibility of any Collatz-like function to a tag system. Finally we will describe
a method that might be used to prove that the class of tag systems with 2 sym-
bols contains a universal tag system. This section will be ended with a general
discussion of the limits of solvability and unsolvability in tag systems. In this
concluding subsection, we will propose two conjectures concerning the limit
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of unsolvability in tag systems, based on the results from this and the previous
chapter and describe some possible approaches to tag systems that might show
useful to obtain a more complete theory of tag systems.

1.5 A small note to the reader.

As is clear from the outline of this dissertation I have not restricted myself to
one specific research domain or methodology. Because of the fact that I have
not chosen a clear well-cut research subject, there are several problems con-
nected to this dissertation. First of all, the dissertation as a whole is not as co-
herent as it could have been if I would have written a dissertation on say the
history of computers. There is not one clear general research question, that is
answered at the end of the dissertation. Rather there are several results pre-
sented in the different chapters, that, although they have a clear connection
with each other, cannot be summarized under one heading. Secondly, the re-
search presented here is not complete, in two respects. On the one hand, for
each of the chapters, there are some gaps in the literature discussed. This short-
coming was impossible to overcome, given the time limit. On the other hand,
and this is especially valid for part II, this research is still research in progress.
Although I have some results on tag systems, these can only show their merit if
they could be included in a more complete theory of tag systems. Thirdly, the
presentation of the results, and this again especially concerns partI], is still in a
rather informal style. I know for myself that if | had had more time, the formu-
lation would have been more mathematically decent. I really hope that due to
the informality of some parts, we have not given rise to too much ambiguities,
unclear statements or plain mistakes.

I do not intend to safeguard myself here with this note. I do not want to give
bad excuses here for the shortcomings of this dissertation. What I do intend
to make clear with this note is that these shortcomings are a consequence of a
choice I have made when I started with this research, i.e., to combine several
domains and methods. Despite these shortcomings, I do not regret this choice.
The things I have learned during the past three years are invaluable, and I am
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convinced that I would not have learned as much as I have if I would have cho-
sen to restrict myself more. Even if I do not have the specialized knowledge I
maybe should have on e.g. recursion theory, I know that for me the true value
of this dissertation lies in its combination of philosophy, history and mathe-
matics. During my research these three domains were never separated. The
most striking example of this mix has been for me, my research on tag systems
and my study of Post’s work.

It is a current trend both of the humanities as of the exact sciences that one
needs to specialize into one sub-sub-...-sub domain to get anywhere. This is
even becoming a harder reality for the younger researchers who seem to have
no other choice but to specialize. This evolution I regret. Although I am the
last to say that one should not know his or her subject well-enough, otherwise
one can only make mistakes, I think being able to cross the borderlines of do-
mains, trying to link them up, is at least as important as this specialization. In
my personal opinion, one of the ways to make progress is to have the freedom
to mix up domains. I still do not know for myself whether I have managed to do
this in any decent way. I leave it to the reader to judge whether I have failed or
succeeded in this attempt to combine.
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[...] time after time I found that because of my ignorance of these antecedents,
I had not, nor could have, really understood those ideas. All the logical analysis
in the world will not reveal the intentions behind ideas, and without these inten-
tions one all too easily misunderstands and misjudges the ideas and theories of a
writer no longer living. [...] one also finds that current ideas and results can illu-
minate older and crustier ideas. The lesson seems to be this: we cannot fully un-
derstand our own conceptual scheme without plumbing its historical roots, but
in order to appreciate those roots, we may well have to filter them back through
our own ideas.

Judson C. Webb, 1980@

In the first part of this dissertation we will trace the roots of the first unsolvable
decision problems and the closely connected problem of formalizing the intu-
itive notion of computability. Through an analysis of the work by Emil Post,
Alonzo Church and Alan Turing we will show that the several formal systems
considered by these logicians/mathematicians played a significant role in the
actual formulation of the solutions to these problems and the later interpre-
tation of the several theses proposed. We will then connect these more theo-
retical results to the rise of the computer and show how this physical realiza-
tion of computability and solvability has given rise to new (philosophical and
mathematical) problems and possibilities in the domain of computability and
unsolvability.

19Erom [Web80], p. xii.
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Chapter 2

The beginnings: An analysis of
Church’s, Post’s and Turing’s work
before 1936.

In this first chapter we will dig into the early beginnings of unsolvable decision
problems by focussing on the work preceding the publication of the 1936 pa-
pers of the three “masters” of unsolvability: Emil Post, Alonzo Church and Alan
Turing. As is pointed out in [Gan88]|, p. 55 by Gandy:

It is not uncommon in mathematics — and in the other sciences — for concepts,
methods, and theorems to be discovered independently and almost simultane-

ously [...] There is, so to speak, something in the air which different people catch.

There was definitely something in the air and Church, Post and Turing were the
ones who captured it and wrote it downE] Before looking at what they exactly
captured, it is fundamental to take a closer look at their earlier work. Especially
Church’s and Post’s work deserve special attention here, since Turing was only
24 when his seminal 1936 paper was published. As was stated in the introduc-
tion the main question to be answered in this chapter is: How is the work pre-
ceding the unsolvability results by Post, Church and Turing connected to these

11t should be pointed out that besides Church, Post and Turing, also Kleene should be men-
tioned here. His contributions will be discussed in a bit more detail in Sectionsand
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major results? How did they arrive at their results? In answering this question,
it will be shown that despite the “confluence of ideas” in 1936, the preliminary
work resulting into this confluence differs to an extent that can help to clarify
the different interpretations and formalizations by Church, Post and Turing of
the intuitive notion of “computability”.

Before starting with an analysis of this earlier work, it is important to give at
least some background on what was going on in the domain each of these
mathematicians/ logicians worked in, i.e. mathematical logic and research on
the foundations of mathematics (Section [2.1). It is impossible to be complete
here. Instead of trying to give a detailed overview we will thus refer the reader to
several papers and books on this subject trying to give at least a feeling of some
of the work started in the 19th century on the foundations of mathematics. In
a next section (Section [2.2.5), we will discuss Emil Post’s work from 1918-1921.
Although there is a rather huge gap between 1921 and 1936 there are clear rea-
sons why the results from this period of research are basic to gain a better un-
derstanding of Post’s 1936 paper [Pos36]. In fact, we consider these results of
more significance than the 1936 paper, since they anticipate much of what was
“in the air” in the thirties.

In section [2.3| we will give a detailed analysis of the work preceding Church’s
[Chu36c] starting from 1924 till 1935. In a next to last section 2.4 we will shortly
discuss some aspects of Turing’s earlier work and occupations that might help
to clarify his 1936 paper [Tur37].

2.1 General Background

For recent times have seen the development of the calculus of logic, as it is called,
or mathematical logic, a theory that has gone far beyond Aristotelian logic. It has
been developed by mathematicians; professional philosophers have taken very
little interest in it, presumably because they found it too mathematical. On the
other hand, most mathematicians, have taken very little interest in it, because
they found it too philosophical.

Thoralf Skolem, 1928E]

2From [Sko28], translated in [vH67], p. 512.
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The developments in mathematics during the second half of the 19th century
and the first quarter of the 20th have been basic to many of the developments
leading to Church’s, Turing’s and Post’s seminal work on unsolvable decision
problems and the closely connected theses they each formulated. In this sec-
tion we will give a brief overview of some of the most significant developments
in this context[]

During the 19th century mathematicians became more aware of the signifi-
cance of axioms and thinking about the foundations of mathematics thus be-
came more explicit. The parallel postulate that had been considered true for
centuries because of its appeal to intuition, and considered to follow as a the-
orem from the axioms of Euclidean geometry, was no longer considered ab-
solutely true and replaced by certain other postulates, leading to the develop-
ment of non-Euclidean geometries. The most famous mathematicians asso-
ciated with these geometries are Janos Bolyai, Nikolai Ivanovich Lobachevsky
and Carl Friedrich Gauss[]

Given these results it was now clear that no axiomatic system, close as it might
be to intuition, is necessary true. As a consequence one had to develop other
criteria to evaluate a given set of axioms. As is pointed out by Gandy [Gan88],
for Hilbert this criterium was the consistency of a system and, as we will see
in Sec. this was also the criterium used by Church. After having described
his 21 axioms for Euclidean geometry in [Hil99], Hilbert proved its consistency
by interpreting the system in the real plane thus reducing the consistency of
Euclidean geometry to the consistency of analysis. A decent axiomatization

3Many names and results such as e.g. Boole’s algebraization will not be mentioned here.
There are probably hundreds of papers and books on the history of the debate on the founda-
tions of mathematics. Grattan-Guinness’s [GGOQ] gives a very detailed bibliography, and dis-
cusses some of the less well-known contributors. An indispensable source book on the late
19th, early 20th century debate on the foundations of mathematics is Jean van Heijenoort From
Frege to Gddel [vH67] Also Webb’s book [Web80] must be mentioned here. It gives a detailed
historical and philosophical analysis of the development of formalism and its connection with
mechanism. It also includes a very good analysis of the Church-Turing thesis. We should fur-
thermore point out that we will not mention Godel’s important contributions here.

4 After having read Bolyai’s treatise on hyperbolic geometry Carl Friedrich Gauss stated in a
letter that he had already found similar results.
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let alone a consistency proof for analysis, however, was lacking. Hilbert pro-
vided a foundation for analysis but soon understood that proving its consis-
tency would be very hard and depended on the consistency of arithmetic. This
last problem, the consistency of arithmetic, was added as the second problem
of his famous list of 23 problems [HilOl] Although Hilbert made a sketch for
such proof [Hil05] “searching for a completely satisfying foundation for the no-
tion of number"ﬁ it would take some years before Hilbert would again publish
on the foundations of mathematics. There were several reasons for this delay.
Not only had his [Hil05] been seriously criticized by Poincaré, but he also un-
derstood that his foundational research required a more logical formalism, that
would be better suited for the further study of the foundations of mathematics.
In the meantime, Russell had pointed out a serious flaw in Frege’s [Fre79]. In the
second half of the century several mathematicians like Cantor, Dedekind, Frege
and Peano had investigated the proper foundations of the notion of a number
and a set. Cantor is one of the founders of set theory and famous for the con-
struction of transfinite cardinal numbers. He first used the diagonal method to
prove that the set of the natural numbers is “smaller” than the set of the real
numbers [Can91], i.e., R < 2%, and advanced the continuum hypothesis

Dedekind wrote two fundamental papers on the foundations of numbers, one
on the reals and one on the natural numbers. In his [Ded72] he defined, among
other things, the well-known Dedekind cuts. In his [Ded88] he defined finite
and infinite sets of natural numbers, provided an axiomatization for arithmetic
and included a definition of mathematical induction as a method of proof[f|
Also Peano worked on the foundations of numbers and gave his famous ax-
iomatization for arithmetic in his [Pea89]. About ten years before Peano’s pa-

5Yandell [Yan02] has written a good survey of the research on Hilbert’s problems.

6[Hilo5], p. 131

“A good historical survey on set theory is [Kan96]. A list of references for
further reading on Cantor's work can be found at:  http://www-history.mcs.st-
andrews.ac.uk/References/Cantor.html. The complete collected works by Cantor [Can32]
are available on-line through: gdz.sub.uni-goettingen.de.

8At http:/ /www-groups.dcs.st-and.ac.uk/ history/References/Dedekind.html a list of refer-
ences for Dedekind’s work can be found. The collected works by Dedekind [Ded32] are avail-
able on-line through http://gdz.sub.uni-goettingen.de.
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per, Frege’s Begriffschrift [Fre79] was publishedﬂ He regarded this language as
a kind of lingua characterica for pure thought, that can be used to manipu-
late symbols through definite rules, avoiding any ambiguities that might come
from the natural language. As he states in the introduction to the Begriffschrift
[Ere79l, p. 7:

Ifit is one of the tasks of philosophy to break the domination of the word over the
human spirit by laying bare the misconceptions that through the use of language
often almost unavoidably arise concerning the relations between concepts and
by freeing thought from that with which only the means of expression of ordinary
language, constituted as they are, saddle it, then my ideography, further devel-

oped for these purposes, can become a useful tool for the philosopher.

Cantor, Frege, Peano and Dedekind were major contributors to research on the
foundations of mathematics at the end of the 19th century and were an impor-
tant influence on Hilbert’s work. Another important influence here was Rus-
sel[l]

As was said, Russell pointed out a fundamental problem in Frege’s [Fre79]. In
1902, June 16 Russell wrote a letter to Frege [Rus02] in which he formulated
his famous paradox. Together with Burali Forti’s paradox{ﬂ this is one of the
famous paradoxes of set theory. These paradoxes made clear that one was in
need of a precise statement of the assumptions made in set theory. As a reac-
tion, Russell developed type theory to exclude the paradox he had pointed out.
He first introduced type theory in his [Rus03], but the theory was worked out in
more details in his [Rus08] and in the famous three-volume work written in col-
laboration with Whitehead, Principia Mathematica [RW13]. This monumental
work was by its authors regarded as the logical formalization of the whole body
of mathematics.

This was exactly the kind of formalization that could further the investigations
on the foundations of mathematics Hilbert was searching for. After Principia’s

9A bibliography of secondary literature on Frege's work can be found at:
http://www.philosophy.ox.ac.uk/reading_lists/mods_prelims/2000_Frege.PDF
19A paper by Mancosi [Man03] discusses the Russellian influence on Hilbert and his school.
'Formulated in [BE97].
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publication (1910-1913), it was studied by several students of Hilbert. In 1917
Hilbert returned to his study on the foundations of mathematics, again em-
phasizing the significance of consistency proofs for arithmetic and set theory
and was at that time convinced that such proofs might be found through re-
duction to the kind of logical formalism as proposed by Russell and Whitehead.
Besides consistency proofs there were several other open foundational prob-
lems including the problem of the solvability of certain decision problems like
the decision problems for Diophantine equations. Hilbert thus further devoted
himself to a study of the foundations of mathematics through logic. In 1917,
Paul Bernays became his assistant at Gottingen. In a series of lectures during
1917-1921 Hilbert in collaboration with Bernays and Behmann made signifi-
cant contributions to the newly developing domain of what is now known as
mathematical logic. As is pointed out by Sieg [Sie99] and Zach [Zac99, [Zac01]
the notes made for this series of lectures contain important material to un-
derstand how Hilbert was led to his finitism and laid the basis for Hilbert and
Ackerman’s textbook Grundeziige der theoretischen Logik [AH28] published in
1928. After Hilbert had supported the logicist programme developed in Prin-
cipia Mathematica for some time, he became more and more critical about it.
As is stated in his [Hil28], p. 473:

My theory is opposed on different grounds by the adherents of Russell and White-
head’s theory of foundations, who regard Principia mathematica as a definitely
satisfying foundation for mathematics. [...] the foundation that it provides for
mathematics rests, first, upon the axiom of infinity and, then, upon what is called
the axiom of reducibility, and both of these axioms are genuine contentual as-
sumptions that are not supported by a consistency proof; they are assumptions
whose validity in fact remains dubious and that, in any case, my theory does not

require.

Instead of starting from type theory, Hilbert proposed a new system for study-
ing the foundations of mathematics, its main purpose being the simultaneous
development of logic and mathematics since he no longer believed that math-
ematics could be founded on logic alone [Hil26, Zac99} Zac01} Sie99].

In the meantime, also Brouwer’s intuitionism had gained ground in the domain
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of research on the foundations of mathematics. Brouwer’s intuitionism leads to
a form of constructive mathematics, rejecting certain principles of mathemat-
ics like the law of excluded middle. Although Hilbert’s finitary programme can-
not be regarded as a mere reaction against the intuitionist programme [Sie99],
their critique was not without influence on Hilbert’s programmeE] He now
started from an explicit finitary point of view to further develop what is now
known as Hilbert’s proof theory. Furthermore, Hilbert wanted to justify the use
of certain principles and modes of reasoning rejected by Brouwer and others,
because they presuppose infinite totalities. In the development of his proof
theory, mathematical proofs and propositions had to be turned into finite ob-
jects, constructed through derivations from axioms according to strict rules.
Metamathematics is then the study of these finitary objects and their relations.
Hilbert’s finitism however did not imply the exclusion of the notion of infinity.
On the contrary, as is stated in one of the most famous quotes by Hilbert from
his beautiful text On the infinite ([Hil26], p. 376):“ No one shall be able to drive us
from the paradise that Cantor created for us.” To Hilbert one is allowed to work
with the infinite but only through the kind of finitary framework he proposed
([Hil26], p. 392):

The final result then is: nowhere is the infinite realized; it is neither present in
nature nor admissible as a foundation in our rational thinking — a remarkable
harmony between being and thought. We gain a conviction [...] that if scientific
knowledge is to be possible, certain intuitive conceptions and insights are indis-
pensable; logic alone does not suffice. The right to operate with the infinite can
be secured only be means of the finite. The role that remains to the infinite is,
rather, merely that of an idea - if, in accordance with Kant’s words, we under-
stand by an idea a concept of reason that transcends all experience and through
which the concrete is completed so as to form a totality — an idea, moreover, in

which we may have unhesitating confidence within the framework furnished by

12In [Man98] one can find a collection of 25 papers translated into English of some of the
leading mathematicians from the beginning of the 20th century, focussing on the debate be-
tween Brouwer and Hilbert. Each paper is discussed in detail and placed in its proper historical
context. Furthermore the book gives a detailed bibliography containing both primary as well
as secondary sources.
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the theory [...]

If one wants finitary proofs for any proposition in mathematics a natural ques-
tion to be asked is of course whether every problem in mathematics can be
solved through such finite means.

It is exactly this problem that led to the formulation of the Entscheidungsprob-
lem for first-order predicate calculus, formulated by Ackerman and Hilbert in
their [AH28]. The first use of the word Entscheidungsproblem is most probably
due to Behmann, a student of Hilbert, who explained it as follows (|[Beh22], p.
166):

A quite definite generally applicable prescription is required which will allow one
to decide in a finite number of steps the truth or falsity of a given purely logical
assertion; or at least precise limits should be given within which an effective pre-

scription of this kind can be foundlr_g]

However, already before Behmann’s use of the notion Entscheidungsproblem
Hilbert had formulated another important decision problem as one of the 23
problems he confronted the mathematical community with at the beginning
of the 20th century, i.e. the decision problem for Diophantine equations. This
long-standing problem was finally solved in the negative by Yuri Matijasevich
[Mat70] in 1970. Hilbert formulated the problem as follows ([Hil01], p. 19):

Given a diophantine equation with any number of unknown quantities and with
rational integral numerical coefficients: to devise a process according to which
it can be determined by a finite number of operations whether the equation is

solvable in rational integersE]

In both the statement of the Entscheidungsproblem as well as the problem now
known as Hilbert’s tenth problem the use of the word finite is basic. Indeed,

13Translated from German in [Gan88], p. 62.

14“Eine Diophanstische Gleichung mit irgend welchen Unbekannten und mit ganzen ratio-
nalen Zahlencoefficienten sei vorgelegt: man soll ein Verfahren angeben, nach welchem sich
mittelst einer endlichen Anzahl von Operationen entscheiden ldfst, ob die Gleichung in ganzen
rationalen Zahlen lésbar ist.”. Translated in English by David E. Joyce available through:
http://aleph0.clarku.edu/ djoyce/hilbert/toc.html.
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what one is asking for is to find a general finite method to solve any instance of
the problems involved.

Two other famous decision problems had also already been formulated. In
1911 Max Dehn had formulated the decision problem for groups (and other
related problems). It was solved in the negative by Novikov and Boone in the
sixties [Boo66]. Dehn defined the problem in terms of finding a solution in a
finite number of stepsE] In 1914 then, Axel Thue first stated the word prob-
lem for semi-groups, and also asked for a finite method to solve the problem.
He imposed the extra requirement that one should not only be able to prove
that something is solvable by proving that there exists a general finite method
to solve the problem, but that one should also be able to compute a bound on
the number of steps needed to make the calculation ([Thul4], p. 4):

One can now formulate the general problem: Given any two sequences of sym-
bols A and B, find a method to determine, after a calculable number of opera-
tions, if two arbitrary sequences of symbols are or are not equivalent to the se-

quences A and BPE]

As is pointed out by Gandy [Gan88], to calculate a bound on the number of
steps needed to solve a given instance of a decision problem is not a necessary
requirement to prove that a given decision problem is solvable. Although in
practice this bound is a basic requirement, one “only” has to prove that a given
decision procedure will always end in a finite number of steps resulting in a so-
lution, to establish the theoretical result.

The only way to prove any of these problems unsolvable, was to find a good for-
malization of certain intuitive notions such as the notion of computability. In
the twenties however, many mathematicians, including Hilbert, shared the op-
timism that it would be possible to find a solution for any mathematical prob-

15“NMan soll einde Methode angeben, um mit einder endlichen Anzahl von Schritten zu

entscheiden [...]”, [Deh11], p. 117.

16 “Man kann sich nun die grofse allgemeine Aufgabe stellen: Bei beliebiger Wahl der gegebenen
Zeichenreihen A und B einde Methode zo finden, durch welche man nach einer berechenbaren
Anzahl von Operationen immer entscheiden kann, ob zwei beliebig gegebene Zeichenreihen in
Bezug auf die Reihen A und B dquivalent sind oder nicht.” 1 am indebted to Maarten Bullynck
for his translation of the German quote.
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lem through finite means i.e., they believed that any decision problem could
be proven solvable. This optimism is still best expressed in the famous quote
by Hilbert (|Hil30], p. 387):

The true reason why Comte could not find an unsolvable problem, lies in my
opinion in the assertion that there exists no unsolvable problem. Instead of the

stupid Ignorabimus, our solution should be: We have to know. We will knowﬁ

Others however did not share this optimism and understood the possibility of
such positive solution as the end of mathematics as it existed at that time. This
is e.g. clearly echoed in a quote by Von Neumann ([vN27], 11-12):

So it appears that there is no way of finding a general criterion for deciding whether
or not a well-formed formula is a theorem. (We cannot at the moment prove
this. We have no clue as to how such a proof of undecidability would go.) But
this ignorance does not prevent us from asserting: As of today we cannot in gen-
eral decide whether an arbitrary well-formed formula can or cannot be proved
from the axiom schemata given below. And the contemporary practice of math-
ematics, using as it does heuristic methods, only makes sense because of this
undecidability. When the undecidability fails then mathematics, as we now un-
derstand it, will cease to exist; in its place there will be a mechanical prescription

for deciding whether a given sentence is provable or notEg]

17To Gandy this optimism is one of the main reasons why no one belonging to Hilbert’s school
proved the Entscheidungsproblem unsolvable.

18“Der wahre Grund, warum es Comte nicht gelang, ein unlésbares Problem zu finden,
besteht meiner Meinung nach darin, dafles ein unldsbares Problem {iberhaupt nicht gibt. Statt
des torichten Ingnorabimus heille im Gegenteil unsere Losung: Wir miissen wissen, Wir wer-
den wissen.” I am indebted to Maarten Bullynck for translating the German quote.

19 “Es scheint also, daR es keinen Weg gibt, um das allgemeine Entscheidungskriterium dafiir,
ob eine gegebene Normalform a beweisbar ist, aufzufinden. (Nachweisen kénnen wir freilich
gegenwartig nichts. Es ist auch gar kein Anhaltspunkt dafiir vorhanden, wie ein solcher Un-
entscheidbarkeitsbeweis zu fithren wire.) Diese Ungewillheit hindert uns aber nicht daran,
festzustellen: Heute ist es nicht allgemein zu entscheiden, ob irgendeine gegebene Normal-
form a (bei der in folgenden zu beschreibenden Axiomenregel) beweisbar ist oder nicht. Und
die Unentscheidbarkeit ist sogar die Conditio sina qua non dafiir, dal} es iiberhaupt einen Sinn
habe, mit den heutigen heuristischen Methoden Mathematik zu treiben. An dem Tage, an dem
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As was shown here, starting in the 19th century, the foundations of mathemat-
ics became the object of study for many mathematicians and logicians. Re-
search on these foundations finally led to the finitary programme of Hilbert’s
school and resulted in a new discipline lying at the borderline between logic
and mathematics, i.e. mathematical logic. In the end, research in this domain
would uncover its own limits.

2.2 From solvability to unsolvability: Emil Post’s frus-

trating problem of “Tag”

2.2.1 Introduction

In 1965 Martin Davis, a student of Emil Post, published an important anthol-
ogy of fundamental papers on unsolvable decision problems and undecidable
propositions, including the seminal papers by Church, Turing and Post. This
collection of papers has been invaluable in many respects for my research, es-
pecially because it includes a paper by Emil Post entitled Absolutely Unsolvable
Problems and Relatively Undecidable Propositions. Account of an Anticipation.
The paper was never published before. It describes the results Post had estab-
lished during his Procter fellowship from 1920-21 in Princeton. Fifteen years
before the publication of Church’s and Turing’s now classic results on the Entschei-
dungsproblem [Chu36c] [Tur37], Post had already found that certain decision
problems closely related to the Entscheidungsproblem are unsolvable and in-
ferred from these results that any finite system of symbolic logic relative to a
certain class of systems, must be incomplete. Post had thus anticipated results
similar to the fundamental results by Godel, Church and Turing. At that time,
he did not prepare a paper for publication describing these results. Only 20
years later he submitted the paper mentioned above to the American Journal of

die Unentscheidbarkeit aufhorte, wiirde auch die Mathematik im heutigen Sinne aufhéren zu
existieren; an ihre Stelle wiirde eine absolut mechanische Vorschrift treten, mit deren Hilfe je-
dermann von jeder gegebenen Aussage entscheiden kénnte, ob diese bewiesen werden kann
oder nicht.” English translation from [Gan88], p. 67.
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Mathematics but it was rejected by the editor Hermann Weyl. Following the ref-
eree’s recommendation that the normal form theorem included in his [Pos65]
is new and important, and might be used to obtain proofs of unsolvability for
various mathematical problems such as the word problem of groups@]Post re-
worked the paper and finally a very abbreviated version (to about one third) of
the paper was accepted [Pos43], the historical account being reduced to a long
footnote at the end of the paper.

In his letter of submission of the original version, Post gave several reason why
he did not submit these results back in the twentiesEr] First of all, he had al-
ready experienced several problems to publish other of his results, including
his Ph.D. dissertation which was only accepted after its original length was re-
duced to one third. Secondly, his efforts to obtain a full, more detailed proof
of his results, searching for a more complete analysis supporting the thesis he
had to assume, similar to Church’s and Turing’s, for his results to be valid, were
interrupted by a manic-depressive illness he suffered from during his whole ca-
reer.

In his letter explaining why Post’s Account of an anticipation was not accepted,
Hermann Weyl statesF_Z]

[...] Thave little doubt that twenty years ago your work, partly because of its
then revolutionary character, did not find its due recognition. However, we can-
not turn the clock back; in the meantime Godel, Church and others have done
what they have done, and the American Journal is no place for historical ac-
counts;. .. (Personally, you may be comforted by the certainty that most of the
leading logicians, at least in this country, know in a general way of your anticipa-

tion.)

Post himself was very well aware of the fact that Godel, Turing and Church
had already published similar results in the thirties. The question of why he

20See [Dav94] where part of this referee report is quoted.

21The full text of the letter was published in the introduction Martin Davis wrote to Post’s
collected works [Dav94] as well as in [Dav89].

22Herman Weyl, in a letter to Post dated March 2, 1942. Quoted from the introduction of
[Dav9o4].
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nonetheless wanted his results to be published is thus significant. Assuming
that it was self-absorption that led him to this seems to be wrong given the
modesty with which he writes, his care in referring to other sources, and not in
the least, the way in which he acknowledged the fact that Godel fully deserved
his credit. In a postcard dated October 29, 1938 written after he had met Godel,
Post writes ([G6d03b], p. 169):

[...] for fifteen years I had carried around the thought of astounding the mathe-
matical world with my unorthodox ideas, and meeting the man chiefly responsi-
ble for the vanishing of that dream rather carried me away. [...] As for any claims
I might make perhaps the best I can say is that I would have proved Godel’s The-
orem in 1921 - had I been Godel.

One day later, he wrote a letter to Godel in which he stated the following hard
words: “[...] after all it is not ideas but the execution of ideas that constitute[s]
a mark of greatness.” (|God03b], p. 172). In a way, in 1936 he had bad luck
again. He formulated and formalized a concept of computability [Pos36] which
is almost identical to that formulated and published by Turing at about the
same time [Tur37]. Post’s paper though did not contain the concept of a uni-
versal machine, nor the important theorems on unsolvable decision problems
from Turing’s paper. These misfortunes seem not to have discouraged Post: in
the forties he wrote his important paper on recursion theory [Pos44], he pub-
lished his proof of the unsolvability of the Correspondence Problem [Pos46],
and furthermore proved the unsolvability of the word problem for semi-groups
[Pos47]. A further important contribution was not in mathematical logic but in
group theory, namely his long paper on polyadic groups [Pos40] F_S-]

The work of Emil Post has had many influences ranging from mathematical
logic to computer science To give some examples, he is known as one of the

2 Another part of the research of Post that should be mentioned here is his work on provabil-
ity and definability. He tried to find an absolute and fundamental explication of these notions
comparable to those already offered in [Tur37,[Pos36}/Chu36c] for the notion of computability.
There are only two abstracts published on this research [Pos53b} [Pos53a], but as mentioned by
Martin Davis in his introduction to the Collected Works of Emil Post [Dav94] his notes in bound

notebooks on this subject are still available.
24A paper surveying Post’s influence on computer science is Davis’s [Dav89).
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co-founders of recursion theory [Dav94, |Sti04], he seems to have influenced
John Backus in formulating what came to be called “Backus Normal Form”
[Bac80, Bac81), [Dav88|, he had an impact on the study of NP-complete lan-
guages in structural complexity theory [Dav94, Sad98|, and influenced Chom-
sky’s construction of context-free grammars [CM58] through his systems in canon-
ical form C [Dav88| | Furthermore Post was one of the first to prove the un-
solvability of certain decision problems further removed from mathematical
logic like the unsolvability of the word problem for semi-groups [Pos47], and
the unsolvability of the Post correspondence problem [Pos46], which has be-
come an important tool to obtain unsolvability results in formal language the-
ory [Dav89]. It should also be mentioned here that there are some indications
that Post’s work on rewriting systems might have had an influence on cryptog-
raphy [AA93].

So why did Post in the end submit his Account of an anticipation? In the in-
troduction to his [Pos65] Post fully acknowledges the fact that there would be
little point in publishing his “anticipation [...] merely as a claim to unofficial
priority” to the results of Gédel, Turing and Church. But he also remarks:

[...] with the Principia Mathematica of Whitehead and Russell as a common

25As for the exact extent to which Chomsky was influenced by Emil Post’s work, Chomsky
pointed out to me:“In the days when I was following these topics closely — some years ago —
Post systems were little known, apart from Martin Davis’s book [Dav58|, where I learned about
them, then checked some of the papers. I was interested at the time in automata theory and
possible applications to linguistics. I'd studied standard versions of recursive function theory
(Kleene, etc.), but when I came across Post’s work (in Davis) it was obvious that this was a good
framework for systems of the sub-recursive hierarchy that could be adapted to the study of
language, specifically context-sensitive and context free grammars (and as a subcase, finite au-
tomata and Markov sources, mostly in order to show that they couldn’t work for language —
they were all the rage at the time in information sciences, mathematical psychology, and re-
lated areas). But that’s the limit of the influence. My first paper about this was in 1956, at the
IRE (Institute of Radio Engineers), but I also pointed out in that paper that for other reasons
even the richest systems of this kind didn’'t have the right properties for natural language, in my
opinion (then, or now).”
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starting point, the roads followed towards our common conclusions are so dif-

ferent that much may be gained from a comparison of these parallel evolutions.

He then mentions three reasons why his work can still be of significance. First,
he focuses on the outward form of symbolic expressions and the possible op-
erations thereon — an approach which resulted in a class of very general and, at
first sight, simple systems [Pos65], pp. 341-342:

Perhaps the chief difference in method between the present development and
its more complete successors is its preoccupation with the outward forms of
symbolic expressions, and possible operations thereon, rather than with logical
concepts as clothed in, or reflected by, correspondingly particularized symbolic
expressions, and operations thereon. While this in part is perhaps responsible
for the fragmentary nature of our development, it also allows greater freedom of

method and technique.

Second, he added another equivalent formulation to the list of general recur-
siveness, A-definability and Turing computability, viz., normal forms. Also, Post
considered not the intuitive idea of a computation (as Turing) or the concept of
effective calculability (as Church), but that of a generated set. In this respect
Post formulated a thesis similar to that by Turing and Church already in 1921. A
third and final reason, for the significance for making available his results from
1920-21 is his conclusion that “mathematical thinking is, and must be, essen-
tially creative” from which he concludes that such “developments will result in
a reversal of the entire axiomatic trend of the late 19th and early 20th centuries,
with a return to meaning and truth”f|

Starting from his Ph.D. dissertation, we will show in this section how Post was
led from the optimistic opinion, that there exists a single algorithm for the
whole of mathematics, to the idea that no such algorithm can ever be found |

261t should be noted here that this statement should not be confused with those made by Lu-
cas and Penrose [Luc61), [Pen94] who concluded, on the basis of Gddel’s incompleteness result,
that mathematical thinking and understanding must be non-computable.

2The analysis presented in this section appeared as Closing the Circle. An analysis of Emil
Post’s early work [Mol06a]. It should also be pointed out here that Martin Davis’s [Dav82] dis-
cusses Post’s [Pos21al [Pos65] where Post’s thesis is mentioned for the first time.
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Focus will be put on the first two reasons pointed out by Post for wanting to
publish his Account of an anticipation. We will return to all three reasons in
our comparison of the respective theses put forward by Post, Church and Tur-
ing and their respective interpretations attached to it (See Ch. [3). We will argue
how it was Post’s focus on outward form rather than on logical concepts that
led him to the construction of his form of “tag” — a form that will play a major
role in part II of this dissertation — and how it were his “experiences” in working
with special cases of this form, that played a basic role in the formulation of his
very important systems in normal form. These last systems finally led him to
a thesis similar to Church’s and Turing’s and a proof of the general unsolvabil-
ity of certain decision problems to these systems in normal form. Through the
analysis of Post’s earlier work we will be able to show how he arrived at the for-
malization of the intuitive notion of a generated set. As will become clear, it was
not an analysis of the intuitive notion and thus the idea of finding such identifi-
cation, but rather the formalisms themselves that resulted in Post’s thesis. The
results from this analysis will avail themselves as important in our recurring
discussions on identifying an intuitive notion with a formal (class of) systems
throughout this dissertation and will contribute to one of our main questions of
trying to understand the link between the proof of the unsolvability of a whole
class of systems, and the actual execution of these systems.

In 1954 Post died from a heart-attack, after one of the electro-shock treatments
he received for the illness that pursued him throughout his entire career. Post
had had a very difficult life, and had to cope with several problems that many
people would not be able to combine with an academic career. This enforces
even more respect for Emil Post both as a mathematician as well as a person.
The following quote by Martin Davis gives an impression of the difficulties Post
had to overcome during his life [Dav94]:

Post’s life was a struggle with adversity. He managed well the handicap he suf-
fered in childhood when he lost an arm in an accident. But in his scientific labors,
he had to overcome obstacles that would have daunted most. He suffered all his
adult life from crippling manic-depressive disease at a time when no drug ther-

apy was available for this malady. Until 1935, he was unable to obtain a regular
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academic position, making his living, for the most part, by teaching in the New
York high school system. At City College he worked under conditions that would
seem intolerable nowadays. The standard teaching load was 16 contact hours
per week. There were no individual faculty offices (everyone shared one large
room with a huge table in the center), so Post did his research sitting at a desk in
the living room in his small apartment while his young daughter was required to
maintain silence. There was no secretarial help, and Post had to type his own let-
ters of recommendation for students unless his wife did it for him. His research in
mathematical logic was ahead of its time and very much out of the mainstream of
mathematical research in the United States. Post suffered repeated episodes of
mania which required institutionalization. Electro-shock therapy was believed
by his physicians and his family to be the most efficacious treatment. His tragic
death from a sudden heart attack occurred in a mental institution shortly after

one of these treatments.

2.2.2 Focus on Form

It is a familiar fact to the student of algebra or geometry that many a seemingly
difficult problem may often become remarkably simple when one makes the
right change in variable or the appropriate choice of coordinates. In the same
way a suitable system for representing numbers will sometimes facilitate and
simplify problems in higher arithmetic. Conversely, he who devises a new nu-
merical notation is sure to discover new properties of numbers and to realize
more fully the difference between a symbol for the number and the number it-
self.

Derrick Lehmer, 1935@

As was explained in the previous section, there was clearly something in the air
in the twenties and thirties of the 20th century. Research on the foundations of
mathematics gave rise to a new discipline called mathematical logic. Post can
be regarded as one of the main and early contributors to this new domain.

28[Leh33], p. 460.
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Towards a general theory of elementary propositions

In 1917 Post got his B.S. at City College, and went to Columbia University where
he wrote his Ph.D. dissertation. It was here that he became acquainted with
Russel’s and Whitehead’s massive three volume work in Kassius J. Keyser’s sem-
inar on Principia Mathematica [RW13]. Another important influence on Post’s
earlier work was the recently published book A survey of Symbolic Logic [Lew18]
by C.I. Lewis, where it is shown how any system of symbolic logic working with
an infinite set of variables, can be transformed into a logic that deals with finite
strings of symbols over a finite alphabetF_g]

These two influences are visible in Post’s dissertation, published in 1921 as In-
troduction to a general theory of elementary propositions, where he developed
a general form of symbolic logic based on finitary symbol manipulations, to be
studied by mathematical methods, abstracting from meaningF_G] At that time
Post was convinced that the whole of mathematics could be formalized into
a system of finitary symbolic logic and that Principia would be shown to be
complete, decidable and consistent, thus sharing the optimism of some other
mathematicians during that period. In his Ph.D. dissertation he isolated the
propositional part of Principia, nowadays called propositional calculus, and
proved that its axioms are complete and consistent. To prove this, he devel-
oped the truth-table method and showed that this method provides a solution
to the decision problem for propositional calculusEr] Basic for Post’s disserta-

29Even in his [Pos43], the very abbreviated version of Post’s [Pos65] that was finally published
in the American Journal of Mathematics Post starts by referring to Lewis’ [Lew18], and makes
explicit that he does not work with “the usual form of symbolic logic with its parenthesis no-
tation and infinite set of variables”, but with the equivalent forms of symbolic logic for which
“the enunciations, i.e., formulas of the system [what we now call w.f.f.’s], are finite sequences of

letters, the different letters constituting a once-and-for-all given finite set.” [Pos43], p. 197

30The paper [Dav95] by Martin Davis and his introduction to the Collected Works [Dav94],
gives a further analysis of Post’s Ph.D. thesis.

31Although Post is known as one of the first to prove propositional calculus decidable and
complete, it should be pointed out that Zach [Zac99] has shown that similar results were al-
ready obtained by Hilbert and Bernays: “These results include: explicit semantics for proposi-
tional logic using truth values, decidability of the set of valid propositional formulas, complete-
ness of the axiom systems considered relative to that semantics, as well as what is now called
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tion is that he enunciated the distinction between the theorems of the system
and the theorems about the systems, a differentiation that was at that time far
from evident‘P_ZI Not making such a distinction is identified by Post as “an in-
curable defect” in many developments of symbolic logic at that time. As Post
points out, Principia appeared not to suffer from this defect, but this does not
mean that he was completely satisfied with the system presented by Russell and
Whitehead.

It is at this point that his dissertation, notwithstanding its affiliations to the
ideas of contemporary logicians and mathematicians, marks the beginning of
the development of a theoretical framework that would remove him from these
common origins. Post wanted to develop the most general form of symbolic
logic and mathematics. As is already clear from the title of his dissertation, he
started this project by doing so for propositional calculus. To Post, Principia
was not the right format to find the most general form of symbolic logic and
ultimately mathematics [Pos21a, pp. 163-164]:

But owing to the particular purpose the authors [Russell & Whitehead] had in
view they decided not to burden their work with more than was absolutely neces-
sary for its achievements, and so gave up the generality of outlook which charac-
terized symbolic logic. [...] we might take cognizance of the fact that the system
of ‘Principia’ is but one particular development of the theory [...] and so [one]

might construct a general theory of such developments.

In his dissertation Post went on to develop more general forms and methods
for symbolic logic, which he wanted to use as “instruments of generalization” to
study more general properties of logic and mathematics like, e.g., decidability

Post completeness, consistency and independence results, general three- and four-valued matri-
ces, and rule-based derivation systems. All these results were obtained independently of logicians
to whom they are usually credited (notably Pierce, Wittgenstein, Post, and Lukasiewicz). Far be
it from me to dispute their priority. After all, Hilbert and Bernays's work remained unpublished,
and in some respects the work by those other logicians investigates the questions at hand more
deeply or is more precise than Hilbert and Bernays’s.” [Zac99], p. 332

32“We here wish to emphasize that the theorem of this paper are about the logic of propositions
but are not included therein” [Pos21al, pp. 163-164
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and completeness. One such instrument was his truth-table method of which
he states [Pos21a, p. 166]:

Let us denote the truth-value of any proposition by + if it is true and by - if it
is false. This meaning of + and - is convenient to bear in mind as a guide to
thought, but in the actual development that follows they are to be considered

merely as symbols which we manipulate in a certain way.

As is clear from this quote, to Post, systems and methods of symbolic logic have
to rely on finitary symbol manipulation, and should not be bothered with the
specific meanings involved. As was shown in the introduction this focus
on outward form, rather than on logical concepts is exactly where Post’s work
differs from that by Church and Godel. Making abstraction from specific logical
concepts and thus focussing on form is one of the main features of Post’s earlier
work and makes it mathematical rather than logical in nature| This method
of generalization is made explicit in his dissertation not only through the devel-
opment of the truth-table method but also through the further generalization
of two-valued logics to many-valued logic.

A more important generalization in this context is the proposal of a general
form for systems of symbolic logic. In his dissertation he identifies this fur-
ther generalization as generalization by postulation and later called systems of
this form, systems in canonical form A. Within these systems strings are pro-
duced through finitary symbol manipulation and they can thus be regarded as
combinatorial systemsE] These were at first developed as generalizations for
propositional calculus, but Post later realized that they are far more general.
Without going into the details of systems in canonical form A, it is important

33This method of generalization replacing the more usual semantical approach by logicians
in the twenties was also discussed in [Dav82]. Davis states [Dav82], p. 18: “Whereas Hilbert
and his school went on to approach the decision problem for quantification theory semantically,
Post evidently felt that was not a promising direction because the combinatorial intricacies of
predicate logic were too great to penetrate in that manner, and what he proposed instead was to
simplify by generalization.That is, he proposed to abstract from the kind of rules that occur in
quantification theory to obtain a class of rules which included them.”

34As Davis remarks in his introduction to [Dav94] the strings produced by such systems can
be regarded as being an arbitrary recursively enumerable set of strings on a finite alphabet.
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to notice the explicit use of the word “form”. Instead of constructing one spe-
cific system with a specific interpretation, Post constructs a form, a general set
of rules, that includes not one but an infinite number of systems of symbolic
logic. Indeed, starting from this form, it is possible to generate infinitely many
systems of logic — each with its own axiom(s) and production rules — which all
share the same form, i.e., formalization is taken literal here.

Ambitions of a Ph.D. student: Solving the finiteness problem for Principia

After the generalizations developed in his Ph.D., Post wanted to go ahead with
his programme, as he already announced in the introduction of his [Pos21a].
He wanted to extend his results for the propositional calculus to the whole of
Principia and find a positive solution for the decision problem for the entire
Principia and thus also solve the Entscheidungsproblem that had hardly been
formulated as a problem at the time Post considered it. Post used the term
finiteness problem to talk about decision problems, and we will use his termi-
nology in the remainder of this section. This programme of proving the solv-
ability of the whole Principia can at least be called ambitious. As Martin Davis
described it ([Dav94]):

Since Principia was intended to formalize all of existing mathematics, Post was

proposing no less than to find a single algorithm for all of mathematics.

Post did not want to use the formalism of Principia since he believed that the
particular processes used in this framework would hardly allow for such more
general results and thus started from his systems in canonical form A

In the abstract [Pos21b] Post presented a solution of the finiteness problem for
a certain subclass of systems in canonical form A. In his Account of an antici-
pation he points out the difference between this solution and the solution for
the finiteness problem for propositional calculus [Pos65, pp. 345-346]:

35E.g., in his dissertation he states that he is convinced that due to these particular processes
it would have been hardly possible to develop a general theory of propositions as well as the
results from his dissertation, if he would have used the formalism presented in Principia (See
[Pos21al, p. 164).
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We shall say that we thus solved the finiteness problem for the (~, v) system.
While this solution was purely formal, nevertheless it was suggested by the intu-
itive interpretation of “~” and “v”. For the above generalizations such interpre-
tation are not at hand. Nevertheless (...) the writer solved the finiteness problem
for those of the above systems in which the primitive functions are all functions
of one variable, the resulting relative simplicity of the systems allowing a direct

analysis of the formal processes involved.

As is clear from this quote, Post indeed saw certain advantages in the more ab-
stract class of systems in canonical form A. Indeed, after having noted that his
solution for the finiteness problem for propositional calculus was suggested by
the interpretation of “~” and “v”, he immediately adds that such interpretation
is lacking for the subclass of systems in canonical form A he considered, thus
allowing for a more direct analysis of the formal processes involved. He could
study these systems as being pure symbol manipulating systems that generate
logical propositions without having to take notice of the content of what pre-
cisely is deduced.

Being convinced that it would be more straightforward to find a positive solu-
tion to the finiteness problem for systems in canonical form A, he wanted to
prove the solvability of the finiteness problem for restricted functional calculus
(first-order predicate logic) contained in Principia by reducing it to a system
in canonical form A and then solve the finiteness problem for these formally
simpler systems in canonical form A. He proved this through reduction to what
he called a system in canonical form B and then reduced systems in canonical
form Ato BP9

By the time he got these results (October 1920), he was already awarded the
prestigious Procter fellowship at Princeton. He now reoriented his research to-
wards a problem that is closely connected to the finiteness problem, namely the
problem of determining for any two expressions of a given system, what sub-

36As he remarks, some slight adjustments of his canonical form A made such a reduction
proof for the functional calculus easier. It are systems in this adjusted canonical form he called
systems in canonical form B. It should be further noticed that about one year later he also
proved the reducibility of canonical form B to A so the equivalence of these two forms was
established.
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stitutions would make those expressions identical. This problem would nowa-
days be called the unification problem for the w order predicate calculus (See
[Dav94])E] However a solution for this problem for the whole of Principia was
notimmediately at hand - “[this] general problem proving intractable”. In trying
to solve it, Post then applied a technique which was at that time already rather
familiar to him, namely simplifying and abstracting from the original problem.
This abstraction process resulted in the problem of “tag”.

2.2.3 The Problem of “Tag”.

Post’s method of generalization, abstracting away from meaning, led him to
a class of symbol manipulating systems for which he formulated a problem
closely connected to the finiteness problem. He arrived at this problem by per-
forming several successive simplifications on the above mentioned unification
problem for Principia. Despite the expected simplicity of the problem in this
reduced form, a solution was considered to be fundamental for the further de-
velopment of his research. It was not only considered relevant for the above
mentioned unification problem, but also for a solution of the finiteness prob-
lem for those systems in canonical form A, which go but a little beyond those
which involve only primitive functions with one argument (and were already
proven to be solvable) [Pos65], p. 361:

The general problem proving intractable, successive simplifications thereof were
considered, one of the last being this problem of “tag”. Again, after the finiteness
problem for systems in canonical form A involving primitive functions of only
one argument was solved, an attempt to solve the problem for systems going, it
seemed, but a little beyond this one argument case, led once more essentially to
the selfsame problem of “tag”. The solution of this problem thus appeared as a

vital stepping stone in any further progress to be made.

Although a solution for this problem of “tag” was considered to be a vital step-
ping stone, Post believed that finding a solution for his problem of “tag” would

37 A very trivial example of unification is to make f(x) identical to f(y) by substituting x for y.
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be rather straightforward. However, after about nine months of work he real-
ized that this judgement was seriously in error and he was finally led to a rever-
sal of the direction of his entire program.

Aform of “tag”, i.e. a tag system, is defined as followslg_g] Given a positive integer
v, and an alphabet Z = {0, 1, ..., p— 1} consisting of u symbols. With each of
these symbols one associates a word over the alphabet:

0 — ap,14p,2..... Ao, y,
1 — a1a1,2..... ai,y,

Now, given an initial string A over the alphabet, “tag” at the right end of the
string the word associated with the leftmost symbol of A, and remove at the left
end the first v symbols. Apply this tagging and removing operations on the new
resulting string A’, which results in a new string A”,... Post gives the following
seemingly very simple example: A={1,0}; 1 — 1101; 0 — 00; v = 3. If the initial
string is “10101001110101111001”, applying the rules of this tag system results
in the following productions:

10101001110101111001
010011101011110011101
01110101111001110100
1010111100111010000

381 am indebted to Martin Davis for calling my attention to the origin of the word “tag”. As
a noun, a “tag” designates a physical object to label something — like the price of an item in
a shop. The respective verb “to tag” then designates this operation of putting such a tag on
something. A derived meaning can be found in the children’s game in which a pursuer tries
to catch the pursued and “tag” her (or him) with a touch. It is this meaning of the verb that
gave the problem of tag its name: in an earlier formulation of the problem, every v-th letter of
the sequence was merely checked off (and not removed) while at the same time the respective
sequence was added to the right end of the sequence. Starting on the left the mark then moves
more and more to the right, “pursuing” the right end of the string.
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011110011101000000

Post formulated two forms of the problem of “Tag”. In its first form the prob-
lem is to obtain for a given basis, a general method to decide for any initial
string I whether the process of tagging and removing letters will ever produce
the empty string and thus come to an end. In its second form — where the initial
sequence [ is considered as being part of the basis — the problem for a given ba-
sis is then to find a general method for determining for an arbitrary string and
this basis whether it will ever be generated by the given basis. It is the problem
posed in its second form — as Post remarks — that arose in connection with the
finiteness problem.

At first, Post was very optimistic about finding a solution for solving the prob-
lem of “tag”, given the deceiving simplicity of the general form. Soon, however,
he understood that he was misled. During his research on tag systems, Post
was obliged to apply the more “experimental” practice of working out specific
cases and varying several parameters in order to infer certain properties of tag
systems and identify the different classes of behaviour@ Despite their seeming
simplicity tag systems are well-known for their intractability. In order to get a

39The notion “experimental” is placed between double quotes here, because it is in no way
whatsoever intended as a kind of special method intervening on the usual methods of math-
ematics. It merely indicates the fact that Post had to test several tag systems to gain more
information about these systems, a method that seems unavoidable for any mathematician
when intractable systems are involved. I would like to thank Martin Davis here, because it was
through his comments that I became more aware of the fact that one should be very careful in
using such terminology. In the first draft for my paper [Mol06a] I all too easy used the word
“experimental” in the context of Post’s work on tag systems without having thought about it
enough. It was through Davis’ comments that I understood that it can be a tricky business to
differentiate an experimental approach from some other kind of method used by the practicing
mathematicians. During my own research on tag systems, presented in part II of this disserta-
tion I for myself began to better understand that in a way it is sometimes hardly possible to
differentiate an “experimental” method from some other method when actually doing math-
ematics, searching for results, and I often remembered the words by Davis. Getting a better
understanding of mathematics, by actually doing it, is probably the most important and valu-
able lesson I learned in doing my research.
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mathematically rigorous grip on these systems, if possible, you first have to find
out how these systems behave under several different conditions. For certain of
these conditions, you don't need to ‘test’ anything on paper. It is, for example,
trivial to see why the class of tag systems with v =1 is solvable, you don’'t even
have to write anything down to understand this. But what about the class of tag
systems with v = 2, u = 2? As Post himself remarks, this case already demanded
considerable effort and he considered the proof of the solvability of this class as
the major result of his work as a Procter fellow@ But how would one start with
such a proof? More generally, how can one start with any mathematical proof
for these systems without having any information about what kind of behav-
iour several initial conditions can lead to, without e.g. knowing about the link
between the length of the words and v, without having a clue about what the
effect is of varying v and y,...? Or, as Minsky put it in considering the problems
involved when studying the example of a tag system Post gave: “one cannot ex-
pect much help from a computer [...] except for clerical aid in studying examples;
but if the reader tries to study the behavior of 100100100100100100 without such
aid, he will be sorry” (IMin67], pp. 267-268). Some of the problems related to
tag systems can be solved by “pure reasoning”, but most of them can only be
answered — or even posed — theoretically by first having gone through several
“tests”F_r] Tag systems simply don’t allow for a “direct theoretical intuition” due
to their abstractness.

Postindeed tested several cases, varying the parameters, and found three classes

401 the problem of “tag” was made the major project of the writer’s tenure of a Procter fel-
lowship in mathematics at Princeton during the academic year 1920-1921. [...] And the major
success of that project was the complete solution of the problem for all bases in which p and v
were both 2. [...] this special case . = v = 2 involved considerable labor.” ([Pos65], p. 362.). The
proof by Post was never published. In Section[9.4.2|we will give the proof, that consists of sev-
eral classes of cases, and one part of the proofis based on observations of the behaviour of tag

systems, using a computer.
41Since the notion “experimental” was put between double quotes, the same must be done

with the notion “pure reason”. To our mind, it seems sometimes as difficult to differentiate
an “experimental” approach from some other approach as it is difficult to separate a “pure
reasoning approach” from a so-called “experimental” approach.
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of behaviour: termination, periodicity and divergence Divergent behaviour
was further divided into two subclasses: tag systems that grow in a predictable
way and tag systems that don't ([Pos65], p. 362):

Where the process does not terminate, it is readily seen that according as the
lengths of the resulting sequences are bounded, or unbounded, the resulting in-
finite sequence of the sequences will, from some point on, become periodic, or
the length of the n-th sequence will increase indefinitely with 7. In the first case
the second form of the problem is again immediately solvable, while in the sec-
ond case the solution would follow if a method were also found for determining
of any given length of sequence a point in the process beyond which all derived

sequences were of length greater than that given lengthE]

This last possibility of divergent behaviour caused major difficulties Post was
unable to resolve. He furthermore classified classes of cases which are solvable
and which might not be solvable. The classes withgy=1orv=1orv=p=2
were proven solvable. The case with u =2, v > 2 he calls intractable, while he
terms the cases u > 2, v = 2 as being of “bewildering complexity”.

Post had not expected this. Simple though as they may seem, tag systems in-
deed give rise to intractable and complex behaviour. Even the simple exam-
ple given above is still not known to be decidable nor universal (despite the
availability of the computer). About this example Post remarks in a footnote
([Pos65], p. 363):

Numerous initial sequences actually tried led in each case to termination or pe-
riodicity, usually the latter. It might be noted that an easily derived “probability”

prognostication suggested that in this case periodicity was to be expectedlz_z"]

“2In Post’s example the string “010001011” will result in a NILL, while the string
“10111011101000000” will lead to periodic behaviour — period 6.

43 After this description Post added the following footnote: “In this analysis we may have gone
somewhat further than is justified by the notes.” ([Pos65], p. 362), a comment that shows how
much time Post spent on the problem.

441t should be remarked here that for small initial conditions, the tag system mentioned by
Post indeed always terminates or becomes periodic. Of course he was not able to test larger
initial conditions, since then one might have to go through millions of iteration steps before
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From this quote it is not only clear that Post indeed tested several cases, e.g., by
trying out “numerous initial conditions”, but that he even developed a certain
probabilistic method to predict the behaviour of the system.

It were his experiences with tag systems that laid the ground for the reversal of
Post’s program: his goal of finding a positive solution for the finiteness problem
for Principia seemed hopeless at that time. It is noteworthy that Post’s search
for the most general form to capture systems of symbolic logic ended up with a
form as simple as that of tag systems and that exactly this led him to the math-
ematical practice of working out special cases, hoping to infer more general
properties from these. It were not the theoretical considerations preceding his
work on tag systems but his struggle with what appeared to be easy problems
that led him to the idea of the finiteness problem possibly being unsolvable
[Pos65), p. 36317

While considerable effort was expanded on the case u = 2, v > 2, but little progress
resulted, such a simple basis as 0 — 00,1 — 1101, v = 3, proving intractable. For
a while the case v = 2, u > 2, seemed to be more promising, since it seemed to
offer a greater chance of a finely graded series of problems. But when this possi-
bility was explored in the early summer of 1921, it rather led to an overwhelming
confusion of classes of cases, with the solution of the corresponding problem
depending more and more on problems in ordinary number theory. Since it had
been our hope that the known difficulties of number theory would, as it were, be
dissolved in the particularities of this more primitive form of mathematics, the
solution of the general problem of “tag” appeared hopeless, and with it our entire
program of the solution of finiteness problems. This frustration [my emphasis],
however, was largely based on the assumption that “tag” was but a minor, if es-

sential, stepping stone in this wider program.

As is clear from this quote, these observations really bothered Post — he had not
expected difficulties for such “primitive forms of mathematics”, and it was only
when he was able to prove that canonical form A is reducible to a form which is

the system becomes periodic or terminates (if it ever does) — a task which is hardly possible
with pencil and paper.
45For further arguments concerning this statement, Cfr. Sec. M



2.2. FROM SOLVABILITY TO UNSOLVABILITY 53

closely connected to these tag systems, that these difficulties no longer seemed
surprisingP—_G]

2.2.4 Further reductions: From tag systems to Post’s thesis

Before Post started his research on tag systems, he had already shown that
canonical form A can be reduced to canonical form B and further proved that
the restricted functional calculus is reducible to a system in canonical form B.
At that time he still believed that the finiteness problem for Principiahad a pos-
itive solution — it was the motivation behind these first reductions ([Pos65], p.
346):

[...] impetus was lent to the work by our formally reducing the subsystem of Prin-
cipia Mathematica treated in *10 and *11 thereof to a system of the above type
[canonical form B]. For thereby a solution of the finiteness problem for all of the
above systems would immediately lead to a solution for this important subsys-

tem of Principia Mathematica.

Having understood after his work on tag systems that very simple production
systems can give rise to complex behaviour, Post was now led to a whole series
of reductions to systems in forms, that are formally far simpler than those in
canonical form A or B, let alone Principia.

Systems in canonical form C, normal form and the normal form theorem

The first transformation step he made was the reduction of systems in canoni-
cal form B to a canonical form C. Systems in this last form are nowadays known
as Post production systems. Given a system of which the enunciations, i.e. w.f.f’s
are all expressed in terms of “finite sequences of letters, the different letters con-
stituting a once-and-for-all given finite set.” ([Pos65], p. 197) such a system is
said to be in canonical form C, when the primitive assertions (i.e. the axioms)

46As was pointed out to me by Martin Davis, Post hoped that someone else would prove the
recursive unsolvability of tag systems. Post himself did not want to work on them again given
his frustrating experience. Finally the conjecture that tag systems are unsolvable, was proven
by Marvin Minsky in his [Min61], after the problem was suggested to him by Martin Davis.
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of the system are a finite set of enunciations in the above form, and the opera-
tions performable in the system are specified by a finite set of production rules
all of the following form:

8uP;1812P1 .. Gy Pyl &1(mi+1)

821P2822P;z ... &2m, Pz 82(my+1)

gklpilkngPiZk ---gkmkpi’/%kgk(mkﬂ)
produce

&1Pi&Pi,...8mPi, 8&m+1)

The g’s are given sequences of letters of the once-and-for-all given finite set of
letters or alphabet and the P’s the operational variables — they can be any com-
bination of letters from this same alphabet. The further restriction is added that
each P in the conclusion of the production is present in at least one premise of
that production. To understand how such a system in canonical form C works,
it may be helpful to give an example. Suppose that the alphabet is given by the
set of letters {a, b}, and for the sake of simplicity, further suppose that there is
only one initial assertion, namely:

ababbabbabaaaaababbababbbbababbbabbb
Furthermore, suppose there are two production rules:

abaPyabP>b
aP3sbbPyb
produces
bbPyaabbaab

and

bPybaPy b
bbPs ab
produces
abaPsy b
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Thus the basis of a system in canonical form C has been defined. To be able to
produce a new string, one has to check whether the initial assertion “fits” into
one of the forms given by the production rules. In this case the first production
rule can be applied, but not the second, resulting in the following production:

ababbabbabaaaaababbababbbbababbbabbb
ababbabbabaaaaababbababbbbababbbabbb

produces
bbbbaabbaab

From this new string, another string can be produced by applying the second
production rule:

bbbbaabbaab

bbbbaabbaab
produces

ababbaabbab

Constructing systems in this way, makes it possible to generate a variety of sys-
tems, which, depending on the production rules and the initial assertion(s),
each have their own properties: systems which are monogenic or no Sys-
tems which produce an infinite or a finite number of strings, systems whose
results are periodic or not,...To finish this example, the first strings produced
by the basis given here, are shown:

bbbbaabbaab
ababbaabbab
bbbbaaabbaab
ababbaaabbab
bbbbaaaabbaab
ababbaaaabbab
bbbbaaaaabbab

47 A monogenic system is a system for which there is for each assertion in the system one and
only one applicable production.
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Although systems in canonical form C can be interpreted as functional systems,
it is more straightforward to regard them as pure string rewriting systems. This
is partly due to the fact that “the boxes within a box symbolic form of the paren-
thesis notation is replaced merely by finite sequences of letters [...]’@ This re-
sults in a more flexible mechanism that becomes even clearer when actually
constructing such a system and making it work: the arbitrariness with which
such systems can be constructed — manually or programmed - is significant.

A special class of systems in canonical form C consists of systems in normal
form. Systems in normal form have only one primitive assertion (axiom) and
the finite set of production rules are all of the following form:

gP
produces
Pg’

Except for his tag systems, these systems are the most simple and general sys-
tems Post ever developed and he used them in several influential papers he
wrote in the forties, among them his foundational paper on recursion theory
[Pos44]. Tag systems are in fact a special class of systems in normal form. In-
deed, the production rules of any tag system can be rewritten in normal form
as:

a; wP
produces
Pwg,

with the length of w = v—1 and w; being the word corresponding to a;.

Fundamental to Post’s further research was his important normal form theo-
rem, first published in his [Pos43][**] From this theorem it follows that despite
their formal simplicity, systems in normal form are as powerful as systems in

48[Pos65], p. 363.
“9The normal form theorem was first proved in the summer of 1921 and published in his
[Pos65]. Marvin Minsky gave a simpler version of the normal form theorem [Min62a, Min67|
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canonical forms A, B and C. The theorem states that for every set of assertions
generated by a system in canonical form C over a given alphabet Z, a system
in normal form over an alphabet including Z can be set up, such that the as-
sertions from the system in canonical form are exactly those assertions of the
system in normal form which consist of no other letters than those contained
in X. Of this theorem, Marvin Minsky stated [Min62al], p. 1:

The theorem proved in this note is the Normal Form Theorem proved in Post’s
1943 paper [...] We have long felt that this result is one of the most beautiful in
mathematics. The fact that any formal system can be reduced to Post canoni-
cal systems with a single axiom and productions of the restricted form ca — at
is in itself a remarkable discovery, and even more so when we learn that this
was found in 1921, long before the formalization of metamathematics became

so popular.

Given his normal form theorem, Post was led to the actual reversal of his entire
program: he formulated a thesis similar to that by Church and Turing stated
only 15 years later and proved on the basis of this assumption that the finite-
ness problem for systems in normal form is unsolvable. But before further dis-
cussing these results it is important to argue that it was Post’s research on tag
systems that actually prepared the ground for this reversal.

The problem of “tag” and the reversal of Post’s program

The construction of systems in canonical form C and normal form and the re-
spective reduction proofs, were preceded by Post’s work on tag systemsm In
the limited existing literature discussing Emil Post’s early work [Dav82, [Dav94,
Sti04, Mur98] the fundamental role these tag systems have had in the further
development of this work is underestimated if not neglected. There are sev-
eral arguments that show that tag systems were an essential step towards Post’s
results on systems in normal form.

First of all, it was through his work on tag systems that he realized that such
primitive forms of mathematics can give rise to such bewildering complexity.

%0As is clear from the chronology of the sequence of events that led to his results Post sketches
in the introduction of [Pos65] (p. 341).
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On the one hand, this made the positive solution of the finiteness problem ap-
pear hopeless at that time (See Sec. [2.2.3). On the other hand the insight that
simple forms can be as powerful as Principia has been basic to his later re-
sults. The fact that Post discusses his tag systems in [Pos43] of which the main
purpose is the proof of his normal form theorem, adds further strength to the
significance of his work on tag systems for these later reductions.

More convincing are some quotes in which he literally states the dependence
of normal form on tag systems. In the last footnote of his [Pos43] Post writes:

In the summer of 1921, the intervening work on the problem of tag suggested
the reduction of canonical form C to the canonical form of the present paper,
and this reduction was followed by the successive reductions to normal form es-

sentially as given in section 2.

Although this quote seems ambiguous in that it suggests that there was an in-
termediary canonical form between canonical form C and normal form, the
‘canonical form of the present paper’ most probably refers to his normal form.
This interpretation relies on the fact that the only two forms described in the
paper besides the form of “tag” are canonical form C and normal formﬂ If
this interpretation is correct, then this quote indeed illustrates that tag systems
led Post to his normal form. The only other sensible interpretation here could
be that Post made a typing error: it is possible that it should not be canonical
form C, but B. Although this seems less obvious given the fact that the reduc-
tion of canonical form B to C is mentioned in this same footnote preceding
this quote, the quote interpreted in this way also gives full support to the above
mentioned statement: given the fact that canonical form C differs significantly
from canonical form B, the fact that tag systems suggested the possibility of this
reduction is then fundamental to the formulation of normal form.

A second less ambiguous quote is from Post’s [Pos65], p. 382:

In fact, at one point later in the work on “tag”, it seemed that the regularity in-
duced by always removing u elements from the beginning of a sequence was

responsible for the intrusion of number theory in the development, so that it

5!Normal form being a special case of systems in canonical form C.
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was tentatively suggested that “tag” be generalized to a form, which, indeed, is

exactly that of the later derived normal form.

Here Post states that the normal form was suggested due to a property of tag
systems which links them to number theory. This is a clear illustration of the
significance of tag systems for Post’s construction of systems in normal form.
Moreover, it was a property that showed the intrusion of number theory in his
development. This not only adds support to the significance of tag systems for
normal form, but furthermore to their relevance for Post’s results on unsolv-
ability@ A last quote that almost literally states the fact that tag systems were
fundamental to the further reductions from canonical form B to C to normal
form is the following ([Pos65], pp. 202-203):

Before turning to the proof of our basic theorem given in the next section [i.e.
Post’s normal form theorem] we wish to [...] state a problem which largely de-
termined the direction taken by the reductions of the next section, and may offer
further opportunities for unsolvability proofs. [...] The problem referred to above
takes two related forms. Both forms employ the following “tag” operations as we

shall call them.

Although being less direct, maybe the most remarkable thing Post notices in
this context, is the fact that once he had constructed the reduction from canoni-
cal form Ato normal form, these reductions functioned as a kind of explanation
for the difficulties he had experienced with tag systems [Pos65, p. 386]:

We have observed [...] how the seemingly simple problem of “tag” in fact proved
intractable for u = 2, v > 2, of bewildering complexity for p > 2, v = 2. In view of
our reduction of canonical form A to a form as close to that of “tag” as the normal

form, the difficulty of “tag” is no longer surprising.

His work on tag systems was probably the most frustrating research Post did
— struggling on the edge of unsolvability. However, they showed him that the

%2The significance of tag systems for the genesis of the idea that the finiteness problem does
have a negative solution is also explicitly stated in the last part of the second quote of section

B3
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simplicity of the basis of a system does not necessarily imply simplicity of the
behaviour of the system once it is “run”. In the end they were basic for his at
that time revolutionary, but unpublished, results.

Post’s thesis

Once Post had proven his normal form theorem, he completed his work by
“closing the circle” — he showed that systems in normal form are reducible to
canonical form A. All the forms discussed here (except for the form of “tag”)
were thus shown to be equivalent to each other. The fact that he had shown
that systems in a simple form could produce the same assertions deducible
from a more complicated system was now clearly understood. Post had already
proven that the part of Principia corresponding to first-order predicate calculus
could be reduced to a system in canonical form B, and that systems in canoni-
cal form B can be reduced to systems in canonical form C. It was the possibility
of reducing a seemingly more complicated form to a simpler form that was used
as a further argument for the possibility of reducing not only first order predi-
cate calculus but the entire Principia to a system in canonical form B and thus,
through the later reductions, to a normal form [Pos65, p. 384]:

The power of canonical form B was demonstrated [...] by the reduction of *10
Principia Mathematica to a single system in that canonical form. From this ex-
perience, and the knowledge of the kind of forms and the kind of operations
appearing in the whole of Principia Mathematica, or could be made to appear
if a complete symbolic development thereof were given, it becomes reasonably
certain that all of Principia Mathematica can in similar fashion be reduced to a
system in canonical form B. In the absence of the forbidding amount of work
needed to actually carry out this reduction, added strength is lent to the above
conclusion by the further reductions carried though (...); for if the meager formal
apparatus of our final normal systems can wipe out all of the additional vastly
greater complexities of canonical form B, the more complicated machinery of
the latter should clearly be able to handle formulations correspondingly more

complicated than itself.
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Together with the normal form theorem it followed from these considerations
that the whole of Principia could be reduced to the simple normal form, indeed
aresult that can be called remarkable given the time at which it was established.
It was this realization that finally led Post to the actual reversal of his entire
program.

Notwithstanding the fact that his tag systems had shown him the possibility of
certain decision problems being unsolvable it is significant that he still must
have had some slight hope for proving the solvability of the finiteness problem
for systems in normal form. In reducing such systems to still another form, a
solution again seemed within reach ([Pos65], p. 382):

While [...] special cases of “tag” might well be worth consideration as major
problems in themselves, the [...] further reduction of the normal form seemed

more promising.

Despite first successes Post soon realized that he wouldn’t find a solution to
the finiteness problem for systems in normal form. In using this new form for
solving the finiteness problem, he was only able to find solutions for a subclass
of this form, namely for those systems of which the operations consisted of
three of the four operations allowed for in this form. He concluded [Pos65, p.
283]:

The resulting methods held out the possibility of an attack on the finiteness
problem for systems having all four of the above types of operations, though cer-
tain of the difficulties of “tag” even then seemed glimmering in the distance. And
just when hope was thus renewed for a solution of the general finiteness prob-
lem, a fuller realization of the significance of the previous reductions led to a

reversal of our entire program.

This “fuller realization” points at what Martin Davis has called Post’s thesis [Dav82].
Given the generality of Principia it seemed that any method one could think of
to generate a set of strings, could be generated through Principia. Given the
reduction of first order predicate calculus to a system in normal form, by using
the normal form theorem, and the above mentioned considerations that con-
vinced Post of the reducibility of the whole of Principia to normal form led Post
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to the conclusion that whatever set we would consider generated can be gen-
erated by a system in normal form. This is Post’s thesis, and clearly differs from
that proposed by Church and Turing. It is significant to note that Post realized
that the validity of the thesis did not depend on a mere definition of generated
set, but depends on the possibility of a real implementation of an algorithm
for generating such a set. In this sense no diagonalization can be done effec-
tively. After having defined a certain set through diagonalization, Post remarks
([Pos65], p. 386):

[...] in our example we have merely defined a set of a-sequences [i.e. a certain set
defined through diagonalizing out of the class of normal form systems], whereas
to yield a true counter-example, we must show how to generate that set, i.e., set

up a system of “combinatory iteration”
where “combinatory iteration” is described as follows [Pos65, p. 386]:

[...] the method of combinatory iteration [...] eschews all interpretation, and
studies the system merely as a formal system. The operations of the system are
then described as “combinatory” since they largely involve but a reshuffling of
symbols; and it is through the “iteration”, i.e. continued reapplication, of these

combinatory operations that the entire system is obtained.

In understanding the computable character of the notion of generated set, iden-
tifying it with every possible system of symbolic logic, Principia included, the
fuller realization of the power of his normal form finally made him, after appli-
cation of Cantor’s diagonal method, conclude that the finiteness problem for
the entire class of systems in normal form is unsolvable ([Pos65], p. 386){|

We [...] conclude that the finiteness problem for the class of all normal systems is
unsolvable, that is that there is no finite method which would uniformly enable
us to tell of an arbitrary normal system and arbitrary sequence on the letters
thereof whether that sequence is or is not generated by the operations of the

system from the primitive sequence of the system.

53For a more detailed explanation of the diagonal argument Post uses see [Dav94} [Sti04].
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Of course the validity of this assertion really depended on his thesis: it was only
the assumption that every generated set of sequences can be obtained from a
normal system that enabled this negative conclusion. To Post, his analysis of
the notion of generated set however was not yet completed ([Pos65], p. 387):

The correctness of this result is clearly entirely dependent on the trustworthiness
of the analysis leading to the above generalization [...] it is fundamentally weak
in its reliance on the logic of Principia Mathematica [...] for full generality a com-
plete analysis would have to be given of all the possible ways in which the human
mind could set up finite processes for generating sequences.[...] assuming the
correctness of our characterization of generated set of sequences, a mathemat-
ical derivation of the unsolvability of the finiteness problem for normal systems

as a consequent theorem should be feasible.

The fact that Post understood that a more complete analysis was needed, was
one of the reasons why he delayed publication of his work.

Post further realized that his results implied the incompleteness of all systems
of finitary symbolic logic reducible to a system in normal form [Pos65), p. 216] @

Having noted the identity of canonical systems and normal sets [...] our last con-
clusion was transformed into the generalization that every generated set of se-
quences on a finite set of letters was a normal set. [...] In the early fall of 1921,
the formal proof of this unsolvability [...] was outlined, and led to the further
conclusion that not only was every (finitary) symbolic logic incomplete relative
to a certain fixed class of propositions (those stating that a given sequence was
or was not an assertion in a given normal system) but that every such logic was

extendible relative to that class of propositions.

Post had thus anticipated basic results found only 10 years later by Godel, Church
and Turing. Although he had proven the unsolvability of the finiteness prob-
lem for systems in normal form, he never proved the Entscheidungsproblem
unsolvable. While he had reduced first-order predicate calculus to a system in
canonical form B and thus indirectly to a system in normal form, he did not

%4For a more detailed exposition of how Post proved incompleteness on the basis of these
results — in comparing this approach to Gédel’s — see [Sti04].
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prove the reverse reduction. Indeed, at the time he reduced first order calculus
to canonical form B he was still convinced that its decision problem would be
solvable and there was thus no need for a reduction in the other direction (from
canonical form B to predicate calculus.) In footnote 79 of [Pos65] he explains:

As to *10 being merely attached to this circle, [an unpublished note] categor-
ically states that a proof of the reducibility of canonical form A to *10 is “nearly
completed,” and as a result even suggests that the solution of the finiteness prob-
lem for *10 would yield the solution of the finiteness problem for all of Principia

Mathematica.
In footnote 90 he further added:

Less certain, however, is our having paused at the time to realize that the comple-
tion of the proof of the reducibility of canonical form Ato *10 [...] would yield the
unsolvability of the latter’s finiteness problem. It remains uncertain, therefore,
to what extent the writer participated [sic] Church’s result on the unsolvability of

the deducibility problem for the restricted functional calculus.

2.2.5 Conclusion

In sketching the evolution of Post’s ideas starting from his Ph.D. and ending in
the fall of 1921, it was shown how the direction of this development was mo-
tivated by a method of generalization, reduction to simplified forms and focus
on outward form. As was shown, Post was not interested in the development
of one particular system of symbolic logic, but instead searched for the most
general form and methods to capture any system of symbolic logic. In doing so
he wanted to investigate the more general properties of logic, like decidability
and completeness, and ultimately mathematics.

His method of generalization and abstraction led him to a form called “Tag”
that forced him to a conclusion he had not foreseen: given the complexity and
intractability of the several cases of tag systems he considered, his entire pro-
gram of proving the whole of mathematics solvable, seemed hopeless. His form
of “tag” led the way for his at that time revolutionary results playing a signifi-
cant role in his further reductions to normal form. In the end, his normal form
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theorem convinced him that it is possible to reduce the seeming more compli-
cated Principiato the formally simple normal form and he thus formulated his
thesis leading to his results.

As he states in the introduction to his Account of an Anticipation [Pos65], it was
exactly his focus on the outward forms of symbolic logic rather than on the log-
ical concepts involved that marks the difference between his work and that of
his “more complete successors”, and allowed for a greater freedom of method
and technique. This is clearly exemplified in his reduction proofs. There one
sees how step-by-step all meaningfulness is removed. To abstract from the spe-
cific meaning of an assertion he first eliminates the meaningful symbols like
“v”, and constructs a form which is already then characterized by its abstract-
ness. This became even more explicit once he began his research on tag sys-
tems. For example, there is no syntax or order for a specific assertion because
of the removal of the delimiters (brackets), all symbols being put on the same
level. In that way the concept of a well-formed formula becomes far less im-
portant since there are only sequences of letters without any syntax. Every
arbitrary combination of letters or symbols from the predefined set of letters
or symbols, is well-formed. Furthermore, the concept of an axiom becomes
empty since it was only in varying these “axioms” as parameters, together with
the parameters of the bases, that Post identified different classes of behaviour
and different classes of cases for his tag systems.

Significant in this development, is that through further abstraction, motivated
by a difficult theoretical problem, the only “meaningful” method that could be
implemented to proceed with these abstractions is a typical mathematical one.
In Post’s work the technique of studying systems by working out special cases
seems to be a consequence of precisely this abstraction process. Since the re-
sult of this process were systems in a very simple and “meaningless” form, the
methods and results in a system one normally deduces through the interpreta-
tion of its axioms, production rules and syntax was not available. There is no
specific system, but an infinite group of systems sharing the same form. The
only way left to understand the differing properties of such a class of systems
is to test them, by checking for different kinds of initial conditions, different
values of v keeping for example other parameters constant, testing tag systems
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with a different number of symbols,.... Only then was it possible to continue
the theoretical efforts. This approach then pushed Post’s research in a direction
he would most probably not have taken without it.

To summarize, although Post was, from the very beginning, searching for the
most general form of symbolic logic, it was only in effectively constructing such
forms that he was able to conclude for his at that time “unorthodox ideas”.
In the end, his theoretical assumptions were contradicted by his struggle with
what appeared to be easy problems together with the consequent development
of his research towards the beautiful systems in normal form. Only then he was
able to come to the fuller realization that his systems in normal form are able
to generate any set we consider intuitively as being generated. In other words,
Post’s results on unsolvability were not rooted in a search for a right formaliza-
tion of a given intuitive notion such as generated set. This idea only emerged
after he understood that the primitive forms of mathematics he constructed
are in fact far from primitive and powerful enough to formalize very general
intuitive notions.
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2.3 “Todenywhat seems intuitively natural”: Church
and the A-calculus

2.3.1 Introduction

At about the same time Post found his revolutionary results, Church was just
starting his careerﬂ He arrived at Princeton as an 18-year old boy after hav-
ing graduated at a preparatory school in Connecticut. In 1924 he graduated
with a B.A. in mathematics. After three years he finished his Ph.D. under the
supervision of Oswald Veblen. Although, as Martin Davis pointed out in the in-
troduction to Post’s Account of an anticipation [Dav65al the field of symbolic
logic “suffered from virtually total neglect in the United States” Church had not
been working as isolated as Post. This “virtually total neglect” of logic in the
twenties in the U.S. is affirmed by Church, in an interview with Aspray@ When
Aspray asked him what kind of textbooks on logic there were around in the 20’s,
Church answered [Asp84al:

There were none that I liked. Lewis and Langford’s Symbolic Logic was around.
No, that may have been later, but certainly the book by C.I. Lewis was available.
But there was nothing about the sort of thing I wanted to teach, logic directed
towards math rather than the philosophical aspects of logic. Well, I am not sure;
there may have been a book of that sort. Of course [David] Hilbert and Wilhelm
Ackermann’s Grundzuege der theoretischen Logik was in existence at that time,
but it was in German. While the grad students were supposed to learn German,
as a practical matter I could not have used it as a textbook. So I used written

notes of my own and things like that.

After he had finished his Ph.D. he was awarded a two year National Research
Fellowship and spent two years visiting first Harvard, then Géttingen and Am-
sterdam. In recounting these visits, Church states in the interview with Aspray
[Asp84al:

55The biographical information from this introduction mainly comes from [End05] and
[Asp84al.

%1t should be noted that Martin Davis wrote an interesting paper [Dav95] on logic in the
twenties in the U.S., focussing on the pioneering work by both Post and Church.
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I had two years on a National Research Fellowship. I spent a year at Harvard and
a year in Europe, half the year at Goettingen, because [David] Hilbert was there
at the time, and half the year in Amsterdam, because I was interested in [L.E.J.]

Brouwer’s work, as were some of those advising me.

In the same interview Church remembers taking the train to Brouwer’s resi-
dence out in the country on several occasions Afterwards, Church returned
to Princeton where he would stay until 1967. In 1967 he left Princeton and
went to UCLA where he was Flint professor of Philosophy and Mathematics
until 1990, when he retired at the age of 87.

Once the thirties started, Princeton became “the place to be” for many logi-
cians. Church was now surrounded by his two famous Ph.D. students Barkley
Rosser and Stephen Kleene. John von Neumann was there, and furthermore
Godel crossed the ocean. From 1933 to 1934 Gddel visited the Institute for
Advanced Study, where he gave his important lecture@ attended by Church,
Kleene and Rosser. In other words, the situation Church was working in before
he published his important 1936 results can hardly be compared to that of Post.
Not only did he have a rather luxurious position as compared to Post’s but he
was surrounded by several other logicians, so he was able to exchange ideas
with his colleagues.

Church’s contributions to logic and the foundations of mathematics cannot
be underestimated. Besides his research results, he was one of the principal
founders of the Association for Symbolic Logic, the publisher of The Journal
of Symbolic Logic (JSL). Starting from the publication of the first volume of this
well-known journal, Church was not only an editor for contributed papers from
1936 to 1950 but was also the editor of the review section (1936-1979). He
wrote many, often harsh and severe, reviews. His goal of the review section was
twofold. In 1936 in the last number of the first volume of the JSL, Church had
published an almost 100 pages long Bibliography of Symbolic Logic [Chu36a]
covering the period 1666-1935. One of the goals of the review section was to

57In answering who he met in Amsterdam, he says that he didn’t meet with Heyting then.
[End05] mentions that Church met amongst others Bernays and Heyting during these years,

but this happend rather in Gottingen.
58published as [G6d34]
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further extend and update this bibliography, for books and journals published
after 1935. Furthermore, its purpose was to provide commentary to the litera-
ture where necessary ([Chu36b], p. 421?]

It is intended that this section of the Journal shall serve as a complete bibliogra-
phy of current literature in the field of symbolic logic, from January 1, 1936. To
this end an effort will be made to include in it, at least by title, all publications in
this field, both books and articles in journals, and as far as possible these will be

accompanied by signed reviews.

Church’s work not only influenced the domain of logic and mathematics, but
it inspired important contributions to computer science as well. Of course,
Church is best-known because of Church’s thesis, providing a formal definition
of the intuitive notion of effective calculability. In collaboration with Kleene
and Rosser, one of Church’s most important achievements has been the devel-
opment of A-calculus. This calculus has influenced the domain of computer
science in many different respects. First of all, it lies at the basis of the oldest
functional programming language LISP, developed by John McCarthy and has,
as a theoretical functional programming language, a general significance for
the theory of programming@] Together with Curry’s [Cur30] and Schénfinkel’s
ISch24] systems, the A-calculus is furthermore one of the famous examples of
combinatory logicEr] The A-calculus nowadays also plays an important role in
the implementation on computers of systems to do mathematics, called com-
puter mathematics. These systems are used to formalize and verify proofs by

59The paper [End98]| discusses Church’s role in the review section of the JSL.

60LISP was first described in [McC60]. A paper by McCarthy on the history of Lisp is [McC81].
In recounting the innovative character of LISP, McCarthy says about the influence of the A-
calculus: “To use functions as arguments, one needs a notation for functions, and it seemed nat-
ural to use the A-notation of Church [Chu4l|]. I didn’t understand the rest of the book, so I wasn’t
tempted to try to implement his more general mechanism for defining functions.” ([McC81l, p.
176.) A very interesting paper discussing the influence of A-calculus on functional program-
ming languages is [Tra88]. Rosser’s [Ros82} [Ros84] further discusses the role of A1-calculus and
in general of combinatory logic, for computer languages.

6lRosser’s Ph.D. thesis, published as [Ros35] made clear the connection between Curry’s and
Schonfinkel’s combinatory logics and the A-calculus.
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computers@
Alonzo Church died at the age of 93 on August 11, 1995.

In this section we will discuss Church’s work preceding the first announcement
of his famous results on 19 April, 1935 to the American Mathematical Soci-
ety [Chu35]. We will show how he was led to the formulation of his thesis
and the proofs of certain unsolvable decision problems, starting from the first
published paper by Church in 1924 on the Lorentz transformation. Since the
period between the publication of this paper and Church’s famous results is
well-documented and marked by a continuity of published work, we are able
to sketch the evolution of Church’s ideas from 1924 till April 1935 without large
interruptions, contrary to our analysis of Post’s earlier work.

2.3.2 Towards variant systems of logic.

As Church tells in an interview with Aspray [Asp84a], he was already interested
in foundational issues as an undergraduate. His first published paper was on
the Lorentz transformation [Chu24], which is at the foundations of (special) rel-
ativity. The object of this paper was to find a set of logically independent pos-
tulates that uniquely determine the Lorentz transformation for one dimension.
One year later he published a more general paper [Chu25] further exploring the
concept of independent sets, in relation to irredundant sets of postulates@
After graduating, he started his Ph.D. at Princeton in 1924 under Oswald Ve-
blen, who was interested in the foundations of mathematics and thus sharp-
ened Church’s general interest in the subject. He even urged him to read some
of Hilbert’s work:

62 paper surveying the influence of A-calculus on logic and computer science, including its

significance for computer mathematics is [Bar97].
831t is interesting to note that in describing a method by which any set of independent pos-

tulates can be made irredundant, Church identifies it as a “mechanical method” (“There is a
mechanical method by which any set of postulates can be made irredundant.” (|[Chu25], p. 321).
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It was Veblen who urged me to study Hilbert’s work on the plea, which may or
may not have been fully correct, that he himself did not understand it and he
wished me to explain it to him. At any rate, I tried reading Hilbert. Only his pa-
pers published in mathematical periodicals were available at the time. Anybody
who has tried those knows they are very hard reading. I did not read as much of

them as I should have, but at least I got started that way.

Veblen was also interested in the question if the axiom of choice was indepen-
dent of other axioms, as Church remarks in the same interview, and it became
the subject of his dissertation, published as [Chu27|]. As is clear from its title,
Alternatives to Zermelo's assumption, p. 178:

The object of this paper is to consider the possibility of setting up a logic in which

the axiom of choice is false.

In his Ph.D., Church indeed started from the ‘hypothesis’ that the axiom of
choice could be considered independent from Zermelo-Fraenkel set theory. In
making this assumption, he wanted to investigate the possible consequences
of several alternatives to Zermelo’s ‘assumption’. Church was well aware of the
fact that replacing the axiom of choice by contradictory assumptions was not
evident at that time[%’] He even had to convince his supervisor Veblen, due to
the fact that he wanted to contradict that which seemed intuitively more nat-
ural. After having explained in the interview with Aspray that he regarded his
dissertation more as research in mathematics rather than in logic, Church ex-
plains ([Asp84al):

The only thing that might have annoyed some mathematicians was the presump-
tion of assuming that maybe the axiom of choice could fail, and that we should
look into contrary assumptions.|...] [Veblen] was really the only man supervising
it. I sort of had to convince him about some aspects of the axiom of choice. To
deny what seems intuitively natural is rather difficult. You tend to slip back into
what informally seems more reasonable. I remember from time to time having

to explain things to him, but I convinced him that my arguments were sound.

641n [Dav95] it is discussed in more detail that at the time, Church’s general approach of ex-
ploring variant systems of symbolic logic was indeed far from evident.
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As is noted by Martin Davis ([Dav95], p. 275):

[Church] was acutely aware of set theory together with logic as a foundation of
mathematics [...] [while] [n]Joteworthy contributions to logic and foundations of

mathematics were few and far between during the twenties.

His research was indeed explicitly embedded in the context of the foundations
of mathematics. Before actually starting with his investigation into the alterna-
tives to Zermelo’s assumption, he discusses the problem of completeness “to
prepare the way for the suggestion that there may be one or more additional in-
dependent postulates which can be added to the set of postulates 1-5 |...] ”@
Church considers three main postulates A, B and C wanting to “inquire into
their character, and to derive as many of their consequences’@ in order to find
reasonable alternatives for the axiom of choice.

Significant is the fact that Church considers the derivation of as many conse-
quences as possible a valuable way to argue for the independence of the axiom
of choice. If one of the postulates would involve a contradiction, this process of
deriving as many consequences as possible, should reveal it at a given timeﬁ] If
not, this fact can be regarded as “presumptive evidence” for the independence
of the axiom of choice ([Chu27], p. 187):

If any one of these involve a contradiction it is reasonable to expect that a sys-
tematic examination of its properties will ultimately reveal this contradiction.
But if a considerable body of theory can be developed on the basis of one of
these postulates without obtaining inconsistent results, then this body of theory,
when developed, could be used as presumptive evidence that no contradiction
exists. If there be two of these postulates neither of which leads to contradic-
tion, then there are corresponding to them two distinct self-consistent second
ordinal classes, just as Euclidian and Lobachevskian geometry are distinct self-

consistent geometries [...]

65[Chu27l, p.186

66[Chu27l, p.178

67This approach is very similar to, e.g., J.H. Lambert’s work (published posthumously 1786)
on the parallel postulate that precedes later work by Gauss, Bolyai and Lobachevski (See
[Lam86, [SE93]).



2.3. “TO DENY WHAT SEEMS INTUITIVELY NATURAL” 73

Starting from the idea that if a set of postulates is inconsistent, a systematic
examination of its properties should ultimately reveal a contradiction, Church
concludes thatif one is able to develop a considerable amount of theory starting
from the assumption, without finding a contradiction, one can presumptively
conclude that the theory developed might be consistent. This evidence in its
turn then adds strength to the hypothesis of the independence of the axiom of
choice.

Later on in his dissertation, Church identifies this attitude as an experimental
one. After having deduced many of the consequences of the three postulates,
Church proposes two more postulates F and G, inconsistent with each other,
but “apparently consistent” with postulates 1-5 and C. After the statement of
the postulates, Church announces how he wants to proceed ([Chu27], p. 205):

We shall examine briefly the consequences of each of the postulates just stated
when taken in conjunction with Postulates 1-5 and C, taking the same experi-

mental attitude as that which we took in the case of Postulates A, B and C.

One year later another paper by Church was published On the law of the ex-
cluded middle [Chu28] of which the purpose is clearly in line with the ideas
sketched in his Ph.D.:

[The purpose of this paper is] to discuss the possibility of a system of logic in

which the law of the excluded middle is not assumed [...]

Again it is clear that Church was not interested in the study of one ultimate
system of logic. On the contrary, he wanted to consider variant systems of sym-
bolic logic, the underlying idea being that there is not one absolute system of
logic.

If one no longer holds on to the idea of preferring one set of axioms over an-
other one, because it is closer to intuition, i.e. if one wants to deny what seems
intuitively natural, one has to find other ways to evaluate the different systems
one is considering. In Sec. [2.1]we already discussed that for Hilbert this new
criterium was the system’s consistency. Also for Church, already in these ear-
lier papers, consistency is the main criterium to judge a given system of sym-
bolic logic. Proving the consistency of a given system can be very hard. It can
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take years before a proof is found, if ever. Church must have been aware of the
problems that might be involved in proving a system consistent since he was
familiar with Hilbert’s work and the German language. His “empirical” attitude
towards a systems’ consistency is thus very reasonable and nowadays shared
by several other mathematicians. As, e.g., Martin Davis remarked in discussing
the problem of consistency proofs [Dav90]:

[...] greatlogicians (Frege, Curry, Church, Quine, Rosser) have managed to pro-
pose quite serious systems of logic which later have turned out to be inconsis-
tent. “Insight” didn’t help. New axioms are just as problematical as new physical

theories, and their eventual acceptance is on not dissimilar grounds.

This point of view became only more explicit in the results to follows.

Four years after the publication of [Chu28] Church published the first of two
major papers in which the ideas and methods already present in his earlier
work become even more apparent. It were these papers which finally led to
A-calculus and ultimately Church’s thesis.

2.3.3 An Inconsistent Set of Postulates

In [Chu32] Church developed a system of postulates to serve as a foundation
for logic and mathematics — a system of logic adequate for the development of
mathematics in which the notion of a function plays a fundamental role. This
set of postulates however had to be “free of some of the complications entailed
by Bertrand Russell’s theory of types, and [at the same time had to avoid] the well
known paradoxes ...]' %]

Basic to Church’s set of postulates and in fact to the subsystem included therein
now known as the A-calculus, is the notion of a function. As he states in the
introduction of his nice little orange book published in 1941 and still known
as a good introduction to A-calculus, called The calculi of lambda-conversion
[Chu41], p. 1:

Underlying the formal calculi which we shall develop is the concept of a func-

tion, as it appears in various branches of mathematics [...]. The study of the gen-

68 [Chu33], p. 839
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eral properties of functions, independently of their appearance in any particular
mathematical (or other) domain, belongs to formal logic, or lies on the boundary
line between logic and mathematics. This study is the original motivation for the

calculi [...]

Church’s set of postulates was thus developed to study the properties of func-
tions, independently of their appearance in a specific domain. As is also pointed
out in Kleene’s excellent paper on the history of recursive functions and the A-
calculus [Kle81a], one of the main ingredients of Church’s set of postulates is
that he got rid of the ambiguous use of expressions that can either denote a
function or an expression, containing a variable, that ambiguously denotes a
value of the function. Church gives the following example of such an expres-
sion: (x2 + x)2. He proceeds [Chu4l], p. 6:

Ifwe say “ (x%+x)2is greater than 1,000, ” we make a statement which depends on
x and actually has no meaning unless x is determined as some particular natural
number. On the other hand, if we say “(x? + x)? is a primitive recursive function,”
we make a definite statement whose meaning in no way depends on a determi-
nation of the variable x (so that in this case x plays the role of an apparent, or

bound, variable).

This ambiguity was resolved by using the so-called abstraction operator A. In
the example, the ambiguity is banished by using Ax[(x% + x)?] as notation, x
now being bound by A. In this respect, Church’s set of postulates abandoned
ambiguous uses of the free variable, the reason being that he required (|[Chu32],
p. 346):

[...] that every combination of symbols belonging to our system, if it represents a
proposition at all, shall represent a particular proposition, unambiguously, and

without the addition of verbal explanations.

Church’s set of postulates thus had the ambition to provide foundations for
logic and mathematics in which the notion of a function plays a basic role.
Unlike the authors of Principia, Church did not claim any absoluteness for
his proposed set of postulates, an attitude clearly inspired by his former work
(IChu32], p. 348):
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We do not attach any character of uniqueness or absolute truth to any particular

system of logic.

While he did not give explicit reasons for this kind of attitude towards logic in
his former work, Church now adds strength to his approach by making state-
ments about the connections between an abstract theory and the reasons why
it is developed - its ‘application’. In this context he links up, by analogy, the
existence of alternative geometries with the existence of alternative systems of
symbolic logic ([Chu32], 348-349):

The entities of formal logic are abstractions, invented because of their use in
describing and systematizing facts of experience or observation, and their prop-
erties, determined in rough outline by this intended use, depend for their exact
character on the arbitrary choice of the inventor. We may draw the analogy of
a three dimensional geometry used in describing physical space [...] In building
the geometry, the proposed application to physical space serves as a rough guide
in determining what properties the abstract entities shall have, but does not as-
sign these properties completely. Consequently there may be, and actually are,
more than one geometry whose use is feasible in describing physical space. Sim-
ilarly, there exist, undoubtedly, more than one formal system whose use as alogic
is feasible, and of these systems one may be more pleasing or more convenient

than another, but it cannot be said that one is right and the other wrong.

Indeed, the fact that any system of formal logic is determined by its use in order
to describe certain experiences and observations, implies that there cannot be
one ultimate system of logic. This does not mean that the logic is completely
determined by its application. On the contrary ([Chu32]|, p. 349):

In consequence of this abstract character of the system which we are about to
formulate, it is not admissible, in proving theorems of the system, to make use
of the meaning of any of the symbols, although in the application which is in-
tended the symbols do acquire meanings. The initial set of postulates must of
themselves define the system as a formal structure, and in developing this for-
mal structure reference to the proposed application must be held irrelevant. [m.i.]

There may, indeed, be other applications of the system than its use as a logic.
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As was said, given this attitude towards variant systems of logic, there remained
for Church only one criterion to reject or accept (be it on a presumptive basis)
a given system of logic: its consistency. Given the non-existence of a general
method to prove consistency the only reasonable attitude left to apply this cri-
terion to a given system of logic, is an ‘empirical’ one, for as long as no consis-
tency proofis found (|[Chu32], p. 348):

Whether the system of logic which results from our postulates is adequate for the
development of mathematics, and whether it is wholly free from contradiction,
are questions which we cannot answer except by conjecture. Our proposal is
to seek at least an empirical answer to these questions by carrying out in some
detail a derivation of the consequences of our postulates, and it is hoped either
that the system will turn out to satisfy the conditions of adequacy and freedom

from contradiction or that it can be made to do so by modifications or additions.

This attitude is repeated by Church in a reply to a letter to Goédel, dated july
27, 1932@ In answering the question posed by Godel of whether there is any
other way to prove the consistency of Church’s set of postulates besides proving
it consistent relative to type or set theory, Church answers

In fact, the only evidence for the freedom from contradiction of Principia Math-
ematica is the empirical evidence arising from the fact that the system has been
in use for some time, many of its consequences have been drawn, and no one
has found a contradiction. If my system be really free from contradiction, then

an equal amount of work in deriving its consequences should provide an equal

%91t should be noted here that Church later admitted that he was among those at that time
who believed that “Gddel’s incompleteness theorem might be found to depend on peculiarities
of type theory [...] in a way that would show this results to have less universal significance than
he was claiming for them.” (Church in a letter to John Dawson, dated July 25, 1983, reprinted
in [Sie97]). This is already clear from this reply to Gédel, in which he states amongst other
things, that he “has been unable to see, however, that your conclusions in §4 [Godel’s second

incompleteness theorem] of this paper apply to my system.”, [G6d03al, p. 369
"0The exact question posed by Godel is: “In case the system is consistent, won't it then be pos-

sible to interpret the fundamental concepts in a system with type theory, or in the axiom system
of set theory, and can one make the consistency plausible at all in any other way than through
such an interpretation?” , 17 June, 1932, [God03al, p. 367
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weight of empirical evidence for its freedom from contradiction.(|G6d03al, p.
368)

This ‘empirical’ attitude was further pursued in [Chu33]. Having learned in the
meantime that some of his postulates lead to a contradiction, the list was re-
vised. Furthermore 42 new theorems were proven to follow from this new set of
postulates and a basis to develop a theory of positive integers in the set of pos-
tulates was added. In this paper Church beautifully summarizes his ‘empirical’
approach to logic and mathematics ([Chu33|, p. 842):

Our present project is to develop the consequences of the foregoing set of pos-
tulates, until a contradiction is obtained from them, or until the development
has been carried so far consistently as to make it empirically probable that no
contradiction can be obtained from them. And in this connection it is to be re-
membered that just such empirical evidence, although admittedly inconclusive,
is the only existing evidence of the freedom from contradiction of any system of

mathematical logic which has a claim to adequacy.

However, soon after the publication of this paper it would be shown by Kleene
and Rosser — Church’s Ph.D. students — that he had not inferred enough con-
sequences out of the system: they showed that Church’s set of postulates is in-
consistent [KRBSJE— a result that clearly illustrates the problematic character
of Church’s, or any other, ‘empirical’ attitude, and “not exactly what one dreams
of having one’s graduate students accomplish” as Martin Davis stated ([Dav82],

p- 4).

2.3.4 A -The Ultimate Operator

In the meantime Kleene’s attention had shifted to a subpart of Church’s set of
postulates, now known as the A-calculus. He was working on his Ph.D. replying
to the program Church proposed at the end of [Chu33]| , p. 864:

Our program is to develop the theory of positive integers on the basis which we

have just been describing, and then, by known methods or appropriate modifi-

"IThe proof itself is from early 1934
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cations of them, to proceed to a theory of rational numbers and a theory of real

numbers.

Kleene’s original Ph.D. topic was indeed to develop a theory of positive integers
in Church’s set of postulates@ It was published in two parts in 1935 ([Kle35a]
[Kle35b]) and contained the development of such a theory in the /l—calculus

A quick introduction to )L-calculusr_z‘-] In A-calculus there are two types of sym-
bols. The three primitive symbols A, (, ) also called the improper symbols by
Church, and an infinite list of variables. There are three rules to define the well-
formed formulas of A-calculus, called A-formulas.

1. The A-formulas are first of all the variables themselves.

2. IfPisa A-formula already constructed, containing x as a free variable then
Ax[P] is also a A-formula. The A-operator is used to bind variables and
it thus converts an expression containing free variables into one that de-

notes a function (cfr. supra, Sec.

3. If M and N are A-formulas then so is {M}(N), where {M}(N) is to be under-
stood as the application of the function M to N.

The A-formulas, or well-formed formulas of A-calculus are all and only those
formulas that results by (repeated) application of these three rules. There are
three operations or rules of conversion. Let us define SffIMI as standing for the
formula that results by substitution of N for x in M. For each of the rules we will
give one explanatory example. the expression we will use are not in the pure
language of A-calculus and are merely added to make clear the rules.

2In [Asp84b], Kleene says: “ Church, in the last paragraph or the last page of his second paper
on the foundation of logic, proposed the problem of developing the theory of positive integers
on the basis of his system. There was a ready-made Ph.D. thesis problem. With my very limited
knowledge of the area at that time, I don'’t think I could have dreamed up a problem for myself.

It proved to be a challenging problem, and I did it.”
3 After Kleene and Rosser had shown that Church’s set of postulates was inconsistent, Kleene

rewrote his dissertation taking into account this result, although his Ph.D. had already been

accepted in September 1933.
"This exposition is based on [Chu41] and [Kle81a].
5“We think of Ax[P) as denoting that function of x whose value (if defined), for each value

taken by x, is the value then taken by P.” [Kle81al, p. 54
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1. Reduction. To replace any part (Ax M) N) of a formula by S{M| provided
that the bound variables of M are distinct both from x and from the free
variables of N. For example to change {Ax[x2]}(2) reduces to 22

2. Expansion To replace any part S{M| of a formula by ((Ax M) N) provided
that ((Ax M) N) is well-formed and the bound variables of M are distinct
both from x and from the free variables in N. For example, 22 can be ex-
panded to {1x[x%]}(2)

3. Change of bound variable To replace any part M of a formula by SyM| pro-
vided that x is not a free variable of M and y does not occur in M. For
example changing {Ax[x?]} to {Ay[y*]}

Church then introduced an encoding for the natural numbers, where he con-
sidered the numeral in Arabic notation as abbreviations for an infinite set of A-
formulas. L.e., he gave the following definitions:

1—-Ayx.yx,
2 - Ayx.y(yx),

where it should be noted that the A-definition of the natural numbers uses not
the original notation of A-calculus, but an abbreviated notation using, amongst
others dots as brackets as a kind of shorthand. Using these definitions of the
natural numbers it is possible to A-define functions over the positive integers.
A function F of one positive integer is A-definable if we can find a A-formula E
such that if F(m) = n and m and n are A-formulas encoding the integers m and
n (according to the above given encoding scheme), then the A-formula {F} (m)
can be converted to r by applying the conversion rules of A-calculus. Thus, for
example the successor function S, first introduced by Church, can be 1-defined
as follows:
S — Aabc.b(abc)

To give an example, applying S to the A-formula standing for 2, we get:

(Aabe.b(abc))(Ayx.y(yx)) — Abe.b((Ayx.y(yx))bc)

— Abc.b((Ax.b(bx))c) — Abc.b(b(bc))
It is also important here to explain the normal form in A-calculus. A formula is
said to be in normal form if it is well-formed and contains no part of the form
{Ax[M]}(N). A formula is said to be in principal normal form if it is in normal

form and no variable occurs in it both as a free and as a bound variable, and the
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variables which occur in it immediately following the symbol A are, when taken
in the order in which they occur in the formula, in natural order, without repeti-
tions, beginning with a and omitting only such variables as occur in the formula
as free variables. For example the formula Aab.b(a) is in principal normal form,

Aac.c(a) is in normal form but not in principal normal form.

Already from the first paragraph of his dissertation it is clear what Kleene had
learned, or at least inherited, from Church ([Kle35a], p. 153):

Our object is to demonstrate empirically that the system is adequate for the the-
ory of positive integers, by exhibiting a construction of a significant portion of
the theory within the system. By carrying out the construction on the basis of
a certain subset of Church’s formal axioms, we show that this portion at least of
the theory of positive integers can be deduced from logic without the use of the

notions of negation, class, and description.

While Church’s empirical approach might have been disappointing when his
set of postulates turned out to be inconsistent, it would show very fruitful dur-
ing further research on the A-calculus.

As is stated by Rosser in his [Ros84], Church first mentioned (or even had)
the idea that every effectively calculable function from positive integers is A-
definable in a conversation in late 1933, after Rosser had told him about his
latest function in A-calculus ([Ros84], p. 345)@

One time, in late 1933, I was telling him [Church] about my latest function in the
LC. He remarked that perhaps every effectively calculable function from positive
integers to positive integers is definable in LC. He did not say it with any firm
conviction. Indeed, I had the impression that it had just come into his mind
from hearing about my latest function. With the results of Kleene’s thesis and the
investigations I had been making that fall, I did not see how Church’s suggestion

could possibly fail to be true. in fact, I immediately berated myself (silently) for

76 A more detailed account of the events preceding the first official statement of Church’s the-
sis can be found in [Kle81a}Ros84}Dav82, Sie97|
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not having seen the obvious a month or two before, so that I would have made

that proposition to Church before he made it to me.

According to both Rosser and Kleene, Church was convinced about the equiv-
alence between A-definability and effective calculability in early 1934 This
idea however was far from evident given the, at first, counterintuitive way one
can compute functions in A-calculus ([Kle81a], p. 54):

Before research was done, no one guessed the richness of this subsystem. Who
would have guessed that this formulation, generated as I have described to clar-
ify the notation for functions, has implicit in it the notion (not known in math-
ematics in 1931 in a precise version) of all functions on the positive integers (or

on the natural numbers) for which there are algorithms?

Indeed, Kleene himself had not expected that A-calculus would have been so
powerful, and it was not he nor Rosser but Church who first came up with this
idea of identifying A-definability with calculability. As is told by Barendregt
([Bar97], p. 186):

Many years later — it was at the occasion of Robin Gandy’s 70-th birthday, I be-
lieve — I heard Kleene say: “I would like to be able to say that, at the moment
of discovering how to lambda define the predecessor function, I got the idea of

Church’s thesis. But I did not, Church did.”

A very important trigger for Church’s idea was indeed Kleene’s definition of the
predecessor function in A-calculus ([Kle81al p. 57){7_gl

When I brought this result to Church, he told me that he had just about con-
vinced himself that there is no A-definition of the predecessor function. The dis-
covery that the predecessor function is after all 1-definable excited our interest in
what functions are not just definable in the full system but actually A-definable.

The exploration of this became a major subproject for my Ph.D. thesis. Of course,

""The exact time at which Church made a more definite proposal of his thesis should be situ-
ated between February 7, 1934 and March 1934. See [Dav82], p. 8

8In [Kle81al he explains that he got the idea of how to A-define the predecessor function at
the dentist in late January or early in February 1932
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I did develop a great deal of theory of positive integers in Church’s formalism, us-

ing many A-definitions in the process.

From that moment on, the search for effectively calculable functions which are
A-definable became a more explicit research goal. Kleene gradually unravelled
the amazing computational power of the A-calculus, in being able to show that
each example of an effective calculable function he and Church could think of,
was indeed A-definable ([Kle81a] p. 57):

We [Church and Kleene] kept thinking of specific such functions, and of specific
operations for proceeding from such functions to others. I kept establishing the

functions to be A-definable and the operations to preserve A-definability.

However, as was stated before, it was not Kleene but Church who first thought
about an explicit identification between A-calculus and effective calculability.
In fact, when Church first proposed his ‘thesis’ to Kleene ([Kle81a], p. 59):

(I, Kleene] sat down to disprove it by diagonalizing out of the class of the 1-
definable functions. But, quickly realizing that the diagonalization cannot be

done effectively, I became overnight a supporter of the thesis.

Significant is the fact that it was not “the concept [of A-definability] itself but
rather [the] results established about it” ([Kle81b], p. 49) that led Church to his
‘conjecture’. As is pointed out by Sieg [Sie97], the main reason for proposing
the identification was, what Sieg calls, the ‘quasi-empirical’ fact expressed by
Church in a letter to Bernays, dated January 23, 1935 (Quoted in [Sie97], p. 155):

The most important results of Kleene’s thesis concern the problem of finding a
formula to represent a given intuitively defined function of positive integers (it
is required that the formula shall contain no other symbol than A, variables, and
parentheses). The results of Kleene are so general and the possibilities of extend-
ing them apparently so unlimited that one is led to the conjecture that a formula
can be found to represent any particular constructively defined function of pos-

itive integers whatever.

Although several sources report that Church had already formulated his thesis
in terms of A-definability in early 1934 he only communicated the result in April
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1935. Not in terms of 1-definability however, but in terms of Herbrand-Gdodel
general recursiveness.

Indeed, in the meantime, Gédel had already published his seminal 1931-paper
containing the two incompleteness theorems [G0d31] and, after a suggestion
by Herbrand extended the notion of primitive recursiveness to general recur-
siveness. From February to May 1934 Godel gave a series of lectures attended
by Kleene, Rosser and ChurchF_U] As is discussed by Davis [Dav82], given the
definition of general recursiveness and a footnote added in [G6d34], the notes
from these lectures suggest that Godel formulated a thesis similar to Church’s.
@ When Davis was preparing his [Dav65b] he submitted his first draft of the
introduction to the lecture notes to Godel for his comments, suggesting that
Godel had indeed stated such a thesis similar to Church’s during his lectures.
As Davis writes ([Dav82], p. 8), “Gédel took strong exception to my suggestion”,
as is clear from his reply (Quoted in [Dav82], p. 8):

[...] itis not true that footnote 3 is a statement of Church’s Thesis. The conjecture
stated there only refers to the equivalence of “finite (computation) procedure”
and “recursive procedure.” However, I was, at the time of these lectures, not at all

convinced that my concept of recursion comprises all possible recursions [...]

In a letter to Kleene dated November 29, 1935 Church gave an account of a
discussion on effective calculability with Gédel, presumably to be situated in
early 1934. Kleene supplied a copy of the letter to Martin Davis who quoted it
in his [Dav82], p. 9:

In regard to Godel and the notions of recursiveness and effective calculability, the

history is the following. In discussion with him the notion of lambda-definability,

¥See [Sie05] for a detailed account of the correspondence between Goédel and Herbrand.

80A series of lecture notes taken by Rosser and Kleene have been preserved and published in
a corrected and amplified version in [Dav65b].

81 After having noted in the main text that primitive recursive functions “have the important
property that, for each given set of values of the arguments, the value of the function can be com-
puted by a finite procedure” the following footnote was added: “The converse seems to be true,
if, besides [primitive] recursions [...] recursions of other forms (e.g., with respect to two variables
simultaneously) are admitted. This cannot be proved, since the notion of finite computation is
not defined, but it serves as a heuristic principle.” [G6d34], p. 44
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it developed that there was no good definition of effective calculability. My pro-
posal that lambda-definability be taken as a definition of it he regarded as thor-
oughly unsatisfactory. I replied that if he would propose any definition of effec-
tive calculability which seemed even partially satisfactory I would undertake to
prove that it was included in lambda-definability. His only idea at the time was
that it might be possible, in terms of effective calculability as an undefined no-
tion, to state a set of axioms which would embody the generally accepted prop-
erties of this notion, and to do something on that basis. Evidently, it occurred
to him later that Herbrand’s definition of recursiveness [...] could be modified in
the direction of effective calculability, and he made this proposal in his lectures.
At that time he did specifically raise the question of the connection between re-
cursiveness in this new sense and effective calculability, but said he did not think

that the two ideas could be satisfactorily identified “except heuristically"{ﬂ

Godel thus regarded Church’s proposal as “thoroughly unsatisfactory” and was
convinced that recursiveness cannot be identified with computability, “except
heuristically”lg_gl

Despite Godel’s criticism, who was at that time already a respected authority
given his [G0d31], Church publicly announced his thesis in a talk to the Ameri-
can Mathematical Society, 19 April, 1935. Not in terms of A-definability though,
but in terms of general recursiveness. As he writes in the abstract of the talk
[Chu35|, submitted 22 March, 1935:

[...] it is maintained that the notion of an effectively calculable function of pos-
itive integers should be identified with that of a recursive function, since other
plausible definitions of effective calculability turn out to yield notions which are

either equivalent to or weaker than recursiveness.

As is clear from this quote, A-definability has been completely replaced by re-
cursiveness, so one wonders why Church made this substitution and why he
waited about one year to publicly announce this variant of the thesis he had

82 shorter excerpt of this letter was also published by Kleene [Kle81al.
83Davis’ [Dav82} [Dav05) gives a more detailed account of G6del’s opinion in this context, and
its evolution over time.
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talked about with Kleene, Rosser and Godel already in early 1934.

According to Davis, the fact that Church only implicitly refers to A-definability
is due to his being uncertain at that time about the equivalence between A-
definability and general recursivenessE[] But Davis does not provide a real ex-
planation for the fact that Church waited so long before publicly announc-
ing his thesis, and, especially, the fact that A-definability was now replaced by
recursiveness. Still, given Godel’s reluctance to accept Church’s thesis, while
Church already proposed his thesis informally in 1934 and publicly (in its vari-
ant version) in 1935, Davis concludes for a clear contrast between both logi-
cians [Dav82], p. 12-13:

[...] Gbdel was not convinced by the available evidence, and remained unwilling
to endorse the equivalence of effective calculability, either with recursiveness or
with A-definability. [...] Thus while Gédel hung back because of his reluctance
to accept the evidence for Church’s thesis available in 1935 as decisive, Church
(who after all was right) was willing to go ahead, and thereby to launch the field

of recursive function theory.

In [Sie97], Sieg provides his interpretation of the fact that Church waited so
long before publicly announcing his thesis, now stated in terms of recursive-
ness instead of A-definability, and concludes that Davis’s interpretation is not
completely correct. Basic in the argumentation supporting Sieg’s interpreta-
tion, is the fact that, according to him, the equivalence between general recur-
siveness and A-definability had already been established before March 1935
when Church submitted his abstract. Sieg uses this to argue that “Church’s
and Gaodel’s developed views actually turn out to be much closer than [their]
early opposition might lead one to suspect.” ([Sie97], p. 157) and thus criticizes
Davis'’s account. Sieg then explains Church’s so-called reluctance by the fact
that Church himself was not completely convinced of his A-calculus as being
a good identification for calculability. In arguing that the equivalence between

84t is interesting that A-definability occurs only by implication in the reference to “other plau-
sible definitions of effective calculability ... either equivalent to or weaker than recursiveness.”
The wording leaves the impression that in the early spring of 1935 Church was not yet certain
that A-definability and Herbrand-Gédel general recursiveness were equivalent.” ([Dav82], p. 10)
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A-definability and recursiveness was already established before Church sub-
mitted his abstract, Sieg claims ([Sie97], p. 157):

I claim, and will support through the subsequent considerations, that Church
was reluctant to put forward the thesis in writing — until the equivalence of 1-
definability and general recursiveness had been established. The fact that the
thesis was formulated in terms of recursiveness indicates also that A-definability
was at first, even by Church, not viewed as one among equally natural definitions
of effective calculability: the notion just did not arise from an analysis of the in-
tuitive understanding of effective calculabilitym.i.]. I conclude that Church was

cautious in a similar way as Godel.

Later on in his [Sie97], Sieg goes on to argue not only that Church did not view
A-definability as one among equally natural definitions of effective calculabil-
ity, but that recursiveness itself was in fact regarded as a more natural definition
of calculability ([Sie97], p. 157):

That the thesis was formulated for general recursiveness is not surprising when
Rosser remark in his [Ros84] about this period is seriously taken into account:
“Church, Kleene, and I each thought that general recursiveness seemed to em-
body the idea of effective calculability, and so each wished to show it equiva-
lent to A-deﬁnability”{g_g] (p. 345) There was no independent motivation for A-
definability to serve as a concept to capture effective calculability, as the histor-
ical record seems to show: consider the surprise that the predecessor function
is actually A-definable and the continued work in 1933/4 by Kleene and Rosser
to establish the A-definability of more and more constructive functions. In addi-
tion, Church argued for the correctness of the thesis when completing the 1936
paper (before July 15, 1935); his argument took the form of an explanation of

effective calculability with a central appeal to “recursivity”.

While it is indeed a fact that A-definability does not have a direct appeal to
our intuition of calculability — in the end, Church did not start from the intu-
itive notion itself, but only came to the conclusion of his thesis through a seri-
ous study of A-calculus — there are some very clear arguments which show that

81t should be noted that despite this remark by Rosser, he expresses Church’s thesis in terms
of A-definability, not in terms of recursiveness in the same paper Sieg refers to in this quote.
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Sieg’s interpretation here is not that well-argued. Indeed, as we will show, it can
be seriously doubted that Church’s reason to use recursiveness instead of A-
definability is rooted in the fact that, on the one hand, Church himself was not
completely convinced of A-calculus’s computational power, and, on the other
hand, Church believed recursiveness to be a more suitable formalization of cal-
culability than A-definability.

From footnotes 3 and 16 from Church’s [Chu36c], it is clear that the proof that
any recursive function is A-definable is due to Kleene and Rosser. A proof of
the theorem can be found, as is stated by Church, by applying the methods
presented in Kleene’s [Kle35a, Kle35b]. The result that every A-definable func-
tion is recursive, “was obtained independently by the present author [Church]
and S.C. Kleene at about the same time. ”ISE] and published as [Kle36b]. However,
no mention is made of the exact date at which these results were established.
The paper by Kleene proving the equivalence, as well as Church’s [Chu36c|] con-
taining the footnotes, were submitted only some months after Church publicly
announced the thesis. Despite this lack of the exact dates, Sieg has provided
arguments on the basis of which he concludes that the equivalence between
A-definability and recursiveness had already been established before Church
submitted his abstract, and he uses this result as an argument for his explana-
tion of why Church waited some time before publicly announcing the thesis,
and replaced recursiveness by A-definability. The arguments however given by
Sieg to show that this equivalence was already established before March 22,
1935 are not convincing. We will not discuss this in the main text, but the in-
terested reader is referred to the long footnotef;:] Notwithstanding the fact that,

86 [Chu36d], footnote 17

87The arguments Sieg gives for the equivalence between A-definability and general recursive-
ness being proven before March 1935 are based on two letters from Church to Bernays, the first
dated January 23, 1935 the second dated July 15, 1935 as well as the fact that Church used recur-
siveness instead of 1-definability in the talk from April 19 1935: “ifthe inclusion of A-definability
in recursiveness had not also been known by then, the thesis could not have been formulated co-
herently in terms of recursiveness”. Now, from [Kle35b} I(Chu36c] and the letter Church wrote
to Bernays dated January 23, 1935 it is clear that the reducibility of general recursiveness to
A-definability had indeed already been established before March 1935. There is however no
definite support given by Sieg that the converse direction, that every A1-definable function is re-
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for now, we can only guess whether this equivalence was proven before or after
Church submitted his abstract in March, 1935 it is important to further discuss
Sieg’s conclusions in this context.

As was said, the fact that Church only submitted his abstract after this equiv-

cursive, had already been proven by then. Sieg uses the letter Church wrote to Bernays but does
not make clear what letter is meant: the letter dated July 15, 1935 or that dated July 23, 1935. In
this last letter Church explicitly refers to his abstract from March and mentions his 1936 paper
IChu36¢] as “in the process of being typewritten” (quoted from [Sie97], p. 163) He furthermore
mentions that Kleene’s paper on the equivalence was forthcoming. Sieg then concludes: “/...]
neither from Kleene's or Rosser’s historical accounts nor from Church’s remarks it is clear, when
the equivalence was actually established. In view of the letter to Bernays and the submission date
for the abstract, March 22, 1935, the proof of the converse must have been found after January 23,
1935, but before March 22, 1935. So one can assume with good reason that this result provided
to Church the additional bit of evidence for actually publishing the thesis.” ([Sie97], p. 163). As
was said, either Sieg is pointing at the letter to Bernays from January 1935 or that from July. If
he refers to the earlier letter, this does not add any strength to the conclusion, since Sieg does
not give any quote or annotation from this letter supporting this conclusion. If the second let-
ter is intended this neither supports the conclusion since it was dated in July, about 4 months
after Church had submitted his abstract and presented his thesis. Now, Kleene only submitted
an abstract of his equivalence proof at the end of June 1935 (the abstract was received July 1,
1935 by the American Mathematical Society). The question then of course is, supposing that
Kleene and Church had established this result before March 1935, why Kleene waited 4 months
to submit an abstract of this result. Furthermore, Church’s [Chu36c] mentioning this equiv-
alence result, was at that time in the process of being typewritten, again 4 months after the
abstract was submitted. The argument given by Sieg that Church used recursiveness instead
of A-definability in the talk neither adds strength to this argument. As was already pointed out
by Davis, the fact that A-definability occurs only by implication in the reference to “other plau-
sible definitions of effective calculability ... either equivalent to or weaker than recursiveness.”
rather leaves the impression that Church, at that time, was still uncertain about the equiva-
lence. It should also be mentioned here that Rosser [Ros82] in his account of the history of the
A-calculus states Church’s thesis not in terms of recursiveness but in terms of A-definability,
and understood the equivalence proof as a support for this form of the thesis. To summarize,
until now there is no definite evidence for the fact that the reduction from A-definability to re-
cursiveness had been completed before or after Church submitted his abstract in March. And,
as will become clear from the remaining discussion, even if this result would have been estab-
lished before March 1935, this still does not imply that Church was almost as reluctant as Godel
to formulate his thesis, nor the idea that Church, Rosser and Kleene believed recursiveness to
be more well-suited and intuitive than A-definability.
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alence was proven (although we can doubt this) and, in the abstract, defined
effective calculability in terms of recursiveness instead of 1-definability, shows,
according to Sieg, that Church was reluctant to put forward his thesis in terms
of A-definability and that Church did not count A-definability as a natural de-
finition for effective calculability since the notion “just did not arise from an
analysis of the intuitive understanding of effective calculability’.

We are not specialists as far as the A-calculus is concerned, but we are famil-
iar with its basic mechanism and how to define and compute a computable
function in A-calculus. Now, when you first start working with A-calculus, e.g.
performing an addition, the least one can say is that it is rather counterintu-
itive to perform computations in A-calculus. Following the definition of addi-
tion as given in [Chu41] - the nice little orange book — performing the rules of
conversion of the calculus, one is almost surprised to see that after some con-
versions one has performed an addition. This was my own experience, and I
had the occasion to check this with a group of other people. During a small col-
loquium called Mathematik fiir Kiinstler (mathematics for artists) at the Kun-
sthochschule in Hamburg, I gave a kind of strange workshop on A-calculus.
Some people came to me at the blackboard, after I had performed some calcu-
lations in the calculus saying that they didn’t see how e.g. an addition was per-
formed, although the result was there on the blackboard. I gave them a chalk
and let them do the operations by themselves. Each of them was as surprised
as [ was at first, to see that after some conversions, they had indeed performed
an addition, looking back at the several steps to understand at what moment
exactly the addition “happened”.

This small story illustrates how counterintuitive it is, at first to compute with
A-calculus and in this respect Sieg is certainly right in stating that, if one starts
from an analysis of the notion of effective calculability, one will most probably
not end up with something like the A-calculus. In the end, the calculus was
never intended to be the result of such an analysis when it was first conceived.
It was only after Church, Kleene and Rosser understood what A-calculus is ca-
pable of that Church proposed his thesis. As was said before, it was not the
concept of A-definability itself that led to the thesis, but rather the results es-
tablished about it, to use Kleene’s words [Kle81b].
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Although we completely agree with Sieg that A-definability does not naturally
arise from an analysis from our intuition of effective calculability, we cannot ne-
glect that it was A-calculus and not general recursiveness that led Church to his
thesis (and was convincing enough at least for Rosser and Kleene). Even though
he was already familiar with general recursiveness during Godel’s lectures he
did not use the notion of recursiveness but hung on to his own A-definability in
his discussions with Godel. As he states in footnote 18 of [Chu36c] it was Godel
who first brought up the question of the relationship between effective calcu-
lability and general recursiveness, not Churchlg_g] To Sieg, the fact that Church
waited to submit his abstract, although he had already formulated the thesis,
indicates that he understood recursiveness as a more natural definition for ef-
fective calculability as compared to A-definability, adding strength to his point
of view by mentioning the surprise of the possibility to A-define the predeces-
sor function. However, other explanations can be given here.

First of all, Church must have been impressed by Godel’s criticism. Given his
very negative reaction towards A-definability as a definition for effective calcu-
lability, while he seems to have been slightly less negative about general recur-
siveness, Godel’s reaction might have been one of the reasons for Church to be
a bit hesitant and to use recursiveness instead of A-definability in his first pub-
lic announcement of the thesis.

Another explanation is indirectly given by Kleene( [Kle81a], p. 62):

The earliest notion, A-definability, has [...] the remarkable feature that it is all
contained in a very simple and almost inevitable formulation, arising in a nat-
ural connection with no prethought of the result. And a given A-formula en-
genders the computation procedure for the function it defines. Of course, the

A-formula may be complicated. Under Herbrand-Gdédel general recursiveness,

88 As to the extent Godel’s work influenced Church’s, Kleene has noted ([Kle87], p. 491): One
sometimes encounters statements asserting that Godel’s work laid the foundation for Church’s
and Turing’s results [...]. It seems to me that the truth is that Church’s approach through -
definability and Turing’s through his machine concept had quite independent roots (motiva-
tions), and would have led them to their main results even if Godel’s paper [God31] had not
already appeared.” This claim is supported even more by Emil Post’s early work, which was
done at a time that G6del was only 15 years old.
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and my partial recursiveness adapted from it, one works with systems E of equa-
tions that can be very unwieldy. Under Turing computability one may have very
long machine tables. Indeed Turing [...] spoke of the A-definitions as “more con-
venient"[ﬂ (As I see it, convenience for one or another purpose requires test-
ing in practice.) I myself, perhaps unduly influenced by rather chilly receptions
from audiences around 1933-1935 to disquisitions on A-definability, chose, af-
ter general recursiveness had appeared, to put my work in that format. [...] I
thought general recursiveness came the closest to traditional mathematics. It
spoke a language familiar to mathematicians, extending the theory of special
recursiveness, which derived from formulations of Dedekind and Peano in the
mainstream of mathematics. I cannot complain about my audiences after 1935,
although whether the improvement came from switching I do not know. In ret-

rospect, I now feel it was too bad I did not keep active in A-definability as well.

As is clear from this quote, after his experience with his audience during lec-
tures or courses on A-definability during 1933-1935, Kleene shifted to general
recursiveness because it is closer to “traditional mathematics”. To convince
an audience at that time that the A-definable functions — without reference
to intuition of course — are exactly those that are effectively computable must
have been very hard, given the non-familiarity of the public with A-calculus.
To Kleene, it must thus have been more “convenient” to use the more acces-
sible general recursive functions instead of the difficult A-calculus taking into
account the public. We are inclined to apply this same reasoning to Church’s
“reluctance” to put forward his thesis in terms of A-definability.

We are not convinced by Sieg’s conclusion that Church used recursiveness in-
stead of A-definability in his first announcement of the thesis, because he con-
sidered recursiveness as a more natural definition for computability. Rather
we believe that Church used recursiveness because the mathematical public
would be more open to this identification, since they were more familiar with

89“The identification of effective calculable functions with computable functions is possibly
more convincing than an identification with the A-definable or general recursive functions. For
those who take this view the formal proof of equivalence provides a justification for Church’s
calculus, and allows the ‘machines’ which generate computable functions to be replaced by the
more convenient A-definitions.” ([Tur37], p. 153)
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the idea of recursion, Godel’s reaction only adding strength to this considera-

tion 7

There is indeed no definite reason to suppose that Church (or Kleene, or Rosser)

understood recursiveness as a more natural definition. In this context, it should
be emphasized that Godel had made clear to Church that he regarded neither
A-definability nor general recursion, as good formalizations for effective calcu-

lability. It was only after he had read Turing’s paper [Tur37] — which starts from
an analysis of the intuitive notion of computability to find a suitable formaliza-

tion — that Godel became convinced 1] This illustrates that there is no reason
to suppose that recursiveness would better serve its goal. Furthermore Church
was well aware of the fact that, as he mentions in footnote 3 of his [Chu36c], his

analysis of effective calculability could be “carried through entirely in terms of
A-definability, without making use of the notion of recursiveness”. Following this

quote, and this is the most convincing argument, Church also explicitly stated
that as far as his opinion is concerned, recursiveness and A-definability are to

be considered as equally natural definitions of effective calculability, a remark
not mentioned by SiegP_Z]

In discussing the possible influence of Godel’s results on Church’s and Turing’s,

Kleene ([Kle87], p. 491) states:

One sometimes encounters statements asserting that Godel’s work laid the foun-
dation for Church’s and Turing’s results [...] It seems to me that the truth is that
Church’s approach through A-definability and Turing’s through his machine con-
cept had quite independent roots (motivations) and would have led them to their

main results even if G6del’s paper [G6d31] had not already appeared.

According to Kleene, Gédel’s impact on Church’s results should not be overes-
timated. The fact that he sees the originality of Church’s approach in his use
of A-calculus (and not his later use of general recursiveness) again emphasizes

90ne could maybe put this a bit stronger and state that the mathematician’s and logician’s
intuition of computability was more open to recursiveness at that time, because the latter was
already much more integrated into the general knowledge of the mathematicians.

Nt the postscript added to [G6d34] in Davis’s [Dav65b] where Godel makes this explicit.

92“The fact, however, that two such widely different and (in the opinion of the author) equally

natural definitions of effective calculability turn out to be equivalent [...]” [Chu36c], p. 346.
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the significance of A-definability for Church’s thesis. Furthermore, after hav-
ing acknowledged that one important influence from Gédel might have been
his encoding system, Kleene discusses in a footnote Church’s use of general
recursiveness, but immediately mentions Church’s footnote quoted above (i.e.
[Chu36c], p. 346, footnote 3). This suggests that Kleene did not regard gen-
eral recursiveness as a fundamental influence on Church’s results. Also, in his
review of Turing’s 1936 paper [Tur37], Church says [Chu37b]:

[computability by a Turing machine] has the advantage of making the identifica-
tion with effectiveness in the ordinary (not explicitly defined) sense evident im-
mediately —i.e. without the necessity of proving preliminary theorems. [General
recursiveness and A-definability] have the advantage of suitability for embodi-

ment in a system of symbolic logic.

From this quote it is clear that Church understood Turing computability as a
more intuitively appealing definition of effective calculability, as compared to
both general recursiveness as well as A-definability, but makes no qualitative
differentiation between recursiveness and A-definability.

In the end, we cannot come to a definite conclusion concerning Church’s use of
recursiveness instead of A-definability in first announcing his thesis in public.
Still, it remains a fact that Church did not start from an analysis of the intuitive
concept of effective calculability. It was the non-expected power of A-calculus
that made him state the thesis. In this sense, Sieg’'s emphasize on the signifi-
cance of A-definability being not intuitively appealing, is slightly anachronistic,
since the significance of the “direct appeal to intuition” argument only became
clear to Church, after he had read Turing’s paper. The fact that it were the re-
sults established about the formalism of A-calculus itself, rather than the idea
of finding an adequate formalization of the intuition, is not only important as
a historical fact, but also, from a more philosophical point of view: the fact that
a formalism that is further removed from intuition, is capable to capture the
intuition, at least if one accepts Church’s thesis, shows that our intuition is very
much restricted, i.e., in confronting it with other ways of computing, like e.g.
doing an addition in A-calculus, one can only learn the rich variety of processes
covered by computability.
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2.4 From typewriters to universal computing machines

2.4.1 Introduction

While Post and Church were already in their thirties when they wrote their 1936
papers, Turing was still very young. He was only 24 years old when he sub-
mitted his paper to the London Mathematical Society. As a consequence it is
impossible to give the kind of analyses of Turing’s earlier work here as we did
for Church and Post, since there is hardly any earlier work.

Turing was born on 23 June 1912 in an upper-middle class family. The best
book we believe ever written on Turing’s life and work is Andrew Hodges’ won-
derful biography of Turing [Hod83]. Most of the information used here comes
from or is inspired by this book. To give a summary of Turing’s influence on
computer science, philosophy of computer science, mathematical logic, math-
ematics and possibly even world history is very difficult and we will only give
an impression herelg_gl Turing did research in a large variety of domains. As we
will discuss immediately, he started his career with a dissertation in probability
theory. The influence of Turing’s machines can hardly be underestimated. His
analysis of computability that resulted in his Turing machines is still regarded
as being the most convincing one, compared to those given by Church and Post,
it is also the best-known of these three. The Turing machine concept is still a
paradigm n many theoretical branches of computer science. For example, it is
still the framework to define the complexity of certain algorithms in the context
of computational complexity theory.

Turing constructed the theoretical foundations of a universal computing ma-
chine, but also actually contributed to the design of one of the first comput-
ers, called the ACE [Tur47]. He wrote several more philosophical papers on
intelligent machinery, that laid the basis for the so-called Turing test (See e.g.
[Tur69, Tur50]). Together with Post, he is one of the founders of recursion the-
ory through his dissertation Systems of logic based on ordinals [Tur39] written

93The volume edited by Herken, The universal Turing machine [Her88] as well as the recently
published Alan Turing: Life and Legacy of a Great Thinker [Teu04] give a clear overview of the
impact of Turing’s work.
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under the supervision of Church. He was one of the first to do computer exper-
iments (See Sec. [4.2), and made contributions to the theory of morphogenesis
with his The chemical basis for Morphogenesis [Turb52b] as well as some other
papers@

One of his most valuable contributions not to mathematics but to world his-
tory is his involvement in the work at Bletchley Park, where he made significant
contributions to breaking the Enigma code used by the GermansE] He also
contributed to breaking the Fish material,lg_glln this function, Turing went to the
U.S. for highest-level communications. Later he became the “all-purpose con-
sultant” at Bletchley park. After the war, he continued working for GCHQ, the
post-war successor to Bletchley Park. Turing knew many high-level secrets and
this might have played a role in his later conviction for homosexuality and the
consequent punishment of chemical castration with injections of oestrogen,
since homosexuality was not only forbidden by law in conservative Britain, but
also considered a security risk (a potential source of blackmail). Turing died on
7 June, 1954. The coroner’s verdict was suicide from eating an apple laced with
cyanide.

2.4.2 Typewriters and “Little wonders”

As is pointed by Hodges (|[Hod83|, pp. 7-8), Turing

[...] was one of those many people without a natural sense of left and right, and

he made a little red spot on his left thumb, which he called the ‘knowing spot. [...]

941n the recently published volume of Turing’s life and legacy [Teu04], there is one paper dis-
cussing this later work of Turing [Swi04].

9He generalized the Bombe developed by Polish crypto-analysts, into a powerful device that
in fact mechanized certain logical deductions, searching for as many conclusions as possible
until a contradiction was found. Hodges makes a nice link here with an extended argument
Turing had some years earlier with Wittgenstein. Wittgenstein was doubting the significance
of contradictions, and Turing reacted by saying that as long as one does not have a consistency
proof one cannot completely trust the system one is working in and if there is a hidden contra-
diction in a given system this might lead to disastrous consequences when applying the system.
(See [Hod83], pp. 153-154, pp. 183-185)

9Messages encyphered on a different system, used for Hitler's strategic communications.
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he had great difficulty in writing. His brain seemed barely coordinated with his
hand. A whole decade of fighting with scratchy nibs and leaking fountain-pens
was to begin, in which nothing he wrote was free from crossing-outs, blots and

irregular script which veered from stilted to depraved.

Given his problems with writing Turing began to invent his own “machines”
to improve his writing abilities. There are two letters from 1923 mentioned by
Hodges ([Hod83], p. 14) in which the young Turing describes two such ma-
chines, the one being a ‘fountain pen’, the other describing a crude idea for a
typewriter. Turing never stopped inventing machines, later he even designed a
special-purpose machine to study the Riemann-Zeta function. As is described
in Hodges’s biography, Turing has a fascination with automatization through-
out his whole life and this probably played an important role in Turing’s analy-
sis of computability, resulting in his machines that share certain features with
typewriters ([Hod83], p. 96-97).

Several fascinations, besides those for machines, influenced Turing’s descrip-
tion of Turing machines. One such fascination was the idea to regard a mechan-
ical procedure as a concrete physical process in nature (i.e. the human brain)
and culture (i.e. machines). This interest that was kindled by the book Little
wonders every child should know, that Turing receivedd in 1922 from some un-
known benefactor. Regarding this book, Hodges states (p. 11): “If anything at
all can be said to have influenced [Turing], it was this book |[...]”. The book gives
a naive mechanistic picture of life and the mind and must have made a strong
impression on the young Turing.

2.4.3 The central limit theorem

After he graduated from Sherborne school in Dorset, Turing was awarded a
scholarship at King’s College where he started upon the mathematics degree
courses, as a schedule B candidate in 1931@ In the autumn of 1933, Turing
attended a course of lectures on the methodology of science by Arthur Edding-

97A schedule B candidate would offer for examination the Schedule A courses together with
an additional number of more advanced courses.
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ton. One of the subjects Eddington discussed was the observation that sci-
entific measurements, when plotted on a graph, tend to be distributed on a
Gaussian or normal curve. However, Eddington merely outlined why this was
to be expected, instead of giving a rigorous mathematical explanationlg_g] Tur-
ing was not satisfied with this sketch, so he set himself the goal to find an exact
proof. By the end of February 1934, he had succeeded to prove what is known
as the Central Limit Theorem. Only afterwards he was told that this theorem
had already been proved by Jarl Waldemar Lindeberg in 1922. Despite this, he
was advised that his work might still be acceptable as original work for a King’s
fellowship dissertation. In November 1934 he completed and submitted his dis-
sertation and in the spring of 1935 he was elected, as the first of his year, as one
of the forty-six Fellows. After his paper had entered the Cambridge mathemat-
ical essay competition, he was one year later awarded the prestigious Smith’s
prize for this Worklw_‘;]

Although the subject of his dissertation clearly differs from the paper that would
be published only two years later in 1936, there are two features of his disser-
tation that would also characterize his 1936 paper and in fact most of his later
work. First of all, as is acknowledged by several authors [G0080, Hod83, Zab95],
Turing often worked in a self-contained way, with limited knowledge of the ex-
isting literature on the subject and thus starting from first principles. In the
interesting paper [Zab95|, in which Turing’s work on the central limit theorem
is analyzed, Zabel remarks (p. 490):

Coming to the subject as an undergraduate, his knowledge of mathematical
probability was apparently limited to some of the older textbooks (...) itis clear
that Turing had penetrated almost immediately to the heart of a problem whose
solution had long eluded many mathematicians far better versed in the subject

than he.

Indeed, when Turing started working on his dissertation he had hardly any
knowledge of the field at that time, he simply got triggered by the problem and

98See [Hod83l, p. 87.

9Turing never published his dissertation, since its major result had already been anticipated.
However as is argued in [Zab95], it contained other results that were interesting and novel at
that time. It can still be found in the archive of King’s college library, see [Tur34].
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started to work on it in his own way. This was also the case for his 1936 pa-
per. Again he started from scratch, working in his own way. As Hodges (p. 96)
remarks:

[...] he attacked the problem in a peculiarly naive way, undaunted by the im-
mensity and complexity of mathematics. He started from nothing, and tried to
envisage a machine that could tackle Hilbert’s problem, that of deciding the prov-

ability of any mathematical assertion presented to it.

As a result of this isolated way of working, he was again not the first to arrive
at his main result. When Turing developed his ideas for the paperm Alonzo
Church had already officially announced some of his main results and it was
only when he had already written the paper that he first heard of Church’s re-
sult. Still, Church was very positive about Turing’s paper as we will discuss in
Ch.

Besides this ‘isolated’ way of working, using his own symbolism and terminol-
ogy, another feature already present in his dissertation reappears in his 1936 pa-
per, connecting certain physical processes with abstract mathematical think-
ing. As was already pointed out, Turing had a sheer fascination for the connec-
tion between the seeming erratic natural processes and the (possibly) deter-
ministic processes underlying it. With the central limit theorem he had proven
how one can obtain order out of the most basic kind of erratic processes ob-
served during scientific measurements. In his 1936 paper, he would again make
such a connection, by showing how abstract logic can be connected to the
processes of computingPE]

100According to Turing himself, it was during an afternoon in the early summer of 1935, lying
in the meadow at Grantchester, that he first understood how to answer the Entscheidungsprob-

lem
1017t should be noted here that besides his proof of the central limit theorem Turing had al-

ready made another “small-scale discovery” as he called it ([Hod83], p. 94) and led to his first
publication [Tur35]. The results was a small improvement on a paper by John von Neumann,
developing the theory of almost periodic functions, defining them in connection to group the-
ory. Since we are not specialists in the domain neither of group theory nor of almost periodic
functions and no paper has been published that discusses this paper by Turing, we have ex-
cluded it here.
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2.4.4 Newmann’s course on the foundations of mathematics

In the spring of 1935 Turing attended Newmann’s part III course on the foun-
dations of mathematics, of which the last part was the proof of Gédel’s incom-
pleteness theorems. It was here that he first heard of the Entscheidungsprob-
lem. According to [Hod83] it was the notion of a “mechanical procedure” that
must have catched Turing’s ear. Newman used the words ‘mechanical proce-
dure’ when explaining that one needed a definite method to decide for every
well-formed formula defined over the language of first-order predicate calcu-
lus, whether or not it can be derived within this calculus. It was the idea of
a mechanical procedure that had to be formalized properly before one could
start with a proof of the Entscheidungsproblem and it was Turing who gave a
very physical version of such a formalism, based on an analysis of how we hu-
mans calculate. This analysis led to Turing’s description of Turing machines,
finite-state machines operating on an infinite tape that, contrary to Post’s nor-
mal form, Church’s A-calculus and the Herbrand-Gddel definition of recursive
functions, resulted from a direct analysis of the intuitive notion of computabil-
ity itself. In studying the ‘general’ features of human computing, he showed
how such properties lead to a definite class of functions. As is pointed out in
[Dav82] this was exactly what Church expressed in his letter to Kleene to be
Godel’s idea of how one might proceed to find a satisfactory identification be-
tween the intuitive concept of computability and a given formalism, i.e. to con-
struct a set of axioms that embody the generally accepted properties of the no-
tion. Although Turing did not use axioms, it thus does not come as a surprise
that it was only after having read Turing’s paper that Godel became convinced
of a thesis stating such identifications.

2.5 Conclusion

In this chapter we have shown through an analysis of Church’s, Post’s and, to
a lesser extent, Turing’s earlier work, how each of these mathematicians/ logi-
cians arrived at their respective theses. An important result of our argumen-
tations is the fact that neither Church nor Post started with the explicit goal of



2.5. CONCLUSION 101

proving certain decision problems unsolvable, nor from the idea of finding a
proper formalization of the intuitive notion of computability, when they first
formulated their respective theses.

Post started from exactly the opposite of proving certain decision problems un-
solvable. His main method was to develop more general forms of logic, instead
of one specific system of logic, resulting in simpler and more abstract forms of
logic. By working with these forms, he hoped that it would be more straightfor-
ward to prove the Entscheidungsproblem solvable. It was only after his expe-
rience with tag systems that he first considered the possibility that there might
exist unsolvable decision problems and they laid the ground for his important
normal systems. After this research on tag systems, Post constructed systems
in canonical form C and systems in normal form, and proved the important
normal form theorem. On the basis of these results he then concluded for his
thesis, identifying the intuitive notion of generated set with sets of assertions
that can be produced through systems in normal form. Given this assumption,
he proved the unsolvability of the decision problem for normal systems. To
Post’s mind however, “a complete analysis would have to be made of all the pos-
sible ways in which the human mind could set up finite processes for generating
sequences” in order for his thesis to be more general.

It was thus only after he had already formulated his thesis and proven certain
decision problems unsolvable, that Post set himself the goal of giving an analy-
sis of what we humans understand under “generated set”. His thesis and the
resulting unsolvability of the finiteness problem for normal systems, however,
are rooted in Post’s study of the formalisms themselves, rather than in an analy-
sis of the intuitive notion considered formalized in normal systems.

Church on the other hand started from a study of alternative systems of logic
and considered consistency as the basic criterium for evaluating systems of
logic. Given the difficulties of proving a system consistent, he understood that
a more empirical approach is the best one available to build up confidence in
a given system of symbolic logic, as long as a consistency proof is missing. Af-
ter his Ph.D. students Kleene and Rosser had proven that the set of postulates
Church considered adequate for the development of mathematics where func-
tions play an important role, attention shifted to A-calculus. It was the fact that
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Church, Kleene and Rosser could A-define any function over the integers they
could think of, that led Church to the first formulation of his thesis, identify-
ing effective calculability with A-definability. On the basis of this thesis, and
its reformulation in terms of recursive functions, Church was able to prove cer-
tain decision problems unsolvable. Thus, also in Church’s case, one cannot but
conclude that it was not an analysis of the intuitive notion of effective calcula-
bility that led to his important results. Rather it was a study of A-calculus that
led him to his first formulation of his thesis. Contrary to Post however, Church
clearly did not come to the conclusion that he first had to provide an analysis of
all the processes the human mind can set up to effectively calculate a function
to make his thesis more general, since he announced and published it before
having read Turing’s paper, or having gone through such an analysis.

As far as Turing is concerned, it is important to take into account that he was
still very young in 1936. As a consequence his thesis, identifying the notion
computability with Turing machines, can hardly be traced back to his limited
amount of work preceding his On computable numbers [Tur37]. Basic here is
that, contrary to Church and Post, Turing’s thesis did result from a direct analy-
sis of the vague notion of computability itself, considering the general proper-
ties of the process of human computing. Turing machines then resulted from
this analysis.



Chapter 3

1936

In the previous chapter we showed that there are important differences but
also, to a certain extent, similarities, between the way Church, Post and Turing
each arrived at their theses and the related unsolvability results. In this chapter
we will further explore some of the basic differences and similarities between
their work, starting from their 1936 papers, focussing on the theses they each
proposed.

In a first more descriptive section (Sec. [3.1), we will take a closer look at the
exact statements of the theses starting from the 1936 papers [Chu36c, Tur37,
Pos36], and, in Post’s case, also his Account of an anticipation [Pos65]. Focus
here, will be put on the actual formulation of the several theses, as well as the
supporting arguments present in the work by Church, Post and Turing. We will
also provide arguments showing that one can deduce a thesis from Post’s 1936
paper, different from his original thesis.

On the basis of this analysis, we will then discuss the problem of identifying the
intuitive notion of “computability” with a given formalism, starting from the
two reviews written by Church on Post’s and Turing’s 1936 papers (Sec. [3.2). It
will be shown that already at the time of the original formulations, there were
important discussions on the actual status of such theses: should they be re-
garded as theorems, as (hypo)theses or as definitions? It will be argued that
one’s preference with respect to the status of these “theses”, has a close connec-
tion with the kind of arguments one considers as the most important. In this
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respect, it will become clear why Turing’s thesis is very often considered as the
most adequate one, and by some, even as the only really convincing thesis. In
discussing several possible interpretations of the theses we would like to rela-
tivize the “dominance” of Turing’s thesis.

In a last, shorter, section (Sec. [3.3) we will offer our own more philosophical
thoughts on the subject, drawing from our historical results of this and the
previous chapter. We will argue here that although it seems that one has very
quickly come to the consensus that Turing’s thesis is, in a way, the most con-
vincing, one should be very careful in coming too quickly to any conclusion
in this respect. In fact, we will argue that it is not only of historical but also
of philosophical significance to not restrict one’s attention to that which is the
most intuitively appealing.

It is important to note here, that we will not take into account (yet) the ongoing
debate on the physical Church-Turing thesis and the idea of beating it, at least
not in any detail. This will be done in Sec. It should also be mentioned that,
although the title of the chapter is 1936, we cannot but include a further discus-
sion of Post’s earlier work, since he already formulated his thesis and concluded
for the unsolvability of certain decision problems in 1921.

Itis also important to point out that several other mathematicians and logicians
have formulated theses comparable to those by Church, Post and Turing and
made important contributions in this context, but these will not be discussed
here in much detail. For example, Kleene’s work should not be underestimated
in this context, and we will discuss it to some extentE] Although Godel’s work
on incompleteness and his more philosophical thoughts on the subject are also
very important here, we do not have the space to discuss them in depthE]

IThe paper [Sho96] discusses Kleene’s work, and its invaluable role for the constitution of
recursion or computability theory. Webb’s book [Web80], gives a central role to some of Kleene’s
results as support for the validity of the Church-Turing thesis.

2Several papers and books have been written on Gédel's work and his more philosophical
ideas and it is impossible to give an exhaustive overview here. Biographical information can be
found in [Daw97, Wan87, Wan96]. The last two books contain lots of material on Gddel’s more
philosophical thoughts. We should also mention the special issue on Gédel of the Bulletin of
symbolic Logic, vol. 11, nr. 2, 2005, as well as a special issue of Philosophia Mathematica, vol.
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3.1 Different questions, different answers.

In this section we will discuss the general content of each of the 1936 papers,
some of the methods used, as well as the exact formulation of the respective
theses and the arguments — if provided — supporting them. It should be pointed
out to the reader that part of this section is descriptive. I.e., some paragraphs
will contain material that is merely summarizing the results as originally de-
scribed by Church, Post and Turing. In order to minimize these descriptive
parts, we have used as many intermezzo’s as possible, which might be skipped
by the reader who is familiar with the results summarized.

3.1.1 “An Unsolvable Problem of Elementary Number Theory”

As is clear from its title, Church’s paper [Chu36c] does not start from the notion
of effective calculability but from unsolvable decision problems. This is also
clear from the introduction of this paper. Its first sentences are ([Chu36c], p.
345):

There is class of problems of elementary number theory which can be stated in
the form that it is required to find an effectively calculable function f of n pos-
itive integers, such that f(xj, x2,..., x;) = 2 is a necessary and sufficient condi-
tion for the truth of a certain proposition of elementary number theory involving

X1, X2, ..., X, as free variables.

After having given one of two examples of such problems - involving Fermat’s
last theorem — Church writes:

Clearly, the condition that the function f be effective calculable is an essential

part of the problem, since without it the problem becomes trivial.
The purpose of the paper thus becomes:

[...] to propose a definition of effective calculability which is thought to corre-

spond satisfactorily to the somewhat vague intuitive notion in terms of which

14, nr. 2, 2006.
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problems of this class are often stated, and to show that not every problem of

this class is solvable.

From we already know the history preceding the publication of this paper
and it was neither an analysis of the notion effective calculability nor the idea
of proving certain problems unsolvable, but the computational power of A-
calculus that lay the basis for this paper. Still we think it important to note that,
notwithstanding our knowledge of the events preceding this paper, Church starts
from the problem of proving specific problems solvable or unsolvable to tackle
the problem of formally defining the vague notion of effective calculability.

Of more significance here is the fact that Church interpreted the identification
of effective calculability with general recursiveness and A-definability as a de-
finition. As we will see in[3.1.3]and discuss in[3.2} this interpretation stands in
sharp contrast with Post’s ideas in this context.

In the sections following the introduction, Church introduces the A-calculus,
the Godel representation of formulae and recursive functions. Church proves
or mentions several theorems with respect to A-definability and recursiveness,
including the two theorems stating he equivalence between A-definability and
recursive functions.

Church’s statement of the thesis

After this exposition Church again considers the problem of identifying the in-
tuitive notion of effective calculability with a certain formalism and proposes
the following “definition” (|[Chu36c], p. 356):

We now define the notion [...] of an effectively calculable function of positive in-
tegers by identifying it with the notion of a recursive function of positive integers

(or of a A-definable function of positive integers.)
He immediately adds (p. 356):

This definition is thought to be justified by the considerations which follow, so far
as positive justification can ever be obtained for the selection of a formal definition

to correspond to an intuitive notion. [m.i.]
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As is clear from these two quotes, Church indeed regarded the identification
he made, as a definition, not as a thesis. Despite his calling the identification
a definition, he understood that it is far from unproblematic to offer a positive
justification for his definition, i.e. it cannot be proven to be absolutely true.
Church’s thesis can be stated as:

Church’s Thesis. Every effectively calculable function is general re-
cursive (A-definable) and conversely.

We will now discuss the justification provided by Church in his paper, relying
on Gandy’s analysis of and critique on Church’s arguments [Gan88]| in this con-
text. In discussing Church’s paper [Chu36c|, Gandy points out four different
arguments supporting Church’s thesis, relying on Kleene’s [Kle52]. These argu-
ments are:

(A1) The argument by Example. This is the argument that led Church to the
first formulation of his thesis in terms of A-definability, i.e., the fact that
one can represent any function one can think of in the formalism one
is working with, as was the case for A-calculus in Church’s work. In his
1936 paper however [Chu36¢|, no mention is made of this argument. This
argument was also used by Turing in his 1936 paper.

(A2) The Step-by-Step Argument. Church considered this argument as the main
justification for his thesis in [Chu36¢c|. He announces this arumengt in
the quote given above. He considers two possible methods that can be
used to evaluate or compute a function f(x), two methods one might
identify on an intuitive level with the notion of effective calculability. These
are: the application of an algorithm that computes the value of f(x) and
the derivation of f(x) = y from a set of axioms, after application of a cer-
tain number of operations or rules of procedure. For each of these two
methods, the computation is done in a series of steps. Church then in-
terprets this step-by-step procedure as a recursive process, i.e. each step
performed is a recursive step. Then, since each step is recursive, f must
also be recursive. For Church there is no more general definition of ef-
fective calculability than the one he proposed, that can be obtained by
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analyzing either of the two methods (computations through algorithms
or in a logic). L.e. there is no more general way to describe the step-by-
step processes underlying these two methods than to describe them in
terms of recursive steps.

(A3) The Argument by Confluence. The argument by confluence concerns the
fact that very different formalisms that are each considered capable to
capture the intuitive notion of effective calculability, are proven to be
equivalent. This argument is used by Church in his 1936 paper [Chu36c],
in a footnote (p. 346, footnote 3):

The fact, however, that two such widely different and (in the opinion of the
author) equally natural definitions of effective calculability turn out to be
equivalent adds to the strength of the reasons adduced below for believing
that they constitute as general a characterization of this notion as is consis-

tent with the usual intuitive understanding of it.
This argument was also used by Post, Kleene and Turing.

(A4) The Criterion of the Failure of the Diagonal Argument. Although this ar-
gument was not mentioned by Church in the paper proposing the thesis
[Chu36c], it is clear that it played a role. This argument was also used by
Post in his [Pos65], as was shown in Sec. He used the fact that the
diagonalization cannot be done effectively to argue that the sequence de-
fined through the diagonalization does not contradict his thesis. Also for
Kleene this argument played a basic role in his acceptance of the thesisE]
Turing also considered this argument, as we will see in Sec.[3.1.2]

Gandy gave several objections to (A1)-(A3). Sieg [Sie97] also criticized (A2),
and has called Church’s interpretation of the steps of any effective procedure as
recursive steps, Church’s central thesis.

As far as (A1) is concerned, Gandy notes that although this argument can be

3The reader is referred to Sec for the quote by Kleene in which he states that he became
an overnight supporter of the thesis, in having realized that the diagonalization cannot be done
effectively.
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used to justify the heuristic value of the thesis, it cannot be used to settle the
philosophical or foundational question, in the sense that it does not exclude
the possibility that some day someone might establish an entirely new kind
of calculation that is not covered by Church’s thesis. This is in fact a general
problem of any argument supporting a thesis equivalent to Church’s, in that no
argument can be found that excludes this possibility. Indeed, one cannot give
a proof for the thesis, since one is working with intuitive concepts.

Another objection with respect to (A1) might be to give an example of some-
thing we would consider effectively calculable by intuition, but we cannot “en-
code” it in any formalism equivalent to A-calculus like Turing machines or tag
systems. L.e., even if one has e.g. A-defined thousands of functions, one can
never be sure whether there will not be some special kind of function left, we
consider as effectively computable, that cannot be A-defined. But again, this
problem is inherent to the problem the thesis wants to tackle, i.e., the formal-
ization of an intuition, rather than to the argument.

Similar objections can be made with respect to (A2), (A3) and (A4), and we will
thus not discuss them here. As far as (A2) is concerned, personally I find it hard
to accept this argument as a real argument, since the only way I can under-
stand it, is that Church himself simply did not see a more general way than to
interpret any “step-by-step” procedure as a “step-by-recursive-step” procedure.
Although I for myself neither see any other more general way than to under-
stand computability in terms of recursion or any other equivalent formalism, it
is not an argument one can use with respect to the sceptical person who wants
to beat the so-called Turing limit. Also Gandy [Gan88|, Sieg [Sie94, |Sie97] and
Soare [S0a96] pointed out the problems related to (AZ)EI

Unsolvable decision problems in A-calculus

After Church discussed his definition of effective calculability in terms of gen-
eral recursive functions, he could pass on to the proofs of the existence of cer-

“Soare for examples notes: “The fatal weakness in Church’s argument was the core assump-
tion that the atomic steps were stepwise recursive, something he did not justify.” ([Soa96l, p.
290).
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tain unsolvable decision problems. These proofs depend on the following the-
orem:

Theorem 3.1.1 There is no recursive function of a A-formula C, whose value is 2
or 1 according as C has a normal form or not.

In other words, the property of a A-formula having a normal form is not recur-
sively solvable and thus not-computableE] We will not enter into the details of
the proof of the theorem, since it involves explaining the A-definition of several
different functions. However, it is important to at least point out that Church A-
defined a rather involved function, composed out of several different A-defined
functions of which many were defined by Kleene [Kle35a, Kle35b], that can be
interpreted as a kind of procedure that should be able to evaluate whether a
given formula is convertible to formulas 1, 2, 3,... (which are all in principle
normal form)[f This A-formula ¢ is defined as follows:

¢ — An.0Hb(a(n),3(n)),baln),3(n)))

As was said, we will not give a detailed explanation of this function, but merely
indicate how e works. If nis one of the formulas 1, 2, 3,... then ¢(n) is convertible
into one of the formulas 1, 2, 3,....as follows:

1. if (a(n),3(n)) can be converted to a formula that stands for the G6del rep-
resentation of a formula which has no normal form, then ¢(n) conv 1.

2. If (a(n),3(n)) converts to a formula that stands for the G6édel representa-
tion of a formula having a (principal) normal form which is not one of the
formulas 1, 2, 3,.... then also ¢(n) conv 1.

3. If (a(n), 3(n)) is converted to the Godel representation g of a formula that
has a (principal) normal form which is one of the formulas 1, 2, 3,... then
¢e(n) is converted to the next formula g + 1 in the list 1, 2, 3,....

SFor the definition of normal form with respect to A-definability, the reader is referred to Sec.

S
)

emember that Church used the integers as abbreviations for certain A-formula. See Sec.
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I will not give the proof based on ¢, but will merely point out some of the essen-
tial ideas behind the proof. Since we follow Church’s exposition, we decided to
add this sketch of the proof in an intermezzo.

Starting from the assumption that it can be determined for every A-formula that
it has a normal form, Church deduced a contradiction. If the assumption holds,
then clearly one should be able to determine whether every A-formula is con-
vertible into one of the formulas 1, 2, 3,...Indeed, given a formula R one can first
determine whether it has a normal form, and if it has, one can obtain its principal
normal form by enumerating all the formulas into which Ris convertible, picking
out the first formula in principal normal form, determining whether it is in the
form1, 2, 3,..[] Then, let A;,A5,As, ... be an effective enumeration of the formulas
that have a normal form[ﬂ and let E be a function of one positive integer such
that E(n) = 1 if {A,}(n) is not convertible into one of the formulas 1, 2, 3,... and
E(n) = m+1if {A,}(n) is convertible to m and m is one of the formulas 1, 2, 3,..F_;]
The function is effectively calculable and is therefore A-definable by a formula e.
This formula has a normal form since ¢(1) has a normal form. However, ¢ cannot
be any of the formulas A;,A»,As, ... because for every n, ¢(n) is a formula not con-
vertible to {A,,}(n). This contradicts the property of the enumeration A;,A,As, ...
containing every A-formula that has a normal form, since ¢ cannot be part of it,

and we have thus deduced a contradiction.

Basic to the proof is the assumption that a function (¢) can be A-defined deter-
mining for any given A-formula whether it is convertible to one of the formulae

"This result follows from the following theorem: It is possible to associate simultaneously with
every A-formula an enumeration of the formulas obtainable from it by conversion, in such a way
that the function of two variables, whose value, when taken of a A-formula A and a positive in-
teger n, is the n-th formula in the enumeration of the formulas obtainable from A by conversion,
is recursive.

81t was proven that the set of A-formula that have a normal form is recursively enumerable.

9Note that {A,,}(n) is the A-formula, corresponding to the recursive function that is used to
determine for every formula A,, the n-th formula in the enumeration of the formulas obtain-
able from A,,.
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1,2, 3,... On the basis of this assumption a contradiction can be deduced by ap-
plying a kind of diagonalization (the use of formulas of the form {A,}(n)). One
can thus conclude that one cannot A-define a function that is able to determine
whether a given A-formula has a normal form.

On the basis of this theorem, Church furthermore proved that there is no recur-
sive function of two formulas A and B whose value is 2 or 1 according as A conv
B.

3.1.2 “Oncomputable numbers, with an application to the Entschei-

dungsproblem”

As is clear from its title, Turing’s focus is on computable numbers. To be more
exact, Turing’s paper wants to deal with ([Tur37], p. 230):

the real numbers whose expressions as a decimal are calculable by finite means.

On the first page of the paper, Turing announces how he will define the com-
putable number (p.230):

According to my definition, a number is computable if its decimal expansion can

be written down by a machine.

As was shown in Sec. contrary to both Church and Post, who first formu-
lated their thesis after having convinced themselves of certain properties of the
formal systems they were studying, Turing did not start from a given formalism,
but deduced one on the basis of his analysis of the process of human comput-
ing. Indeed, one could say he constructed his Turing machines by taking to-
gether some of the generally accepted properties he deduced from his analysis
of such processes. In this respect, it is important to emphasize that for Turing
the real question at stake is:

What are the possible processes that can be carried out in computing a number?

As we already know from Sec. it was a similar question Post wanted to
solve in order for his thesis to be generally valid, i.e. “for full generality a com-
plete analysis would have to be given of all the possible ways in which the human
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mind could set up finite processes for generating sequences.” ([Pos65], p. 387).
In the next section we will see that the kind of analysis Post is pointing at in the
quote, in the end resulted in a formalism almost identical to Turing’s.

In the remainder of this text we will use the notion computor to indicate a hu-
man computer, and the usual term computer, when machines are concerned,
following Gandy [Gan80].

Turing’s machines: Universal computing and the halting problem.

In the beginning of his paper, Turing starts to describe some properties of his
machines, by making the comparison with a man in the process of computing a
real number. As he points out, the more detailed justification for the definition
of computability in terms of machines will follow after he has proven some of
his basic results. The only justification he already mentions is that since man’s
memory is limited, the machine’s should also be limited in certain ways. First
of all, the machine is supplied with a finite number of conditions q, ¢o, ..., qr,
called m-configurations. The machine is supplied with a tape which Turing
compares with the paper a computor uses. The tape is divided into squares,
each capable of bearing a symbol. At any moment i, there is just one square
bearing a symbol a; that is in the machine. Turing calls this square the scanned
square, and the symbol on it, the scanned symbol. This scanned symbol “is
the only one of which the machine is, so to speak, “directly aware” ([Tur37],
p. 231). If an m-configuration is altered the machine is considered to be ca-
pable of remembering the symbol it has “seen” previously. The possible be-
haviour of the machine at any moment is completely determined by the m-
configuration it is in, as well as the symbol scanned. The symbol scanned and
the m-configuration the machine is in at a given time is called the configura-
tion of the machine. The machine is capable of several operations: if the square
it is scanning is blank;, it can print a symbol and if it is not blank, it can erase it.
The machine can also move one square to the left or to the right. As should be
clear to the reader, these features are basic to the description of what we now
know as a Turing machine.
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In the following intermezzo, we will give a standardized description of Turing
machines. The kind of description we are using here is in no way fundamental,
but it is important to pick one out. We choose this description, because it is the
one most often used in some of the papers we will discuss in part IIE

A Turing machine is considered here to consist of a two-way infinite tape, sub-
divided into squares. Each square can contain one and only one symbol. The
machine is capable only of a finite number of states (m-configurations). It can
perform the following kind of operations: move one square to the left (indicated
as L), move one square to the right (indicated as R), print a symbol S; from a fi-
nite alphabet X = {S1, S5, ..., Si}. It should be noted that we do not use an erasure
operation, but rather an overwriting operation, i.e. if a square contains a given
symbol, it is overwritten by the new symbol printed. In this respect an empty
square is from now on identified as a square containing the symbol 0 (Sp). The
machine is also capable of recognizing the symbol in the square it is scanning,
and to change its state. A quintuple is an expression of the form g;S; : S M; g,
where M) can be equal to L or R. A quintuple completely determines what the
machine should do in state g; scanning the symbol S;. A Turing machine can
then be defined by a finite set of quintuples that contains no two quintuples for
which the first two symbols are identical{l—_r] Later on, we will represent a Tur-
ing machines, defined though a finite set of quintuples, by transition tables. For
example the following table:

0
0 qul
ORq

describes a Turing machine defined through a set of two quintuples {¢,0: 1Rq1, 10Rq;}.
The state of a Turing machine at a given time, is given by its instantaneous de-
scription (L.D.) at that time, an expression of the form Pg;s;Q, where g; is the
state the machine is in, s; the symbol it is scanning, P the content of the tape to
the left of s; and Q the content of the tape to the right of s;. Using .D.’s one can

describe the dynamics of a Turing machines.

O0Rgy this description, see e.g. [Min61].
Tt should be pointed out that Post [Pos47] introduced the use of quadruples instead of quin-

tuples.
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Despite the rather simple mechanism behind Turing machines, Turing consid-
ered them as being capable to carry out any process to compute a number we
humans can carry out. But before further discussing Turing’s thesis, it is impor-
tant to point out some of the other results contained in the paper.

First of all, we must mention the differentiation between circular and circle-free
machines, which is basic to Turing’s proof of the halting problem. It should be
noted though that Turing never used this last term. This is due to Martin Davis
[Davb58].

A machine is considered circular if it never writes down more than a finite num-
ber of symbols, i.e. if it reaches a configuration from which there is no move
possible, or gets into a loop. In all other cases, when the machine is actually
computing a real number or an infinite sequence of symbols, it is said to be
circle-free. Contrary to Church, Turing did not use Godel coding but used his
own coding system which is far more efficient if one actually implements it. We
will not give the details of this coding, since the readers are probably already
familiar with it, but it is important to point out that Turing differentiates be-
tween the description number (D.N.) and the standard description (S.D.) of a
Turing machine. The D.N. can be constructed from the S.D. by replacing letters
by numbers.

Since Turing’s coding system is far more efficient than Godel coding, it is eas-
ier to really implement it on a machine. Although Turing, at that time, did not
build or design a real physical computer, he did provide a construction of a
Turing machine capable to compute anything computable by any other Turing
machine, that later influenced his design of a real computer, as well as, most
probably, von Neumann’s (See Sec. [4.1). The encoding of this machine heavily
relies on the S.D. of Turing machines.

I will not give the description of Turing’s original universal machine herePZ] Itis
rather intricate and contains some mistakes (See Post’s [Pos47]). Still, I want to
at least notice here that, having gone through the operations of this universal
machine, noticing the mistakes its instruction table contains, trying to under-

12In part II we will deal with other universal Turing machines, which are far simpler in their
description.
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stand how such a machine might work, has been an experience for me I will
never forget. The insight that a universal machine is in a way nothing more than
a kind of complicated cut-copy-paste machine, that is nonetheless capable to
interpret and execute the operations of any other Turing machine, has been
rather important for me. It has resulted, at least for me, in a first change of my
own intuitive notion of computations and computers. In a way the processes
that can be used to translate machine language to a user-friendlier language,
and vice versa, is very much related to this kind of theoretical construction.
Fundamental here is that instructions and data are put on one and the same
level, and the instructions can thus be manipulated as data.

This universal machine was used by Turing in his famous proof of the unsolv-
ability of the halting problem. Before giving the proof, Turing emphasizes that it
should be understood that the diagonalization cannot be done effectively, thus
pointing out the same kind of fallacy Post describes, that might be involved
in searching for counter examples through the diagonalization process contra-
dicting the thesis. I.e., the fact that one can define a given sequence through
diagonalization that cannot be computed by a normal form, does not imply
that one has given a real counter example. This would only be valid if the se-
quence could be effectively computed. Turing summarized the argument and
the fallacy underlying it as follows ([Tur37], p. 246):

It may be thought that arguments which prove that the real numbers are not enu-
merable would also prove that the computable numbers and sequences cannot
be enumerable. It might, for instance, be thought that the limit of a sequence
of computable numbers must be computable. This is clearly only true if the se-
quence of computable numbers is defined by some rule. Or we might apply the
diagonal process. “If the computable sequences are enumerable, let a,, be the
n-th computable sequence, and let ¢, (m) be the m-the figure in a,. Let § be
the sequence with 1 — ¢, (n) as its n-th figure. Since f is computable, there ex-
ists a number K such that 1 — ¢, (n) = ¢x(n) for all n. Putting n = K, we have
1 = 2¢¢(K), i.e. 1is even. This is impossible. The computable sequences are
therefore not enumerable”. The fallacy in this argument lies in the assumption

that B is computable.lm.i.] It would be true if we would enumerate the com-
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putable sequences by finite means, but the problem of enumerating computable
sequences is equivalent to the problem of finding out whether a given number is
the D.N. of a circle-free machine, and we have no general process for doing this
in a finite number of steps. In fact, we can show that there cannot be any such

general process.

This argument is indeed similar to Post’s, i.e. the diagonalization cannot be
done effectively! This is only possible if one would be able to solve by finite
means the problem mentioned at the end of the quote, now reformulated as
the halting problem.

As is pointed out by Turing, there is a very direct proof of the unsolvability of
this problem based on the assumption of the correctness of his identification
between computability and Turing machines: if such general process would ex-
ist, than there should indeed exist a machine that computes . But such proof
might leave the reader with a feeling that something is missing, and Turing pro-
vided another proof. Let us now turn to a description of the original proof by
Turing. The proof depends not on the computability of 8 but on g’ whose n-
the figure is ¢, (n). We give the proofin an intermezzo since, as was the case for
Church, we merely follow Turing’s description of the proof.

Turing starts from the assumption that there exists a Turing machine that de-
cides for any given number whether it is the D.N. of a circle-free machine, and
deduces a contradiction from the assumption. Let us suppose we could invent a
machine D that, when supplied with the D.N. of another machine M, tests this
machine through its D.N.. If D concludes that M is circular it prints the symbol
u, and if it is circle-free it prints s. We can then combine D with the universal
Turing machine U to construct a new machine H to compute §'.

H’s tape can be subdivided into several sections. Let us suppose that in the first
N —1 sections, among other things, the integers 1,2,..., N — 1 have been printed
and are already tested by H. A certain number of these integers, R(N — 1) have
been found to be the D.N. of circle-free machines. In its N-th section H now has
to test the N. If N is the D.N. of a circle-free machine (V is satisfactory) then
R(N) = R(N —1) + 1 and the first R(IV) figures of the sequence calculated by the
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machine with its D.N. = N are computed. The R(N)-th figure is then written down
as the R(N)-the figure of the sequence ' which can thus in this way be com-
puted by H. If N is the D.N. of a circular machine, (V is not satisfactory) then
R(N) = R(N — 1) and the machine goes to the (/N + 1)-th section.

Now, from its construction it is clear that H itself should be circle-free. Each
section of the motion comes to an end in a finite number of steps, given the as-
sumption that the machine D, part of H, is capable to decide in a finite number
of steps whether a given number N is the D.N. of a circle-free machine. If N is
satisfactory, the machine My, whose D.N. is N, is circle-free so we can use the
universal machine U, part of H, to compute its R(N)-th figure in a finite number
of steps. When this figure is calculated as the R(N)-th figure of ', the machines
moves to N + 1. If N is the D.N. of a circular machine, H also finished in a finite
number of steps, and moves to N + 1. Thus, H is circle-free.

Now suppose N is the D.N. of H itself. H must now test whether its own D.N.
is satisfactory. It is at this point that a contradiction arises. Indeed, since N is
the D.N. of a circle-free machine, H’s verdict cannot be that NN is not satisfactory.
However, neither can H’s verdict be that N is satisfactory. If this would be the
case, then H should compute in its N-the section, the first R(N — 1) + 1 = R(N)
figures of the sequence computed by H, and write down the R(V)-th figure as a
figure of the sequence ' computed by H. There are no problems as far as the
computation of its first R(K) — 1 figures is concerned. However, computing the
R(N)-th figure would amount to “calculate the first R(N) figures computed by H
and write down the R(N)-th.”, this of course is impossible, since, in a way, the
machine should be ahead of its own computations to do this. Thus the R(N)-th
figure could never be computed and H must thus be circular. In other words, if
H is applied to itself, it can never give rise to the right verdict, it cannot decide for
itself whether it is circular or circle-free. We can thus conclude that no machine

H can be constructed, of course, on the assumption of Turing’s thesis.

Basic to the proof is that, on the assumption that one can construct a Turing
machine H that decides for any Turing machine whether it is circle-free, Turing
is able to deduce a contradiction through diagonalization.
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After this proof, Turing proved that there can be no machine P which, when
supplied with the D.N. of an arbitrary machine M, determines whether M will
ever print a given symbol, i.e., he proved that the printing problemis unsolvable
[Davb58].

Turing’s statement of his thesis

After the proof of the unsolvability of the printing problem, Turing starts his
discussion of the identification he had to assume to be valid in order to prove
the halting problem unsolvable ([Tur37], p. 348):

”

The expression “there is a general process for determining...” has been used
throughout this section as equivalent to “there is a machine which will deter-
mine..."”. This usage can be justified if and only if we can justify our definition of
“computable”. For each of these “general process” problems can be expressed as
a problem concerning a general process for determining whether a given inte-
ger n has a property G(n) [e.g. G(n) might mean “r is satisfactory” or “n is the
Godel representation of a provable formula”], and this is equivalent to comput-

ing a number whose n-th figure is 1 if G(n) is true and 0 if it is false.

As was the case for Church, also Turing was very clearly aware of the fact that
no argument supporting the thesis can be used as a mathematical proof of the
thesis ([Tur37], p. 349):

All arguments which can be given are bound to be, fundamentally, appeals to in-
tuition, and for this reason rather unsatisfactory mathematically. The real ques-
tion at issue is “What are the possible processes which can be carried out in com-

puting a number?”

Turing gives three different kinds of arguments. The first two are (A1), the ar-
gument by example and (A3), the argument by confluence. As far as (Al) is
concerned, Turing gives several examples of classes of numbers and functions
that can be computed by Turing machines. The argument (A3) is the proof of
the equivalence between Turing machines and restricted predicate calculus. It
is this proof that leads to the unsolvability of the Entscheidungsproblem for this
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calculus. To be more specific, Turing showed that the printing problem can be
reduced to the Entscheidungsproblem.

After he had already submitted the manuscript of the paper, Turing received an
offprint of Church’s [Chu36c|] via Newmann. After having made himself more
familiar with A-definability, he proved the equivalence between his formaliza-
tion of computatability and A-definability, and added the proof as an appendix
to his [Tur37]. He was thus able to add more strength to the argument by con-
fluence. A more detailed proof was published as [Tur37].

The significance of a third argument (A2), described by Turing as a direct ap-
peal to intuition, can hardly be overestimated. It is exactly this argument that
convinced many people, including Gédel, of the validity of Turing’s thesis, and
is nowadays still considered by many as the fundamental argument supporting
the thesis. Some even regard it is a proof of “Turing’s theorem” (instead of Tur-
ing’s thesis). As a consequence Turing’s identification is often regarded as the
best or most convincing one available, since the argument only works for Tur-
ing machines or similar kinds of formalizations, i.e., formalizations that start
from an analysis of the vague intuitive notion. Before further discussing the
significance of this argument, we will now summarize the main ideas behind it,
based on Gandy’s [Gan88] and Sieg’s [Sie94,SB96, Sie97] analyses.

The argumentation that is used as a direct appeal to intuition, is in fact Tur-
ing’s analysis of a man in the process of calculating something, a computor, and
his deduction of certain properties that are inherent to this process. It is this
kind of analysis (See Sec. that Godel thought to be the best way to find a
satisfactory identification between the intuitive concept of computability and
a given formalism, i.e. to determine a formalism based on generally accepted
properties of the intuitive notion. I still consider this part of Turing’s paper as
a very strong and beautiful philosophical analysis, making clear how one can
proceed to formalize certain non-mathematical notions.

Turing starts from the idea that “/c/Jomputing is normally done by writing cer-
tain symbols on paper. We may suppose this paper is divided into squares like a
child’s arithmetic book” ([Tur37], p. 349). Since the two-dimensional character
is not essential to computation according to Turing, he assumes that the com-
putor works on a 1-dimensional tape divided into squares. By considering the
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limitations of us humans, with respect both to perceptional as well as mental
abilities, while in the process of computing something, Turing deduces several
restrictions on the actions of a computor and describes on the basis of this de-
duction an abstract computor. The actions of this abstract computor are then
considered replaceable by the actions of a computer, i.e., the actions of a com-
putor can be formalized in a kind of computers which are in fact reducible to
Turing machines.

Both Gandy [Gan88| and Sieg [Sie94}SB96, Sie97] correctly deduced the several
restrictions Turing concluded for on the basis of his analysis. We will here sum-
marize these restrictions and indicate the reasons Turing mentioned for adding
them.

B.1 Boundedness condition on the number of symbols that can be printed, i.e.
finiteness of the alphabet. There is a fixed upper bound to the number
of distinct symbols that can be printed. As Turing remarks: “If we were
to allow an infinity of symbols, then there would be symbols differing to
an arbitrarily small extent.” ([Tur37], p. 249). Furthermore, if we do not
add this restriction, it becomes impossible to recognize a symbols at one
glance.

B.2. Boundedness condition on the number of cells or symbols scanned. There
is a fixed bound on the number of contiguous cells (or their contents) the
computor can take in when he is deciding what to do. This restriction
is added, since there is a limit for us humans for directly recognizing a
given sequence of symbols. Turing gives the example that we cannot de-
termine at a glance whether 9999999999999999 and 9999999999999999
are identical. There is also a further reason for this restriction not explic-
itly mentioned by Turing: we humans can only perceive a finite space at
one and the same moment. If we are reading a text, we have to move our
eyes to reach certain points of the text.

B.3. Boundedness condition on the number of states. There is a fixed bound
on the number of “states of mind” of the computor. Turing’s reason for
adding this restriction is: “If we admitted an infinity of states of mind,
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some of them will be “arbitrarily close” and will be confused.” This argu-
ment is thus similar to that for B.1.["%]

L.1. Locality condition on the number of symbols that can be changed. Only
symbols of observed configurations can be changed, and only one at a
time. Turing does not provide a real reason here, but it seems only normal
that we only change one thing at a time when calculating on a piece of

paper.

L.2. Locality condition on the size of the move to left or right. Each of the ob-
served squares must be within a bounded distance of an immediately
previously observed square, i.e. there is a bound on the number of squares
you can move over in one step. Turing provides no argument, but it is a
very reasonable condition, since one will most probably never jump from
page 50 to page 100 in making a calculation. Furthermore, if this locality
condition would not be made, one could make a move to infinity.

For Turing it was very important that the operations of the computor “are so
elementary that it is not easy to imagine them further divided.” ([Tur37], p. 250).
In this respect the operations of the computor can be considered as atomic acts.
On the basis of this analysis of a human computor, Turing deduces an abstract
computor, which should be capable of two basic operations: (1) it must be able
to change a symbol in one of the observed squares, and (2) must be able to
move from one of the squares observed to another square, within a certain
number of squares of the previously observed squares. Since this machine must
also be able to change its state of mind, the most general simple operations Tur-
ing concludes for is the combination of (1) rsp. (2) with the operation of chang-
ing the state of mind. Finally, Turing adds that every such operation performed
is completely determined by the the state of mind and the observed symbols.
Sieg [Sie94), ISB96, Sie97| calls this the determinacy condition (D).

Given the restrictions one must take into account in observing the process of a
man calculating, and the abstract computor deduced on the basis of these re-
strictions, the idea of identifying human computing with machine computing

13Discussions on the “finite-states” hypothesis can e.g. be found in [Web80] and [Kle87].
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almost naturally follows. As Turing writes ([Tur37], p. 251):

We may now construct a machine to do the work of this computer [the abstract
computor]. To each state of mind of the computer corresponds an “m-configuration”
of the machine. The machine scans B squares corresponding to the B squares
observed by the computer. In any move the machine can change a symbol on a
scanned square or can change any one of the scanned squares to another square
distant not more than L squares from one of the other scanned squares. The
move which is done, and the succeeding configuration, are determined by the
scanned symbol and the m-configuration. The machines just described do not
differ very essentially from computing machines as defined [earlier in the paper,
i.e., Turing machines], and corresponding to any machine of this type a comput-
ing machine can be constructed to compute the same sequence, that is to say the

sequence computed by the computer.

In having constructed an abstract computor on the basis of the several restric-
tions deduced, and having argued how this abstract computor can in fact be re-
placed by a computer, which is basically identical to a Turing machineﬂ Turing
has thus provided a very direct and convincing argumentation for the following
thesis:

Turing’s Thesis. Anything that can be calculated by a human being,
can be computed by a Turing machine (and conversely)

Turing’s thesis has been posed in several different forms in the literature, by
separating between the several steps in Turing’s reasoning. For example, both
Sieg and Soare give a different form of Turing’s thesis. To Sieg [SB96], Turing’s
central thesis is:

Turing’s Central Thesis [Sieg]l. Any mechanical procedure can be
carried out by a computor satisfying conditions B.2., B.3., L.1., L.2.,
D.

4Unlike the simplification from computor to abstract computor, and from abstract com-
putor to computer, this simplification (from computer to Turing machine) can be proven.
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On the basis of this thesis, Sieg then concludes for what he calls Turing’s theo-
rem:

Turing’s Theorem [Sieg]. Any number theoretic function that can be
calculated by a mechanical computor can be computed by a Turing
machine.

Soare [S0a96] accepts Sieg’s statement of “Turing’s theorem‘” and concluded
that Turing’s thesis can be reduced to the thesis Sieg called “Turing’s central the-
sis, although he slightly reformulated it by replacing “mechanical procedure” by
“functions that are considered intuitively to be calculable”.

In his [Gan88], Gandy gives three different forms of Turing’s thesis, but does not
identify them as theses, but as theorems. The first statement of the “theorem”
is very similar to our statement of Turing’s thesis:

Turing’s theorem I [Gandy]. Any function that can be calculated by
a human being can be computed by a Turing machine.

Turing’s theorem II [Gandy]. Any function which can be calculated
by a human being following a fixed routine is computableE]

Turing’s theorem III [Gandy]. Any function which is effectively cal-
culable by an abstract human being following a fixed routine is ef-
fectively calculable by a Turing machine — or equivalently, effectively
calculable in the sense defined by Church — and conversely.

It is remarkable that, although Turing machines were shown to be equivalent to
general recursive functions and A-definability, it is Turing’s thesis, not Church’s
(nor any thesis based on a formalism shown to be equivalent to one of these
formalisms) that has given rise to a variety of different statementsm

As we will see in Sec. [4.3]it has been Turing’s thesis that lies at the basis of what

151t is important to point out that when Gandy uses the word “computable” it refers to any of
the notions equivalent to Turing computability, like e.g. A-definability.
1675 for the several formulations of Turing’s thesis in terms of Turing’s theorem given here,

they will be discussed in more detail in Sec.
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is now known as the physical Church-Turing thesis, and forms the main target
of many a scientist trying to go beyond the Turing limit. In a way, it is not sur-
prising that one usually talks about going beyond the Turing limit instead of say
the Post or Church limit. Neither Post’s nor Church’s thesis, makes a connection
with something as “worldly” as a machine. This is rather logical since neither
of them started from a direct analysis of the idea of computing, but only for-
mulated their theses on the basis of formalisms that already existed and used
in a different context, i.e., it were the formalisms themselves that convinced
them. Turing’s machines on the other hand, were constructed by starting from
an analysis of the process of a man calculating. In this sense, there is a direct
link between Turing machines and the physical world we compute in. But this
is not the only connection. The fact that Turing uses the word “machine”, in-
stead of calculus or form, makes this connection even stronger. Although at
that time there were no computers as we know them now, the notion of a ma-
chine was very well known. Even if Turing machines are a very special kind of
abstract machines, their description is very physical, using a fape, a head that
moves over the tape, writes and recognizes symbols, and furthermore works with
states of mind describing what the machine should do. In this respect, Turing
machines are much more connected to the notion of effectiveness interpreted
in the more physical sense of mechanizable.

Given its close connection to our everyday life, especially now in the era of com-
puters, it should thus not come as a surprise that Turing’s thesis is regarded as
the most convincing one, and thus also as the one that should be beaten. Tur-
ing was right in describing his analysis as an argument making a direct appeal
to intuition. This is only affirmed by the hundreds of philosophical papers and
books that make Turing machines the central concept. However, now that we
have a formalism considered to capture the intuition, it might be fruitful to turn
the argumentation upside down and to ask how formalisms further removed
from intuition can help to alter our intuitions. We will develop this idea in Sec.

B3l
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3.1.3 “Finite Combinatory processes. formulation 1”

In Sec. [2.2.5]it was shown that Post had already formulated his thesis and proven
certain decision problems unsolvable relative to this thesis in 1921. We will first
discuss these results in more detail. Starting from Post’s critique with respect to
his own thesis, we will then finally be ready to discuss Post’s 1936 paper [Pos36].
We already know how Post came to the realization of the generality of his nor-
mal form and we will not repeat the significance of, on the one hand, tag sys-
tems and, on the other hand, the normal form theorem, for his at that time
“unorthodox” ideas.

Contrary to Church and Turing, Post does not refer to the intuitive notion of
effective calculability or computability in his thesis, but that of a generated
set. Clearly, this notion is further removed from everyday life and thus, in it-
self, far less intuitively appealing than the notion of a computation. Indeed,
while everybody is used to the idea of a calculation — it was and still is part of
elementary education — far from everybody has a concrete notion of sets, let
alone, generated setsE] Still, graduate students in mathematics at that time
(up to today) and, especially, the logicians who were (and are) acquainted with
formalisms like Principia or Cantor’s work, must have had a more concrete in-
tuition of the notion of a generated set.

Post’s statement of his thesis

In Post’s case, the fact that he stated his thesis in terms of generated sets rather
than calculability, is not surprising since, basically, he had been working with
systems generating sets of sequences of letters. Given the mathematical gen-
erality of Principia, it was the realization that Principia might be reducible to a
system in normal form that formed the decisive step for him to formulate his
thesis ([Pos65], p. 385):

In view of the generality of Principia Mathematica, and its seeming inability to

7The generation I belong to has a more concrete notion of set, since introductory courses on
sets were included in the elementary and secondary school curriculum, under the influence of
Bourbaki. In the meantime it is no longer a standard part of most curricula (at least as far as I
know, here in Europe).
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lead to any other generated sets of sequences on a given set of letters than those

given by our normal systems, we are led to the following generalization.

The generalization pointed at in the quote, was first called Post’s thesis by Mar-
tin Davis [Dav82]. Post has given the following statement of his thesis:

Post’s Thesis. Every generated set of sequences on a given set of let-
ters ay, @y, ..., 4y, 1s a subset of the set of assertions of a system in nor-
. . . . ! ! !z
mal form with primitive letters a, ay, ..., ay, a,, a,, ..., i€, the sub-
set consisting of those assertions of the normal system involving the

letters ay, ay, ..., ay.

Fundamental for the formulation of this thesis in terms of normal form was
Post’s normal form theorem, through which any canonical form could be re-
duced to a special canonical form, i.e., a system in normal form.

Unsolvable decision problems for normal systems

Having started from the idea to develop the most general form of logic and ul-
timately mathematics, in order to prove that the whole body of mathematics
is solvable, Post had now found such general form of logic and mathematics.
However, having realized, after his experience with tag systems, that such de-
cision procedure might not exist, together with the realization of the generality
of his normal form, which was very closely connected to his form of tag, and
the insight that he could apply a diagonalization procedure, Post now decided
for the reversal of his entire program and concluded that the decision prob-
lem for the class of normal system is unsolvable, in that there exists “no finite
method which would uniformly enable us to tell of an arbitrary normal system
and arbitrary sequence on the letters thereof whether that sequence is or is not
generated by the operations of the system from the primitive sequence of the sys-
tem.” ([Pos65], pp. 386-387).

In his Account of an anticipation Post added an Outline of a minimum math-
ematical development, in which he proves the unsolvability of the finiteness
problem for systems in normal form through diagonalization. In this outline,
Post proved through diagonalization on an enumeration of all normal systems,
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that there exists a set of “a-sequences”, strings on the alphabet {a}, called the
N-set, that cannot be generated by a normal system, and is thus a set that can-
not be generated in general. To put it in different terms, it is a non-computable
set. The following intermezzo explains the proof.

Let us first recall the definition of a system in normal form. Let £ = {a, ap, ...ay}.
A system in normal form is then defined by one initial sequence A = a;, a;,...a;,
(the axiom) over the alphabet X, and a finite set of production rules of the form:

giP produces Pg;

where g; and g/ are finite sequences over . A normal system is the set of se-
quences resulting from the iterated application of these operations starting with
the initial sequence. Post makes no differentiation between normal systems which
only differ from each other in the letters used. In this respect, these letters can
always be the first u symbols of an infinite sequence of letters, like e.g. the first
positive integers.

Post then goes on to show that the set of all normal systems can itself be ordered
in an infinite sequence, i.e., it can be enumerated. This is done by ordering the
set of all possible bases, the initial sequence and the production rules, of nor-
mal systems. Post then defines a kind of coding, comparable to Godel coding or
Turing’s coding through the D.N. and the S.D. Essential to Post’s coding here is
the complexity of a basis of a normal system. The complexity of a given basis is
the total number of symbols appearing in the alphabet X, the initial sequence
and the production rules, where each P is counted as a separate symbol. The
different bases are then divided into classes according to their complexities, in
order of increasing complexity. Each class is then further divided into subclasses
according to the number of symbols of the alphabet, and correspondingly or-
dered. In the same way, each of these subclasses is divided into subclasses and
ordered, according to the number of operations. Each of these subclasses is then
divided again and ordered according to the ranks of C = Ag; g; ...gkg;., the rank of
a sequence being its length, with the resulting classes ordered according to the
rank of the first of the sequences that differ in rank for two classes. In each of

the resulting classes two bases are identical iff. their respective sequences C are
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identical.

C is then interpreted as a number, by setting each letter to an integer, i.e. a; =
1,az = 2,...,ay = p. Since the number of letters in the alphabet is the same for
all bases in the same class, the bases within a given class can finally be ordered
within each class according tot the number C represents. Using this ordering, it is
possible to order the whole set of bases. Post called this ordering the o-ordering.
Given the convention that two normal systems that differ from each other only
in the specific alphabet used, are considered identical, so that for any base, the
letters from the alphabet are the first u letters, it is clear that all normal systems
have the same letter @; which is replaced by a. Then, consider the following set of
sequences, involving only the letter a: The string a...a, with n a’s (of rank n), is or
is not in the set depending on whether it is not or isin the n-th normal system in
the o-ordering. This set is called the N-set. Then, there exists no normal system
with the property that if its first letter is replaced by a, then the set of resulting
sequences involving only the letter a is the N-set, i.e., there exists no formal sys-
tem that can generate the N-set. This is true, since suppose there would be such
anormal system in the o-ordering, e.g. the m-th. This normal system, however,
must differ from the N-set in at least one sequence, i.e., the sequence aa...a with
m a’s, since, by definition, if this sequence is present in the normal system it

cannot be in the N-set, and vice versa.

After having proven this result, Post states: “As stated this theorem would be
trivial were it not for the all embraciveness of normal systems.” ‘([Pos65], p. 389).
Indeed, this proof is only valid in as far as Post’s thesis is valid. Earlier in the
paper, Post already pointed out the significance of the non-effectiveness of the
diagonalization: although it is possible to define the set N of a-sequences, this
does not result in a counter-example, since one can only yield a true counter-
example if one can set up a system of combinatory generation that effectively
generates the set['¥]

Post then deduces several other “(theorems)”, putting them between brackets
because he did not provide the details of the proofs. These (theorems) concern:

18For the exact quotes, the reader is referred to Sec. @
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1. A (theorem) stating that there exists a complete normal system K and a

correspondence (encoding) C such that for each normal system and enun-
ciation thereof, there is one and only one enunciation in K by correspon-

dence C, such that an enunciation in K is asserted (generated) iff. the

corresponding normal system is such that the enunciation is an asser-

tion of that normal system. The normal system K is thus a normal sys-

tem that generates all and only those assertions generated by any other

normal system. Post later added in a footnote that this normal system K
corresponds to Turing’s universal machine.

2. A (theorem) stating that there exists no finite-normal-test for the com-

plete normal system K. Given a normal system M. Then there exists a
finite-normal-test for M if there exists a normal system M’ such that among
the letters of M’ are all the letters of M, and in addition, among possibly
others, a primitive letter b, such that if P is an assertion of M, P is also an
assertion of M’, while bP is an assertion of M’ if P is not an assertion of
M. Although Post of course did not use the terminology then, we can re-
formulate the existence of a finite-normal-test for a given normal system
M, by stating that M is recursive. The (theorem) of the non-existence of
a finite-normal-test for the complete system K would later be proven in
more detail, and stated in more exact terms, by Post [Pos44]. He proved
that there exists a complete set C, which is very similar to the normal sys-
tem K, proving that the set C is a recursively enumerable set that is non-
recursive, i.e. the complement of the set is not recursively enumerable.

. A (theorem) stating that no normal-deductive-system is complete, there

always existing a normal system S and enunciation P thereof such that P
isnotin S while b(S, P) is not in the normal-deductive-system. A normal-
deductive-system L is a normal system that is such that for any normal
system S, if P is an assertion of S, (S, P) isin L, while if Pis notin S, b(S, P)
is in L. In [Pos44], Post would prove what he called a Gddel in miniature
theorem, by using a reasoning that seems to go back to this (theorem).

4. A (theorem) stating that for any given normal-deductive-system there
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exists another one which proves more theorems than the first (fo put it
roughly, Post added). Also this (theorem) was stated in more exact form
in Post’s [Pos44].

After his Procter fellowship Post further investigated the results he considered
to be unfinished. This is very clear from several of the footnotes of his Account
of an anticipation. However, he was in a far from perfect situation to do his
research. As is pointed out by Davis [Dav94]:

Until 1935, he was unable to obtain a regular academic position, making his liv-

ing, for the most part, by teaching in the New York high school system.

Post could not devote his whole time to research, not only because he did not
have a secure academic position, but also due to his manic-depressive illness.
This situation did not stop him from doing further research, on the contrary.
One of the goals he set himself after his Procter fellowship was to provide a
more complete analysis of the intuitive notion of generated sets. As we already
know, to Post for his thesis to obtain its full generality, “an analysis should be
made of all the possible ways the human mind can set up finite processes to gen-
erate sequences.” ([Pos65], p. 387) This quote is very similar to what Turing had
pointed out as the real question to be asked in searching for the right formalism
to capture the intuition.

The first traces of such analysis can be found in the appendix Post added to his
Account of an anticipation, containing fragments from his notes and diary. The
last entry of the appendix is dated February 4, 1922. We do not want to discuss
the content of the appendix here, given its fragmentary character. It should be
noted though that it mentions some of the restrictions Turing deduced out of
his analysis of the process of a man computing, like the use of a finite number
of states and symbols. That Post indeed made a start with such an analysis is
clear from some quotes from his Account of an anticipation. We must men-
tion some of them here, since they show that Post indeed started with such an
analysis and, as a consequence, that his formulation 1 did not simply come out
of the blue. We will only give two quotes here. The quote already mentioned,
emphasizing the significance of such analysis, can be regarded as a third such
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quote.
After having stated the significance of the analysis, Post writes ([Pos65], p. 387):

The beginning of such an attempt [the analysis] will be found in the Appendix.
In the introduction to the Appendix Post explains ([Pos65], pp. 394-395):

While the formal reductions of Part I [the reduction from canonical form Ato B
to C to normal form] should make it a relatively simple matter to supply the de-
tails of the development outlined [i.e. the (theorems)] that development owes its
significance entirely to the universal character of our characterization of an arbi-
trary generated set of sequences [...] Establishing this universality is not a mat-
ter for mathematical proof, but of psychological analysis of the mental processes
involved in combinatory mathematical processes [m.i.]. [...] Actually, we can
present but fragments of the proposed analysis of finite processes [m.i.]. [...] This
theme [the idea that there exist problems we humans cannot solve] will pro-
trude itself ever so often in our immediate task of obtaining an analysis of finite

processes [m.i.].

As is clear, Post understood that his thesis was the fundamental result underly-
ing his (theorems), and it was thus necessary to further establish the “universal-
ity” of this thesis through a deeper analysis of all the possible ways the human
mind can set up finite processes. He clearly made a start with such an analysis.
In fact, it would have been surprising if he would not have made an attempt for
such an analysis, since he understood its fundamental significance.

formulation 1

Fifteen years later Post’s paper Finite Combinatory processes. formulation 1
[Pos36] was published. By then, Gédel had already published his fundamental
1931 paper. Post knew of Church’s results, but was unaware of Turing’s paper.
Maybe the most remarkable thing about the formalism described in this paper,
a formalism which must have been influenced to some extent by Post’s earlier
analysis announced in the Appendix of all the possible finite processes the hu-
man mind can set up to generate sets, in the end resulted in a formalism that is
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almost identical to Turing’s description of his machines. Post’s paper however
did not contain a proof of an unsolvable decision problem nor the description
of a universal machine. Neither does it contain any explicit argumentation in
the sense of Turing’s: the paper is only three pages long. As a consequence, the
paper is often only mentioned in a footnote, if it is mentioned at all, and has, to
our mind, been handled in a stepmotherly way in many of the literature.

Still, the results from the paper are very important in several different ways.
First of all, the fact that Post’s analysis resulted in a formalism that is very simi-
lar to Turing machines adds strength to the idea that if one starts from an analy-
sis of a an intuitive notion similar to the one considered by Turing, one indeed
ends up with something like Turing machines. Secondly, as we will argue here,
although Post never really makes very explicit what kind of intuitive notion ex-
actly he wants to capture with his formulation 1, it is clear from the paper that
he intends to formalize the notion of solvability. Thirdly, and this is the reason
why the paper is most often mentioned, Post did not regard any such identifi-
cation as a definition, and explicitly criticized Church’s calling his identification
between effective calculability and general recursiveness (A-definability) a de-
finition.

We will now first describe formulation 1, or, as it is also sometimes called, Post
machines, in an intermezzo. [T_g]

There are two basic concepts involved in formulation 1: the symbol space in
which the work leading to a solution is to be carried out and the set of directions
which direct operations in the symbol space and determine the order in which
the directions have to be performed. The symbol space is a two way infinite se-
quence of boxes. The worker or problem solver can move and work in the symbol
space, and is capable of being in, and operating in but one box at a time. A box
can have two possible conditions: empty or marked with one symbol, e.g. “|”.
One of the boxes is called the starting point.

Now what can our worker do, what is he capable of? The worker’s work is limited
to the following primitive acts:

19Gee for example the booklet by Uspensky called Post’s machine [Usp83|, where Uspensky
describes how these machines can be used in elementary and secondary school to make school
children familiar with some of the basics of computers and programming.



134 CHAPTER 3. 1936

(1) Marking the box he is in (assumed empty).

(2) Erasing the mark in the box he is in (assumed marked).

(3) Moving to the box on his right.

(4) Moving to the box on his left.

(5) Determining whether the box he is in, is or is not marked.

The worker’s acts are ordered through a set of directions, to remain unaltered

once the worker has started with his work, i.e., the set of instructions is fixed.
Every set of directions is headed by:

e Start at the starting point and follow direction 1.

The set always consists of a finite number of directions numbered 1,2,3, ..., n.
The i-th direction (i € N*) always has one of the three following forms:
(A) Perform operation O; (O; = (1), (2), (3) or (4)) and then follow direction jj;.

(B) Perform operation 5, and according as the box is marked or not marked fol-
low direction j; or jj».

(C) Stop.

Post’s formulation 1 has a very clear resemblance to Turing machines. There
is, however, one significant difference. Whereas Turing uses the concept of an
abstract computing machine, and is thus closer to physical computers, Post’s
description is in terms of a list of instructions in a formal language, and is thus
closer to computer programs. So to say, Turing machines are closer to hard-
ware, Post machines are closer to software. Despite this difference, the fact that
both Post’s and Turing’s formulations are very similar to each other, in having
started from the analysis of an intuitive concept, rather than from an existing
formalism, shows that such analyses gives rise to formulations which are far
closer to computers and computer languages than say normal systems or A-
calculus.

As is pointed out in [Dav94], Post was not satisfied with the analysis of an algo-
rithmic process in terms of general recursiveness or A-definability:
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Believing that the Herbrand-Gdédel notion of general recursiveness and the Church-
Kleene notion of A- definability were both lacking in that neither constituted a
“fundamental” analysis of the notion of algorithmic process, Post proposed as
suitably “fundamental” the operations of marking an empty “box” or erasing the

mark in a marked box.

In his [Pos36] however, the notion of an algorithmic process, or other similar
notions such as “algorithmic procedure”, “calculability” or “computability”, are
never mentioned by Post in relation to his formulation 1. The notion “effective
calculability” is mentioned only once, at the end of the paper, but only with re-
spect to Church’s thesis. The notion Post does refer to quite often in the context
of formulation 1 is solvability. The goal of formulation 1 indeed seems to have
been to formally capture what exactly is meant with a general method to solve

any decision problem which is intuitively considered solvable ([Pos36],p. 103):

We have in mind a general problem consisting of a class of specific problems. A
solution of the general problem will then be one which furnishes an answer to

each specific problem.

After the description of such a solution [i.e. formulation 1], Post defined a whole
set of notions in terms of solvability of a decision problem, thus making more
explicit the identification between solvability and his formalism by adding sev-
eral definitions. These notions are:

Applicability A set of directions is called applicable to a general problem, if in
applying it to any specific case of the problem, instruction (1) is never
ordered when the box the worker is in is already marked, and (2) is never
ordered when the box is unmarked.

Finite 1-process A setofdirectionsis considered as setting up a finite 1-process
relative to a given general problem if it is applicable to the problem and if
the process it sets up terminates for each specific case of the problem.

1-solution A finite 1-process is a 1-solution of a general problem if the answer
it gives to each specific case of the problem is always correct.
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1-given A problem is I-given if a finite 1-process can be set-up which, when
applied to the class of positive integers symbolized in a certain way in the
symbol space, yields in a one-to-one fashion the class of specific prob-
lems constituting the general problem. This 1-givenness can be com-
pared to Godelnumbering: the possibility to translate a problem to num-
bers and vice versa.

Given Post’s purpose of the note stated at the beginning of the paper, i.e., to
formulate a generalized form of what is meant with a solution to a given deci-
sion problem, his description of formulation 1, and the further explication of
the identification through the terms defined above, we have deduced the fol-
lowing, second thesis, by Post:

Post’s thesis II. A decision problem is considered intuitively solv-
able iff. the problem is 1-given and one can set-up a finite 1-process
which is a 1-solution to the problem.

That Post not only considered the problem of formalizing the intuitive notion
of generated set, or, in later work, of effective calculability and computability is
also reflected in some of his later papers. For example, in the paper in which
one finds the statement of what is now known as the Post Correspondence Prob-
lem and a proof of its recursively unsolvability, he writes: ([Pos46], p. 364)

We proceed to prove [...] that in its full generality the correspondence decision
problem is recursively unsolvable, and hence, no doubt, unsolvable in the intu-

itive sense.

In his seminal paper on recursively enumerable sets of positive integers he fur-
thermore notes ([Pos44], p. 289):

[...] whether those [decision] problems are, or are not, solvable in the intuitive
sense would be equivalent to their being, or not being, recursively solvable in the

precise technical sense.

Recursively unsolvability however is no longer defined in terms of his formula-
tion 1, but in terms of his normal form.
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Post’s paper ends with a paragraph in which he criticizes Church’s statement of
his identification in the form of a definition. After having stated that he expects
formulation 1 to turn out equivalent to general recursiveness — an expectation
soon to be proven true by Turing through the equivalence between Turing com-
putability and A-definability — Post immediately adds that its purpose is not
simply to ([Pos36], p. 105):

[...] present a system of a certain logical potency but also, in its restricted field, of
psychological fidelity. In the latter sense wider and wider formulations are con-
templated. On the other hand, our aim will be to show that all such are logically
reducible to formulation 1. We offer this conclusion at the present moment as a
working hypothesis. And to our mind such is Church’s identification of effective
calculability with recursiveness. [...] The success of the above program would,
for us, change this hypothesis not so much to a definition or to an axiom but to a
natural law. Only so, it seems to the writer, can Gédel’s theorem concerning the
incompleteness of symbolic logics of a certain general type and Church’s results
on the recursive unsolvability of certain problems be transformed into conclu-

sions concerning all symbolic logics and methods of solvability [m.i.].

Post considered his formulation 1 as a system of psychological fidelity: gener-
alizing Godel’s incompleteness theorem or Church’s proof of the unsolvability
of certain decision problems to conclusions concerning all symbolic logics and
methods of solvability depends on the “faith” one can have in identifications
such as that proposed by Post. In that sense, he suggests to contemplate as
wide a variety of formulations as possible, each of which should be shown to be
reducible to formulation 1. Indeed, at the time Post wrote this paper he con-
sidered his conclusions concerning the ‘power’ of formulation 1, merely as a
working hypothesis. 1t is only if the method of finding wider and wider formu-
lations reducible to formulation 1 has proven its worth, that the hypothesis can
be considered as a natural law.

It is exactly at this point that Post criticizes Church’s “definitional identifica-
tion”. After having noticed in footnote 8 that Church’s, Kleene’s and Rosser’s
work already carries the identification beyond the working hypothesis stage, in
having shown that A-definability and general recursiveness are equivalent, Post
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continues ([Pos36], p. 105):

But to mask this identification under a definition hides the fact that a fundamen-
tal discovery in the limitations of the mathematicizing power of Homo Sapiens

has been made and blinds us to the need of its continual verification.

Indeed, Post does not accept Church’s definitional identification as the correct
interpretation of such an identification. Rather it should be regarded as a hy-
pothesis or law of nature, to be continually verified, and is thus subject to in-
ductive reasoning. In a letter to Godel, dated October 30, 1938 Post again em-
phasizes the significance of the hypothetical character of e.g. Church’s thesis
(1G6d03b], p. 171):

the absolute unsolvability of [a] problem has but a basis in the nature of physical

induction at least in my work and I still think in any work.

Considering identifications, such as those proposed by Post, as a hypothesis,
indeed implies that an unsolvable decision problem can only presumptively be
considered absolute: it is true only in supposing the validity of the identifica-
tion. In the quote Post also underlines the fact that, to his mind, this is not only
true for his but also for the work of others. But why did he add this small com-
ment? To understand this we must have a closer look at how Church reacted on
Post’s criticism.

3.2 On the status of the identification. Definition,

(Hypo)Thesis, Law, or Theorem?

In this section we will see how Church reacted on Post’s criticism by writing a
rather harsh review of Post’s paper. Starting from this review and the review
Church wrote of Turing’s paper, we will discuss several possible interpretations
and evaluations of the proposed identifications, starting from Church’s, Tur-
ing’s and Post’s own ideas in this context.
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3.2.1 Church’s reviews of Post’s and Turing’s paper

In volume 2, number 1, 1937 of the newly founded the Journal of Symbolic Logic
Church wrote two reviews, one of Turing’s paper and one of Post’s paper.
About Turing’s paper Church stated [Chu37b]:

[Turing] proposes as a criterion that an infinite sequence of digits 0 and 1 be
“computable” that it shall be possible to devise a computing machine, occupy-
ing a finite space and with working parts of finite size, which will write down the
sequence to any desired number of terms if allowed to run for a sufficiently long
time. As a matter of convenience, certain further restrictions are imposed on the
character of the machine, but these are of such a nature as obviously to cause no
loss of generality — in particular, a human calculator, provided with pencil and
paper and explicit instructions can be regarded as a kind of Turing machine. It
is thus immediately clear that computability, so defined, can be identified with
(especially, is no less general than) the notion of effectiveness as it appears in
certain mathematical problems (various forms of the Entscheidungsproblem,
various problems to find complete sets of invariants in topology, group theory,
etc., and in general any problem which concerns the discovery of an algorithm).
[...] As a matter of fact, there is involved here the equivalence of three differ-
ent notions: computability by a Turing machine, general recursiveness in the
sense of Herbrand-Gddel-Kleene, and A-definability in the sense of Kleene and
the present reviewer. Of these, the first has the advantage of making the identi-
fication with effectiveness in the ordinary (not explicitly defined) sense evident
immediately - i.e. without the necessity of proving preliminary theorems. The
second and third have the advantage of suitability for embodiment in a system

of symbolic logic.

Before discussing this review, it is interesting to contrast it with Church’s review
of Post’s paper [Chu37a]:

[Post] proposes a definition of “finite 1-process” which is similar in formulation,
and in fact equivalent, to computation by a Turing machine (see the preceding
review). He does not, however, regard his formulation as certainly to be iden-

tified with effectiveness in the ordinary sense, but takes this identification as
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a “working hypothesis” in need of continual verification. To this the reviewer
would object that effectiveness in the ordinary sense has not been given an exact
definition, and hence the working hypothesis in question has not an exact mean-
ing. To define effectiveness as computability by an arbitrary machine, subject to
restrictions of finiteness, would seem to be an adequate representation of the or-

dinary notion, and if this is done the need for a working hypothesis disappears.

As is clear from reading both reviews, Church is very positive about Turing’s
paper and rather sharp with respect to Post’s paper. Why is this the case, espe-
cially given the fact that the formalisms presented by Turing and Post are very
similar?

Church evaluated Turing’s thesis very positively. To his mind, it has the advan-
tage over his thesis, “of making the identification with effectiveness in the ordi-
nary (not explicitly defined) sense evident immediately.” The reason for this has
to do with Turing’s above discussed analysis of the process of a man calculating,
i.e., the argument making a direct appeal to intuition, leading to the identifica-
tion of human computing with Turing machines. As Church states: “It is thus
immediately clear that computability, so defined, can be identified with |[...] the
notion of effectiveness as it appears in certain mathematical problems.”

Church was and is not the only one who found Turing’s thesis the most ade-
quate one, in the sense that his analysis of the process of a man computing al-
most naturally leads to Turing machines, while e.g. the identification between
A-definability or general recursiveness with effective calculability, is not as nat-
ural. But before further discussing these matters, it is important to compare
this opinion with Church’s criticisms on Post’s paper.

Church’s main critique is, very clearly, a reaction on Post’s criticism, and op-
poses the possibility of calling his definition a working hypothesis. He gives two
main objections to this. First of all he finds that Post has not given an exact de-
finition of the ordinary notion of effectiveness so that the ‘working hypothesis’
is ambiguous. Secondly, if one does provide an adequate representation for the
notion of effectiveness it should simply not be regarded as a working hypothe-
sis but as a definition.

As far as the first critique is concerned, Church is either pointing at the inex-
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actness of formulation 1 itself, or, the fact that Post indeed did not make very
explicit the kind of identification he intended. Given the similarities between
formulation 1 and Turing machines, it is improbable that Church is pointing
at the inexactness of the formulation, so we think that Church is criticizing the
vagueness of the identification. This criticism is, to a certain extent, under-
standable, but clearly cannot count as any serious objection to Post’s calling the
identification a working hypothesis, since for Post this not only applies for the
identification he proposed, but for any other such identification. The second
objection, that there is no need for a ‘working hypothesis’ once one has given
an adequate definition of effectiveness, and here Church refers to Turing’s not
to his own, only seems to mean that Church preferred definition to further ar-
gument as is stated in [Gan88] F_O-]

This small “quarrel” between Church and Post becomes the more remarkable in
the light of the significance Church attached to “presumptive evidence” in his
work preceding his 1936 paper. As we know from Sec. 2.3|he frequently under-
lined the significance of “empirical evidence” for supporting the consistency of
a given system of symbolic logic, in case one has no proof of the system’s con-
sistency. Although Kleene and Rosser had shown the fundamental problems
that are always involved in using more heuristic arguments, by showing that
Church’s set of postulates is inconsistent, it was again the more empirical fact
that any function Church, Kleene and Rosser could think of could be 1-defined,
that led Church to the formulation of his original thesis of identifying effective
calculability with A-definability.

It is not completely clear how important the proof of the equivalence between
A-definability and general recursiveness has been for Church’s first public an-
nouncement of his thesis (see Sec. [2.3), but, as is clear from his above discussed
1936 paper [Chu36c|, he considered this equivalence as an argument further
supporting the validity of his thesis in terms of general recursiveness and A-
definability. It was exactly this argument by confluence Post had in mind in
order to get the identification beyond the working hypothesis stage, this argu-

20After having mentioned Church’s review on Turing’s paper, Gandy notes: “But Church is
slightly less dogmatic in his review of Post’s paper, preferring, apparently, definition to further
argument, and defending this move against Post’s criticism.” ([Gan88], p. 85)
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ment being understood as ‘presumptive evidence’, to use Church’s words, for
the validity of the identification. Did Church indeed interpret the evidence of-
fered by the equivalence proof in the sense Post understood it (and in the sense
Church used such evidence in his earlier work), or was it merely a theoretically
important fact, used to state a more natural definition, having no link what-
soever with his needing more evidence for A-calculus’ computational powers?
Whatever the right answer might be, Church’s rather strong reaction against
Post’s critique remains to our mind rather strange in the light of the work pre-
ceding this review.

As is clear from the two reviews, Church did not want to regard any identifica-
tion, such as the one he proposed, as a working hypothesis. To Church it was
more appropriate to talk about such identification in terms of definition, where
Turing’s “definition” was considered as the most adequate because the analysis
of a man computing almost naturally leads to the formulation of Turing ma-
chines. As was said, Church is certainly not the only one who regards Turing’s
identification as the most adequate one.

3.2.2 On the adequacy of Turing’s identification: From defini-
tion to theorem.

In Sec. We quoted from a letter Church wrote to Kleene, describing a conver-
sation between Church and Gédel (presumably to be situated in early 1934). In
this letter, Church describes that Godel regarded Church’s proposal to identify
effective calculability with A-definability as “thoroughly unsatisfactory”, while,
to Godel’s mind, the identification with recursion could not be made satisfac-
torily, “except heuristically”. In this sense, Godel’s opinion at that time was not
that far removed from Post’s some years later.

It was only after having read Turing’s paper, that Godel became convinced of
the possibility of an adequate identification. As he writes in a Postscriptum
to “On undecidable propositions of formal mathematical systems” (|[G6d65], p.
72):

In consequence of later advances, in particular of the fact that, due to A.M. Tur-
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ing’s work, a precise and unquestionably adequate definition [m.i.] of the general
concept of formal system can now be given [...] Turing’s work gives an analysis of
the concept of “mechanical procedure” (alias “algorithm” or “computation pro-
cedure” or “finite combinatorial procedure”). This concept is shown to be equiv-
alent with that of a “Turing machine”. A formal system can simply be defined to
be any mechanical procedure for producing formulas, called provable formulas
(and likewise vice versa), provided the term “finite procedure” [...] is understood
to mean “mechanical procedure”. This meaning, however, is required by the con-
cept of formal system, whose essence it is that reasoning is completely replaced

by mechanical operations on formulas.

It was Turing’s analysis of the concept of a mechanical procedure, as a means to
define a formal system in terms of a mechanical procedure proving formulas,
and the fact that, as Gédel has it, mechanical procedure is shown to be equiva-
lent to Turing machines, that results in a precise and unquestionably adequate
definition for (finitary) formal systems.

He remained rather negative however with respect to identifying calculability
with recursiveness or A-definability (|[G6d65], p. 72):

As for previous equivalent definitions of computability, which however, are much

less suitable for our purpose, see A. Church [Chu36c] [...].

To Godel, it is only on the basis of the definition of “finite procedure” in terms of
“mechanical procedure” that the identification between effective calculability
and general recursiveness can be regarded adequate’’|

As was the case for Church, Godel also regarded the identification made by Tur-
ing as a definition — not as a hypothesis or a law — the adequacy of which is un-
questionable. Again, this is due to Turing’s argument making a direct appeal to
intuition, through his analysis of the process of a man computing, leading to
the Turing machine concept.

This result must have greatly impressed Godel. In his contribution to the Prince-

21This is expressed in the Postscriptum: “[...] if “finite procedure” is understood to mean “me-
chanical procedure’, the question raised in footnote 3 [i.e. that any function computed by finite
procedure, is recursive] can be answered affirmatively for recursiveness [...]” ([G6d65], p. 73)
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ton bicentennial conference, he expressed the “great importance” of both gen-
eral recursiveness and Turing computability, since, these concepts have made it
possible to provide absolute definitions for a significant epistemological notion
(1God4e], p. 84):

Tarski has stressed in his lecture (and I think justly) the great importance of the
concept of general recursiveness (or Turing’s computability). It seems to me that
this importance is largely due to the fact that with this concept one has for the
first time succeeded in giving an absolute definition of an interesting epistemo-
logical notion, i.e., one not depending on the formalism chosen. In all other cases
treated previously, such as demonstrability and definability, one has been able to
define them only relative to a given language, and for each individual language
it is clear that the one thus obtained is not the one looked for. For the concept of
computability however, although it is merely a special kind of demonstrability or
decidability the situation is different. By a kind of miracle it is not necessary to
distinguish orders, and the diagonal procedure does not lead outside the defined

notion.

Indeed, the absoluteness of the definition lies in its independence of the spe-
cific formalism used. This not only concerns the fact that so many different
formalism had been shown to be equivalent, but, even more, also concerns the
fact that for any formal system S of order or type i, what is computable in that
system is already computable by e.g. Turing machines. This was more explicitly
expressed in Godel’s [God36], p.83:

It may also be shown that a function which is computable in one of the systems
S; or even in a system of transfinite type, is already computable in S;. Thus, the
concept “computable” is in a certain definite sense “absolute”, while practically
all other familiar metamathematical concepts (e.g. provable, definable, etc.) de-

pend quite essentially on the system with respect to which they are defined.

The fact that both Church and Gédel accepted Turing’s analysis as an unques-
tionably adequate definition for effectiveness shows how powerful Turing’s ar-
gumentation actually is. In Section [3.1.2) we showed how several authors have
interpreted several forms of Turing’s identification as theorems. This further
illustrates the cogency of Turing’s analysis. As Gandy states (|[Gan88], p. 82):
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Turing’s analysis does much more than provide an argument for Church’s thesis;

it proves a theorem.

Gandy gave several versions of “Turing’s theorem”, and considers the proof of
the “theorem” to be given by Turing’s analysis. Sieg and Soare also claim Turing
to have proven a theorem, however one rooted in what Sieg has called Turing’s
central thesis. Comparing both interpretations, Gandy’s identification of Tur-
ing’s thesis as a theorem is the strongest claim.

To Gandy’s mind, Turing’s “proof” of the identification between what can be
computed by a human being and what can be computed by a Turing machine
“is quite as rigorous as many accepted mathematical proofs — it is the subject
matter, not the process of proof, which is unfamiliar” ([Gan88], p. 82). Although
Gandy admits there are some gaps in Turing’s “proof”, they are not insurmount-
able. However, to state this identification as a theorem is, to our mind, far from
unproblematic. Turing himself did not regard his analysis as a valid proof, but,
on the contrary, stated that all arguments that can be given, are bound to be
appeals to intuition. We think Turing is completely right here, since the iden-
tification concerns a formalization of an intuition. Indeed, one must ask here:
how can one state that one has proven that there is a valid identification be-
tween an intuition and a formalism, what does it mean that one has proven
that a given intuition is formalized? In a way this seems to imply that an intu-
ition is something quite stable and universal.

It should also be noted that Gandy gave three different formulations of “Tur-
ing’s theorem” he considers equivalent, without giving any clear argumentation
for this equivalence. The last of these formulations, considered by Gandy as a
restatement of Church’s thesis, is in fact identical to the “theorem” Sieg (and
Soare) deduced out of Turing’s analysis, i.e., the identification between a com-
putor satisfying several conditions and Turing machines. To make this claim
more convincing Sieg interprets the conditions L, B and D as axioms. Still, in-
terpreting the identification between computor and Turing machine as a theo-
rem, remains, to our mind, as problematic as Gandy’s first formulation of “Tur-
ing’s theorem”. The division between Turing’s central thesis and the theorem, is
based on the fact that Turing’s analysis proceeds in three basic steps, of which
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only the last can be considered as a proof. As we know from Sec. Turing
first deduces an abstract computor, satisfying several conditions, starting from
the analysis of the process of a man computing. Based on the several condi-
tions, he then identifies the abstract computor with a machine, that should be
capable to do the work of this computor. Since the description of this machine
is basically that of a Turing machine, Turing concludes for the identification of
“a man in the process of computing [with] a [Turing] machine’.

However, the second step, identifying the computor with a machine has not
been proven, at least, not as far as our notion of proof is concerned. It is true
that the identification between a computor satisfying the several conditions
and a computing machine is very convincing, and we think Sieg (and Soare)
have correctly pointed out the significance of the identification between a man
in the process of computing and an abstract computor satisfying the several
conditions. Still we think both steps, the identification between a man com-
puting and a computor, and, between a computor and a computing machine,
are simply two basic aspects of Turing’s direct appeal to intuition supporting
his thesis. There is no reason in Turing’s paper to assume the first identifica-
tion as a thesis and the second as a theorem. In the end, identifying “state of
mind” with “m-configuration” is a non-trivial step, except if one defines “state
of mind” as “m-configuration”. Nowadays we are so much used to the idea of
Turing machines that this second identification seems more “obvious” than the
first. This, however, does not give us a reason to regard it as a theorem, since a
theorem needs proof.

Even if one identifies the several conditions as axioms, as Sieg does, these re-
main restricted to the description of the computor, not the machine, and the
identification “computor = machine” does not follow as a theorem from these
axioms, in the way 3 + 2 = 5 follows from Peano’s axioms of arithmetic.

To call Turing’s analysis a proof of a given statement only makes sense if one
understands proof rhetorically: the arguments given by Turing are indeed very
convincing, in the sense that Turing managed to very correctly abstract several
properties that are typical to the process of a man computing something on a
piece of paper, almost naturally leading to the automatization of this process in
a machine. But to make the claim that Turing’s analysis results in a mathemat-
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ical proof of a theorem, needs more argumentation and formalization.

Church and Gédel each regarded Turing’s identification as an (unquestionably)
adequate definition of effectiveness (or finite process, or computability, or any
other similar intuitive notion). Turing himself also regarded his identification
as a definition, as is clear from one of the quotes from Sec. To accept
this (or any other similar) identification as a definition is, to our mind, a very
reasonable point of view, since it allows us to prove certain theorems, like the
unsolvability of the Entscheidungsproblem. Itisindeed common to any branch
of mathematics that one needs definitions, which can then help to further de-
velop the theory.

Posing the identification as a definition, to a certain extent, allows to see the
non-trivial character of introducing it: it is because one has given certain argu-
ments that its introduction as a definition is made plausible. If, however, we in-
terpret it as a theorem, one masks the non-trivial character of making the iden-
tification. Considering it as a theorem diverts attention from the fundamental
aspect of the identification — the formalization of an epistemological notion —
and, even more, its consequences both on a mathematical and a philosophical
level.

3.2.3 The identification as (hypo)thesis or law.

Both Church, Godel and Turing regarded the several identifications proposed
in the thirties as definitions, accepted on the basis of certain arguments. Espe-
cially in Church’s and Godel’s case, it is clear that the “direct appeal to intuition”
argument, has been basic to consider Turing’s thesis as the most adequate iden-
tification. It is this argument that furthermore led Gandy, Sieg and Soare to
the conclusion that Turing’s thesis can be (partly) stated in terms of a theorem.
Nowadays, it seems to be general consensus that Turing’s thesis offers the best
identification, and it has become the dominant framework to discuss the more

22“This usage [replacing “there is a general process for” by “there is a machine that will deter-

mine”] can be justified if and only if we can justify our definition of computability.” ([Tur37], p.
134)
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philosophical issues in this context.

Post and Kleene have both emphasized the hypothetical character of the sev-
eral identifications. In this respect — although they each consider the kind of
analysis as done by Turing, starting from a vague idea to deduce a formalism
that captures it, as very important — they have each emphasized the signifi-
cance of the other arguments supporting the several identifications, Turing’s
only being one of them.

We already know that Post opposed Church’s interpretation of the thesis as a de-
finition, since, to his mind, this definitional identification “hides the fact that a
fundamental discovery in the limitations of the mathematicizing power of Homo
Sapiens has been made and blinds us to the need of its continual verification.”.
Church’s criticism did not change Post’s mind. Sec. was ended with a
quote from a letter Post wrote to Godel in 1938 in which he explicitly states that
the absoluteness of unsolvable decision problems has an inductive basis, i.e.,
the results are only valid in as far as the identifications they are based on are
valid, identifications which can never be proven, but only be made more con-
vincing the more evidence one finds for their general validity. To Post, this not
only concerns his own work, but also that of others. This illustrates that for
Post, Church’s nor Turing’s arguments, were convincing enough to regard any
such identification as a definition, let alone a theorem.

As is explicitly stated by Post in his 1936 paper, the purpose of his formulation is
not only to present a system of a certain logical potency, but also of psycholog-
ical fidelity. In this sense, it is basic to consider wider and wider formulations,
that should be shown to be logically reducible to his formulation 1. It is only
if one can indeed find such wider and wider formulations reducible to formu-
lation 1, that the identification can be carried beyond the working hypothesis
stage, and become a natural law. This is indeed how Post later interpreted the
several identifications that had already been established in the forties. In his
[Pos44] he remarks in footnote 4:

We still feel that ultimately “Law” will best describe the situation.

Sieg has contrasted Post’s “method” of considering wider and wider formula-
tions with Turing’s ([Sie06], p. 60):
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It is methodologically remarkable that Turing proceeded in exactly the opposite
way when trying to support the claim that all computable numbers are machine
computable or, in our way of speaking, that all effectively calculable functions
are Turing computable. He did not try to extend a narrow notion reducibly and
obtain in this way additional quasi-empirical support; rather, he attempted to
analyze the intended broad concept and reduce it to the narrow one — once and
for all. Twould like to emphasize this, as it is claimed over and over that Post pro-
vided in his 1936 paper “much the same analysis as Turing”. As a matter of fact,
Post hardly offers an analysis of effective calculations or combinatory processes
in this paper; it may be that Post took the context of his own work, published only

much later, too much for granted.

To state that Post’s approach fundamentally differs from Turing’s in that he did
not reduce the broader notion to a narrow one, once and for all, is to our mind
a misrepresentation of the facts. Besides the fact that Turing nowhere states
that his “reduction” should have this “once and for all”-character, it should also
be noted that, although Post very much emphasized the significance of con-
sidering wider and wider formulations, and of regarding the identification as a
hypothesis or a natural law, this does not mean that he did not perform a simi-
lar kind of analysis as Turing, of “all the possible ways in which the human mind
[can] set up finite processes for generating sequences.”

As we showed in Sec. through several quotes, Post at least made a start
with such an analysis in the twenties, and, it thus seems very reasonable that he
indeed approached the problem in a similar way as Turing did. In fact, it was
such analysis he considered basic in order to show the general validity of his
original thesis, and understood the significance of his (theorems) only relative
to the universality of such thesis. It would thus be rather surprising if Post did
not regard his formulation 1 as a satisfactory result of such analysisF_g]

The fact that the purpose of his 1936 paper was exactly to offer not only a sys-
tem of logical potency but also of psychological fidelity, only further strength-
ens this, especially in linking this with Post’s remarks in his Account of an an-
ticipation on the significance of providing a psychological analysis, rather than

Z3The reader is referred to the quotes from Sec. ending the section on Post’s first thesis.
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a mathematical proof, to support the validity of his first thesis If Post did
not intend his formulation 1 as the result of an analysis of the relevant intuitive
notions, thus narrowing down the broader notion to a formalism, one should
also ask: why else would he have submitted the paper anyway, after having read
Church’s? Besides, what other reasonable explanation can one give for the sim-
ilarity between Post’s and Turing’s formalisms? We have assumed earlier that
Post’s 1936 paper resulted from such an analysis, and understood this as one
of the reasons why Post’s paper is very significant: it shows that if one starts
from the analysis of the relevant intuitive notions to construct a formalism that
should be able to capture the intuitive notion, one ends up with something like
Turing machines or formulation 1.

It is true that Post did not provide such analysis in his paper, in the sense that
he did not explicitly describe the deduction itself of several abstract conditions
or properties of the mental processes involved in solving certain mathematical
problems, but this does not imply that he did not start from such analysisE] In
fact, we do not see any other explanation for Post having arrived at formulation
1.

Post did not extend a narrow notion reducibly in this paper, but rather stated
the significance of making such extensions, starting from the restricted formal-
ism he described in the paper. The basic difference between Turing and Post is
that Turing talked about definitions, whereas Post emphasized the significance
of not “hiding” the true philosophical character of the identification by calling
it a definition, and thus the significance of making explicit its hypothetical or
lawlike character/"|

24 Again, the reader is referred to the quotes mentioned above from Sec.

251t is interesting to note that whereas Turing analyzed the process of a man calculating on a
piece of paper, Post started from the mental processes underlying this activity. This difference
might offer an explanation for the above mentioned difference between Post’s and Turing’s for-
mulation.

260ne could of course ask: But why did Post “make such a fuss” about these issues? Although
we cannot provide real arguments here, we believe there is a close connection between Post’s
interpretation of these identifications as hypotheses or laws and his earlier work. As was shown
in Sec. Post only wanted to make a beginning with an analysis of all the possible finite
processes the human mind can set up to generate a set, after his work on tag systems and the



3.2. ON THE STATUS OF THE IDENTIFICATION 151

To Post, the several identifications were more than a mere mathematical issue
to be used to prove certain results: the results proven on the basis of the iden-
tifications are not only limitations for the formalisms considered, but, are in
fact, limitations man himself cannot overcome. This was also stated explicitly
in Post’s introduction to the Appendix of his Account of an anticipation ([Pos65],
p. 395):

The unsolvability of the finiteness problem for all normal systems, and the essen-
tial incompleteness of all symbolic logics, are evidences of limitations in man’s
mathematical powers, creative though these be. They suggest that in the realms
of proof, as in the realms of process, a problem may be posed whose difficulties
we may never overcome; that is that we may be able to find a definite proposition

which can never be proved or disproved.

From this perspective, calling such identifications natural laws, rather than de-
finitions, is very reasonable, since they concern limitations of something phys-
ical or natural, i.e., the human mind. Of course, this only makes sense in as far
as one accepts that man is indeed as limited as a Turing machine when trying to
e.g. solve the halting problem for a given machine. But this is exactly where the
identification’s hypothetical character lies: not everybody seems to be willing
to accept this limitation, a limitation that should not be misinterpreted as the
statement of a computationalist world view, stating that the human mind is an
algorithm. The limitation only concerns a specific class of problems connected
to computing itself, and does not say a thing about e.g. creative processes or
human consciousness.

insight that Principia is reducible to a normal system, i.e., it were his “analyses” of certain for-
malisms that led him to the statement of his first thesis and the reversal of his entire program.
Thus, Post himself had gone through the process of considering wider and wider formulations
of what was assumed to be capable to capture the whole of mathematics, i.e., Principia, and it
were these generalizations that showed him what was really going on. We are aware that the
possible connection between Post’s earlier work and his emphasizing the inductive character
of the identification is a mere speculation from our side, but we still wanted to add it here as a
(speculative) footnote.
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Post was not the only one who was involved in the developments of the thir-
ties and pointed out the hypothetical character of the several identifications. It
was Kleene — whose contributions to the development of not only A-calculus
but also the theory of recursive functions cannot be underestimated — who first
called Church’s identification a Thesis in a paper published in 1943. After the
statement of Church’s identification as Thesis 1, i.e.,“Every effectively calcula-
ble function (effectively decidable predicate) is general recursive”, Kleene writes
(IKIe43], p. 274):

Since a precise mathematical definition of the term effectively calculable (effec-
tively decidable) has been wanting, we can take this thesis, together with the
principle already accepted to which it is converse, as a definition of it for the
purpose of developing a mathematical theory about the term. To the extent that
we have already an intuitive notion of effective calculability (effective decidabil-
ity), the thesis has the character of an hypothesis — a point emphasized by Post
and by Church. If we consider the thesis and its converse as definition, then the
hypothesis is an hypothesis about the application of a mathematical theory de-
veloped from the definition. For the acceptance of the hypothesis, there are, as

we have suggested, quite compelling grounds.

Kleene makes a differentiation between the thesis regarded as a definition or as
a hypothesis, depending on the kind of context one is working in. If the purpose
is to further develop a mathematical theory centered around effectiveness, the
thesis can be included as a definition. However, looking at what the thesis itself
actually is, i.e., a statement about the identification between an intuitive no-
tion, o the extent that we have already an intuitive notion of effective calcula-
bility, and a given formalism, it has the character of an hypothesis. Thus, even
if one includes the thesis as a definition in the body of a given mathematical
theory, then the hypothetical character of the thesis, turns into an hypothesis
of the applications of the mathematical theory developed from the inclusion of
the thesis as a definition. In other words, although including the thesis as a de-
finition into a theory is a very reasonable practice, the results from the theory
themselves are rooted in the hypothetical character of the thesis. For example,
the thesis as hypothesis, is a hypothesis concerning the statement of the ab-
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solute character of unsolvable decision problems.

In understanding the thesis as a hypothesis Kleene, surprisingly, not only refers
to Post’s [Pos36], but also to a paper by Church from 1938 on the construc-
tive second number class [Chu38]. Now, we already know about the signifi-
cance certain heuristic arguments have played in the developments leading to
Church’s 1936 paper [Chu36c], but, he clearly rejected the idea of calling the
thesis a hypothesis, although, especially in Church’s case, its original formula-
tion goes back to certain heuristic arguments.

In the paper Kleene refers to, Church proposes a definition which makes it pos-
sible to distinguish between the constructive and the non-constructive ordinals
of the second number class ([Chu38], p. 224):

The existence of at least a vague distinction between what I shall call the con-
structive and the non-constructive ordinals of the second number class, that is,
between the ordinals which can in some sense be effectively built up to step by
step from below and those for which this cannot be done (although there may be
existence proofs), is, I believe, somewhat generally recognized. My purpose here
is to propose an exact definition of this distinction and of the related distinction
between constructive and non-constructive functions of ordinals in the second

number class |[...]

We have gone through the paper by Church but we have not found any ex-
plicit mention by Church of calling the identification a hypothesis or a the-
sis. In discussing the several characterizations of effective calculability, i.e. A-
definability, general recursiveness and Turing machines, Church emphasizes
the vagueness of the notion itself, but, as one should expect, considers the sev-
eral characterizations as definitions ([Chu38]|, pp. 226-227):

This notion of an effective process occurs frequently in connection with math-
ematical problems, where it is apparently felt to have a clear meaning, but this
meaning is commonly taken for granted without explanation. For our present

purpose it is desirable to give an explicit definition.

From this quote it is again clear that Church’s reason for interpreting the several
identifications as definitions, has to do with their usage in a mathematical the-
ory. L.e., if one uses the notion to prove certain mathematical results, it should
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be taken as a definition, not as a hypothesis.

There are, however, two passages in the paper from which one could deduce
that Church admits the hypothetical character of such definitions. In the be-
ginning of the paper, Church makes statements about the absolute character
of the definition he proposes in the paper, but admits that this is merely a be-
lief from his side and describes ways to counter the belief for those who do not
accept it ([Chu38], p. 224):

Much of the interest of the proposed definition lies, of course, in its absoluteness,
and would be lost if it could be shown that it was in any essential sense relative
to a particular scheme of notation or a particular formal system of logic. It is
my present belief that the definition is absolute in this way — towards those who
do not find this convincing the definition may perhaps be allowed to stand as
a challenge to find either a less inclusive definition which cannot be shown to
exclude some ordinal which ought reasonably to be allowed as constructive, or a
more inclusive definition which cannot be shown to include some ordinal of the

second class which cannot be seen to be constructive.

Later on in the paper, Church proposes as a formal definition of the notion of a
constructive function of ordinals in the second number class, the A-definable
functions of ordinals in the second number class and argues ([Chu38], p. 231):

As a definition of the notion of a constructive function of ordinals in the sec-
ond number class, it is proposed simply to identify this notion with that of a
A-definable function of ordinals in the second number class. This is rendered
plausible by the known properties of the A-formalism, and no definition with a
more direct appeal suggests itself. It has been proved by Church and Kleene that
a large class of functions of ordinals are A-definable, including addition, multi-

plication, exponentiation, [...], the predecessor function of ordinals, and others.

Church assumes A-definability to offer the best definition of the notion, and
relies, not on the arguments that so much convinced him of Turing machines
offering “the most convincing form” of the definition for effective calculability,
as he states in the paper ([Chu38|, p. 227), but on properties inherent to the
A-formalism itself, implicitly referring to the heuristic argument that originally



3.2. ON THE STATUS OF THE IDENTIFICATION 155

led him to the first (unofficial) statement of his thesis in terms of 1-definability.
The fact that Kleene refers not only to Post but also to Church in the context
of calling the thesis a hypothesis, together with the quotes (shortly) discussed
here, and our conclusions from Sec. suggest that Church’s reaction on Post
is not completely in line with his own beliefs. However, we cannot simply ne-
glect the rather strong reaction by Church on Post’s 1936 paper, so, for now, it
is not completely clear to us what Church’s exact opinion really was. We think
that a study of the correspondence between Church and Post might throw some
new light on this issue.

Returning to Kleene, contrary to his supervisor, he did explicitly recognize the
hypothetical character of the thesis, although, if one is actually developing a
mathematical theory, it is more reasonable to take it as a definition. In Sec.
we showed the significance Kleene attached to heuristic arguments, and
it was Kleene, together with Church, who A-defined as many functions over
the integers he and Church could think of, in order to develop the theory of 1-
definability as a theory of functions over the positive integers.

The “quite compelling grounds” Kleene refers to in the quote given above, in-
deed include heuristic arguments. The arguments are summarized, as he notes,
in footnote 2 in Kleene’s [Kle38]:

This notion of effectiveness appears, on the following evidence, to be general.
A variety of particular effective functions and classes of effective functions (se-
lected with the intention of exhausting known types) have been found to be re-
cursive. Two other notions with the same heuristic property have been proved
equivalent to the present one, viz., Church-Kleene 1-definability and Turing com-
putability. [...] Functions determined by algorithms and by the derivation in
symbolic logics of equations giving their values (provided the individual steps
have an effectiveness property which may be expressed in terms of recursive-

ness) are recursive.

In other words, the arguments supporting the thesis as hypothesis, considered
by Kleene in this footnote, are the argument by confluence, the argument by
example and the step-by-step argument, thus including two more heuristic ar-
guments. Also Post refers to this footnote in a footnote to the following quote
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([Pos44], p. 285):

The importance of the technical concept recursive function derives from the
overwhelming evidence that it is coextensive with the intuitive concept effec-

tively calculable function.

In Kleene’s Introduction to metamathematics [Kle52], he devotes two chapters
to present the evidence for Church’s thesis. Here Kleene emphasizes that one
cannot prove the thesis, due to its reliance on a vague notion ([Kle52], p. 317):

Since our original notion of effective calculability of a function (or of effective
decidability of a predicate is a somewhat vague intuitive one, the thesis cannot
be proved. The intuitive notion however is real, in that it vouchsafes as effec-
tively calculable functions, and on the other hand enables us to recognize that
our knowledge about many other functions is insufficient to place them in the

category of effective calculable functions.

Kleene differentiates here between four different classes of arguments. It should
be noted that he did not consider the argument by confluence as heuristic evi-
dence, but as an argument in itself. These four classes are:

I Heuristic evidence
II Equivalence of diverse formalisms
III Turing’s concept of a computing machine

IV Symbolic Logics and Symbolic Algorithms

For each of these classes, except for III, Kleene further differentiates between
several further arguments. As for the heuristic support, Kleene not only men-
tions the argument by example, but adds two more. First of all, he mentions the
fact that the methods for showing effectively calculable functions to be general
recursive have been developed to a degree which virtually excludes doubt that
one could describe an effective process for determining a function that cannot
be transformed by one of these methods in a general recursive function. Sec-
ondly, and this is very interesting, Kleene adds the following argument ([Kle52],
pp. 319-320):
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The exploration of various methods which might be expected to lead to a func-
tion outside the class of the general recursive functions has in every case shown
either that the method does not actually lead outside or that the new function
obtained cannot be considered as effectively defined, i.e. its definition provides
no effective process of calculation. In particular, the latter is the case for the Can-

tor diagonal method.

As was the case for Post, Turing and Church also Kleene regarded the impos-
sibility of doing the diagonalization effectively as an important argument sup-
porting the thesis, an argument which he explicitly classified as heuristic in na-
ture!

As far as Iis concerned, Kleene mentions the significance not only of the equiv-
alence between several different characterizations of effective calculability, which,
as he mentions, have all the same heuristic property I, but also that several of
these characterizations have a certain stability, i.e., there exist many variants of
the same formalism that are all equivalent. Argument III concerns Turing’s ma-
chines and, more specifically, the fact that it directly arose from an analysis of
the intuitive notion, contrary to the other characterizations, and is thus an in-
dependent statement of a thesis equivalent to Church’s (|[Kle52], pp. 321-322):

Turing’s notion is the result of a direct attempt to formulate mathematically the
notion of effective calculability, while the other notions arose differently and
were afterwards identified with effective calculability. Turing’s formulation hence
constitutes an independent statement of Church’s thesis (in equivalent terms).

Post [Pos36] gave a similar formulation.

The class IV arguments concern a detailing out of Church’s step-by-step argu-
ment ([Kle52], p. 323):

In brief [IV] show][s] that if the individual operations or rules of a formal system
or symbolic algorithm used to define a function are general recursive, then the

whole is general recursive.

As s clear, as was the case for Post, Turing, and, actually, also for Church, Kleene
attached great value to providing several different arguments supporting the
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thesis.

It has been (correctly) emphasized by Webb [Web80] that Kleene made major
contributions to the domain of recursive function theory that are basic to add
further support to Church’s thesis. We will not discuss these contributions here
in any detail. For more details the reader is referred to Webb’s analysis [Web80],
especially pp. 203-219, showing how several of Kleene’s results give a kind of
formal protection to Church'’s thesis. In this sense, Church’s thesis is protected
from the inside out, i.e., it is through results developed within the theory, that
one finds new arguments supporting the thesis. The same goes for all argu-
ments of type L.

Basic here is Kleene’s 1938 paper [Kle38] in which he introduces the notion of
partial recursive functions, functions that are not defined for all possible values
(IKIe38], p. 151):

If we omit the requirement that the computation process always terminate, we
obtain a more general class of functions, each function of which is defined over a
subset (possibly null or total) of the n-tuples of natural numbers, and possesses
the property of effectiveness when defined. These functions we call partial re-

cursive.

As is noted by Kleene [Kle87], introducing partial recursive functions has made
it possible to separate the question of effectiveness from questions for given ar-
guments whether the function being computed is defined.

In emphasizing the significance of partial recursive functions, Webb has intro-
duced Kleene’s thesis:

Kleene’s Thesis. Every partial effectively computable function is par-
tial recursive.

On the basis of partial recursive functions Kleene was able to prove the im-
portant recursion or fixed-point theorem that gives in several different respects
important support for Church’s thesis. To be more specific, it can be used as an
argument of class I, and has played a basic role in the proof of the equivalence
between A-definability and recursiveness [Kle36b], and is thus also important
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for arguments of type II.

A last argument supporting Church’s thesis, or the other variants, that should
be mentioned here is the protection offered by G6del’s incompleteness theo-
rem and has been emphasized by Webb [Web80]. Indeed, it can be shown that:

not-(Godel’s incompleteness theorem for F) — not-(Church’s the-
sis)

where F is a system such as Godel considered. As Kleene notes, if logicians
would have been ignorant of Godel’s incompleteness theorem, one could have
proposed that Church’s thesis leads to Godel’s theorem. In fact, as is noted by
Kleene, he used Church’s thesis to give proofs of Gédel’s incompleteness theo-
rem [Kle36a], [Kle43]. What Kleene does not note is that Post in fact had already
understood this relation in 1921, although it was not made explicit nor proven
in any detail. In his [Pos44] this connection would be made more explicit by his
so-called “Go6del in miniature” theorem, based on his proof of the existence of
arecursively enumerable set that is not recursive.

3.2.4 Some further developments.

In this section we have discussed some of the possible interpretations of the
status of the identifications proposed in the thirties. As is clear, there are sev-
eral different possibilities. One can regard the identifications as definition, the-
orem, hypothesis, thesis or natural law. Important to note is that, given Kleene’s
and Post’s interpretation of the identifications as hypo(theses) or laws, they do
not seem to consider the kind of analysis as done by Turing (but also by Post) as
the decisive argument. Instead, it is just one of the several arguments, that help
to support the hypothesis. In this sense, although Turing’s analysis gives basic

27In Kleene’s paper the recursion theorem is called a circular definition, and is stated in terms
of A-calculus. The recursion theorem indeed includes a kind of circularity, i.e. it formalizes self-
reference. As is noted by Webb, a special form of the theorem is that for any partial function y
there is an index r such that ¢, (x) = w(r, x), where ¢, is the r-th partial recursive function in the
enumerations (resulting from Kleene’s enumeration theorem) of the partial recursive functions
¢i(x), with ¢;(x) = U(uyT(i, x, y). If we then define w(r, x) = ¢ () (y) we get ¢, (¥) = P ().
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support, its significance relative to the other arguments should not be overes-
timated. In fact, one might well wonder how the several identifications would
have been perceived, if one would e.g. not have been able to show that Turing
computability is equivalent to e.g. A-definability, but would have merely been
able to reduce it to A-definability (but not vice versa).

Nowadays one normally understands or designates the identifications as the-
ses. In fact, it seems to be common practice to talk about either Church’s, Tur-
ing’s or the Church-Turing thesis and one often neglects the existence of several
other identifications that have been made in the meantime. Indeed, besides
Post’s theses, several other identifications have been proposed.

We already mentioned Kleene’s thesis, but should also include Markov’s the-
sis here. Markov developed his own kind of formalism known as normal al-
gorithms. This was described in Markov’s book [Mar54]. The contribution by
Markov is only rarely mentioned, let alone studied. It would be particularly
interesting to further study Markov’s contribution in relation to Post’s work,
since Markov devotes several sections on Post’s canonical forms. The reason
for Markov to provide yet another (equivalent) identification is the fact that to
his mind, the identifications proposed in the 1936 papers by Church, Post and
Turing ([Mar54], pp. 2-3):

[...] lead to a sharpening of the precision of the concept of algorithm in an in-
direct matter [m.i.] [...] In view of the foregoing, the author has considered it
expedient to have the concept of algorithm rigorously established from the out-
set and to work out a general theory of algorithms on this rigorous basis. [...] The
author considers, that he has succeeded in solving satisfactorily the problem for-
mulated and that the theory of algorithms expounded here proceeds from a suf-
ficiently simple and yet convenient definition of a “normal algorithm”. In what

measure this claim is justified, is left to the judgement of the reader.

Several other identifications were mentioned in a paper by Maslov which, be-
sides Post’s [Pos43], make precise the notion of a generated set [Mas67]. We
cannot describe these results here and didn’t have the chance yet to study these
papers, but we think it important to at least mention their existence. These are
Lorenzen’s [Lor55], Curry’s [Cur58], Smullyan’s [Smu61] and Uspensky’s [Usp53].
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The several possible identifications that have been proposed in the meantime,
and which are all equivalent, illustrate the rich variety of formalisms covered
by for example Turing’s thesis and makes the argument by confluence much
stronger. Furthermore, these identifications illustrate that the dominance of
Turing’s thesis becomes even more relative in the light of the fact that other for-
malisms can be more suitable depending on the kind of intuitive notion one
has in mind, even if in the end all the formalisms considered are equivalent.
Although, as we have shown, there are several arguments supporting the identi-
fications, not everybody accepts them. In Sec. [4.3|we will discuss the (rather re-
cent) attempts to get beyond the Turing limit. Before one wanted to go beyond
the Turing limit, several other criticisms had already been formulated. We will
not discuss these in any detail here, since these criticisms have been countered
on many different occasion. Some critiques on the theses have been formu-
lated in the following papers [Pét59], [Kal59], [Por60], [Pen89], [Pen94], [Luc61],
where the last three are only indirect criticisms, in that they start from Godel’s
incompleteness theorem. These critiques have been countered by several au-
thors, see for example [Dav82], [Dav90], [Dav93], [Fef95], [Kle87], [Men63], [Web80].

Nowadays there are several developments that are closely connected to the
philosophical significance of the identifications discussed here. We will only
mention some of them here.

First of all, some researchers have developed new formalisms to deepen, expli-
cate or make more general (certain aspects of) especially Turing’s thesis, pos-
sibly to tackle certain objections. For example Gandy [Gan80] has proposed
a class of machines, now known as Gandy machines. These were invented by
Gandy because Turing’s analysis of computability cannot be applied directly to
discrete physical mechanical devices. Gandy’s main purpose was to analyze the
notion of mechanical process in order to add strength to what he called Thesis
M, i.e., what can be calculated by a machine, i.e., a discrete mechanical device,
can be computed by a Turing machine. This paper thus contains one of the first
statements of a more physical version of the Church-Turing thesis. More will be
said about this in Sec.

Sieg and Byrnes developed K-graph machines to give a detailed mathematical
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explication of what Sieg identified as Turing’s theorem together with the con-
ditions L and B. These K-graph machines are considered more “general” than
Turing machines, i.e., they are based on planar computations. K-graph ma-
chines are then considered as providing “a significant strengthening of Turing’s
arguments for his central thesis.” ([SB96], p. 98).

In an, at this time, unpublished paper [Sie07], available on-line, Sieg formu-
lated axioms for discrete dynamical systems which “should be viewed as deter-
mining classes of “algebraic structures” of which particular models of computa-
tion are instantiations.” ([SieQ7], p. 12), starting from the several conditions he
deduced from Turing’s analysis. The purpose of these axioms is to gain “eine
Tieferlegung der Fundamente” (a deepening of the foundations) and are sug-
gested to be an answer to what Godel considered to be the best approach to
find a good identification, as he expressed in a conversation with Church al-
ready mentioned, i.e., to state a set of axioms embodying the generally accepted
properties of effective calculability.

A second development that is often connected with the Church-Turing thesis
are computational models of certain (aspects of) physical or biological processes,
like e.g. cellular automata — first conceived by Von Neumann in developing an
abstract model for self-reproduction of biological systems [vN66] — and neural
networks. The idea of neural nets has many historical roots, but one of the
most important historical papers here are the two papers by McCullough and
Pitts [MP43, [MP47]. They showed the equivalence between a finite network of
formalized neurons and offered models for designing nervous nets that recog-
nize visual input. Nowadays there are hundreds of researchers who work in
this domain. Some of the more philosophical research in this context has been
connected to especially Turing’s thesis (if the theoretical models considered
are simulated on a computer). The fact that so many biological or physical
processes can be simulated by a computer, is sometimes interpreted as an in-
dication that the Turing limit as a universal limit, i.e., nothing that is in our
world could not be computed by a universal Turing machine (see for example
Wolfram’s [Wol02]). However, it should be emphasized again here that Turing’s
thesis does not necessarily imply this point of view.

A last development that should be mentioned here, and stands in sharp con-
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trast with the previous, is the domain of hypercomputability. This will be dis-
cussed in more detail in Sec. Within this context, several researchers have
proposed models they consider to be able to “compute” the non Turing com-
putable.

The developments (cruelly) summarized here are all concerned with the general-
theoretical statement of the Church-Turing thesis, trying to generalize it or show
its limitations. In other words, if one discusses Turing’s thesis in this more
philosophical setting, it is in most of the cases about the general class of Turing
machines, or the general idea behind it, not about specific cases of machines.
Indeed the question posed in the introduction, i.e., the connection between, on
the one hand, the general statement of the thesis and the unsolvability results
that can be proven by using it, and, on the other hand, particular machines and
their decision problems, is only seldom taken into consideration in this con-
text.

A further observation to be made here is that one only rarely takes into consid-
eration anything else but Turing’s thesis if a more historical reference is made,
especially when the more philosophical issues are at stake. In fact, I do not
know of any relatively recent (philosophical) paper that discusses the Church-
Turing thesis in terms of say normal systems or A-calculus, and take into ac-
count formalisms that have a less direct appeal to intuition.

In this dissertation we would like to start from exactly the opposite direction,
and study formal systems that are far removed from our intuition of computabil-

ity.

3.3 Strategies against intuition.

The point about incompleteness is not that formal systems ‘are missing some of
our intuitions’, but rather that the processes they are capable of expressing may
be effectively undecidable, according to [the Church-Turing thesis], no matter

how many of our intuitions they might formalize.
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Judson W. Webb, 19807

[...] if we are to really understand the evidence for (CT), and hence (CT) itself, we
must examine equivalence proofs between concepts falling under different con-
ceptual groups, at least to the point of isolating key-ideas, for they have too,often
been taken for granted, with the result that discussions of (CT) tend to end just

where they should really begin.
Judson W. Webb, 19807

Already from the first statements onwards of a thesis such as Turing’s, several
interpretations have been proposed with respect to, on the one hand, the sta-
tus of the theses, and, on the other hand, the kind of arguments that are most
important in discussing the several theses. Despite the overwhelming evidence
for the validity of these theses, people are still attracted to the subject nowa-
days[|

As we showed in the previous section, both Godel and Church agreed that Tur-
ing’s thesis should be regarded as the most adequate identification given the di-
rectness of the identification, through Turing’s analysis. In the meantime, there
seems to be some general consensus, that Turing’s thesis is the most convinc-
ing, witness its dominance in the philosophical literature. Indeed, even if one
usually talks about the Church-Turing thesis, it is most often Turing’s analysis
and especially the resulting general Turing machine concept, that forms the
main focus of the contemporary discussions surrounding the subject (at least
as far as we can see). In this section, we would like to argue, on the basis of the
results of this and the previous chapter that, although we understand Turing’s
“direct appeal to intuition” argument as an important one, it is philosophically
important to also consider those identifications that are not directly covered by
this argument.

28From [Web80l, p. 198.

29From [Web80], pp. 211-212.

30part of the ideas from this section have been presented at a talk I gave at a conference in
Laval, France, International conference on Computers and Philosophy (I-C&P), 3-5 May, 2006
[Mol06b].
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As was shown, Church, Post and Turing all had their own way of arriving at their
respective theses, and each provided their own arguments and interpretations.
Clearly there are different types of arguments supporting the theses which were
subdivided into four main classes by Kleene [Kle52]. Neither Church, Post nor
Turing explicitly mentioned all of these arguments, partly due to the specific
formalisms they used.

Although the argument by example could be said to have functioned as the
method that led Church to the first statement of his thesis, he did not use it
in his 1936 paper. He did mention the argument by confluence in a footnote,
while the step-by-step argument functioned as the main argument in this pa-
per. However, once he had read Turing’s paper, it seems that the “appeal to
intuition” argument was the most convincing for Church. Indeed, as is clear
from his review [Chu37b| on Turing’s On computable numbers, he considered
Turing’s identification as the most natural and convenient one as compared to
the identification of effectiveness with A-calculus or recursiveness.

Turing has made it very explicit what kind of arguments he took into account:
the argument by example, the argument by confluence and, the “direct appeal
to intuition” argument. The fact that the diagonalization cannot be done ef-
fective was also noted by Turing, but he did not mention it explicitly as an
argument. He also pointed out that there is an important logical connection
between Godel’s incompleteness result and the unsolvability of the Entschei-
dungsproblem, but, again, he does not really use it as an argumentE-]

In Post’s case, it is clear that the argument by confluence played a very impor-
tant role in his work. The normal form theorem, and the fact that he considered
Principiato be reducible to a normal system, have been basic for him to realize
the generality of his systems in normal form. Furthermore, considering wider
and wider formulations which can be shown to be reducible to formulation 1,
was understood as a way to turn the hypothesis into a law. As far the “direct

31“If the negation of what Gédel has shown had been proved, i.e. if, for each 4, either i\ or - is
provable, then we should have an immediate solution of the Entscheidungsproblem. For we can
invent a machine & which will prove consecutively all provable formulae. Sooner or later %
will reach either 3 or —31. If it reaches A\, then we know that {1 is provable. If it reaches -, then,
since K is consistent |[...], we know that 3\ is not provable.”
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appeal to intuition” argument, it is clear that it must have played an important
role, since he most probably performed a similar kind of analysis as Turing, an
analysis he considered basic for making his thesis more acceptable. He also in-
directly referred to the argument by example, by mentioning Kleene’s footnote
from [Kle38] and was clearly aware of the fact that the diagonalization cannot
be done effectively, since he mentioned it in his [Pos65].

To our mind, each of the different arguments has its own important value for
supporting the several theses, i.e., taking them all together one has a very strong
case for accepting the theses. Except for the “direct appeal to intuition” argu-
ment, all of these arguments can be directly applied to the different formalisms
considered by Church, Post and Turing. If we do not take into account this one
argument, each of the theses can be considered as being equally adequate for
the intended identifications. However, this if is exactly the reason for many
researchers to consider Turing’s thesis as the most natural and adequate iden-
tification. This was clearly the case for Church and Godel. Also Kleene has
pointed out that he considers Turing computability as “intrinsically persua-
sive”, while “A-definability is not intrinsically persuasive” and “general recur-
siveness scarcely so (its author Godel being at the time not at all persuaded.)”
(IKle81b], p. 49). As far as Post is concerned, I do not know of any explicit state-
ment from his side where he considers his formulation 1 or Turing machines
as better or more adequate identifications as compared to his first thesis or
Church’s thesis. Of course, he did regard the analysis leading to his formula-
tion 1 as very important, but this does not necessary imply that one should
consider one identification as being superior to another one. In the end, given
the equivalence between the different formalisms they are all equally adequate,
at least, from a theoretical point of view.

So why is it exactly that the “direct appeal to intuition” marks the difference, ac-
cording to some researchers, between the several theses? The most important
reason is that Turing computability is indeed intrinsically persuasive, resulting
from a direct analysis of the intuitive notion involved. I.e., Turing machines or
other similar machine-like formalisms like formulation 1, naturally follow from
such an analysis, by taking into account the general properties of a man in the
process of computing. That this is indeed the case, is illustrated by the fact that
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both Post and Turing formulated similar formalisms by starting from such an
analysis. As a consequence of its directness, Turing machines, even if one does
not go through Turing’s analysis, are indeed far more intuitively connected to
our notion of computability than e.g. normal systems. As we already argued,
the mere use of the notion of a machine, instead of a form or a calculus, that
moves and prints over a tape, recognizing symbols, and capable of changing its
“state of mind”, has indeed a very direct appeal to intuition, also, if not espe-
cially, for those who are not in the domain of mathematical logic or computer
science, like e.g. philosophers. Especially now, in the computer era, this kind of
identification has become even more obvious. Furthermore, Turing machines
are far more easy to program than e.g. A-calculus or systems in normal form,
although it is not completely clear in how far this property is a consequence of
Turing’s way of having arrived at his machines.

While we certainly do not want to oppose the significance of Post’s or Turing’s
proposal — it is a very important aspect of the several theses — some comments
and questions are in place here.

3.3.1 The thesis as a definition. On the significance of using the
right formalism for the development of the theory.

In the previous section we showed that there have been several different un-
derstandings of the status of the theses. To our mind Kleene’s position is the
most reasonable: he first termed the identification put forward by Church as a
thesis, and emphasized that, depending on the context it is used in, it can be
understood as a definition or as a hypothesis.

Taken as a definition, in order to develop a mathematical theory that is rooted
in the thesis, it is clear that it is not a very good idea to only consider those for-
malisms that have a direct appeal to intuition, to develop the theory. As Turing
remarked ([Tur37], p. 153):

The identification of effective calculable functions with computable functions

is possibly more convincing than an identification with the A-definable or gen-
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eral recursive functions. For those who take this view the formal proof of equiv-
alence provides a justification for Church’s calculus, and allows the ‘machines’
which generate computable functions to be replaced by the more convenient 1-

definitions.

As is clear from this quote, Turing considered the A-calculus as more conve-
nient and he would use this calculus, and not Turing machines, exactly because
of this reason in his seminal Ph.D. dissertation on ordinal logics [Tur39]. It is
interesting to note that Turing uses the equivalence between A-calculus and
Turing machines, as a sufficient reason to accept Church’s thesis, for those who
find that Turing machines are more convincing with respect to the formaliza-
tion of computability. This is also our point of view. While we consider Turing’s
(and Post’s) formalisms as basic support for the theses, the fact that these for-
malisms can be shown to be equivalent to e.g. A-calculus results in theses that
are equally strong, even if e.g. A-calculus is not “intrinsically persuasive”. Also
Post understood that the existence of several different formalizations offers a
theoretical advantage ([Pos47], p. 7):

The writer has often felt that the multiplicity of equivalent formulations of recur-
siveness has been a deterrent to the general promulgation of this discipline. Yet,
the writer’s normal systems naturally lead to the unsolvable problem of [Pos46],
while the deterministic character of the Turing machine is basic to the above
unsolvability proof. From this point of view, the several formulations of recur-

siveness are so many different instruments for tackling new unsolvability proofs.

Church also seems to have shared this point of view. Indeed, in our analysis of
Church’s earlier work, we discussed a quote in which Church emphasizes that
one cannot simply say that one system of logic is wrong and the other right, but
only that one is more convenient than the other, depending on the goal one has
in mindFr_Z] It is indeed common practice to simply use the formalization that is
most convenient, as a definition, for the particular kind of goal one has in mind.
It is also in this context that turning one’s attention from the general identifica-
tion to particular systems that are further removed from our intuitive notion, in

325ee Sec. p.
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that it is not quite clear what kind of function they are actually computing, can
be very important both theoretically as well as philosophically. If one no longer
cares about the exact interpretation, in an intuitive sense, of what a given sys-
tem is exactly computing, one can more easily focus on other features of that
system. In chapter[9we will argue that a study of computational systems, on the
basis of their behaviour rather than on the basis of the encoding of functions
in the description of the machine, leads to important results in the context of
studying limits of solvability and unsolvability.

3.3.2 Different intuitions, different formalisms

It is, to our mind, very important that besides the intuitive notion of com-
putability, other notions have been considered. As we have shown, Post took
into account two other notions, i.e., generated set and solvability. In the pre-
vious section, we also mentioned Markov’s normal algorithms, which he con-
sidered to be more suitable to directly capture the notion of an algorithm as
compared to the other formalisms by Church, Post and Turing.

These intuitive notions should cover the same kind of “intuitive meaning” as
computability, given the equivalence between the several different formalisms.
While solvability and the notion of a algorithm are still rather close to com-
putability, it is not completely trivial to understand on an intuitive level that
something that is computed is the same as something that is generated, if one
is not acquainted with the formalisms themselves. Of course it is hard to provide
any real arguments here, since everybody has his own intuitive understand-
ing of several notions, depending on one’s background. Still it is important to
mention that something like normal systems seems to be better suited to work
out a theory of generated sets, and the related notion of an effectively enumer-
able set, than say Turing machines@ But this is of course a personal opinion.
More significant is the fact that in understanding that “generated” can be iden-
tified with “computed”, or with “solved”, the several proposed theses become
stronger, since they cover not one but several intuitive notions. In a way, this is
a kind of argument by confluence on the level of intuitive notions, rather than

331n this respect, see Post’s seminal paper on recursively enumerable sets [Pos44].
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on the level of the formalisms themselves. It leads to a broader intuition of
what is meant with computability. Restricting one’s attention to computability,
blocks this kind of generalization of the intuition.

3.3.3 “Testing in practice”: Studying formalisms instead of in-

tuitions

In the previous chapter we have argued that the way Church and Post arrived at
the original statement of their respective thesis, was not through direct analysis
of a vague notion. On the contrary, the formalisms were already there and de-
veloped for quite different purposes. It was only by studying these formalisms
that they became more and more convinced about the generality of their for-
malisms. In Church’s case, it was the argument by example that played a fun-
damental role in this process. As for Post, there were two different aspects that
should be mentioned here. First of all, one should not forget that Post was al-
ready searching for more general and abstract forms of mathematics, one of
his major goals being to find a positive solution to the Entscheidungsproblem.
It were his tag systems that first led him to the conclusion that finding such a
solution might be impossible and led to the definition of his normal systems.
Once he had established his normal form and proven the normal form theorem
he realized how general these forms actually are, and proposed his thesis.

To our mind, it is rather remarkable that two of the three “pioneers of unsolv-
ability” formulated their thesis not on the basis of an analysis of an intuitive
notion, but on the basis of a study of certain formal systems. This shows how
important other considerations have been and are for the formulation of such
theses. But are there any other reasons, besides the historical one, to empha-
size this?

Two questions are in place here. First of all, even if one regards Turing’s the-
sis nowadays as more adequate, one can well wonder how his paper would
have been received if he would have only proposed his thesis on the basis of
his analysis, without the extra arguments (by confluence and example) and the
fundamental results he has proven? Secondly, and this question is more funda-
mental, if one accepts Turing’s thesis solely on the basis of his analysis, without
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having convinced oneself about the actual computational power of Turing ma-
chines by having studied and compared them with other formalisms, does one
not risk to completely obscure the connection between a kind of very general,
basically philosophical, identification of computability with the general concept
of a Turing machine and the actual use and implementation of particular Tur-
ing machines and, as a consequence, to undermine the true value of the thesis
itself? To put these two questions a bit differently: is it not because one only
takes into account the general identification between computability and Tur-
ing machines based on Turing’s analysis, without taking into account the other
intuitive notions and formalisms that are covered by it as well as the actual for-
malisms themselves, that it seems to be so hard for some to accept the theses?

As far as my own experiences go, it is only by having really worked with sev-
eral different formal systems, and especially tag systems, that I not only began
to understand more and more how significant and fundamental the respective
theses are, but it were these experiences, rather than Turing’s analysis, that re-
ally convinced me of the generality of the theses. It was me having worked on
tag systems, for which it is far from clear what they are actually computing, that
furthermore showed me a fundamental philosophical implication of the the-
ses, i.e., that the limit implied by the several theses is not only a limit for the
several formalisms, but also for me. I dare the person who says that he or she
is convinced that it is possible to “effectively solve”, understood intuitively, the
halting problem for a given tag systems, to solve it for the very formally simple
tag system, y=2,v=3,0— 00,1 —1101!

3.3.4 Can we trust our intuition?

From a pure philosophical point of view, one of the problems involved in con-
sidering the “direct appeal to intuition” argument as the most important one
supporting Turing’s thesis, is that intuitions or one’s understanding of a vague
notion can be plainly wrong and are always very much biased by one’s own
background. History has already proven that one should be very careful in
accepting something on the basis of an intuition, the classic example in this
context being Euclid’s parallel postulate: for centuries people had searched



172 CHAPTER 3. 1936

for a proof, until Bolyai and Lobachevsky considered the possibility of non-
Euclidean geometries. Sieg, Gandy and some others have developed new for-
malisms, on the basis of Turing machines, to come to an even better, general or
more fundamental formalization of certain intuitive notions. Although we con-
sider their work very valuable, we think it equally important to challenge the in-
tuition and to study formalisms that are further removed from the intuition. In
having confronted myself with the rich variety of different kind of processes that
can be used to compute, especially those that are not intuitively appealing, the
notion of computability itself has been given a much more general meaning.
Indeed, in looking at formalisms that are further removed from the intuition,
one can only learn how much an intuition is in fact biased and that it can be
very restrictive to only focus on those formalisms that capture the intuition, al-
though it is of course basic to develop a formalism on the basis of certain vague
notions, as Turing did. If one no longer challenges the intuition itself, one risks
to forget about the rich variety of different processes that are actually covered
by “computability”.

Post proposed to consider wider and wider formulations to turn the hypothesis
into a law. Sieg has criticized exactly this aspect of Post’s work. To Sieg, Turing
reduced a broad notion to a narrow one, while Post wanted to extend a narrow
notion reducibly. To our mind, both directions, narrowing down and broaden-
ing up, are equally important. The former allows one to formalize the existing
intuition in a direct fashion, the latter allows to broaden up that self-same in-
tuition: to compute in A-calculus or with tag systems is definitely a challenge
for that intuition. In that way, both sides of the thesis, intuition and formalism
can be generalized, thus leading to a much stronger case for any of the theses.
This is exactly the significance of the argument by confluence: it allows one to
see how general computability actually is.

In this and the previous chapter we have given a detailed historical picture of
how Church, Post and Turing each arrived at their theses, the kind of arguments
they considered important, as well as the kind of different interpretations that
have been attached to the theses by some of the leading logicians at that time.
Emphasis was put on the fact that there are some very clear differences present
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in this history of the theses, differences we consider as fundamental both from
a historical, a mathematical, as well as from a philosophical point of view.
However, the several formalisms considered, are not in any way “physical”, i.e.,
they are idealizations and abstractions used to prove certain theoretical results,
like e.g. the unsolvability of the halting problem. In this sense, the several
theses concern abstract devices, not physical devices, that capture the vague
notions or intuitions. Of course, and this is important to note in the light of
our discussion on hypercomputability to follow (See Sec. , if either Church,
Post or Turing would have believed that there are physical devices, which in
their turn can be formalized, that solve e.g. the halting problem for Turing ma-
chines, they would probably not have published their results.

In the next chapter we will take a closer look at the development of what may
be regarded as the physical realization of these formalisms, i.e., the computer,
and the role it has played and plays in the context of computability and unsolv-
ability.
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Chapter 4
The computer.

Mathematics deals with theorems, infinite processes, and static relationships,
while computer science emphasizes algorithms, finitary constructions, and dy-
namic relationships. If accepted, the frequently quoted mathematical aphorism,
’the system is finite, therefore trivial,” dismisses much of computer science.

Michael S. Mahoney, 2000]

Four years after Church, Post and Turing published their papers, the world was
at war. Turing would play a rather significant role in this war, since he worked
at Bletchley park and helped to decode the EnigmaE] He would also become
one of the first computer pioneers, having designed a machine which can be
regarded as the materialization of his own Turing machines.

Nowadays we can hardly live without the computer: if one would make a list of
all the functions the computer fulfills in our society it would almost be scary.
The idea of computing machines is very old, and goes back at least to the 17th
century when several calculating devices were developed, like Pascal’s calcu-
lator. In the 19th century, Charles Babbage conceived of the differential and
analytical engine, which are very close to the ideas behind modern computers.

1From [Mah00], p. 17

2A detailed account of Turing’s involvement in the war can be found in [Hod83]. In the mean-
time many more top secret documents have been declassified. The recent book [Gan06] gives a
detailed account of the work at Bletchley park, taking into account these new documents, and
focuses on the construction of the Colossus.
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Especially the description of the analytical engine, that was never built, con-
tains many typical features of current computersﬂ

To write a history of the development of the idea of computing machines through
the ages, however, is not the purpose of this chapter. Our main interest here is
with the earliest general-purpose discrete electronic computers that were built
shortly after the second world war. One thing I still find very fascinating is
that such computers — and the several generations of computers that have since
been built — can be regarded as a kind of physical realization of the rather ab-
stract ideas developed in the twenties and thirties. This is not only true for the
more obvious similarity between “real” computers and a universal Turing ma-
chine. Many of the abstract methods behind the results from this period can
be directly linked with certain aspects of the computer. It is thus not surprising
that these mathematical ideas have had (and still have) an important influence
on what is now known as the domain of computer science.

Placed in this context, the computer might be regarded as the physical answer
to the question of what exactly is meant with “effective calculability”. Since the
early rise of modern computers, not only their size has been reduced to an al-
most absolute minimumf_r] but their field of application has grown in an almost
unforeseen way. The computer is no longer restricted to “pure” calculation, but
is involved in almost every aspect of our society. In this respect, the computer
can be said to have changed our intuition of effective calculability. Calculability
itself is no longer restricted to the domain of mathematical logic. It is remark-
able that the formalization of computability has played a significant role in its
own materialization and extension to other domains, going from biology to the
development of interactive computer games.

It didn’t take very long before people began to see the possibilities of comput-
ers. Several of the pioneers, like Turing and von Neumann, almost immediately
began to ask questions concerning the link between, on the one hand, “nat-

3A still very interesting text to read is Ada Lovelace’s translation of a French text describing
the Analytical Engine, and the notes she attached to the translation [0oLAA43].

4Although the computer itself might be further reduced in size, the user needs a screen that
is big enough to keep the output discernible, except of course if one would start to develop
computers with an “audible” interface.
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ural” automata, like the brain, and, on the other hand, “artificial” automata.
The idea of building “intelligent machinery” was put forward when the first
computers were still in full developmentE] Although these ideas were regarded
rather “heretical” at that timeﬁ nowadays hundreds of people are involved in
the domain of Artificial Intelligence. Still, there is a clear taboo surrounding the
subject. Even I have difficulties to start a conversation with chatbots on the net!
This taboo seems to be closely related to the fact that several researchers try to
prove that the Turing limit is not a “real” limit for nature. But before we can dis-
cuss these matters in a bit more detail (Sec. , it is important to take a closer
look at the early beginnings of the computer. It is, however, impossible to give
a detailed account of the origin of the first computers. This would at least ask
for another dissertation. Several books and papers have been published on the
subject, focussing on different aspects of this history. The interested reader is
referred to these sources[’]

5See for example von Neumann’s [vN58] and Turing’s [Tur50].

5Turing wrote a paper with the explicit title: Intelligent Machinery. A heretical theory
[Tur51al.

“In this footnote we would like to mention some of the references in this context, but we
should warn the reader that these references are far from complete. First of all, we should
mention the very important book A history of computing in the Twentieth Century. [HMR80],
containing many papers that were presented at a conference in 1976 on the history of com-
puters held at the equally historical location, Los Alamos. This is, to our mind, still one of the
most important sources on early computer history, since it contains detailed accounts of the
people who were actually there when it all happened. As for the history of computer languages,
we should mention two papers by Knuth, one in programming languages [KP80] and one on
compilers|[Knu62]. The conference proceedings History of Programming Languages [Wex81]
gives a very interesting account of early programming languages, since the authors were all
involved in the development of the first computer languages. Goldstine’s book [Gol72] is also
known as a classic, but its main focus is the ENIAC and is biased with respect to the significance
of von Neumann'’s contributions in this context. If one reads Goldstine’s book, when should also
read the accounts by Mauchly [Mau80] and Eckert [Eck80| in [Gol72|, or, Scott McCartney’s
book [McC99]. Some books and papers have been written that situate the first computers in
the context of the history of logic and mathematics. Martin Davis wrote a very accessible book
describing this history [Dav01b], extending the ideas described in his [Dav87]. There is also a
German book discussing similar matters by Sybille Kramer [Krd88]. In general, there is the im-
portant journal IEEE annals for the history of computing, that contains many contributions by
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The main purpose of this chapter is to show how through he rise of the com-
puter, on the one hand, computability has obtained a physical form, and, on
the other hand, how this physical form has given rise to new possibilities and
problems in the context of computability and unsolvability. In a first section[4.1]
we will describe some aspects of the history of early computers and the need for
developing programming languages. Focus will be put on the question of how
much the developments described in the previous chapters have had their in-
fluence on the rise of the computer.

In the next section we will show how, from its early use on, the computer
was used to make available “the discourse” of mathematics. We will argue that
the role of the computer as a physical realization of the formalisms we have de-
scribed earlier, used to study the actual execution of these formalizations, can
hardly be underestimatedﬂ

The last section, discusses two theoretical developments that are situated in
the context of computability and unsolvability, and are very closely connected
to the rise of the computer, developments which stand in sharp contrast with
each other, i.e., computational complexity theory, where one studies the fea-
sibility of computations, and hypercomputability in the context of which one
asks questions concerning the physical feasibility of devices that can give non-
computable answers.

4.1 The first computers: From rewiring to the need

for programming languages.

COMPUTER: any device capable of accepting information, applying prescribed
processes to the information, and supplying the results of these processes; some-
times, more specifically, a device for performing sequences of arithmetic and

logical operations; sometimes, still more specifically, a stored-program digital

people who were involved with the developments described.

8We are very much indebted to Maarten Bullynck for the very frequent and helpful conversa-
tions we have had when I was writing this chapter. The reader is referred to Bullynck’s [Bul07],
for an interesting discussion on the first computations done on the ENIAC.



4.1. THE FIRST COMPUTERS 179

computer capable of performing sequences of internally-stored instructions, as
opposed to calculators on which the sequence is impressed manually desk cal-

culator) or from tape or cards (card programmed calculator).
Martin H. Weik, 1961

In [Ula80] Stanislaw Ulam, who worked together with von Neumann at Los
Alamos, beautifully summarized the two main “streams” that gave rise to the
first computers ([Ula80], pp. 94-95):

It is perhaps a matter of chance, that computer development became possible
only by a confluence of at least two entirely different streams. One is the purely
theoretical study of formal systems. The study of how to formalize a description
of natural phenomena or even of mathematical facts. Professor May has spoken
felicitously of “genetic development”: we call it axioms and rules of procedure.
The whole idea of proceeding by a given set of rules from a given set of axioms
was studied successfully in this connection. The second stream is the technolog-
ical development in electronics, which came at just the right time. Of course, the
war had greatly accelerated the availability of funds and effort just a few years

later.

The confluence of formal systems and technology in the computer is still a very
remarkable fact of history, especially in the light of the fact that the computer
itself is nowadays used to study the formal systems it is the physical realization
of.

The significance of the war in early computer development can hardly be over-
estimated: there was a very direct need for computing machinery for several
different goals and several governments thus invested in this research domain.
One could say that the war accelerated the development of the computers.
However, many of the machines developed during the war, were special-purpose
machines and not all were discrete[[’]

9From [Wei61]
19For example, the differential analyzer developed in the 30’s by Vannevar Bush at MIT was
analogue.
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It is the idea of discrete general-purpose machines that is basic to the devel-
opment of the computer as we know it today. A very important paper in this
context is Shannon’s master thesis A Symbolic Analysis of Relay and Switching
Circuits [Sha38], that lay the foundations of digital circuit design. He showed
how Boolean algebra can be used to efficiently analyze and synthesize relay
circuits. The now almost trivial idea of AND, OR and other ports basically goes
back to Shannon’s thesis.This thesis is thus a very clear example of how logic
and technology can go hand in handEr]

During the war there were several people at different places involved in the
project of building computing machines in the U.S. It was here that Mauchly
and Eckert signed a contract to build what is probably known as one of the
most famous first computers, the ENIAC.

4.1.1 The ENIAC and the EDVAC

Neither Mauchly nor Eckert were mathematicians. Mauchly was a physicist,
Eckert was an engineer. In 1941 Mauchly took a course in wartime electronics
at the Moore School of Electrical Engineering, and this is were the two met.
In 1942 Mauchly wrote a memo proposing to build an electronic computer.
Lieutenant Herman Goldstine heard about the memo and asked Mauchly to
write a more formal proposal. On 1 June, 1943 the contract was signed, and
Mauchly and Eckert could begin with constructing the ENIAC. As Eckert em-
phasizes in [Eck80], the ENIAC was, from the very beginning, conceived as a
general-purpose machine ([Eck80], p. 526):

Long before we met von Neumann on the ENIAC project, it was John and I who
had to figure out how to arrange for flexible controls that would do all the things
that we felt were absolutely necessary for the generality of use that was our goal.
We are glad that Leland Cunningham, then working for the Ballistic Research
Laboratory (BRL), also had this philosophy and purpose. Unfortunately, it is of-
ten said that the ENIAC was built just for preparing firing tables. Cunningham
and others at BRL all supported us in making the ENIAC as generally useful as

1A more detailed discussion is given in [Dav88].



4.1. THE FIRST COMPUTERS 181

we could contrive to make it within the limited time that conditions of war de-
manded. Yes, BRL wanted firing tables, but they also wanted to be able to do “in-
terior” ballistics, and all kinds of data reduction, and they went on and on with
examples of what they would hope to be able to do with a truly flexible computer.
We wince a little when we hear the ENIAC referred to as a special-purpose com-
puter; it was not. The name “ENIAC,” where the “I” stands for “integrator,” was
devised to help sell the Pentagon that what the BRL was getting would compute
firing tables, which were, in 1943, the greatest need of Ordnance. But there was a

flexibility of control far beyond the implications of the name.

Indeed, although computing fire tables was a very important military task of the
ENIAC, it was not intended to be its sole purposef'z] Does this mean that ENIAC
was a real general-purpose computer as we know it today? No, especially not
if one understands “general purpose” to be a kind of finite approximation of a
universal Turing machine, including the stored program idea. One of the prob-
lems with ENIAC was that it was hard-wired: the sequence of instructions the
machine had to follow had to be physically programmed. It was only after it
had been rewired that it was able to “simulate” stored program computers.

And then John, Johnny for friends, von Neumann got involved in the ENIAC
project. According to Eckert, the first visit of von Neumann to the ENIAC project
could not have been before 7 September, 1944. It was Goldstine who intro-
duced von Neumann to Mauchly and Eckert ([Eck80], p. 532).

Apparently, while we were racing ahead on plans involving obvious uses of the
delay storage devices, Goldstine had spent a great deal of time in the hospital

with hepatitis, and had failed to get the full impact of the delay storage on con-

12The following quote, explains what fire tables were used for: “The army used its lush fields
and rolling hills to test artillery guns and other weapons. Since a gunner often couldn’t see his
target over a hill, he relied on a booklet of firing tables to aim the artillery gun. How far the shell
travelled depended on a host of variables, from the wind speed and direction to the humidity and
temperature and elevation above sea level. Even the temperature of the gunpowder mattered. A
gun such as the 155-millimeter “Long Tom” required a firing table with five hundred different
sets of conditions. Each new gun, and each new shell, had to have new firing tables , and the
calculations were done at Aberdeen based on test-firings and mathematical formulas.” [McC99],
p- 53.
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trol problems. This makes more understandable his apparent belief that von
Neumann was the source of ideas that in fact we had generated before Golds-
tine had met von Neumann at the Aberdeen railroad station. That chance meet-
ing in Aberdeen was the very beginning of von Neumann’s high interest in elec-
tronic computation. The clearance document for von Neumann’s first visit to
the Moore school ENIAC project has been found, and his first visit could not
have been before 7 September 1944. In my own records, which also became a
court document, is confirmation that Eckert and I had a commitment to meet

von Neumann about 7 September. I believe that was our first meeting with him.

As is clear from this quote, there have been problems between, on the one
hand, Eckert and Mauchly, and, on the other hand, Goldstine and von Neu-
mann. Reading any paper by any of these people that is related to these mat-
ters, should thus always be done with the awareness that there has been a seri-
ous fight between them!

It is often stated that one of the main contributions by von Neumann to the
first computers is the idea of stored programs, i.e., to store the instructions in-
ternally with the data. This was considered as one of the basic advantages of
the next computer to be build at the Moore school, i.e., the EDVAC. Eckert and
Mauchly however, have claimed that they already had the idea of stored pro-
grams even before they met “Johnny” for the first time. The most important
cause for the problems between the “engineers” and the “logician” was the fact
that von Neumann did not give full credit to Eckert and Mauchly when writing
his First Draft of a Report on the EDVAC [vN45]. The EDVAC is up to today con-
sidered as one of the first all-purpose stored-program computers, and in this
respect one of the first forerunners of our present-day computers (cfr. the so-
called Von Neumann-architecture). Its completion was delayed due to the dis-
pute between the “engineers” and the “logician”, leading to Eckert and Mauchly
to leave the University of Pennsylvania to form the Eckert-Mauchly Computer
Corporation.

We will not discuss here the controversy about who had which ideas first. Until
now it is still not completely clear how much Mauchly and Eckert contributed
to the design of the EDVAC. It should be noted though that Eckert had already
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written an earlier report in January 1944, before the first meeting with von Neu-
mann, with a proposal of developing a new computer, that included some ideas
pointing in the direction of stored programlr_a-] In fact, one of the reasons for
Eckert and Mauchly to develop a new computer, as they recount, was to avoid
the long set-up time that could be avoided by stored programs, allowing for au-
tomated programming. We think that the most correct interpretation of what
did actually happen is that the EDVAC design cannot be assigned to one per-
son, but emerged from the several discussions between Mauchly, Eckert, von
Neumann, Burks and some others, before the actual report was written. As far
as the idea of stored programs is concerned, we believe that the “engineers”
must have very quickly realized that internalizing the instructions would make
it possible to significantly speed-up the programming. Maybe they were not
able to put it in a clear well-cut logical language, as von Neumann was able to
do, but it seems to our mind very probable that their accounts on this matter
are true, although possibly slightly overstated.

Anyway, as is also acknowledged by Eckert and Mauchly themselves in their
“progress report on the EDVAC” they wrote to make clear their contributions
to the design of EDVAC, von Neumann wanted to emphasize the logical design
of the EDVAC, replacing “the physical structures and devices proposed by Eck-
ert and Mauchly [...] by idealized elements to avoid raising engineering prob-
lems which might distract attention from the logical considerations under dis-

13¢Either discs of the etched or alloy type may be used to remember combinations required in
the conversion from the decimal to the binary system and the reverse if such a system is used. If
multiple shaft systems are used a great increase in the available facilities for allowing automatic
programming of the facilities and processes involved may be made, since longer time scales are
provided. This greatly extends the usefulness and attractiveness of such a machine. This pro-
gramming may be of the temporary type set up on alloy discs or of the permanent type on etched
discs. The principal virtues of such a machine are largely due to the alloy discs which allow num-
bers to be stored indefinitely and to be put on and taken off by a conveniently controlled electric
circuit, and that none of the mechanical parts have to accelerate or decelerate during the op-
eration of the machine. The advantages of the electric control are not only that it allows rapid
operation but that the design is simplified and capable of more readily being extended and in-
terconnected to other apparatus.” (quoted from the memo Eckert wrote for designing a new
computer, published as an appendix in [Eck80].
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cussion."T

Whoever had the idea of stored-programs first, it is important to understand its
significance. Before the ENIAC was rewired in order to simulate stored program
computers, after it had been moved from the Moore school to Aberdeen, it took
days to set up a program for the ENIAC. A clear account of this set-up problem
is given by Alt ([Alt72], p. 694):

One of the peculiarities that distinguished ENIAC from all later computers was
the way in which instructions were set up on the machine. It was similar to the
plugboards of small punched-card machines, but here we had about 40 plug-
boards, each several feet in size. A number of wires had to be plugged for each
single instruction of a problem, thousands of them each time a problem was to

begin a run; and this took several days to do and many more days to check out.

4This is quoted from the progress report on the EDVAC by Mauchly and Eckert. The full
quote, crediting von Neumann’s contributions is: “[/von Neumann] has fortunately been avail-
able for consultation. He has contributed to many discussion on the logical control of the EDVAC,
[and] has proposed certain instruction codes for specific problems. Dr. von Neumann has also
written a preliminary report in which most of the results of earlier discussions are summarized.
In his report the physical structures and devices proposed by Eckert and Mauchly are replaced
by idealized elements to avoid raising engineering problems which might distract attention from
the logical considerations under discussion.” 1 got the quote from McCartney’s book [McC99],
p. 121, that emphasizes the significance of the contributions by Mauchly and Eckert. Goldstine
also used this quote in his book to claim credit for von Neumann! Martin Davis took over this
quote from Goldstine in his book, stating that “/a/lthough Eckert and Mauchly later denied that
von Neumann had contributed very much, shortly after they wrote as follows [...].” ([Dav01b],
p. 183). I think that it is not completely true that Eckert and Mauchly later denied that von
Neumann contributed very much. The main conclusion I made after reading their [Eck80] and
[Mau80] is that they were very much disappointed in not having been given their due credit.
They do not however imply that von Neumann’s contribution was not important. Eckert for ex-
ample clearly states that he had long conversations with von Neumann on the EDVAC. He also
acknowledges that the permanent set up of the instructions for the rewired ENIAC were chosen
with von Neumann’s consultation: “A project was set up for operating the ENIAC with a perma-
nent numerical code set. The permanently set up “instructions” were chosen with von Neumann's
consultation, and became known as the “von Neumann code for the ENIAC.”” (|[Eck80], p. 529).
We think that in the end, the best way to form ones own opinion of who had what ideas first, is
through a detailed research of the accounts and papers written by the people who were actually
involved, looking at both sides of the story.
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When that was finally accomplished, we would run the problem as long as pos-
sible, i.e. as long as we had input data, before changing over to another problem.
Typically, changeovers occurred only once every few weeks. In between we had
to cope with malfunctions of the machine, usually due to dead or submarginal
tubes. A faulty tube could be replaced in minutes, but it might have taken days

to locate it.

Indeed, setting up a program for the ENIAC was a cumbersome task, mostly
relegated to women. In Fig. a picture is shown of two women program-
ming the ENIAC. Fig. [4.1.1shows the external function tables of the ENIAC, that
would later show important for internalizing the instructions.

It was the idea to make the program instructions internal that was basic to

Figure 4.1: Two women programming the ENIAC

speed-up the programming process. One of the main insights behind stored-
programs was that instructions could be encoded as numbers and in this sense
be manipulated on the same level as numbers, i.e., they could be altered in and
by the machine itself. Eckert summarized it as follows (as one of his best com-
puter ideas, clearly claiming credit for the idea) ([Eck80], p. 531):
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Figure 4.2: Function tables for the ENIAC (right hand-side).

My best computer idea, today briefly called “stored program,” became to us an
“obvious idea,” and one that we started to take for granted. It was obvious that
computer instructions could be conveyed in a numerical code, and that what-
ever machines we might build after the ENIAC would want to avoid the setup
problem that our hastily built first try ENIAC made evident. It was also obvious
that the functions supplied by the Master Programmer in controlling loops and
counting iterations, etc., would be achieved very naturally by allowing instruc-
tions to be subject to alterations within the calculator. We even thought that
Goldstine, who had frequent contact with us, understood all of the uses to which

these delay lines could be put. Not so, it seems, as it turned outEl

15We would like to add some further quotes here by Eckert and Mauchly in which they de-
scribe what they meant with stored-program and state that they already had this idea before
von Neumann entered the scene. “Af the Los Alamos conference I had the chance to check with
Harry Huskey, who says he started on the staff of the ENIAC Project about April, 1944. I asked
him whether, when he first came to the Moore school, he had heard any notions about storing
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A more explicit description is given by Alt, comparing the stored-program idea
with compilers and interpreters ([Alt72], p. 694):

In retrospect, it seems to have been a forerunner of what we now call higher-
order programming languages. The idea was to encode the instructions of a
problem on the “function tables,” three panels of the machine, each of which
bore 1200 ten-way switches. They had been intended as a computer-accessible
table lookup, e.g. for empirical functions, but it was now proposed to use them
to set up the succession of instructions, each represented by a two-digit number.
The wiring of the plug boards would be set up permanently on the machine in a
way that would cause the machine to read a number from the table, carry out the
instruction encoded by it, go on to reading the next number, etc. Thus, the back-
ground wiring played the role of a present day “compiler” — more specifically, of

an interpretative routine, since the source code had to be read and interpreted

programs in the same storage used for computer data. He said, “Yes. My immediate reaction was,
‘Why didn’t I think of that?’ ” But for some reason, Goldstine did not understand this, if I cor-
rectly understand what he says in his volume [Gol72].” Mauchly comments on Eckert’s paper
(I[Eck80], pp. 531-532). “In January 1944, I wrote a memo, Disclosure of Magnetic Calculating
Machine, which I typed on my home typewriter and then gave to my supervisor for retyping.
For some reason it never got typed, but I finally did get my own version back. 1 had also read a
Master’s Thesis by Perry Crawford, at MIT, where he had proposed using a disk with some spots
magnetized on it for storage of numbers. My memo stated that we could use magnetic disks ei-
ther erasable or permanently for the storage of information both alterable or unchangeable. The
concept of general internal storage started in this memo.” (|[Eck80], pp. 530-531.) “We conceived
of another mode of ENIAC operation, in which the function tables would control “the program.”
The switch setting then would not represent numerical data for calculating, but arguments fed
to the function tables would elicit patterns of program pulses output to prearranged program
lines. There were two ways in which this might ease the burden of “patch-cord setups” — (1) if a
new program were put on a function table, another program could check or verify the witch set-
ting of the “read-only” portable panel, making it unnecessary to go through the tedious manual
checking of the patchcord setups, or (2) a possibly long-term setting of the function table switches
might be given a permanent set of arguments corresponding to some permanent set of program
functions to be stimulated. Then every time a new set of numbers was read from the card input, a
new set of operations would be caused to occur. The foregoing ideas could be easily implemented
on the ENIAC, and we expected that at some time someone would want to do this, so we built the
necessary cable to connect “program pulses” into the function tables in place of “digit pulses””
(IEck80], pp. 528-529)
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anew for each run, and no permanent object code was set up. This mode of op-
eration would slow down the machine, of course; it was estimated that its speed
would decrease at least by a factor of 5, a small price to pay for eliminating the
long set-up time. We were, in effect, using ENIAC to “simulate” the future stored-

program computers, which were then still on the drawing board.

The main insight for stored-programming, i.e. to regard instructions as num-
bers, in order to make internal manipulations possible, has a very clear resem-
blance to Godel’s coding: to express things about a given system in the system
itself, i.e., in terms of stored programs, to encode the operations on numbers as
numbers. It was this kind of feature that was also basic to Turing’s construction
of his universal machine: encoding operations and that on which is operated in
one and the same language, through standard descriptions, was a fundamental
step in Turing’s construction!

The fact that this idea was, most probably, developed independent of Godel
and Turing by Mauchly, Eckert, and Zuse (see Sec. , in a completely dif-
ferent context, is to our mind of historical significance. It very clearly shows the
parallelism between, on the one hand, the theoretical problems logicians were
facing in the twenties and thirties, and, on the other hand, the problems “en-
gineers” and “programmers” were facing in trying to improve their computers.
They were not at all concerned with problems of how to find a good formal-
ization of an intuitive notion. Instead they were working against the clock to
find efficient methods to compute certain problems on a machine that was al-
ready then a kind of physical realization of that selfsame intuitive notion. As
is very clearly expressed by Eckert, in referring to work done by Captain Grace
Hopper, one of the first female programmers who developed one of the first
compilers, A0, one of main reasons for them to internalize operations in the
computer itself, was to reduce the human work to make the machines more
efficient (|[Eck80], p. 533):

Later, she [Captain Grace Hopper] used the UNIVAC itself to work out the mem-
ory allocations. That was akin to our general philosophy, of course. You should
use the computer to do all the tedious dirty work if you possibly can. That was

the origin of all the languages, interpreters, and such that have since been devel-
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oped.

In the meantime there was a growing need for programming languages. The
reason behind developing these languages was very pragmatic. This is very
clearly expressed by Captain Grace Hopper herself ([Hop81], pp. 10-11):

There was also the fact that there were beginning to be more and more people
who wanted to solve problems, but who were unwilling to learn octal code and
manipulate bits. They wanted an easier way of getting answers out of the com-
puter. So the primary purposes were not to develop a programming language,
and we didn't give a hoot about commas and colons. We were after getting pro-
grams written faster, and getting answers for people faster. I am sorry that to
some extent I feel the programming language community has somewhat lost
track of those two purposes. We were trying to solve problems and get answers.
And I think we should go back somewhat to that stage.[...] I'm hoping that the
development of the microcomputer will bring us back to reality and to recogniz-
ing that we have a large variety of people out there who want to solve problems,
some of whom are symbol-oriented, some of whom are word-oriented, and that
they are going to need different kinds of languages rather than trying to force

them all into the pattern of the mathematical logician. A lot of them are not.

Hopper clearly opposed the idea of developing languages that are forced into
the pattern of mathematical logic. Indeed, although we cannot exclude the
possible influence of the developments from the twenties and thirties of math-
ematical logic on Hopper’s pioneering work, it is clear that she did not regard
the earlier development of programming languages as being heavily influenced
by logic. In general, as far as the development of the earliest programming lan-
guages are concerned, one can only conclude that mathematical logic must
have had an influence on some pioneers in this domain, but not on everybody.
For example, Zuse was acquainted with the predicate calculus when he de-
scribed his Plankalkiil, and acknowledged its significance for his work (see Sec.
. However, the development of Short Code, that was first implemented on
the BINAC, developed at the company by Eckert and Mauchly, was originally
suggested by Mauchly himself [KP80] and the influence of mathematical logic
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on this language thus seems rather doubtfulﬁ]

Of course, we do not want to oppose the idea that the developments from the
twenties and thirties discussed in the previous chapters, did not have an im-
portant influence on the beginning of the computer era. Still, we believe it im-
portant to emphasize that there have been developed techniques in the forties
and early fifties, that have a very clear resemblance to certain of the techniques
used by, e.g., Turing, but have arisen in a very different context: that of physical
computing. Stored-programs, compilers, programming languages, etc., are de-
velopments from the beginning of the computer era that can be directly con-
nected to mathematical logic, but cannot in every respect be traced back to
mathematical logic. In a way, one could state that where both Church and Post
developed certain techniques and found important results by studying their
respective formalisms, many computer pioneers developed similar techniques
by working with the physical version of such formalisms.

For now, it is not completely clear how many computer techniques can be called
to have been developed quite independent of mathematical logic. A more de-
tailed research would be needed here, taking into account the developments
in several different places by several different people. Indeed, one should not
forget here that there was research on computing in many different countries
by several different research groups. As a consequence many techniques were
re-invented in different places by different people. In this sense, research con-
nected to the first computers is in fact yet another examples of a confluence
of ideas, of which some were very explicitly influenced by the developments
sketched in the previous chapters, and some were not.

The influence of the results by Godel, Turing and others on “Johnny” von Neu-
mann cannot be neglected. He knew all these papers and had been there in
1930 at the conference in Konigsberg where Gédel announced his incomplete-
ness results for the first time. He was also fully aware of Turing’s paper and

161t should be noted however that mathematical logic has had a very important influence
on the development of the first “true”, more high-level, programming languages. For exam-
ple, A-calculus has played a significant role in the development of LISP, and John Backus has
stated that Post’s canonical forms have had an influence on the development of the Backus-
Naur form, important for ALGOL60 (see for example [Bac80]).
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acknowledged this in some of his papers and lectures on computers. As is ar-
gued in [Hod83] and [Dav87], based on a letter by Ulam to Hodges ([Hod83], p.
145),IT_7IV01’1 Neumann must have read Turing’s paper before the outbreak of the
war.

After Godel’s results von Neumann wanted to stay far away from logic. But then
he got involved with the ENIAC project, and with “real” computing. In this con-
text von Neumann'’s logical background would prove very useful, although it
was not an interest in logic that triggered his interest in the subject. In [Ula80],
Ulam explains why von Neumann got interested in computers (pp. 93-94).

It must have been in 1938 that I first had discussions with von Neumann about
problems in mathematical physics, and the first I remember were when he was
very curious about the problem of mathematical treatment of turbulence in hy-
drodynamics. [...] He was fascinated by the role of Reynolds number, a dimen-
sionless number, a pure number because it is the ratio of two forces, the inertial
one and the viscous, and has the following importance: When its value surpasses
a critical size, about 2000, the regular laminar flow, as it is called, becomes highly
irregular and turbulent. [von Neumann] [...] wanted to find an explanation or at
least a way to understand this very puzzling large number. Small numbers like 7
and e, are of course very frequent in physics, but there is a number of the order of
thousands, and yet it is a pure number with no dimensions: it does whet your cu-
riosity. I remember that in our discussions von Neumann realized that the known
analytical methods, the method of mathematical analysis, even in their most ad-
vanced forms, were not powerful enough to give any hope of obtaining solutions
in closed form. This was perhaps one of the origins of his desire to try to devise
methods of very fast numerical computations, a more humble way of proceed-
ing. Proceeding by “brute force” is considered by some to be more lowbrow. |[...]
I remember also discussions about the possibilities of predicting the weather at
first only locally, and soon after that, about how to calculate the circulation of

meteorological phenomena around the globe.

1"This letter is available on-line through Andrew Hodges website on Turing:
http://www.turing.org.uk/sources/vonneumann.html
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von Neumann was thus particularly interested in computers for doing numer-
ical calculations in the context of theoretical physicsF_E]

In 1944 he got involved with the ENIAC project, and the plans for developing
another computer, the EDVAC. Indeed, the main design ideas for the EDVAC
were described by von Neumann in the first draft of this machine [vIN45]. As we
already know, it is not completely clear how much of the ideas described in this
draft originated from Eckert and Mauchly, but, the emphasis on the logical as-
pects of the EDVAC clearly came from von Neumann. He also made important
contributions to the rewiring of the ENIAC at Aberdeen, since the permanent
set of instructions to be internalized were chosen with von Neumann’s consul-
tation. The main design of the rewiring was done by R.E Clippinger, who states
in the introduction of a report describing the new coding system for the ENIAC,
that the rewiring was suggested by von Neumann and that “/t/he role of ]. von
Neumann in working out the details has been a central one ([Cli48]) [

von Neumann'’s interest in the logical design of computers, is also expressed by
Eckert ([Eck80], p. 525):

We thought the most important development problem we faced in the ENIAC
was to provide a control system consistent with and adequate for its general-
purpose use. And it was about the controls of the computer that von Neumann
first asked when he came in September 1944, for his first visit to the ENIAC project.
If he had first asked questions like “How fast does it work?” we would have been

disappointed. Because he asked about the control logic, there was an immediate

18The use of computers in mathematics and physics, as regarded by von Neumann, will be
discussed in more details in the next section.

YNeukom's paper [Neu06] gives a detailed description of “the ENIAC's second life”. It should
also be noted here that although the account on the rewiring of the ENIAC - von Neumann
suggesting the idea and Clippinger having detailed out the design — seems to be the generally
accepted account, in the end, Clippinger himself has stated the significance of von Neumann
here, Metropolis tells us a slightly different story: “In the meantime Richard Clippinger, a staff
member at Aberdeen, had suggested that the ENIAC had sufficient flexibility to permit is controls
to be reorganized into a more convenient (albeit static) stored-program mode ofoperation. [...]
Although implementing the new approach is an interesting story, suffice it to say that Johnny's
wife, Klari, and I designed the new controls in about two months and completed the implemen-
tation in a fortnight.” ([Met87], p. 128).
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rapport.

Although Eckert and Mauchly most probably already had the idea of stored pro-
grams, it is von Neumann who was able to convert it into logical terms, inde-
pendent of whether he got this idea through Mauchly and Eckert or not, and
very clearly understood the link between problems related to computing with
those occurring in logic. We think this is the most important contribution by
von Neumann: he understood that computers can be considered as logical ma-
chines, or, as Martin Davis has called it, engines of logic ([Dav87], p. 166).
According to Martin Davis [Dav87, IDav0lb] this is one basic advance of the
computers of the postwar period ([Dav87], p. 166):

The computers of the postwar period differed from previous calculating devices
in having provision for internal storage of programs as well as data. They were
conceived, designed, and constructed, not as mere automatic calculators, but as
engines of logic, incorporating the general notion of what it means to be com-

putable and embodying a physical model of Turing’s universal machine.

This is maybe a slight overstatement from Davis’s side, since it obscures the
many different roads that led to the modern computer. However, there is some
clear truth in this statement, especially with respect to von Neumann’s contri-
butions, and, as we will later see, Turing’s.

The EDVAC design is often considered as laying the basis of present day com-
puters and has come to be known as the von Neumann architecture. We will
not discuss this design in detail, but it is important to ask in how far this de-
sign could have been influenced by the developments discussed in the previ-
ous chapters. Von Neumann had a broad and solid background in these mat-
ters and must have read Turing’s paper. In this sense it only seems “logical”
that, especially Turing’s paper, must have had an influence here. Davis has in
fact argued that the concept of a universal Turing machine must have had a sig-
nificant influence on von Neumann’s conception of computers as logical ma-
chines, as reflected in his first draft. A clue is given by the only reference in von
Neumann’s text, i.e., the paper by McCullough and Pitts [MP43]. As is pointed
out by Martin Davis, the reference to this paper gives a very direct link with
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Turing’s universal Turing machine: not only did McCullogh later state that their
paper was in fact directly inspired by Turing’s, but the paper itself states that the
possibility of representing a universal Turing machine in their neural model, is
in fact the main reason for believing in the adequacy of the formalism. Davis
has given some further arguments for the significance of the universal machine
concept in von Neumann’s work on computersFE]

That logic has had a very significant influence on von Neumann’s work on com-
puters is obvious when reading several of his papers. In the introduction to
von Neumann’s work on Natural and artificial automata [Bur86] in the volume
[vN86], Burks discusses several of these influences. The first such influence
Burks mentions concerns the influence of Gddel’s work on von Neumann'’s pro-
gramming methods ([Bur86], p.382-383):

There are some concepts in von Neumann’s program codes and programming
methods that are analogous to logical ideas that Godel employed. I think it likely
that, in his programming work, von Neumann was guided by his knowledge of

Godel’'s work, at least intuitively.

Burks mentions two aspects of von Neumann’s work that might have been in-
fluenced by Godel. The first concerns the distinction between metalanguage
and object language ([Bur86], p. 383):

In his program codes for the EDVAC and IAS machines, von Neumann used par-
tial substitution instruction for changing the addresses in a program during com-
putation [...] Arithmetic instructions and partial substitution instructions both
transform words, but they differ in this: The address in an arithmetic instruction
refers to a word usually interpreted as a number, whereas the address in a partial
substitution instruction refers to another instruction. This is an instance of the

metalanguage versus object language distinction.

This technique of partial substitution is one way to implement the stored pro-
gram idea. The technique shows how data and instructions can be manipulated
on the same level. In the following quote, one sees how von Neumann under-
stood this substitution technique as a way for the computer to manipulate its

20The interested reader is referred to [Dav87], pp. 167-169 and [Dav01bl, pp. 180-193.
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own code. The quote is also interesting because this ability of the computer is
considered as a necessary feature to obtain flexible codes, and is in fact one of
the features that makes coding a non-trivial operation according to von Neu-
mann. We give the full quote, including the explanation of how the process of
substitution works (|[GvN46], p. 31-32):

It should be added here that there are two ways to send a number a from the
arithmetic organ to the memory, say to the memory position y. We either want
to place the entire 40 digit number a to occupy the entire space at y, or there
may be two orders at y, and we may only want to replace the memory-position-
reference x in one of these orders by part of a. Since we plan to have 4096 = 212
viewed as a binary digit number, hence it will require 12 digits of a, say the 12 last
ones (to the right). In view of this possibility we may also call the disposal orders
substitutional orders. The first use (40 digits of a moved) is a total substitution,
the second use (12 digits of @ moved) is a partial substitution, and according to
whether the first or the second order at y is modified, the partial substitution is
left or right. It should be added that this technique of automatic substitutions
into orders, i.e. the machine’s ability to modify its own orders (under the control
of other ones among its orders) is absolutely necessary for a flexible code. Thus,
if a part of the memory is used as a “function table”, then “looking up” a value
of that function for a value of the variable which is obtained in the course of the
computation requires that the machine itself should modify, or rather make up,
the reference to the memory in the order which controls this “looking up”, and
the machine can only make this modification after it has already calculated the
value of the variable in question. On the other hand, this ability of the machine
to modify its own orders is one of the things which makes coding the non-trivial

operation which we have to view it as.

As compared to some of the quotes in which Eckert explains the stored program
idea, von Neumann’s explication of its use is stated in more logical terms, and
resembles more not only Godel’s ideas but also those Turing’s. The ability of
the machine to manipulate its own code is an idea that becomes very explicit
in Turing’s universal machine. Indeed whereas Eckert uses terms such as “digit
pulse” and “program pulse”, i.e. engineering terms, von Neumann applies the
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much more logical terminology of substitution.
A further influence of Godel’s work on von Neumann that Burks identifies, is
summarized in the following quote ([Bur86], p. 383):

In his programming procedures von Neumann explicitly uses the distinction be-
tween bound and free variables, and his single program loops are analogous to

Godel’s bounded quantifiers.

We will not discuss this last influence in any further detail. Let me merely point
out that the differentiation between bound and free variable was effectively
used by von Neumann,lz_r] while the form of bounded quantifier expressions is
considered by Burks to be quite similar to certain routines, like e.g. a for loop.
One can of course question whether these influences of logic on von Neumann,
as pointed out by Burks, are solely due to his knowledge of Godel’s work, but,
in any way, it is clear that formal logic did have a significant influence on von
Neumann’s work on coding and thus on early computing.

Much of von Neumann’s papers in the late forties are indeed devoted to coding.
In collaboration with Goldstine, he wrote a sequence of reports, Planning and
Coding of Problems for an Electronic Computing Instrument, in which von Neu-
mann develops methods for coding problems [GvN47, (GvN48a, (GvN48b]. If
one scans through these reports, the influence of logic can hardly be neglected,

2l1n [GvN47], pp. 90-91, von Neumann indeed uses this terminology: “A mathematical-
logical procedure of any but the lowest degree of complexity cannot fail to requirevariables for its
description. It is important to visualize these variables are of two kinds, namely: First, a kind of
variable for which the variable that occurs in an induction [...] is typical. Such a variable exists
only within the problem. It assumes a sequence of different values in the course of the procedure
that solves this problem, and these values are successively determined by that procedure as it de-
velops. It is impossible to substitute a value for it and senseless to attribute value to it “from the
outside”. such a variable is called (with a terms borrowed from formal logic) a bound variable
Second, there is another kind of variable for which the parameters of the problem are typical —
indeed it is essentially the same thing as a parameter. Such a variable has a fixed value through-
out the procedure that solves the problem, i.e. a fixed value for the entire problem. Ifit is treated
as a variable in the process of planning the coded sequence, then a value has to be substituted for
it and attributed to it (“from the outside”), in order to produce a coded sequence that can actually
be fed into the machine. Such a variable is called (again, borrowing a term from formal logic) a
free variable.”



4.1. THE FIRST COMPUTERS 197

given the logical terminology used. In these papers one finds the development
of flow diagrams, as a means to represent algorithms in a precise and more
structured way, at a higher level than the machine language. Because these re-
ports were distributed to ([KP80], p. 208):

[...] the vast majority of people involved with computers at that time [...] cou-
pled with the high quality of presentation and von Neumann’s prestige, [...] their
report had an enormous impact, forming the foundation for computer program-

ming techniques all over the world.

Given the clear influence of mathematical logic in these reports, one cannot
underestimate the significance of logic in the domain of programming.

In an earlier paper, we already quoted from, von Neumann makes clear how the
“coder” should proceed in developing a program ([GvN46] p. 30):

In addition to a quite flexible set and general set of basic orders that can be un-
derstood by his machine, the coder needs certain further things: An effective
and transparent logical terminology or symbolism for comprehending and ex-
pressing a particular problem, no matter how involved, in its entirety and in all
its parts; and a simple and reliable step-by-step method to translate the problem

(onceitis logically reformulated and made explicit in all its details) into the code.

From this quote it is very clear what value von Neumann attached to logic, not
only with respect to the design of computers, but also with respect to program-
ming. A last quote we want to mention here that illustrates the significance of
logic for von Neumann’s work on programming, was also used by Martin Davis
in this context ([GBvN46], p. 37):

It is easy to see by formal-logical methods that there exist codes that are in ab-
stracto adequate to control and cause the execution of any sequence of oper-
ations which are individually available in the machine and which are, in their
entirety, conceivable by the program planner. The really decisive considerations
from the present point of view, in selecting a code, are more of a practical nature:
simplicity of the equipment demanded by the code, and the clarity of its applica-
tion to the actually important problems together with the speed of its handling

of those problems.



198 CHAPTER 4. THE COMPUTER.

The first sentences of this quote seem to reflect the universal Turing machine
concept stated in terms of programs.

The influence of Turing’s universal machine on von Neumann’s work, seems
also to be reflected by von Neumann’s understanding that a small program-
ming vocabulary is not a problem, i.e., a few dozen of instructions are enough
to express all of mathematics (at least the computational part of it). This is re-
counted by Alt, who attended a lecture by von Neumann at the first meeting
of the Association for Computing Machinery at Abderdeen Proving Ground in
1947 ([Alt72], p. 694):

[von Neumann] discussed the need for, and likely impact of, electronic comput-
ing. He mentioned the “new programming method” for ENIAC and explained
that its seemingly small vocabulary was in fact ample: that future computers,
then in the design stage, would get along on a dozen instruction types, and this
was known to be adequate for expressing all of mathematics. (Parenthetically,
it is as true today as it was then that “programming” a problem means giving
it a mathematical formulation. Source languages which use “plain English” or
other appealing vocabularies are only mnemonic disguises for mathematics.)
von Neumann went on to say that one need not be surprised at this mall num-
ber, since about 1000 words were known to be adequate for most situations of
real life, and mathematics was only a small part of life, and a very simple part at
that. This caused some hilarity in the audience, which provoked von Neumann
to say: “If people do not believe that mathematics is simple, it is only because

they do not realize how complicated life is.”

The expressibility of the whole of mathematics by a few dozen of instructions
very clearly resembles the ambitions of many a logician at the beginning of the
20th century, including Post. However, von Neumann knew of the unsolvabil-
ity results published ten years before, and is probably pointing at the ability
of a universal Turing machine to compute anything computable by any other
Turing machine. Some years later, during the second lecture of a sequence of
lectures delivered at the University of Illinois in 1949, he would explicitly state
that the significance of Turing’s work lies in his proof of exactly this fact ([vN66],
p- 50):
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A [a universal machine] is able to imitate any automaton, even a much more
complicated one. Thus a lesser degree of complexity in an automaton can be
compensated for by an appropriate increase of complexity of the instructions.
The importance of Turing’s research is just this: that if you construct an automa-
tonright, then any additional requirements about the automaton can be handled
by sufficiently elaborate instructions. This is only true of Ais sufficiently compli-
cated, if it has reached a certain minimum level of complexity. In other words, a
simpler thing will never perform certain operations, no matter what instructions
you give it; but there is a very definite finite point where an automaton of this
complexity can, when given suitable instructions, do anything that can be done

by automata at all.

Later, he would also state that the universal Turing machine lies at the basis of
the construction of a self-reproducing automaton, i.e., von Neumann’s version
of cellular automata [vN51]. More generally, as is e.g. expressed in the above
mentioned lectures, von Neumann considered logic to be a basic part of the
development of a theory of automata. However, given the physical nature of
“artificial automata” and thus the fact that they will malfunction and make mis-
takes, such theory should also include statistical considerations. To this end,
he wanted to develop a kind of probabilistic logic, which was described in his
IVN56].

4.1.2 Alan Turing’s work on computers and programming

In the previous chapter we showed how Turing’s analysis of the process of a man
computing led him to the formulation of his Turing machines. It was his con-
struction of a universal Turing machine von Neumann regarded as one of the
most significant results of Turing’s paper in the context of building real com-
puters, and was thus an important influence on von Neumann’s work in this
context. Turing himself also got involved in the project of designing a “real” uni-
versal machine, i.e., a digital general-purpose stored program computer, and,
was well-aware of the fact that these computers are in fact the physical coun-
terpart of his universal machine.

Some years after the publication of his seminal paper, it was war, and Turing
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started to work at Bletchley park as a cryptanalyst. As is described in [Hod83]
Turing made many important contributions during the war, his background in
mathematical logic and the idea of automated processes being “extraordinar-
ily relevant” in this context. One of his first successes was his contribution to
the development of the British Bombe, a device more general than the Polish
Bomba in that it was capable of breaking all German Enigma message. The
crucial contribution by Turing to this generalization was the mechanization of
certain logical deductions ([Hod83], pp. 179-181):

It was Alan [...] who first formulated the principle of mechanising a search for
logical consistency based on a ‘probable word. The Poles had mechanised a
simple form of recognition, limited to the special indicator system currently em-
ployed; a machine such as Alan envisaged would be considerably more ambi-
tious, requiring circuitry for the simulation of ‘implications’ flowing from a plug-
board hypothesis, and means for recognising not a simple matching, but the ap-
pearance of a contradiction. [...] The idea of automating processes was familiar
enough to the twentieth century; it did not need the author of Computable num-
bers. But his serious interest in mathematical machines, his fascination with the
idea of working like a machine, was extraordinarily relevant. Again, the ‘con-
tradictions’ and ‘consistency’ conditions of the plugboard were concerned only
with a decidedly finite problem, and not with anything like Godel’s theorem [...]
But the analogy with the formalist conception of mathematics, in which impli-

cations were to be followed through mechanically, was still a striking one.

Turing also played an important role in breaking the Fish code, messages that
had a special encoding used for Hitler’s communications. The code was finally
cracked by the Colossus machines |

It was also during the war that Turing had the occasion to build up his knowl-
edge of electronic technology and he even developed his own speech secrecy
system, with the aid of Donald Bailey, called DelilahFj

22The reader is referred to [Hod83] for more details on Turing’s work during the war.

ZA transcription of a report dated 6 June 1944 by Turing, with the title Speech
System ‘Delilal’ - Report on Progress, can be found at Andrew Hodges website:
http://www.turing.org.uk/sources/delilah.html.
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So to what extent did Turing’s theoretical work on computing machines, i.e. his
1936 paper, influence the development of early computing? We already know
that his work must have had an important influence on von Neumann’s work on
computers. Turing’s work also played its role in the development of the Colossi
machines, special-purpose machines, that were developed at the Post Office
Research Station, Dollis Hill, in close collaboration with people from Bletchley
Park. In [Ran80] Randell discusses the influence Turing’s mathematical work
might have had on these machines. Randell’s paper starts with a quote from
the explanatory caption accompanying a set of photographs of COLOSSUS that
were only made available by the British governement in 1975 ([Ran80], p. 48):

Babbage’s work in 1837 first established the logical principles of digital comput-
ers. His ideas were developed further in Turing’s classical paper in 1936. The
COLOSSUS machine produced by the Department of Communications of the
British Foreign Office, and put into operation in December 1943, was probably
the first system to implement these principles successfully in terms of contem-
porary technology [...] The requirement for the machine was formulated by Pro-
fessor M.H.A. Newman, and the development was undertaken by a small team
led by T.H. Flowers. A. Turing was working in the same department at that time,

and his earlier work had its full influence on the design concept.

Although this quote states the influence of Turing’s paper on the design of the
COLOSSUS, it is far from clear how far this influence actually went. As is noted
by Randell - whose main information came from several interviews with people
involved, since, at that time, not much documents had been made available
yet — Turing’s influence on the Colossi machines should not be overestimated.
However, his 1936 paper was well-known ([Ran80], p. 78):

[...] the early projects that the Dollis Hill people carried out for Bletchley Park,
were done in close cooperation with Turing [...] Apparently he did not have any
direct involvement in, or influence on, the design or use of COLOSSUS. His visits
to Dollis Hill occurred prior to the start of the COLOSSUS work, and Newman
does not remember his presence at any of the meetings that that Newman and

Flowers held at Bletchley Park, Turing’s prewar work on computability was well
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known, and virtually all of the people I have interviewed recollect wartime dis-
cussions of his idea of a universal automaton.[...] Good has written that “New-
man was perhaps inspired by his knowledge of Turing’s 1936 paper”. However,
Newman'’s view now is that although he and his people all knew that the planned
COLOSSUS was theoretically related to a Turing machine, they were not con-
scious of their work having any dependence on either these ideas or those of
Babbage.

Itis thus clear that Turing’s paper might have played its role in the development
of the Colossi machines, but it is not completely clear how far this influence ex-
tends.

More important here is Turing’s own work on computing machines. By the end
of the war, J].R. Womersley who had become a member of the National Physics
Laboratory (NPL) in the U.K. and headed the new mathematics division of the
NPL, made a trip to the U.S. He was allowed access to the brand new ENIAC
and informed of the EDVAC report. He already knew Turing’s paper, and, af-
ter he returned from his visit to the U.S. he made arrangements with Newman
to meet with Turing. Womersley hired Turing and some months later Turing
produced his ACE report [Tur45], describing the design of an Automatic Com-
puting Engine, a general-purpose digital computer with stored programs@ In
the introduction of the ACE report, Turing makes explicit the typical feature of
the ACE as compared to other machines ([Tur45], p. 20):

Calculating machinery in the past has been designed to carry out accurately and
moderately quickly small parts of calculations which frequently recur. [...] Itis
intended that the electronic calculator now proposed should be different in that
it will tackle whole problems. Instead of repeatedly using human labour for tak-
ing material out of the machine and putting it back at the appropriate moment

all this will be looked after by the machine itself.

Turing then sums up three basic advantages of his ACE. We will not give them
here, but it is maybe interesting to point out that they concern the elimination

24The paper by Carpenter and Doran [CD77] gives a detailed analysis of Turing’s ACE report
and makes a comparison between Turing’s report and von Neumann’s first draft for the EDVAC.
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of human work, to speed-up the computing process and to avoid errors. In the
spirit of his 1936 paper, he also makes the analogy between what a computer
needs to compute, as compared to what a man needs in computing ([Tur45], p.
20-21):

It is evident that if the machine is to do all that is done by the normal human
operator it must be provided with the analogues of three things, viz. firstly, the
computing paper on which the computer writes down his results and his rough
workings; secondly, the instructions as to what processes are to be applied; these
the computer will normally carry in his head; thirdly, the function tables used
by the computer must be available in appropriate form of the machine. These

requirements all involve storage of information or mechanical memory.

The design of the ACE was based on the idea of stored programs. The fact that
the human work could be reduced to a minimum was considered as one of the
basic advantages of this computer. Indeed, all the human operator has to do is
to write the program and feed it to the machine, which will then do all the work
([Tur4bl, p. 21):

It is intended that the setting up of the machine for new problems shall be vir-
tually only a matter of paper work. Besides the paper work nothing will have to
be done except to prepare a pack of Hollerith cards in accordance with this pa-
per work, and to pass them through a card reader connected with the machine.
There will positively be no internal alterations to be made even if we wish sud-
denly to switch from calculating the energy levels of the neon atom to the enu-
meration of groups of order 720. It may appear somewhat puzzling that this can
be done. How can one expect a machine to do all this multitudinous variety of
things? The answer is that we should consider the machine as doing something
quite simple, namely carrying out orders given to it in a standard form which it

is able to understand.

As s clear from these quotes, Turing regarded the ACE as a true general-purpose
stored program computer, with a clear focus on the programmability of the
machine such that it can solve all different kinds of problems. Indeed, Tur-
ing conceived of the ACE as a machine that should be able to solve a variety of
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problems, i.e., “those problems which can be solved by human clerical labour,
working to fixed rules, and without understanding [...]". Among the examples of
problems that Turing considers his machine to be capable to solve, are, jigsaw
puzzles and playing chess. Given the general-purpose character of the ACE in
the way Turing understood it, and the consequent need for the ACE to be a truly
programmable machine, one can contrast Turing’s design with von Neumann’s
first draft. As Martin Davis points out ([Dav01b], p. 188):

Turing’s ACE was a very different kind of machine from von Neumann’s EDVAC,
corresponding closely to the different attitudes of the two mathematicians. Al-
though von Neumann was concerned that his machine be truly “all-purpose,” his
emphasis was on numerical calculation and the logical organization of the ED-
VAC (and of the later johnniacs) was intended to expedite this direction. Since
Turing saw the ACE being used for many tasks for which heavy arithmetic was
inappropriate, the ACE was organized in a much more minimal way, closer to
the Turing machines of the Computable numbers paper. Arithmetic operations
were to be carried out by programming - by software rather than hardware. For
this reason, the ACE design provided a special mechanism for incorporating pre-

viously programmed operations in a longer program [i.e. the use of stacks]

Turing clearly knew the EDVAC report and even recommends the reader to read
his report in conjunction with von Neumann’s.

In a lecture to the London Mathematical Society on 20 February 1947 [Turd7],
Turing made an explicit comparison between his ACE and the universal Tur-
ing machine, and it is thus clear that, as far as Turing is concerned, he indeed
understood the ACE as a truly logical machine, or, an engine of logic [Dav87].
After having sketched the advantages of going digital, i.e., greater accuracy and
applicability to a wide range of problems, Turing says ([Tur47?], p. 106-107):

Some years ago I was researching on what might now be described as an inves-
tigation of the theoretical possibilities and limitations of digital computing ma-
chines. I considered a type of machine which had a central mechanism, and an
infinite memory which was contained on an infinite tape. This type of machine

appeared to be sufficiently general. One of my conclusions was that the idea of
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a ‘rule of thumb’ process and a ‘machine process’ were synonymous.|[...] It was
essential in these theoretical arguments that the memory should be infinite [...]
Machines such as the ACE may be regarded as practical versions of this same
type of machine. There is at least a very close analogy. Digital computing ma-
chines all have a central mechanism or control and some very extensive form of
memory. The memory does not have to be infinite, but it certainly needs to be

very large.

Turing thus clearly conceived of his ACE as a universal machine. But this is not
where it stopped for Turing.

Although his Turing machines were developed with the idea of finding a for-
mal equivalent of the process of a man computing a number, and the ACE
could thus be regarded as the physical embodiment of this process, Turing no
longer wanted to restrict these computing machines to computability of num-
bers by a human being, but wanted to know what else these machines are ca-
pable of. During his lecture he made this idea very explicit and later devoted
several papers to the subject of the possibility of building intelligent machin-
ery [Tur69, Tur50]. To Turing’s mind, the machine should be educated just as a
child needs training. And as a child, and any adult human being, often makes
mistakes, this machine should also be allowed to make mistakes. Turing in fact
regarded the possibility of the machine to make mistakes, as a precondition for
it to become intelligent ([Tur47], pp. 123-124):

[...] Iwould say that fair play must be given to the machine. Instead of it some-
times giving no answer we could arrange that it gives occasional wrong answers.
But the human mathematician would likewise make blunders when trying out
new techniques. It is easy for us to regard these blunders as not counting and
give him another chance, but the machine would probably be allowed no mercy.
In other words then, if a machine is expected to be infallible, it cannot also be

intelligent.

The ACE was never built as Turing had envisioned it. After several difficulties
with finding resources and the right people to effectively build the ACE, due to
bad management at the NPL, Turing had had enough and in the end accepted
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a job at Manchester University. A small version of the ACE was finally built,
called the pilot ACE, but Turing was not really involved in its actual construc-
tion. In the meantime several computers were being built at several locations.
In Manchester, the Mark I was constructed. Instead of being involved in its
construction, Turing now really began to use computers to do research, directly
programming in the binary machine language.

In 1951, Turing wrote what might be the first programming book, for the new
Mark IT computer in Manchester. We will not discuss this book in any detail
here, but, it is important to note that Turing again made an explicit analogy be-
tween human and machine computers, in the spirit of his 1936 paper. However,
as was also the case for the ACE, focus is now much more on the software aspect
of the machine, rather than on hardware, emphasizing that the machine itself
should not be too complicated, since it only has to obey instructions that can
be made explicit enough, without the need for complicated hardware. We will
give a rather long quote from the programmer’s book here, because it beauti-
fully shows Turing’s way of reasoning ([Tur51b])17_5]

Electronic computers are intended to carry out any definite rule of thumb process
which could have been done by a human operator working in a disciplined but
unintelligent manner. The electronic computer should however obtain its results
very much more quickly. The human computer with whom we are comparing it
may be imagined as supplied with various computing aids. He should have a
desk machine, paper to write his results on, and more paper on which is written
a detailed account of how the calculation is to be carried out. These aids have
their analogous in the electronic computer. The desk machine is transformed
into the computing circuits, and the paper becomes “the information store” or
more briefly the “store”, whether it is paper used for results or paper carrying
instructions. There is also a part of the machine called the control which corre-
sponds to the computer himself. If his possible behaviour were very accurately
represented this would have to be a formidable complicated circuit. However we

really only require him to be able to obey the written instructions and those can

We would like to thank the creators of the Turing digital archive, available at
http://www.turingarchive.org/, for having made available many texts by Turing.
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be made so explicit that the control can be quite simple. There remain two more
components of the electronic computer. These are the input and output mech-
anisms, by which information is to be transferred from outside into the store or
conversely. If the analogy of the human computer is to be maintained these parts
would correspond to his ears and voice, by which he communicates with his em-
ployer. [...] The information stored on paper by the human computer will mostly
consist of sequences of digits drawn from 0, 1, ..., 9. There may also be other sym-
bols such as decimal points, spaces, etc. and there may be occasional remarks in
English, Greek letters etc. There may in fact be anything from 10 to 100 different
symbols used, and there is no particular need to decide in advance how many
different symbols will be concerned. With an electronic computer however such
a decision has to be made; the number of symbols chosen is ruled very largely by
engineering considerations, and with the vast majority of machines the number
is two. [...] It is not difficult to see that information expressed with one set of
symbols can be translated into information expressed with another set of suit-
able conventions [...] Although we shall not need these translation conventions
we shall often wish to interpret a sequence of 0’'s and 1’s as meaning some in-
teger.[...] Although the scale of two is appropriate for use within an electronic
computer it is not so suitable for work on paper, and it is not possible to avoid
paper work altogether. Without attempting to explain the reasons at this stage let
us accept that there are occasions when it is desirable to write down on paper the
sequence of symbols stored in some part of the machine. Suppose for instance
that the sequence was 100011101110100010011000111001010101101100100110.
The copying of such sequence is slow and very liable to inaccuracy. It is very dif-
ficult to ‘keep one’s place’. It is therefore advisable to represent such a sequence
on paper in a different form not subject to these difficulties. The method chosen
is to divide the sequence into block of five [...] and then to replace each block
by a single symbol, according to the table below. The above given sequence then

becomes z“SLZWRFWN.]...]

As is clear from this quote, Turing was very much aware of the fact that limiting
the number of symbols in advance is not a necessary restriction for humans,
but it is necessary for the machine. Since it was very obvious for Turing that
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one can translate any information expressed with a given set of symbols to an-
other set of symbols, the restriction of the binary alphabet is in no way funda-
mental. The fact however, that it is not very convenient to work out a program
in binary for us humans, it becomes important to develop an intermediary lan-
guage between humans and computers, i.e., replacing blocks of binary digits by
other symbols, since this makes the programming more efficient. Or, to state
it in Hopper’s terms: “We were after getting programs written faster, and getting
answers for people faster.” Nowadays, the language Turing describes in his pro-
gramming book would not really be regarded as very much adapted to the user,
since it is still rather close to machine language. Indeed, it has become very
usual to replace the blocks of bits by human language words or symbols that
are recognizable by most humans, like “if”, “next”, “+”,...

It is always interesting to go back to the roots of something. In case of program-
ming languages it is significant to see how programming evolved from phys-
ical rewiring to languages that got further and further removed from the ma-
chine language. In fact, one might well say that the Graphical User Interface, is
the “programming” most people are used to nowadays. We regret the fact that
most have completely forgotten what is actually going on when they e.g. push
a mouse button to select a sequence of letters in a word document. It is prob-
ably one of the reasons why people can't stand it when their computer makes
mistakes: they no longer know the machine that has become part of their lives.

For now we have only looked at the developments of the earliest computers
in the U.S. and the U.K. As should be clear, some of these developments can
be connected with the developments from the previous chapters, others can't.
Before drawing any definite conclusion in this context, it is important to have
a closer look at the development of computers by the “enemy”: the Germans,
centered around the work of one person, Konrad Zuse.

4.1.3 Zuse’sZ1,72,73, 74 and Plankalkiil

In [Bau80], Bauer very clearly describes the very different situation Konrad Zuse
was facing at the end of the war ([Bau80], p. 505-506):
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In April 1945, a truck left Géttingen, heading for Bavaria. It carried an instrument
that had been built in Berlin during the war for the Aerodynamische Versuch-
sanstalt [...] and had been brought to their Gottingen laboratory a few weeks be-
fore. Here it had been put into operation for the first time. But then, the Russian
army approached Gottingen. The instrument had the code word V4 (Versuch-
modell 4) and because of the parallel with V1 and V2, the code word for buzz
bombs, the man who had built the instrument got permission to bring it “in
Sicherheit.” The adventurous journey via Hof, Miinchen, and Ettal ended at the
village of Hinterstein near Hindelang, a small town in the Bavarian Alps, in a
province called Algédu, near the Austrian border. A few days later, North African
troops of the French army occupied Hinterstein. They found may things, but not
the instrument that was hidden in a cellar. [...] In the winter of 1944-1945 a Swiss
soldier was on duty in the Ritikonand Silvretta mountains, at the border of Aus-
tria, some 50 miles away from Hinterstein [...] Later he would use the instrument
the fugitive from Prussia had built. This fugitive was Konrad Zuse [...] He had [...]
started in 1934 to build a computer that could ease the calculations of statics. V4
was his fourth model; V3, which was destroyed in 1944 in a bomb attack, was the

first fully programmable computer when it became operational in 1941. [...]

Zuse was born in Berlin. In 1935 he got his master degree in engineering at the
Technische Hochschule Berlin-Charlottenburg (nowadays, Technische Univer-
sitdt Berlin). As an engineer, Zuse was often confronted with pure calculations,
which he found too time-consuming. It was exactly this tremendous work in-
volved in making certain calculations, that led Zuse to the idea of constructing
machines that could take over this laborious task ([Zus80], pp. 611-612):

I'was a student in civil engineering in Berlin. Berlin is a nice town and there were
many opportunities for a student to spend his time in an agreeable manner, for
instance with the nice gitls. But instead of that, we had to perform big and awful
calculations. Also later as an engineer in the aircraft industry I became aware of
the tremendous number of monotonous calculations necessary for the design of
static and aerodynamic structures. Therefore, I decided to design and construct

calculating machines suited to solving these problems automatically.
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Zuse can be considered as a real computer pioneer. His work has to our mind
been neglected too much, standing in the shadow of the more heroic work by
the Allies. In a way he had bad luck to be born in Germany. Zuse’s work very
clearly shows how engineers should not necessary be regarded as non-logicians
who do not take into account logical considerations leading to more “elegant”
designs for computers, and vice versa.

Contrary to Eckert, Mauchly, Turing and von Neumann, Zuse worked in rela-
tive isolation, did not have many resources, and, quite naturally, was unaware
of the Top Secret work of the Allies. It is thus the more amazing to see how many
ideas he invented and implemented. At the time he developed his major ideas,
Zuse was neither aware of Turing’s On computable numbers, nor of Babbage’s
work %

The Z1, a mechanical computer, was constructed in his parent’s living room,
and finished in 1938. The machine used punched cards, included a 2-dimensional
storage, a selection mechanism that connects storage locations with the arith-
metic unit, and a control unit. Significant to note is that, already in the first
machine he developed, Zuse used binary representations instead of decimals!
The machine did not work well [Zus80], except for the storage unit, and Zuse
decided to change to electromechanical technology, using relays. The work on
this relay machine, the Z2, was started in 1937.

Unlike Mauchly and Eckert, already from the beginning, Zuse wanted to base
the development of his computers on a solid theoretical foundation. He devel-
oped what he called a Bedingungskombinatorik, combinatorics of conditions,
he could use to easily describe circuits. His former mathematics teacher read
a report describing the calculus Zuse developed for this purpose, and advised
Zuse to read the books by Hilbert and Ackerman, Hilbert and Bernays, Frege

26This is acknowledged by Zuse in his autobiography: “When I began to build the computer,
I neither understood anything about computing machines nor had I ever heard of Babbage. It
was only many years later, when my constructions and switches were basically set, that an exam-
iner from the American Patent Office showed me Babbage's machines. The otherwise extremely
thorough German examiners had not been acquainted with Babbage.” ([Zus93|, p. 34) “It also
illustrates just how hard I tried to build bridges between theoretical logic and practice. Unfortu-
nately, I was not yet familiar with the then already published work of Turing [Tur37].” ([Zus93],
p- 53).
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and Schroder, which he did [Bau80]. Having made himself more familiar with
propositional calculus and predicate calculus, he determined that the propo-
sitional calculus was basically isomorphic to his Bedingungskombinatorik, but
he found that the mathematics had been worked out more exactly. Further-
more, propositional calculus provided him with rules he was not familiar with
[Zus93]. Having made himself more acquainted with logic as it already existed
at that time, he could now rewrite his calculus in these terms. This resulted in
Einfiihrung in die allgemeine Dyadik [Zus37] ,|7_7]which isin fact as revolutionary
a paper as Shannon’s thesis [Sha38]F_g]As Zuse explains ([Zus80], p. 614-615):

Right from the beginning I tried to base the whole development on a new and
solid theoretical foundation. At first, the analogies between switching circuits
and the calculus of propositions were discovered and a switching algebra was set
up.[...] Unfortunately, I never published my ideas concerning this matter. Later
on I learned that there were some papers, two in German language by Hansi
Piesch and Eder, and one in English language by Shannon. But I missed there
the consequent confrontation with the calculus of propositions. For us the terms
“And”, “Or”, “Not” belonged to our daily language. We really worked with them
and made the step to apply the mathematical logic to the computer design. I
translated the logical rules systematically into switching algebra. [...] So, switch-
ing algebra was consequently applied in all the computers we constructed. When
Schreyer changed to electronic technology he first had only to design the switch-
ing elements corresponding to the three propositional operations: conjunction,
disjunction, and negation. After that he was able to translate one to one the al-

ready proven diagrams for the electromechanical machines.

2"We would like to thank the creators of the Zuse digital archive, available at
http://www.zib.de/zuse/, for having made available the work by Zuse.

281t is maybe also interesting to note that Zuse, given his familiarity with [AH28]|, consid-
ered the Entscheidungsproblem in the context of his Dyadik: “So kénnen die Normalformen
dazu dienen, dusserlich verschiedenen Schaltungen miteinander zu vergleiichen, indem beide
auf die Normalform gebracht werden. |[...] Das ist nicht immer einfach, und in der theoretis-
chen Behandlung von Schaltungen werden wir spdter auf éhnliche Probleme Stossen, wie sich in
der formalen Logik unter den Namen “Funktionenkalkiil’, “Préidikatenkalkiil’, “Entscheidung-
sproblem” usw. bekannt sind.” ([Zus37], p. 11). He did not work this out in any detail however.
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Indeed, given his Dyadik, it was very easy to make the switch from, e.g., electro-
mechanical machines to electronic machines. Using this abstract scheme, the
design of Z2 could easily be translated to an electric version. In 1937, Zuse be-
gan to study electronic circuits, using vacuum tubes, together with Schreyer.
Although both Zuse and Schreyer had seen how much speed they could obtain
with electronic devices, they had to give up on the idea ([Zus80], p. 619):

During the war we submitted the concept of an electronic computer with 2000
tubes to the German Government Research authorities, but their reaction was
negative. We would never have attempted to construct a computer with 18000

tubes and I admire the heroism shown by Eckert and Mauchly.

In 1939, the relay-computer Z2 was almost finished when Zuse had to join the
army. In 1940 he worked for Henschel Flugzeugwerke and could finish his 72
over the weekends [Bau80]. Zuse gave a demonstration of the Z2 for the Deutsche
Versuchsanstalt fiir Luftfahrt (DVL) and they gave him approval to continue
work on the Z3, which was completed in 1941. Although not a stored program
computer, it has been proven by Rojas [R0j98] that the Z3 can in fact be consid-
ered in principle as a universal computer, i.e., in the way present-day comput-
ers can be considered universal?Y] After the Z3, Zuse also build the Z4, which
was the only machine that survived the war.

For Zuse, his Dyadik were the “die theoretische[n] Grundlage[n] [fiir die] mech-
anische[n] Durchfiihrung von Rechnungen” ([Zus37], p. 3), i.e., the theoreti-
cal foundation for the mechanical execution of computations. Computations
were, in his mind, not solely restricted to calculation with numbers. He un-
derstood it as something far more general, Zuse’s understanding here being
very close to Turing’s in the context of computing machines, as discussed above
([Zus37], p. 1):

In the following we want to develop a theory to mechanically solve schematic
thinking tasks. As schematic thinking operations we see all formulae, deriva-

tions, algorithms etc. for which specific resulting informations (Angaben) can

29For more detailed information on Zuse’s Z-machines, the reader is referred to [Roj00].
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be derived from output states for all considered cases after a clear rule. Calcu-
lating with numbers belongs to the lowest level; the process of calculating is so
schematic and clear that mechanical solutions are already applied to a consider-
able extent. [...] but we want to note already now, that calculating with numbers
is only a special domain within general calculation. The question what other do-
mains of logic and their applications can be developed, will be investigated when
we can oversee more clearly the theory to be constructed here in all its possibil-
ities. Under “calculation” we understand: Form informations out of given infor-
mations after given rules. Thus, we first have the concept information. These can
have very different meanings, e.g., numbers, statements, names, codes, military

degrees, data, commands, messages, deductions etcf|

As is clear from this quote, Zuse had a very broad, “general-purpose”, con-
ception of computability, and identifies it with processes that produce certain
informations (Angaben), from other informations, where these informations
can, in a way, almost be anything. Given this generalized interpretation of
computability, it only takes a small step to connect computability with human
thinking. This is indeed the step Zuse made ([Zus80], p. 614):

General considerations concerning the relations between calculating and think-

ing followed. I realized that there is no border line between these two aspects and

30“Im folgenden soll eine Theorie entwickelt werden, um schematische Denkaufgaben mech-
anisch zu l6sen. Als schematische Denkoperationen gelten alle die Formeln, Ableitungen, Al-
goritmen und dergl., bei denen fiir alle in Frage kommenden Fille nach einer klaren Vorschrift
ausgegebenen Ausgangszustinde bestimmte Resultatangaben abgeleitet werden. Zur unter-
sten Stufe gehort das Rechnen mit Zahlen; hier ist der Rechnungsgang so schematisch und
klar, dass mechanische Losungen bereits in Grofem Umfang angewandt werden.[...] jedoch
wollen wir jetzt schon beachten, dass das Zahlenrechnen nur eine Spezialgebiet des allge-
meinen Rechnens ist. Die Frage, welche anderen Gebiete der Logik und ihrer Anwendungen
sich durch “Rechnen” erschliessen lassen, wollen wir erst untersuchen, wenn die hier aufzustel-
lende Lehre in ihren Méglichkeiten klarer zu tiberblicken ist. Unter “Rechnen” willen wir also
verstehen: Aus gegebenen Angaben nach einer Rechenvorschrift neue Angaben zu bilden. Wir
haben also zunichst den Begriff der Angaben. Diese konnen sehr verschiedene Bedeutung
haben, z.B; Zahlen, Aussagen, Namen, Kennziffern, Dienstgrade, Daten, Befehle, Nachrichten,
Schlussfolgerungen u.s.w.” This translation as well as the following translations from Zuse are
due to Maarten Bullynck. Remark that the second sentence is grammatically ambiguous if not
unclear in the original and in the translation.
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by 1938 it was already perfectly clear to me that the development would progress
in the direction of the artificial brain. At that time I knew scarcely anything about
the working method of the human brain. [...] I took these ideas very seriously
and this may have influenced my whole philosophy of the further development.
At that time there was practically nobody to discuss with me the consequences
of the possible innovations following this line. Even ten years later when - after
the war — I became acquainted with the pioneer work on the other side of the
Atlantic I sometimes had the impression that they were playing with computers
like children play with matches without overlooking the whole scope of the new

field.

It is very remarkable, that Zuse very clearly understood that any of these “infor-
mations”, and the processes that manipulate them to produce other “informa-
tions”, could be encoded in the binary system, i.e., he knew that instructions
could be encoded as numbers. This idea is basic to the stored program idea.
Zuse indeed considered this possibility, but, as was said, he never implemented
itin one of his Z1-4-machines. To implement both instructions and data in the
same hardware location, was understood as closing a contract with the devil,
and Zuse thus searched for other solutions to be able to build the kind of ma-
chines he envisioned ([Zus80], p. 616):

The idea of general calculating or information processing, as we say today, in-
duced me to consider that the program, too, is information and can be processed
by itself or by another program. This general concept was elaborated in all conse-
quences in the Plankalkiil. In hardware it means that we not only have a control-
ling line going from left to right, but also from right to left. I had the feeling that
this line could influence the whole computer development in a very efficient but
also very dangerous way. Setting up this connection could mean making a con-
tract with the devil. Therefore, I hesitated to do so, being unable to overlook all
the consequences, the good as well as the bad. So first I concentrated on theory.
This led to the Plankalkiil. [...] My colleagues on the other side had no scruples
about the problem I just mentioned. John von Neumann and others constructed
amachine with a storage for all kinds of information including the program. This

idea may have been trivial, as soon as the programs were binary coded and there
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existed storage units for storing any binary coded information. This requirement
was already fulfilled by the machines Z1 to Z4 and others. Besides this, the idea
of storing the program was already mentioned for instance in one of my patent
applications in 1936. Other pioneers may have had the same idea rather early. I
think it was the special organization of the machine of John von Neumann which
opened the door for universal calculating. He gave the signal “all clear” for the
scientists but for the devil, too. [...] My own design for future machines on paper
were more structured with instructions stored independently and special units

for the handling of addresses and subroutines nested in several levels.

For Zuse the idea of stored program was not something he wanted to imple-
ment in hardware, he did not want to locate instructions and data in the same
storage, and he indeed searched for another solution resulting in his Pldnkalkul.
In the meantime he had also designed a machine that was never build, the
7394, which was based on the logical operations, AND, OR and NOT [Zus44].
This machine can be considered as the hardware for Plankalkiil. As is noted
by Bauer, he hoped in this way to build a “Planfertigungsgerdt” — a device that
prepares programs, a separate computer that could e.g. be connected to the
Z4. Instead of storing instructions and data in the same storage, this Plan-
fertigungsgerdit could work as a kind of compiler in which programs could be
processed by themselves. In this way, Zuse conceived of a special hardware
unit to prepare a program, that was connected to the part of the computer that
executes the purely numerical operations ([Zus80], p. 616-617):

In our situation the only realistic way to process a program by itself was to build
a separate computer for this purpose. Thus, the construction of the comput-
ers for numerical calculations could be continued without drastic modifications.
We called this type of machine “Planfertigungsgerét”, that means, a special com-
puter to make the program for a numerical sequence controlled computer. This
device was intended to do about the same sophisticated compilers do today. But

in 1945 we had to stop this interesting development.

Although Zuse did not want to use hardware stored programs he did know how
to encode programs as numbers, and he did understand the “computational”
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powers of logic. In fact, in his patent description of the Z394 he explicitly stated
that he considered logic to be capable to compute anything computable he
considered as computable. And we already know how general his intuitive con-
ception of computability was ([Zus44] pp. 2-3):

The inventor has recognized that all calculation problems can be resolved into
the elementary operations of theoretical logic. These calculation problems do
not only consider calculation with numbers, but more generally also calcula-
tion with states, occurrences and conditions. In the context of this invention,
we understand under “calculation” the derivation of resulting informations from
arbitrary informations after a rule. The invention wants to build a calculation in-
strument, that fulfills the formalism of propositional logic, with this instrument
one can execute autonomically all calculation processes after the definition [m.i.]

given supra, i.e., not only number calculations’]|

Zuse considered this machine as a “Logistische Rechenmaschine” [Zus45a], a
logical machine, contrary to what he called his “algebraic machines”, Z1, 72,
73 and Z4. We think it reasonable to regard Zuse’s conception of this machine
as a universal machine, in the more intuitive sense of the word. For him, this
machine should be able to solve any general combinatorial problem or other
problems ([Zus45al, p. 9):

The result of these developments will be the general calculation machine, that

solves general combinatorial problems and mechanical thinking problems on

3l“Der Erfinder hat erkannt, dass alle Rechenaufgaben in die Grundoperationen der theo-

retischen Logik aufgelost werden konnen. Diese Rechenaufgaben betreffen hier aber nicht
nur ein Rechnen mit Zahlen, sondern dariiber hinaus ganz allgemein auch ein Rechnen
mit Zustdnden, Begebenheiten und Bedingungen. Im Rahmen dieser Erfindung wird also
unter “Rechnen” das Ableiten von Resultatangaben aus irgendwelchen Angaben nach einer
Vorschrift verstanden. Die Erfindung stellt sich die Aufgabe eine Rechenverrichtung zu bauen,
die den Formalismus des Aussagenkalkiils der theoretischen Logik geniigt, mit dieser Vorrich-
tung kann man dann alle Rechenvorgidnge gemdss obiger Definition [m.i.], also nicht nur alle
Zahlenrechnungen, entsprechend, selbstétig durchfiihren.” The translation is due to Maarten
Bullynck.
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the basis of applied logistic. I call this development the “logistic calculation ma-
chine’P?|

As was said, this logistic machine can be considered as the hardware counter-
part of Plankalkiil. Plankalkiil can be regarded as one of the first program-
ming languages ever, and influenced Bauer and Rutishauer for their contri-
butions to the development of ALGOLF_EI Scrolling through the on-line Zuse
archive (http://www.zib.de/zuse/) one sees that already in 1941 there are notes
on Plankalkiil. A hand-written text denoted by the editors of the digital archive
as the Urschrift des Plankalkiils [Zus45b] is dated 1945, and is basically the writ-
ten version of [Zus72]. The title of this Urschrift however is not Plankalkiil, but
Theorie der angewandten Logistik, “theory of applied logistic”, with the -ik in
Logistik underlined.

Although we will not discuss this language in detail here,@ it is important to
mention some of its possibilities, summarized in the following quote (|[Rojnd],
p- 1):

The Plankalkiil was the software counterpart of the logistic machine. Complex
structures could be built from elementary ones, the simplest being a single bit.
Also, sequences of instructions could be grouped into subroutines and functions,
so that the user had only to deal with a very abstract instruction set that masked
the complexity of the underlying hardware. The Plankalkiil exploited the con-
cept of modularity, so important today in computer science, almost in an ex-
tremist way: several layers of software make the hardware transparent for the
programmer. The hardware itself is able only to execute the absolutely minimal

instruction set.

32“Das Ergebnis dieser Entwicklungen wird die allgemeine Rechenmaschine sein, die auf
der Grundlage angewandter Logistik allgemeine kombinatorische Probleme und mechanische
Denkaufgaben 16st. Ich nenne diese Entwicklung die “Logistische Rechenmaschine”.”

33The paper by Bauer [Bau80] discusses these matters. Rutishauer knew Z4, and programmed
it, once it was moved to the Institute for Applied Mathematics of ETH (Swiss Federal Polytech-
nic Institute).

34For a detailed discussion on Plankalkiil the reader is referred to [BW72].
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The basic principle of the Plankaliil is indeed the bit a feature that allows for
the hardware to be very simple. In his [Dav01b] Martin Davis has pointed out
that the philosophy behind Turing’s ACE had been to keep the hardware as sim-
ple as possible. As should be clear, Zuse’s general philosophy is in this respect
very similar to (and predating) Turing’s with respect to computing machines,
even if Zuse was an engineer and did not know about the universal Turing ma-
chine at that time. There are more similarities to be found between Zuse and
Turing. For example, Zuse had a very broad conception of what should be con-
sidered computable, emphasizing that computing is not restricted to calcula-
tions with numbers. In this respect, it is interesting to note that already in 1941
one finds notes for developing a “Schachprogramm”, a chess program, as a pre-
liminary investigation for PlankalkiilF_G] Later, Zuse describes that he wanted to
investigate the efficiency and generality of the Plankalkiil by applying it to chess
problems ([Zus80], p. 623):

It was interesting for me to test the efficiency and the general scope of the Plankalkiil
by applying it to chess problems. Ilearned to play chess especially for this pur-
pose. This field seemed to me suited for the formulation of rather sophisticated

data structures, nested conditions, and general calculations.

For Zuse, his Plankalkiil is a real “universal” language, as he would later point
out, in the sense that he considered it capable to compute anything he con-
sidered computable. For him, computability was not restricted to numerical
calculations, but could be generalized even to certain thinking processes. It is

35This was rather important for Zuse, especially given the fact that in contemporary lan-
guages, the bit is often only tolerated as a Boolean object for controlling conditional branching:
“The first principle of the Plankalkiil is: data processing begins with the bit. [...] Since about 20 to
30 years the priority of numerical calculation has only slowly been overcome; and in this time, in
conventional computers the bit has been tolerated only as a Boolean object for controlling con-
ditional branching and so on. In contrast, the Plankalkiil is fundamentally based on the bit. To
express logical relations I used the notation and results of the propositional and the predicate
calculus. Any arbitrary structure may be described in terms of bit strings; and by introducing
the idea of levels we can have a systematic code for any structure, however complicated, and can

identify any of its components.” [Zus80], pp. 621-622.
36The reader is referred to the digital Zuse archive http://www.zib.de/zuse/ to check this.
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interesting to note that he effectively tested this generality of his language, by
applying it to several different problems, like chess problems: ([Zus80], p. 625)

Behind the Plankalkiil there is a special philosophy based on my early convic-
tion, that there is a steady way from simple numerical calculation to high-level
thinking processes. In order to test the universality of this language I applied it
for several unusual fields. Thus, for instance, I made some steps in the direction
of symbolic calculations, general programs for relations, or graphs, as we call it

today, chess playing, and so on.

Zuse did more than building computers and developing a programming lan-
guage. He for example developed self-reproducing automata, independent of
von Neumann and Ulam, but contrasted his with that of von Neumann by sta-
ting that for him this was an engineering problemE] We will not discuss these
other research interests by Zuse here since they lie beyond the scope of our dis-
cussion here.

4.1.4 Conclusion.

The “behemoth” ENIAC, as Martin Davis has described it, was a machine in-
vented and constructed by engineers. The basic advantage of the EDVAC design
over ENIAC is that it is more general purpose and includes the idea of stored
programs. It is far more close to a universal Turing machine than the behe-
moth.

Until now the answer to the question of who made what kind of contribution to
the EDVAC design is still not completely clear. According to Mauchly and Eck-
ert they made significant contributions to the design, including the stored pro-
gram idea. So, is the EDVAC an engineer’s or a logician’s machine? To our mind,
itis the result of the combination of both. On the one hand, we do not think that
Eckert or Mauchly lied about the significance of their contributions. Why else
would they have made such a thing about this whole issue? On the other hand,

37“ Another field of my research is “self-reproducing systems.” But I see the problem not from a

mathematical point of view, as, for instance, von Neumann did, but as an engineer.” ([Zus80], p.
627)
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the emphasis on the logical design of the machine and its link with McCullough
and Pitts’s “neural computers” — influenced by Turing’s universal machine - is
due to von Neumann. One might well ask whether the general-purpose digital
stored program computer would have resulted without von Neumann’s contri-
butions. Of course, we cannot answer this question in any definite way. More
important, here is the fact that several very similar solutions to problems were
being developed by people who were less familiar with logic than von Neu-
mann and Turing, solutions which clearly have their formal counterpart, like
the idea of encoding instructions as numbers such that they can be manipu-
lated as numbers.

That the first such solutions were “behemoths”, and still far removed from the
more elegant and general design of an ACE or and EDVAC, is to our mind only
normal. Is it not a typical feature of many scientific and technological innova-
tions that the original form of a solution is very far removed from the elegant or
efficient form it evolves in through the years? Or, to put this slightly rhetorically,
who would object that the universal Turing machine, as originally described by
Turing, is not a behemoth in its own genre, with its difficult if not obscure de-
scription, containing several mistakes? It is true that the theoretical ideas un-
derlying the original universal Turing machine are still basically the same as any
theoretical universal machine constructed today, while the ENIAC was quite
different from the EDVAC. After it was rewired however, it was still a behemoth,
but far more general-purpose than it was originally. The point is that if one does
not already have a theory that can be useful to, e.g., build a computer, one can
only learn from the problems that arise in developing a behemoth without the-
ory. Luckily there were people like von Neumann and Turing who knew about
the theoretical counterpart of the computer, and were thus able to very quickly
propose their “logical engines”, much more in the spirit of a (theoretical) uni-
versal Turing machine. In this sense, their work — especially the EDVAC design
since it was more well-known — has most probably accelerated the technology
and has contributed significantly to the form of present-day computers.

A completely different story is given by Zuse, one that to our mind throws a
refreshing light on this whole engineers vs. logicians controversy. Zuse was
an engineer who started to build computers because he wanted to automate
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the monotonous calculations he had to perform as an engineer. Very soon, he
developed a theoretical foundation for designing these machines. After having
read Hilbert he was able to put this foundation in a more logical form. Logic did
play a very important role in Zuse’s thinking, but he was not very familiar with
the subject and did not know the results by Turing. One can thus conclude that
Zuse developed his own kind of logical system because he needed one, quite
unaware of many of the developments that would (of course) have contributed
significantly to his work, if he had known them.

To our mind, Zuse’s work beautifully shows how an engineer’s work became
more and more connected with logic, in having thought and worked for several
years on computing machines. The first of these machines were more special-
purpose and intended to merely perform certain calculations. But Zuse soon
realized that such machines might also be used to solve far more general prob-
lems. This idea was probably more exactly formulated, once he had abstracted
from the engineering details and developed an abstract calculus to make more
easy the design of circuits. From that point on, Zuse becomes very explicit
about the possibilities of computing machines. In this sense, we do not think
that Zuse’s understanding of the possibilities of computing machines was less
general-purpose than e.g. Turing’s, as is clear from some of the quotes given
and the fact that he considered chess problems as a test case for his construc-
tions. One could very well say that Zuse very quickly formulated a kind of thesis,
identifying a very general all-purpose concept of computability with the kind
of logistic and algebraic machines he envisioned, his Plankalkiil being the final
form of his thinking in this direction.

So, was logic a fundamental prerequisite to develop digital general-purpose
stored program computers? To our mind, the answer to this question can only
be affirmative. However, as the case of Zuse shows, this does not mean that
such “logistic” ideas, i.e. logic turned into a technical instrument, could not
arise in a context quite independent from the development of mathematical
logic before the war. Indeed, in Zuse’s case, his logistic machines cannot be
seen independent from what he had learned from his first experiences with
computing machines. The more logical ideas only followed in having had the
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time to think about these machines. A kind of reversed conclusion is, to our
mind, valid for Turing’s work. Turing already knew the formal equivalent of a
computer and this must have heavily influenced his design of the ACE. Thus,
in 1936 he did have a theory for computing machines, but not the knowledge
for really building one. Turing always had a keen interest in real machines, an
interest he could turn into reality after having built up his knowledge of the
more technical aspects of building real machines, during his time as a crypt-
analyst at Bletchley Park. Given his theoretical knowledge combined with the
more practical knowledge he could then design a kind of practical version of
his theoretical universal machine.

To return to the quote by Ulam from the beginning of this section: the com-
puter is a marvellous machine, developed after one of the most ugliest periods
of human history, as a result of the confluence of engineering ideas with logic.
This is exactly what makes the computer such an interesting device from the
point of view of this dissertation: it is a physical engineered thing that embod-
ies the theoretical ideas developed by Church, Godel, Post, Turing, Kleene et
al, a fact quite independent of the question of how much “logic”, as it already
existed at that time, was necessary for the development of the computer. Re-
garded as the physical form of the intuitive notion of computability, one that
can compute far more quickly than we humans, this device becomes the more
interesting if one uses it to disclose the “discourse” of computability. This was
exactly one of the things it was used for, from its early years onwards.

4.2 Exploring the “universe of discourse”: heuristic

methods and computer experiments.

If mathematics describes an objective world just like physics, there is no reason
why inductive methods should not be applied in mathematics just the same as in
physics. The fact is that in mathematics we still have the same attitude today that
in former times one had towards all science, namely we try to derive everything
by cogent proofs from the definitions (that is, in ontological terminology, from

the essence of things). Perhaps this method, if it claims monopoly, is as wrong in
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mathematics as it was in physics.

Kurt Godel, 19519

It will seem not a little paradoxical to ascribe a great importance to observations
even in that part of the mathematical sciences which is usually called Pure Math-
ematics, since the current opinion is that observations are restricted to physical
objects that make impression on the senses. As we must refer the numbers to
the pure intellect alone, we can hardly understand how observations and quasi-
experiments can be of use in investigating the nature of the numbers. Yet, in
fact, as I shall show here with very good reasons, the properties of the numbers
known today have been mostly discovered by observation, and discovered long
before their truth has been confirmed by rigid demonstrations. There are even
many properties of the numbers with which we are well acquainted, but which
we are yet able to prove; only observations have led us to their knowledge. Hence
we see that in the theory of numbers, which is still very imperfect, we can place
our highest hopes in observations; they will lead us continually to new proper-
ties which we shall endeavor to prove afterwards. The kind of knowledge which
is supported only by observations and is not yet proved must be carefully dis-
tinguished from the truth; it is gained by induction, as we usually say. Yet we
have seen cases in which mere induction led to error. Therefore, we should take
great care not to accept as true such properties of the numbers which we have
discovered by observation and which are supported by induction alone. Indeed,
we should use such a discovery as an opportunity to investigate more exactly the
properties discovered and to prove or disprove them; in both cases we may learn
something useful.

Leonhard Euler, 1761 @

From its early use on, the computer has been used as a means to study and solve
a rich variety of different problems and questions, of which some are “pure”
mathematical problems, others are related to other domains like physics and
even biology. Given its high speed it can be used to make calculations to tackle
problems in a way that was hardly within human reach before. However, it was
soon understood that “pure” calculations are not the sole domain of the com-
puter. We already know that both Turing and Zuse regarded the computer as

38From [God51], p. 313
39From [Eul61], translated and quoted in [Gre82], p. 4
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something that might be used to study human reasoning, the idea of playing
chess being one typical example of how one could start to deal with the ques-
tion in how far computers can be considered “intelligent”.

From the introduction of a volume of the Annals of Mathematics Studies from
1956, called Automata Studies, it is clear that the idea of linking the computer
with questions concerning the functioning of the human brain very soon be-
came a “fashionable” topic: ([IMS56b], p. v):

Among the most challenging scientific questions of our time are the correspond-
ing analytic and synthetic problems: how does the brain function? Can we design
a machine that will simulate a brain? Speculation on these problems, which can
be traced back many centuries, usually reflects in any period the characteristics
of machines then in use. Descartes, in DeHomine, sees the lower animals and,
in many of his functions, man as automata. Using analogies drawn from water-
clocks, fountain and mechanical devices common to the seventeenth century, he
imagined that the nerves transmitted signals by tiny mechanical motions. Early
in the present century, when the automatic telephone system was introduced,
the nervous system was often linked to a vast telephone exchange with automatic
switching equipment directing the flow of sensory and motor data. Currently it
is fashionable to compare the brain with large scale electronic computing ma-

chines.

From this context of researching the idea of “intelligent machinery”, several dif-
ferent branches and theoretical frameworks have arisen. Automated theorem
proving, artificial neural networks, self-reproducing automata,...are different
developments tackling different aspects of the self-same question: in how far
can computers be considered capable to perform certain tasks a human can
perform, and vice Versaf‘r_ﬁl

Although these are very interesting developments, they lie beyond the scope of
this research. Of more significance here is the use of the computer as a pure
powerful computing machine. We will mainly focus on some of the work and
remarks made by two computer pioneers in this context: John von Neumann

401n [Dav0lal a historical survey is given of automated reasoning, by one of the pioneers of
this branch of computer science, i.e., Martin Davis.
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and Derrick H. Lehmer. It is not the purpose of this section to be complete.
Rather we want to give an impression of how it was very clearly understood, by
some of the first computer users, that the mere computing power of computers
makes it possible to enclose what Lehmer has called the “universe of discourse”
and how this possibility has led to more heuristic research within the context of
mathematics as well as new results. We first planned to add a small subsection
on Turing’s work in this context, but finally decided to merely mention it here
in the introduction. Turing used the Mark I for research on the distribution of
the zeros of the Riemann zeta-function [Tur53|] on the Manchester Mark I, and
emphasized the significance of mathematical rigour in this context, even if one
is working with “mere” computations. Furthermore, he used the computer for
studying certain problems connected to his work on morphogenesis and did
some numerical simulations of non-linear equations, that are now studied in
the context of chaos theory.

4.2.1 von Neumann and theoretical physics.

In the previous section we already mentioned that according to Ulam, von Neu-
mann got interested in computers, due to the realization that some of the usual
methods of mathematics fell short to study certain problems in theoretical physics.
Also Burks has pointed out von Neumann’s interest in computers as a way to
obtain certain information about the solutions to non-linear partial differential
equations underlying certain physical phenomena, like turbulence ([Bur66] pp.
2-3):

von Neumann became especially interested in hydrodynamical turbulence and
the interaction of shock waves. He soon found that existing analytical methods
were inadequate for obtaining even qualitative information about the solutions
of non-linear partial differential equations in fluid dynamics. Moreover, this was
so, of non-linear partial differential equations in general. von Neumann’s re-
sponse to this situation was to do computing. During the war he found com-
puting necessary to obtain certain answers to problems in other fields, including
nuclear technology.[...] The procedure he pioneered and promoted is to employ

computers to solve crucial cases numerically and to use the results as a heuris-
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tic guide to theorizing. von Neumann believed experimentation and comput-
ing to have shown that there are physical and mathematical regularities in the
phenomena of fluid dynamics and important statistical properties of families
of solutions of the non-linear partial differential equations involved. [...] From
the special cases one could get a feeling for such phenomena as turbulence and
shock waves, and with this qualitative orientation could pick out further critical

cases to solve numerically, eventually developing a satisfactory theory.

As is clear from this quote, von Neumann wanted to use the results generated
through the computer as a “heuristic guide”for further theorizing. To give an
example, that is not immediately connected to theoretical physics, von Neu-
mann expressed an interest in using the ENIAC to compute the value of 7 and e
to many decimal places in order to get an idea about the statistical distribution
of these two numbersfr_r] The computations for e were finished in July 1949,
those for n during Labor-Day weekend, in September 1949]?] In [Rei50] and
IMRVN50] set-up and results were discussed: the first 2000 decimal digits of
both numbers were computed. A statistical analysis of the data led to the con-
clusion that “the material has failed to disclose any significant deviations from
randomness for 1, but is has indicated quite serious ones for e.” (IMRvN50], p.
109)@ von Neumann'’s interest in the subject of randomness and, more gen-
erally, Monte Carlo methods, was triggered by its usefulness in the context of

41“Early in June, 1949, Professor John von Neumann expressed an interest in the possibility

that the ENIAC might sometime be employed to determine the value of m and e to many decimal
places with a view toward obtaining a statistical measure of the randomness of distribution of
the digits [...]” ([Rei50], p. 11)

42 As was the case for many computations done on the ENIAC, these were all done outside the
“official time”, during holidays. As Reitwiesner [Rei50] explains, four members of the ENIAC
staff and Reitwiesner himself did 8-hours shifts to keep the ENIAC operating continuously
throughout the Labor-day weekend.

31t is interesting to point out that part of the research on the random character of the digits
in 7 is still situated in a more heuristic research context. Recently, an important paper was
published in the journal Experimental Mathematics on this topic [BCO1l, in which it is shown
that the statistical randomness of several constants, including 7, depends on an hypothesis
concerning the distribution of the iterates of certain dynamical maps, and is thus situated in a
branch of mathematics, characterized by the numerous computer experiments underlying it,
i.e., chaos theory.
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nuclear physics, i.e., in the context of developing the H-bomb. It was Ulam
who came up with the idea of Monte Carlo methods and its possible use in this
context and communicated it to von Neumann. In fact the name “Monte Carlo”
goes back to a story about Ulam’s uncle, who would borrow money from rela-
tives because “he just had to go to Monte Carlo” [Met87]. As Ulam recounts
(Remark dated 1983 by Ulam, quoted in [Eck87], p. 131):

The first thoughts and attempts I made to practice [the Monte Carlo Method]
were suggested by a question which occurred to me in 1946 as I was convalescing
from anillness and playing solitaires. The question was what are the chances that
a Canfield solitaire laid out with 52 cards will come out successfully? After spend-
ing a lot of time trying to estimate them by pure combinatorial calculations, I
wondered whether a more practical method than “abstract thinking” might not
be to lay it out say one hundred times and simply observe and count the number
of successful plays. This was already possible to envisage with the beginning of
the new era of fast computers, and [ immediately thought of problems of neutron
diffusion and other questions of mathematical physics, and more generally how
to change processes described by certain differential equations into an equiva-
lent form interpretable as a succession of random operations. Later [in 1946, I]
described the idea to John von Neumann and we began to plan actual calcula-

tions.

The Monte Carlo method is used as a way to explore the behaviour of various
physical and mathematical systems, in order to make certain predictions. The
basic idea is to use a randomly distributed sample, and look at what happens
to the sample, or to make certain random decisions that determine the future
behaviour of the sample. Metropolis, who worked together with von Neumann,
Ulam et al, explained how the method was originally implemented, describing
an example from von Neumann in a letter to Richtmyer (p. 127):

Consider a spherical core of fissionable material surrounded by a shell of tamper
material. Assume some initial distribution of neutrons in space and in velocity
but ignore radiative and hydrodynamic effects. The idea is to now follow the de-

velopment of a large number of individual neutron chains as a consequence of
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scattering, absorption, fission and escape. At each stage a sequence of decisions
has to be made based on statistical probabilities appropriate to the physical and
geometric factors. The first two decisions occur at time ¢ = 0, when a neutron is
selected to have a certain velocity and a certain spatial position. The next deci-
sions are the position of the first collision and the nature of that collision. If it is
determined that a fission occurs, the number of emerging neutrons must be de-
cided upon, and each of these neutrons is eventually followed in the same fash-
ion as the first. If the collision is decreed to be a scattering, appropriate statistics
are invoked to determine the new momentum of the neutron. When the neu-
tron crosses a material boundary, the parameters and characteristics of the new
medium are taken into account. Thus, a genealogical history of an individual
neutron is developed. The process is repeated for other neutrons until a statisti-
cally valid picture is generated. [...] How are the various decisions made? To start
with, the computer must have a source of uniformly distributed pseudo-random

numbers.

As is clear, von Neumann’s interest in the statistical distribution of 7 and e
might not have been completely innocent: the use of a good random number
generator on the ENIAC must have been basic for the results from the com-
puter experiments to be reliable. One of the random generators known then
was von Neumann’s “middle-square digits” method. For this method, an arbi-
trary n-digit is squared creating a 2n-digit product. A new integer is generated
by extracting the middle n-digits from the product. This method is known to
be a rather bad random number generator, though selecting certain runs’ and
imposing restrictions on the generated sequences, one could attain more or
less appropriate random sequences. One can only speculate how important it
has been for the computations done on the ENIAC in the context of nuclear
physics@

von Neumann understood very well how the computer could be used to in-

44See e.g. Metropolis’s paper [Met87]. For more information on the history of the Monte Carlo
method, the reader is referred to the special issue of Los Alamos Science, nr. 15, 1987, avail-
able on-line at http://www.fas.org/sgp/othergov/doe/lanl/pubs/number15.htm. In [Bul07],
one also finds a discussion of the Monte Carlo method in the context of a study of the first
computations done on the ENIAC.
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vestigate the behaviour of certain physical systems, by computing numerically
approximate solutions to the non-linear partial differential equations underly-
ing them. Monte Carlo methods are then indeed invaluable instruments in this
context. In one of the lectures delivered at the University of Illinois in 1949, he
made explicit how the computer can be used not only in the context of physics
but also in mathematics ([vN66], pp. 33-35):

In pure mathematics the really powerful methods are only effective when one
already has some intuitive connection with the subject, when one already has,
before a proof has been carried out, some intuitive insight, some expectation
which, in a majority of cases, proves to be right. In this case one is already ahead
of the game and suspects the direction in which the result lies. A very great dif-
ficulty in any new kind of mathematics is that there is a vicious circle: you are
at a terrible disadvantage in applying the proper pure mathematical methods
unless you already have a reasonably intuitive heuristic relation to the subject
and unless you have had some substantive mathematical successes in it already
[...] progress has an autocatalytic feature. Almost all of the correct mathemat-
ical surmises in [the area of the non-linear sciences] have come in a very hy-
brid manner from experimentation. If one could calculate solutions in certain
critical situations [...] one would probably get much better heuristic ideas. [...]
there are large areas in pure mathematics where we are blocked by a peculiar
inter-relation of rigor and intuitive insight, each of which is needed for the other,
and where the unmathematical process of experimentation with physical prob-
lems has produced almost the only progress which has been made. Computing,
which is not too mathematical either in the traditional sense but is still closer to
the central area of mathematics than this sort of experimentation is, might be a

more flexible and more adequate tool in these areas than experimentation.

To von Neumann, the computer was very clearly a means to “de-block” certain
areas of mathematics for further exploration, allowing to build up an intuition
of a certain problem. Indeed, although the task the computer has to perform in
this context seems quite inessential, it “merely” computes quicker than we can,
it has been basic to several branches of science exactly in this respect. To give
just one example, the area of fractal geometry and chaos theory would probably
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have remained “blocked” were it not for the computer. The role “computer ex-
periments” have played in this domain can hardly be overestimated, i.e., most
results go back to such “experiments”. As we will see in part II, it has been this
kind of approach that has been invaluable for building up our intuition of tag
systems.

For von Neumann, the possibility of using computers to build up heuristic knowl-
edge useful for solving certain mathematical problems, must have been a fas-
cinating development because it offered the possibility of connecting hard the-
oretical mathematical problems with more down-to-earth problems. For von
Neumann this link between “pure” mathematics and more concrete, “empiri-
cal” ideas was very important, if not basic. We would like to end this section
on von Neumann with the conclusion from The Mathematician, where he very
much opposes the idea of mathematics becoming too much ‘T'art pour l'art’
([vN47], p. 378):

I think that it is a relatively good approximation to truth — which is much too
complicated to allow anything but approximations — that mathematical ideas
originate in empirics, although the genealogy is sometimes long and obscure.
But, once they are so conceived, the subject begins to live a peculiar life of its
own and is better compared to a creative one, governed by almost entirely aes-
thetical motivations, than to anything else and, in particular, to an empirical sci-
ence. There is, however, a further point which, I believe, needs more stressing.
As a mathematical discipline travels far from its empirical source, or still more, if
itis a second and third generation only indirectly inspired by ideas coming from
“reality”, it is beset with very grave dangers. It becomes more and more purely
aestheticizing, more and more purely 'art pour I'art. This need not be bad, if
the field is surrounded by correlated subjects, which still have closer empirical
connections, or if the discipline is under the influence of men with an excep-
tionally well-developed taste. But there is a grave danger that the subject will
develop along the line of least resistance, that the stream, so far from its source,
will separate into a multitude of insignificant branches, and that the discipline
will become a disorganized mass of details and complexities. In other words, at

a great distance from its empirical source, or after much “abstract” inbreeding,
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a mathematical subject is in danger of degeneration. At the inception the style
is usually classical; when it shows signs of becoming baroque, then the danger
signal is up. It would be easy to give examples, to trace specific evolutions into
the baroque and the very high baroque, but this, again, would be too technical.
In any event, whenever this stage is reached, the only remedy seems to me to be
the rejuvenating return to the source: the reinjection of more or less directly em-
pirical ideas. I am convinced that this was a necessary condition to conserve the
freshness and the vitality of the subject and that this will remain equally true in

the future.

von Neumann died in 1957 of cancer, possibly caused by exposure to radiation
during (one of) the A-bomb tests at the Bikini islands.

4.2.2 Lehmer’s computational work on number theory.

Contrary to von Neumann, Derrick Henry Lehmer had a clear background in
computing machinery when he, together with his wife Emma, implemented his
first ENIAC program. He had already build several special-purpose devices, i.e.,
prime sievesf‘r_g] Lehmer was a number theorist who, very explicitly, considered
mathematics and more specifically number theory, as an experimental science,
a lesson he learned from his father, D.N. Lehmer, also a number theorist. It is
thus not surprising that he very quickly understood the possibilities of using
computers for making progress in number theory (|[Leh74], p. 3):

My father did many things to make me realize at an early age that mathematics,
and especially number theory, is an experimental science. [...] Exploring in dis-
crete variable mathematics is generally simpler than in continuum mathematics.
One can see the input and the resulting experimental output with absolute clar-
ity. For the same reason a digital or discrete variable computer is a better aid to
discovery than an analog machine. This advantage is due to the enormous flexi-
bility possessed by digital computers. Exploits such as moon missions would be
utterly impossible without discrete variable techniques, despite the continuity of

space. We should regard the digital computer system as an instrument to assist

45A detailed account on Lehmer’s sieves can be found in [Leh80].
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the exploratory mind of the number theorist in investigating the global and local
properties of this universe, the natural numbers and their algebraic expansions.
The role of this system in such an investigation can be of varying importance,
ranging from the production of a single counterexample, to the organization of
data to suggest ideas, through the search for patterns in data, to the ultimate role

of proving theorems on its own.

Lehmer has always been very explicit of how he understood the role of the com-
puter in the context of mathematical research. For him, computers can be used
to assist man in studying the “universe” of the natural numbers. In fact, they
give us direct access to this universe, and allow us to explore parts of the theory
of numbers inaccessible before. Although Lehmer understood number theory
as an experimental science and the computer as an instrument that can assist
us in our research of this science, it is clear that the computer’s role is not re-
stricted to the one emphasized by von Neumann. It can help us to build up
an intuition of a given problem. Furthermore, by using it to generate math-
ematical tables, it can produce counterexamplesﬁ However, to Lehmer, the
computer can also be used to generate genuine proofs. We already mentioned
the newly arising domain of automated theorem proving in the fifties. The the-
orems Lehmer was able to prove, however, were at that time not considered as
real machine proofs in the sense of the theorem proving programs then devel-
oped. As is explained by Lehmer ([LLMS62], pp. 407-408):

The referee comments that the proof of theorem 1 [...] is “not a machine proof
in the sense of the theorem-proving programs now being developed.” This is
true. The aim of most writers on this subject is to consider a very general pro-
gram enabling a digital computer to prove a wide class of theorems at a very low
level, beginning with the axioms, setting its own goals, and trying to achieve them
without human intervention. This is, in a way, a simulation problem. Specula-
tions about such programs involve (significantly) such notions as decidability.
Meanwhile, no really new theorems seem to emerge. Perhaps too much is ex-

pected of a single program. In our work, instead of starting with axioms, we did

46This is basically what Turing had in mind with the set-up of an experiment described in
[Tur53]: he hoped to find with the help of the machine a 0 of the critical line for a given interval.
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not hesitate to use any device or previously known result that might be useful. In
particular, the authors aided and abetted the machine in its search for a theorem
and its proof. Nevertheless, all three results [...] are due to the machine. Even the
verification of these results using the data supplied by the machine would be far

too long and hazardous a calculation to do by hand.

At that time, the domain of automated theorem-proving had indeed not been
able to prove any really new theoremsE] Of course, Lehmer did not have the
same research goals as the pioneers of automated theorem proving: he was not
interested in studying human deductive processes, but wanted to study num-
ber theory and obtain new theorems. In this sense, it was basic that the process
for finding a proof with the help of a computer, was far more interactive, com-
bining both human and machine knowledge, during the process itself, depend-
ing on intermediary output and input.

So what kind of theorems were proven by the computer in this way? We will
mention two such theorems, which Lehmer considered as genuine machine
proofs, in the sense just described.

Theorem 1 Every set of 7 consecutive integers greater than 36 contains a multi-
ple of a prime = 43

Before stating the second theorem, it is important to explain the notion of cu-
bic residues. Let p = 3n + 1 be a prime, then if 13,23 3% .., (p— 1)3 are reduced
modulo p, only n remainders will be distinct. These are the cubic residues of

p

Theorem 2 All primes, except

7,13,19,31,37,43,61,67,79,127,283

47As was pointed out by Martin Davis, in having implemented a decision procedure for Pres-
burger arithmetic on the IAS computer, the first example of an algorithm implemented in the
context of automated theorem proving, “[ijts great triumph was to prove that the sum of two
even numbers is even.” (quoted in [Dav0lal). That nothing really stunning could be proved
was due to the fact that the algorithm was more than exponentially slow on certain inputs.
The most important contributions of early automated theorem proving, are most probably the

development of some standard algorithms and techniques [Dav01a].
48For example, with p = 13, the cubic residues are: 1, 5, 8, 12.



234 CHAPTER 4. THE COMPUTER.

have three consecutive cubic residues. The first triple occurs not later than
23532,23533,23534.

This result is the best possible because there are infinitely many primes for which
no three residues less than 23534 are consecutive.

In [LLMS62], where Lehmer discusses the set-up and the proof of theorem 2,
he explains that one of the reasons for considering the theorem as genuine is
the fact that, although the proof involves only a finite number of steps, it is a
statement about an infinite class.

The proofs and the exact statement of both theorems are impossible to estab-
lish without the help of the computer, or as Lehmer describes it, are humanly
impractical. For the proof of the first theorem, the computer had to solve thou-
sands of instances of the Pell equation:

x*—2Ay* =1

where A is a certain parameter. As is noted by Lehmer, there was one “small”
difficulty with the proof. The Pell equation has for each A # 2 infinitely many
solutions. It is here that the human mathematician must supply an important
lemma, in that only the 21 smallest solutions (x, y) for the equation have to be
examined by the machine. We will skip the details of the lemma.

The proof of the second theorem is much more complicated, as noted by Lehmer.
The outcome was at first very much in doubt because they did not know in ad-
vance whether the proof tree that had to be constructed would come to a halt.
The limit of 55 “stories” for each branch of the proof tree was determined by the
machine. Furthermore, the “world constant” 23532 , as Lehmer called it, was
found by the machine, independent of the method of proof.

For Lehmer, the fact that the proofs and theorems are humanly infeasible is fun-
damental, because only then it becomes possible to prove really new theorems,
theorems that could not have been proven or even been stated by a human be-
ing. In this respect, it is very important that the outcome has a certain sense of
unpredictability. Indeed, in order to outclass the human being, it is important
that the machine has to perform thousands of steps, that are different enough
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from each other, such that the outcome cannot be predicted by human beings
(ILeh63), pp. 141-142):

I would like to speak briefly of some theorem proving programs that we have
been running in which the human is completely outclassed in what, I think you
will agree, are fair contests. Our aim was to prove mechanically some really new
theorems of some interest to humans. The novelty of the theorems is guaran-
teed by the fact that the proofs are humanly impractical. [...] In casting about for
genuine theorems the proofs of which will tax the powers of a human being, we
want to exploit the speed of the machine. This means that the proof must involve
many thousands of steps all sufficiently different so that the outcome cannot be
forecast. We must also exploit those features of the logical system of the machine
that permit it to supervise and organize its own program. We should make it pro-
ceed in an unpredictable way by laying its own track ahead of it like a caterpillar
tractor. At the same time it should keep a record of where it has been, so that it
can return at a previous point and branch out along another path whenever it
decides that this is necessary. Humans find this kind of work difficult even when
it occurs in only moderate amounts. Of course if the proof is to be too difficult
for humans we cannot be sure in advance that the theorem is true or, if true, that

even the machine can prove it.

The significance of the unpredictability of the outcome in using a computer,
was also pointed out by Turing, during a radio discussion on the idea of intelli-
gent machinery ([Tur52a] p. 19):

Sometimes a computing machine does do something rather weird that we hadn’t
expected. In principle one could have predicted it, but in practice it’s usually too
much trouble. Obviously if one were to predict everything a computer was going

to do one might just as well do without it.

Because of this unpredictability, and the thousands of steps and decisions made
by the machine itself, we do not have access to all the details of the proof ([Leh63],
p- 143):

Of course no one has all the details. The machine was asked to make progress
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reports from time to time and studying these reports we can follow the proof in

broad outline only.

In this respect, one might well wonder what would happen if some computer
would prove a long-standing important conjecture, but nobody would really
understand the proof. One is then faced with the situation that one knows
that something is true, but without understanding why, a situation which is
quite opposite to what has been basically Penrose’s argument to show that hu-
man mathematical insight cannot be algorithmic, using Godel’s incomplete-
ness theorem.

Besides proving theorems, Lehmer used the computer for producing mathe-
matical tables. As is pointed out by Franz Alt [Alt72] a “computations commit-
tee” was assembled, including Lehmer, Haskell Curry (!), Leland B. Cunning-
ham, and Alt for testing the ENIAC. Lehmer describes, amongst others, the fol-
lowing “test” program: ([Leh74], p. 4):

The ENIAC, the first electronic computer, was to have been shut down from Wednes-
day night till the following Monday morning. Instead, this chunk of 111 hours of
machine time was made available to me and my wife to keep the ENIAC warm
and active. The problem we decided to run was the following: For each odd
prime p there is a least positive integer e = e(p) such that 2¢ = 1(mod p), some-
times called the order or exponent of 2 modulo p. The problem proposed to the
ENIAC was to find those primes p for which e(p) < 2000 until Monday morning
8 o’clock. During the weekend the limit 2000 was reduced to 1000 and then to
300 in order to speed things up. By Monday, we had reached p = 4538791. This
successful run had a number of consequences, even legal ones, which I shall not

discuss.

Making mathematical tables has along-standing tradition in mathematics. They
were, e.g,. very important for the work of Gauss@ At that time, these tables
were computed by human computers. With the availability of the computer,
it has become possible to seriously enlarge several tables, and construct new
ones. Vandiver very clearly summarized the significance of tables, and the role
of computers in this context, as follows ([Van58], p. 459):

493ee [Bul05].
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Examination of numerical tables tells the number theorist so often what isn'’t
true. For example, before we were able to use extensive pertinent data recorded
by computing machines, we had made conjectures as to the answers to a partic-
ular problem; but when more extensive computations were made, it turned out
that a number of conjectures were inaccurate. So a lot of time had been lost in
trying to prove or disprove the false conjectures. In addition, we hope, by study
of tables, to observe patterns indicating the existence of certain theorems which
may turn out to be of an entirely novel character. For example, it is fairly clear
that Euler must have discovered the Law of Quadratic Reciprocity by a study of
the results of his extensive computations. There seems to be nothing in the lit-
erature which could have suggested it to him. He did not prove the law. This
was achieved by Gauss, and this was the beginning of the development of a far-

reaching subject in number theory.

The journal, Mathematical Tables and Other aids to Computation, that was founded
in 1943 by D.H. Lehmer and R.C. Archibald, and now goes under the name
Mathematics of Computation, only further emphasizes the role mathematical
tables have played in the domain of “computational mathematics”.

4.2.3 Conclusion

In this section, we have mainly focussed on the significance of the computer,
from its early beginnings, for tackling certain more mathematical problems.
von Neumann clearly understood how the computer could help us to build up
an intuition of a certain problem. Due to its computational power, it can be
used to “simulate” certain physical phenomena numerically, in a way hardly
possible in physical experimentation, varying several parameters, such that we
are able to draw certain heuristic conclusions that can help to advance more
theoretical results. Contrary to Lehmer, however, von Neumann believed that
the production of a huge amount of information is only useful for the machine
itself, not for man ([vN66], pp. 38-39):

[...] let me point out that we will probably not want to produce vast amounts of

numerical material with computing machines, for example, enormous tables of
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functions. The reason for using fast computing machines is not that you want to
produce a lot of information. After all, the mere fact that you want some infor-
mation means that you somehow imagine that you can absorb it, and, therefore,
wherever there may be bottlenecks in the automatic arrangement which pro-
duces and processes this information, there is a worse bottleneck at the human
intellect into which the information ultimately seeps. The really difficult prob-
lems are of such a nature that the number of data which enter is quite small.
All you may want to know is a few numbers, which give a rough curve, or one
number. All you may want in fact is a “yes” or a “no,” the answer as to whether
something is or is not stable, or whether turbulence has or has not set in. The
point is that you may not be able to get from an input of, say, 80 numbers to
an output of 20 numbers without having, in the process, produced a few billion

numbers in which nobody is interested.

Indeed, for von Neumann, producing large mathematical tables as output to
be studied by man is no longer necessary, since the computer itself can process
these tables, tables, that are too large to be of any interest to man. Von Neu-
mann regarded the computer rather as a machine that provides man with cer-
tain answers that can then be used for further research. This opinion stands
in contrast with Lehmer’s understanding of the computer, who considered the
production of mathematical tables as an important possibility of these new ma-
chines. For Lehmer the fact that the computer gives as access to information —
even in the “raw” form of tables — that was not within human reach before, is
very fundamental ([Leh51], p. 146):

There is no doubt that these new machines are creating new service jobs for
mathematicians, young and old. However, it seems to me, the most important
influence of the machines on mathematics and mathematicians should lie in the
opportunities that exist for applying the experimental method to mathematics.
Much of modern mathematics is being developed in terms of what can be proved
by general methods rather than in terms of what really exists in the universe of
discourse. Many a young Ph.D. student in mathematics has written his disserta-
tion about a class of objects without ever having seen one of the objects at close

range. There exists a distinct possibility that the new machines will be used in
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some cases to explore the terrain that has been staked out so freely and that
something worth proving will be discovered in the rapidly expanding universe

of mathematics.

For Lehmer, the most significant influence of the computer is the fact that it
gives us access to what he has called “the universe of discourse”. The disclo-
sure of this “universe”, although accessible within certain limits before, has in-
deed made it possible to directly observe certain objects of mathematics, that
could only be considered in a theoretical fashion before. One only has to think
about the “disclosure” of the Mandelbrot set, and many other attractors, to
understand the significance of "this disclosure. Looking at the words by von
Neumann and Lehmer from our contemporary perspective, it is clear that both
contain a certain truth. On the one hand, computers are used to produce vast
amounts of data, that are then studied by man. In the meantime, we have de-
veloped several methods to “summarize” these amounts of data in a form that
can be easily accessed by humans. The significance of several forms of visu-
alizations, including graphs and tables, in this context can hardly be under-
estimatedﬂ On the other hand, the computer is often only used to provide
answers, without the necessity of producing vast amounts of information.

In part II, we will consider some examples of how the computer has been and
can be used as an instrument making available the universe of discourse, in the
context of computability and unsolvability. Our main focus there will be on tag
systems. The production of vast amounts of data, has played a significant role
in our research on tag systems. To mention the most important result in this
context, it was only after having studied hundreds of periodic strings produced
by several different tag systems, through the computer, that we were able to

501 have worked for some time on computer visualizations. I wanted to use them to study
tag systems and, at that time, several other formal systems. Soon however, I had the feeling
that, although I was and am convinced of the significance of computer visualizations even in
this context, I would be better off in looking at the raw data some of these visualizations were
based on, for the things I wanted to do. I should also add that during this research, I ended up
with a very strange result, published as [Mol05], that shows through visualization, that there
is a certain property concerning how space can be structured, by using the chaos game. [ was
in fact not searching for this result, I “discovered” it by accident. For me, this experience still
serves as a very clear examples of how the computer indeed discloses the universe of discourse.
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deduce several types of periods. Before we will enter the universe of tag sys-
tems, we will first look at some developments in the context of computability
and unsolvability that are very directly connected to the computer.

4.3 Going beyond or not beyond the Turing limit?
Developments arising from computability, un-

solvability and the computer.

In this section we will consider two theoretical developments in the context of
computability and unsolvability that are very closely related to the use of the
computer. As in the two previous sections of this chapter, we will not attempt
to be complete here, and the reader should thus be warned that the two areas
discussed do not exhaust this field ?1] We have chosen these two domains be-
cause they beautifully illustrate how the computer has given rise to research on
theoretical and practical limits of solvability. The domains we will discuss are
computational complexity theory and the rather recent development of what
has been called hypercomputability, the idea of being able to go effectively be-
yond the Turing limit.

4.3.1 On the practical feasibility of the computable: Computa-
tional Complexity Theory.

The entscheidungsproblem does have practical importance in addition to it’s
philosophical significance. Mathematical proof is a codification of more general
human reasoning. An automatic theorem prover would have wide application
within computer science, if it operated efficiently enough. Even though this is
hopeless in general, there may be important special cases which are solvable.
It would be nice if Church’s or Turing’s proofs gave us some information about

1A domain that will for instance not be discussed here is Algorithmic Information Theory,
where complexity is not defined in terms of the smallest number of steps needed to compute
something, but in terms of the smallest possible algorithm to compute something. The theory
was founded by Chaitin, Kolmogorov and Solomonov in the sixties. See for example [Cha87] for
a quite clear but formal presentation of this theory.
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where the easier cases might lie. Unfortunately, their arguments rest on “self-
reference,” a contrived phenomenon which never appears spontaneously. This
does not tell us what makes the problem hard in interesting cases. Conceivably,
a proof that P is not equal to NP would be more informative.

Michael Sipser, 1992{521

In a letter dated 20 March, 1956, Kurt Godel presented the following problem to
John von Neumann ([G6d56], p. 375):

Since, as I hear, you are feeling stronger now, I would like to take the liberty to
write to you about a mathematical problem; your view on it would be of great
interest to me: Obviously, it is easy to construct a Turing machine that allows
us to decide, for each formula F of the restricted functional calculus and every
natural number n, whether F has a proof of length n [length = number of sym-
bols]. Let y(F n) be the number of steps required for the machine to do that,
and let ¢ (n) = maxy w(F, n). The question is, how rapidly does ¢(n) grow for an
optimal machine? It is possible to show that ¢(n) = Kn. If there really were a ma-
chine with ¢(n) ~ Kn (or even just ~ Kn?) then that would have consequences
of the greatest significance. Namely, this would clearly mean that the thinking
of a mathematician in the case of yes-or-no questions could be completel;{s_g]
replaced by machines, in spite of the unsolvability of the Entscheidungsprob-
lem. n would merely have to be chosen so large that, when the machine does
not provide a result, it also does not make any sense to think about the prob-
lem. Now it seems to me to be quite within the realm of possibility that ¢(n)
grows that slowly. For 1.) ¢(n) = Kn seems to be the only estimate obtainable
by generalizing the proof of the unsolvability of the Entscheidungsproblem; 2.)
¢(n) ~ Kn (or Kn?) just means that the number of steps when compared to pure
trial and error can be reduced from N to log N (or logN?). Such significant re-
ductions are definitely involved in the case of other finitist problems, e.g., when
computing the quadratic remainder symbol by repeated application of the law of
reciprocity. It would be interesting to know what the case would be, e.g., in deter-

mining whether a number is prime, and how significantly in general for finitist

52From [Sip92], p. 603
53Except for the formulation of axioms. [Godel’s note]
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combinatorial problems the number of steps can be reduced when compared to

pure trial and error.

This letter by Godel contains one of the first statements of a problem that is
very closely connected to the famous P vs. NP-question, i.e., he asked whether
it is possible to “feasibly” compute for any formula from first-order predicate
calculus, whether it can be proven in n steps. This kind of problem, i.e., the
problem of whether one can practically compute a certain (decision) problem,
is nowadays studied in the context of Computational Computability Theory.

In the early days of actual computing with computers, one was soon confronted
with this kind of problems. As is recounted by Martin Davis [Dav01la], when
he implemented the Presburger procedureE] on the IAS computer, it did not
perform very well because, as is now known, it performs worse than exponen-
tial. In this respect, computational complexity theory can be said to be directly
linked with the rise of the computer: besides the general unsolvability of cer-
tain decision problems one was soon confronted with a whole range of decision
problems which seemed to be uncomputable in any practical or realistic way,
although not unsolvable in the theoretical sense.

Besides its clear connection with the computer, computational complexity the-
ory is very closely connected to the theory of computability and unsolvability.
In fact, many of the concepts used in the context of computability and unsolv-
ability recur in the context of computational complexity theory. Thus, compu-
tational complexity theory can be said to result from the confluence of, on the
one hand, experiences based on computing on a machine, and, on the other
hand, mathematical logic.

One of the founding papers of computational complexity theory is the paper by
Hartmanis and Stearns, On the computational complexity of algorithms [HS65],
published in 1965@ They formulated the computational complexity of a given

547 procedure that makes it possible to compute for any formula in the language of Pres-
burger arithmetic, i.e. a first-order theory of addition, whether it is deducible within that arith-
metic.

55This paper of course did not come out of the blue. There exist several historical surveys
on computational complexity theory and the related P vs. NP problem in which this issue is
discussed in more detail. See for example [FHO3] and [Sip92]. A paper discussing the official
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decision problem through (multitape) Turing machines, introducing hierar-
chies of computational complexity in terms of the minimum speed needed by
a (multitape) Turing machine to compute a given problem:

The computational complexity of a sequence is to be measured by how fast a
multitape Turing machine can print out the terms of the sequence. This par-
ticular abstract model of a computing device is chosen because much of the
work in this area is stimulated by the rapidly growing importance of computa-
tion through the use of digital computers, and all digital computers in a slightly

idealized form belong to the class of multitape Turing machines.

Nowadays, the computational complexity of a given problem is still stated in
terms of (one-tape) Turing machines and they are thus the generally accepted
model to work with. In their paper, Hartmanis and Stearns proposed and devel-
oped the notion of measuring the complexity of a problem in terms of the maxi-
mum number of steps, i.e., the time, needed to solve a particular instance of the
problem, where the complexity of a given problem is a function of the size of
the input. Besides time complexity classes, one has also introduced space com-
plexity classes in the meantime, i.e., the size of the memory needed to compute
a given problem.

The two most famous complexity classes are the classes P and NP. The class
P is the class of decision problems solvable by a deterministic Turing machine,
within a number of steps bounded by some fixed polynomial in the length of
the input. Thus, for example, if a given problem can be solved in at most c- n?
steps, where c is a fixed constant and n is the size of the input, the problem be-
longs to P. The class NP, i.e., non-deterministic polynomial time, is the class of
decision problems that can be solved by a non-deterministic Turing machine@
within a number of steps bounded by some fixed polynomial. Equivalently, NP
is the class of decision problems that can be verified in polynomial time, i.e.,
it takes at most a polynomial number of steps to verify whether a solution to a
given instance of the problem is correct. To explain this with an example, con-

statement of the P vs. NP problem is [Coo].
% Informally, a non-deterministic machine is a machine that has more than one possible

move from a given configuration.
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sider the Travelling Salesman Problem, the problem to determine the shortest
route to visit a collection of cities and return to the starting point. While it can
be verified in polynomial time whether a given number is the correct solution to
an instance of the problem, given a certain number of cities in a certain config-
uration, it is far from clear whether one can compute the solution for every in-
stance of the problem in polynomial time with a deterministic machine. If one
would be able to prove that one can solve every instance of the Travelling Sales-
man in at most a polynomial number of steps with a deterministic machine,
or, vice versa, that it is impossible to solve the Travelling Salesman problem in
polynomial time with a deterministic machine, one would be one million dollar
richer in having solved the P vs. NP problem. Nowadays, the general consensus
is that P # NP. Some, however, still believe that P = NP, while still others think
that the problem is impossible to prove or disprove.

A basic concept in the context of research on the P vs. NP problem is the ex-
istence of a wide range of problems which are known to be NP-complete, i.e.,
problems which are in NP and are NP-hard. A problem is NP-hard if any other
problem in NP can be reduced to it@ In his seminal 1971 paper, Stephen Cook
proved that several “natural” problems are NP-complete. One year later, Karp
[Kar72] used Cook’s results to show that 20 other problems are NP-complete.
Nowadays there are hundreds of problems known to be NP-complete, varying
over many different fields. The Travelling Salesman problem is just one of the
many more famous examples. In this sense, a solution to the P vs. NP problem
would give us important information about problems stated in several different
fields of science.

But this is not the only reason why a solution to this problem is considered so
important. Stephen Cook summarized the consequences of a proof of P = NP,
clearly echoing some of Godel’s idea about the significance of proving that the

57In this context a problem A is understood to be reducible to another problem B, if A is
polynomial-time, many-one reducible to B. A set of natural numbers S; is said to be many-one
reducible to aset Sy, if for each positive integer n in S; there is an effective method to determine
a positive integer m, such that »n is or is not in Sy according as m is or is not in S,. Then, if we
have a method to determine whether m is in S, we would have a method to determine whether
nisin S;. The notion many-one reducibility is due to Post [Pos44].



4.3. GOING BEYOND OR NOT BEYOND THE TURING LIMIT? 245

problem he considered could be solved in polynomial time ([Coo71], p. 9):

Although a practical algorithm for solving an NP-complete problem (showing P
=NP) would have devastating consequences for cryptography, it would also have
stunning practical consequences of a more positive nature, and not just because
of the efficient solutions to the many NP-hard problems important to industry.
For example, it would transform mathematics by allowing a computer to find a
formal proof of any theorem which has a proof of reasonable length, since formal
proofs can easily be recognized in polynomial time. Example theorems may well
include all of the CMI prize problems. Although the formal proofs may not be
initially intelligible to humans, the problem of finding intelligible proofs would
be reduced to that of finding a recognition algorithm for intelligible proofs. Sim-
ilar remarks apply to diverse creative human endeavors, such as designing air-
plane wings, creating physical theories, or even composing music. The question
in each case is to what extent an efficient algorithm for recognizing a good result
can be found. This is a fundamental problem in artificial intelligence, and one
whose solution itself would be aided by the NP-solver by allowing easy testing of

recognition theories.

There are several important analogies between the domain of mathematical
logic and computational complexity theory, many of the concepts of the latter
being inspired by the former. The nice thing about this analogy is that whereas
the results from the previous chapter concern theoretical limits that can never
be overcome by any effective procedure as long as the Church-Turing thesis
remains valid, computational complexity theory studies limits that can be the-
oretically overcome but not necessarily in practice. I.e. many basic questions
in computational complexity theory, concern “feasible” limits of computabil-
ity. The notion of “feasibility” however is a vague and intuitive notion. It should
thus not be surprising that, as is the case for “computability”, there have been
attempts to capture to intuitive notion formally. Indeed, also in this domain
there exists a thesis, known as the Cook-Karp-thesis:

The Cook-Karp thesis. A problem is considered feasibly computable
iff. it is polynomial time computable.
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Contrary to the several equivalent theses discussed in the previous chapter, the
Cook-Karp thesis is very debatable, since an algorithm that is in P may not ac-
tually be feasible in any meaningful sense. Indeed, as was e.g. pointed out by
Martin Davis ([Dav82], p. 23):

There has not been extensive activity seeking O(n'%°) algorithms{®| Thus it seems
entirely possible, in the present state of knowledge, that all NP-problems have
polynomial time algorithms although none has an algorithm which is feasible in

any practical sense.

Besides the fact that polynomially executable does not necessary imply feasibly
executable, the domain of quantum computing seems to further challenge this
thesis. For example, Shor [Sho97] has given a quantum computer algorithm
for factorization of integers in polynomial time, while no algorithm is known
to factor integers on a Turing machine in polynomial time. One of the prob-
lems involved with quantum computing is that for now, quantum computers
are only capable to handle only very small numbers, the best quantum com-
puter ever build (until now) to factor a number being only capable to factor up
to 15 (whose prime factors are 3 and 5). Of course the field of quantum comput-
ing is only starting to develop and it seems a promising new domain for turning
problems known to be unfeasible into feasible problems.

Quantum mechanics has also been mentioned in the context of what is now
called hypercomputability. In this domain one is not interested in feasibly com-
putable problems, but in the question of whether it is possible to feasibly “com-
pute”, where feasibly now means executable, the non Turing computable.

4.3.2 Theland of Tor'bled-nam. To solve the unsolvable.

Let us imagine that we have been travelling on a great journey to some far-off
world. We shall call this world ‘Tor'Bled-Nam’.

Roger Penrose, 1989@

58The notation O(x) is used to denote how much time it takes at most for a given algorithm to
solve an instance of a given problem, the 7 in the equation used by Davis indicating the length
of the input.

59From [Pen89)
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Figure 4.3: The Mandelbrot set.

In The Emperor’s New Mind Roger Penrose argues, amongst other things,
for the physical and Platonic existence of non-recursive phenomena, of which

the land of Tor'Bled-Nam is suggested to be one such example. This ‘land of
Tor'Bled-Nam’ points at the structure of one of the most famous fractals, the

Mandelbrot set.

The Mandelbrot set is the set of complex numbers ¢ for which the sequence c,

c2+c, (®+0)?+c, ((c?+c)? + ¢)? + c,..remains bounded. Starting with an arbi-

trary point ¢ € C the question posed by Penrose is whether it is computable for

any c if ¢ does or does not belong to the Mandelbrot set. Figure[4.3|shows a pic-

ture of the Mandelbrot set. Of course, since the Mandelbrot set is defined over

C the question of it being “uncomputable”, is ill-posed, as is also noted by Pen-

rosem Nonetheless, the only way to enter the ‘land of Tor'Bled-Nam’ is through

601n 1989 Blum, Shub and Smale presented a model of real computation [BSS89], i.e., com-
puting over the reals, and showed that the Mandelbrot set is indeed “uncomputable” within the
framework of their theory of real computations. In fact the so-called BSS-model is a model of
analogue computing, and assumes that the real numbers are represented exactly, and that each
arithmetic operation can be performed in one step. One of the problems, to our mind, with
the BSS-model is the fact that besides the Mandelbrot set, very simple fractals like the Koch
snowflake are also “uncomputable” in their model. See for example for an alternative
model, in which the simpler fractals are known to be “computable” while the “uncomputabil-
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the computer. Still, Penrose suggests that the “existence” of the Mandelbrot set
implies that there “exist” non-recursive phenomena, and this illustrates that it
might be possible to go beyond the Turing limitF_r]

Penrose’s way of approaching the Mandelbrot set is just one example of how
one often reasons in the context of hypercomputability: one first defines a non-
computable function, or an abstract device that is, theoretically, capable to
solve e.g. the halting problem, and then uses these theoretically defined func-
tions and devices as arguments for the possibility of developing devices that
“compute” the non Turing computable.

This idea of building a “hypercomputer” is closely connected with the com-
puter. When Church, Post and Turing formulated their theses, this was done in
a purely theoretical context. With the rise of the computer however, computa-
tions have been given a physical form, i.e., as was argued in Sec/4.1} the com-
puter is in a certain way the physical, finite realization of the identifications
proposed by Church, Post and Turing. Furthermore, through the computer, it
became clear that computability should not remain restricted to “pure” calcu-
lability of numbers. Both Zuse and Turing very quickly understood that com-
puters can do much more than computing numbers. Nowadays, computers are
involved with almost every aspect of our society.

As a physical realization of the Church-Turing thesis, that has illustrated how
general computability actually is, the computer makes clear that the Church-
Turing thesis also has a physical side, i.e., the physical Church-Turing thesis
[Cot03]. It is this thesis, identifying machines with Turing computability, that
has become the main target of the advocates of hypercomputability. In the pre-
vious chapter, we already mentioned Gandy’s paper [Gan80], which contains
one of the statements of this physical Church-Turing thesis, indicated as thesis
M [Gan80]{

ity” of the Mandelbrot set is still an open problem.
6lpenrose’s books [Pen89l [Pen94] are of course most well-known for the use of Godel’s in-

completeness results to show that there must be something non-computable going on in our
mind. Without wanting to oppose this last claim, it should be noted that Gédel’s results cannot

be used in this context as is e.g. argued in [Dav90}[Dav93| |[Fef88].
621t should be noted however that Gandy did not propose this thesis in a context of hyper-

computability. Rather, Gandy proposed this thesis, because to his mind, there are crucial steps
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Thesis M (Gandy). Anything that can be calculated by a machine is
Turing computable.

It should be noted that Gandy identifies “machine” with “discrete deterministic
mechanical device”. According to Jack Copeland, who introduced the now fash-
ionable term “hypercomputability” [Cop98,/CP99], one has been too careless in
not separating Thesis M from the Church-Turing thesis:

A myth seems to have arisen concerning Turing’s paper of 1936, namely that he
there gave a treatment of the limits of mechanism and established a fundamental
result to the effect that the universal Turing machine can simulate the behaviour

of any machine.

Copeland considers Gandy as one of the few who has carefully distinguished
the “stronger” statement expressed in thesis M, that any finitely realizable sys-
tem can be simulated by a Turing machine, from the “weaker” Church-Turing
thesis. Indeed, it seems that Copeland does not want to attack the Church-
Turing thesis, but rather Thesis M, although this is not completely unambigu-
ous in his work. By using phrases such as, “computing the uncomputable”
ICP99] he seems to actually contradict the Church-Turing thesis, and with it,
Thesis M. A similar, to our mind rather ambiguous, attitude can also be found
in [EGWO04] and [Sta04]. In [EGWO04], the “normal” Turing thesis is separated
from the so-called strong Turing Thesis, i.e., the claim that a Turing machine
can do anything a computer can do. Stannet [Sta04] claims that serious mis-
understandings are involved with respect to the Church-Turing thesis, in that
many people have interpreted it wrongly as “a statement to the effect that any-
thing that can be computed by any means whatsoever can be computed by a
Turing machine” ([Sta04], p. 136). According to Stannet, Turing did not intend
to identify “effective computation” with “computations by any means whatso-
ever”, [r]ather, [effective computation] is essentially the highly constrained form

in Turing’s analysis where he appeals to the fact that the computation is carried out by a hu-
man being, steps which cannot simply be applied to machines. In other words, Gandy pro-
posed (and argued for) his Thesis M, because he wanted to generalize Turing’s arguments from
computing human beings to machines.
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of behavior effected by human clerks engaged in the production of books of ta-
bles;” ([Sta04], p. 137).

It is indeed true that Turing considered a man in the process of computing a
number, as the kind of process that can be captured by a Turing machine. In
this sense, one can indeed argue, as Gandy did, that other models, equivalent
to Turing machines, might be more suitable to make the identification with ma-
chines. However, the idea of constructing other formalisms because they are
more suitable to e.g. capture the machine notion, does not imply that such
identifications are “stronger” than the Church-Turing thesis@
Notwithstanding the fact that other formalisms might be more suitable to cap-
ture certain notions, one can seriously doubt whether Turing would not have
identified his Turing machines with “computations by any means whatsoever”
or with what a machine or a computer can do. Besides, it should also be noted
that Turing was in fact the only one who started from human computers in or-
der to formulate his thesis. Church started from the vague notion “effective
calculability” as used in mathematics, and later clearly stated that there are
no fundamental problems to be overcome in identifying “computing machine”
with a “human calculator”@ Post in his turn considered the notion of gener-
ated set, and stated that in order for his thesis to gain a more general character,
it would be necessary to analyze all the possible process that can be set-up by
the human mind to generate a set, an analysis which resulted in his formula-
tion 1. However, as is here illustrated, in the context of hypercomputability, one
only rarely takes into account anything else but Turing machines. As a conse-
quence, one does not consider all the other formalisms that are covered by the
“traditional” Turing thesis and neglects that there is nothing new to the idea of
developing other formalism equivalent to Turing machines, because they are
more suitable for other purposes@

%3In the previous chapter we also mentioned Markov’s thesis, who developed a formalism
very different from Turing machines, because he believed that the formalisms already consid-
ered by Church, Post and Turing were not suitable for capturing the notion of an algorithm.

64See the first part of Church’s review [Chu37b]| of Turing’s On Computable Numbers, quoted
in the previous chapter.

5 Another example in this context are cellular automata, which are known to be capable to
simulate any Turing machine, but are more well-suited to study self-reproduction in a compu-
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But why would some of the researchers in the domain of hypercomputability
make such a fuss about the fact that Turing himself would not have identified
Turing machines with “machines”, thus being able to claim that they are not re-
ally opposing Turing’s thesis, but rather the physical version of it@ The answer
is clear: Turing had a much wider concept of machines since he introduced or-
acle machines in his seminal [Tur39], i.e. abstract devices that are indeed capa-
ble in theory to provide answers to non-computable questions. Copeland and
Proudfoot have identified these oracles as Alan Turing’s forgotten ideas in Com-
puter Science [CP99), the title of one of their papers. Also Wegner et al. make a
similar statement, one that also illustrates the ambiguities involved with their
attitude towards the “‘weak” Church-Turing thesis and the “strong” Turing the-
sis ([EGW04], p. 160):

It is little known that Turing had proposed other, non-algorithmic models of
computation, and would have disagreed with the strong Turing Thesis [i.e. a Tur-
ing machine can do anything a computer can do]. He did not regard the Turing
machine model as encompassing all others. As with many other of his ideas, Tur-
ing was far ahead of his time. Only now, with the development of new powerful
applications, is it becoming evident to the wider computer science community
that algorithms and Turing Machines do not provide a complete model for com-

putational problem solvingE]

tational framework.

66To further illustrate the rather ambiguous attitude of some of the researchers in this con-
text, we should mention that Stannet announces in the introduction that he “shall try to give an
engineering solution to the question “Can computation be non-recusive?” Can machines be built
— or, at the very least, might natural systems exist? — that perform actions that cannot be simu-
lated by a Turing machine?” ([Sta04], p. 136). As is clear from this quote, Stannet is convinced
that it is possible to build machines that “compute” the non-recursive. Still, he seems to suggest
that he is not opposing the Church-Turing thesis, but rather the fact that anything what can be
computed by any possible means would be Turing computable. As far as I am concerned, I can
only place question marks with these kind of statements. Was it not the main purpose to cover
anything we consider (intuitively) computable with e.g. Turing machines?

671t should be noted that Wegner et al. not only intend Turing’s oracles, but also the choice
machines mentioned by Turing in his [Tur37], as the kind of other non-algorithmic models of
computation (note the ambiguity in this statement!) Turing would have considered. This leads
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Now, we have every respect for researchers trying to overcome what seems, for
now, still impossible. However, we believe it very problematic that some of the
advocates of hypercomputability, (ab)use Turing’s work to strengthen their “ar-
guments”. First of all, it should be noted that Turing himself stated very explic-
itly that oracles cannot be regarded as machines ([Tur39], p. 166-167):

Let us suppose that we are supplied with some unspecified means of solving
number-theoretic problems; a kind of oracle as it were. We shall not go any fur-

ther into the nature of this oracle, apart from saying that it cannot be a machine.

To state that many researchers misunderstand Turing’s thesis, because it does
not apply to machines, given the fact that Turing himself introduced oracles
that can solve the halting problem, can only sound very wrong in the light of
this quote. As is also argued in [Dav04},[Hod04], there is no clue in Turing’s work
that he intended to really build an oracle, and it can thus not be claimed that
Turing anticipated the agenda of hypercomputability.

Besides this fact, the claim that the idea of an oracle is one of Turing’s “forgotten
ideas” is a further illustration of this abuse: oracles are far from being forgotten
in the literature and are in fact one of the fundamental concepts of recursion
theory. Oracles can be used to define what it means for a problem to be com-
putable relative to another problem. In this sense, oracles are a very useful tool
in recursion theory and have been basic for research on degrees of unsolvabil-
ity. One can for example use oracles to express Post’s problem introduced in
[Pos44] and solved, independently, by Friedberg [Fri57] and Muchnik [Muc56]:
the problem of whether there can be two recursively enumerable sets that are
non-recursive, such that first is recursive relative to the other, but not vice versa,
i.e., an oracle for solving the decision of the first would not result in a solution

Wegner et al. to the conclusion that Turing would have disagreed with the so-called strong
Turing thesis. Choice machines were described by Turing as follows: “For some purpose we
might use machines [...] whose motion is only partially determined by the configuration |[...]
When such a machine reaches one of these ambiguous configurations, it cannot go on until some
arbitrary choice has been made by an external operator.” ([Tur37], p. 118) While these choice
machines indeed work in a different manner than Turing machines, it has been proven in 1956
[LMSS56] that Turing machines provided with a random number generator can compute only
those functions which are Turing computable.
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for the second, while the oracle for the second would give solutions for both
problems. To state that oracles have been forgotten is plainly wrong, since they
are a standard part of recursion (or computability) theory. Furthermore, they
are also used in the context of computational complexity theory, although they
are not introduced to answer non-computable questions, but rather to deter-
mine complexity classes relative to other classes@

The basic difference between the use of oracles in the context of hypercom-
putability and recursion theory, is the fact that in the former they are consid-
ered as machines that could maybe be effectively build, while in the latter, they
function as theoretical devices that have shown very fruitful to advance the the-
ory.

As is clear, the “agenda” of hypercomputability is to show that there exist, or
that one can construct, (physically realizable) processes or devices that func-
tion as an oracle, i.e., they are capable to give answers to uncomputable prob-
lems like the halting problem. Several different proposals of such devices have
been made, in several different domains. Cotogno [Cot03] makes the following
classification: physical supertasks and infinite computations; interactive sys-
tems; analog computations and quantum computations. For a more detailed
description of the “devices” considered in each of these classes the reader is re-
ferred to Cotogno’s paper.

Although one can describe these devices theoretically, none has been built until
now and it seems rather improbable that, as far as these devices are concerned,
one will ever be able to really build one of them. Several arguments, showing
that there are serious problems involved with the idea of building a hypercom-
puter, have already been formulated, so we will not discuss these in any detail
here, but merely mention the most basic one@

It has been pointed out by Martin Davis [Dav06b]| that in discussing these mat-
ters, one should differentiate between the theoretical and the practical in this
context, as is the case for “theoretical” and “practical” computability. A Tur-
ing machine is a theoretical device, used in theoretical computer science. A

%8For example, the seminal paper by Cook [Coo71] mentioned above uses the notion of an
oracle.
59So0me papers giving several different arguments are [Cot03}[Dav04, [Dav06al, Dav06b].
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“real” computer cannot be identified with a Turing machine since it is finite.
The same goes for “hypercomputers”. Although one can invent many theoreti-
cal devices that are capable to solve unsolvable problems, like Turing’s oracles,
one should take into account physical constraints if one really wants to build
one.

The first major problem related to this, is the fact that we humans are ﬁnitem
Suppose that someone would claim that he has build an apparatus that “com-
putes” a non Turing computable sequence. How will we humans be capable
to check this? Indeed, given our finiteness we can only perceive but a finite
amount of data, and no finite amount suffices to distinguish the computable
from the non-computable sequences.

Right now, the most obvious basis for building a hypercomputer is through
physical theory and most of the models proposed are indeed based on physicsm
But here there are some basic problems. One of the biggest problems here, is
that the theory should be able to predict (and compute with) a non-computable
real number to infinite precision in finite time! For now, no physical theory is
capable to do this. As is remarked by Davis, “[u/ntil now, all physical theory has
been content with predictions that can be verified to within less than, say 50 dig-
its” ([Dav04], p. 207). Even if we would be guaranteed that the physical theory is
100% precise, resulting in infinitely precise number, another question is: How
will one build a device that is infinitely precise, following the theory, and, how
will we humans be able to check this? Is it not basic to physics that one should
be able to experimentally verify that the results are correct? Indeed, what kind
of measuring device would one have to develop, that measures in finite time
the correctness of an infinite number, and, foremost, how can we be sure about

"0The arguments provided here, come from [Cot03} [Dav04, [Dav06b].

"ISome other models are: infinite computation and interactive computation. However, for
infinite computation, like e.g. so-called Zeno machines, one assumes that it is possible to per-
form infinite computation in finite time. Although one cannot exclude this possibility in princi-
ple, this can only work under highly idealized conditions, as is argued by Cotogno [Cot03], not
taking into account certain quantum and thermodynamical constraints. As for conversational
computation (see e.g. [EGW04]), Cotogno has argued that it can be simulated by a Turing ma-
chine, and has no hypercomputing aspect, unless viewed in a non-effective way, i.e., through
infinite computation.
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that? Would it not be frustrating if we would have a theory, and a device based
on that theory, that solves e.g. the halting problem, but that we would not be
capable to check and know the answers? In other words, is it not the case that,
if it would be possible to develop a physical theory that solves the unsolvable,
one would also have a theory that outruns us humans? Copeland [Cop98] has
proposed the hypothesis that the human mind itself is an oracle. Well then, I
ask, as I did in the previous section, if Dr. Copeland wants to take this hypothe-
sis serious, I would like to see his mind solve the decision problem for the very
simple tag system v =3,1 — 1101, 0 — 00. Of course, I am not sure whether this
tag system is solvable or not, but the very simple fact that it is at least very hard
to prove this, is reason enough for me to be convinced that my mind is not an
oracle, except if I would suppose that this oracle part of my mind would only
work for very specific cases, in a way that it is impossible for me to solve the
halting problem, because I cannot control the oracle that is my mind. But what
would be the point then?

A last objection, pointed out by Davis [Dav04], is the fact that for now one does
not take into account questions of computational complexity ([Dav04], p. 209):

Copeland’s supposed oracles not only store information regarding unsolvable
problems, but apparently spew out the information with no significant delay. Of
course, in reality, even if [...] an actual oracle materializes, it will be quite use-
less if, for example, the time needed for the answer to a query to the oracle is an

exponential function of the size of the query.

Clearly, this objection stands in sharp contrast with the following, to our mind,
rather careless remark by Wegner et al. ([JEGW04], p. 190):

We think that the P = NP question will lose its significance in the context of

super-Turing computation.

Does all this critique imply that we completely oppose the possibility of a phys-
ical theory that is capable to give answers to non-computable questions? No.
However, and here we follow Davis, the current approaches to hypercomputabil-
ity cannot serve this goal, since they rely on current physical theory, which
seems not suitable for what one needs in order to hypercompute.
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In the end, one cannot but conclude that, their claim amounts to the following:
if it were possible to build an oracle, it would be possible to solve unsolvable
questions. This is a quite trivial remark, especially in the light of the develop-
ments based on Turing’s so-called forgotten ideas in recursion (or computabil-
ity) theory. We certainly do not want to exclude the possibility of a physical
theory that is capable to cope with the infinite in finite time, however, such
theory would require a revolution in physics itself. In supposing that one day
some genius would develop such a theory, and, on the basis of the theory, build
a device that “solves” the unsolvable, this would be a very exciting and funda-
mental philosophical discovery. Indeed, man would be confronted with some-
thing that not only goes beyond the Turing limit, but also beyond man’s limit,
an aspect of hypercomputability that is hardly taken into account by its advo-
cates.

4.3.3 Conclusion

I was first confronted with the idea of “hypercomputability” at a time I was
reading about chaos theory, wondering how chaotical systems might be con-
nected to unsolvability. It was in this context that [ read the paper by Da Costa
and Doria [dCD90], in which they prove that there is no method to determine
whether a given set of equations is chaotic or not, a paper published at a time
that the domain of hypercomputability was not yet as fashionableE] In that
same paper, the authors consider the possibility of developing devices that “com-
pute” the non Turing computable on the level of the Gedanken experiment,
and admit that a real implementation might be “tricky from a practical point
if view.”. Being unaware at that time of the domain of hypercomputability, and
the fact that a large number of researchers situate themselves in this domain,
I was rather surprised by their proposal, but even more by the following state-
ment [dCD90]:

We cautiously suggest that the trouble may lie not in some inner weakness or flaw

72Besides Da Costa and Doria, there were several others who constructed uncomputable
problems in the domain of physics, that are now discussed in a context of the possibility of
“computing” the non Turing computable. See e.g. also [PER79,[Sca63].
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of mathematical reasoning, but in a too narrow, too limited concept of formal
system and of mathematical proof. There is a strong mechanical, machinery-
like archetype behind our current formalizations for the idea of algorithmicity
that seems to stem from an outdated 17th century vision a la Descartes |[...] Also,
a first-order language such as the one for Zermelo-Fraenkel theory is too weak:
even if we can prove all of classical mathematics within it, it is marred by the
plethora of undecidability and incompleteness results that we can prove about it,
and which affect interesting questions [m.i.] that are also relevant for mathematically-
based theories such as physics. The authors certainly do not know how to, let
us say, safely go beyond the limits of the presently available concepts of com-
putability, algorithmicity, and formal systems, but they feel that if there are so
many quite commonplace things that ‘should’ somehow be provable or decid-
able within a sensible mathematical structure, and which, however, turn out to
be algorithmically undecidable or unprovable, then one cannot blame the whole
of mathematics for that. Mathematics is not at fault here. The problem lies in
our current ideas about formalized mathematics. They are too weak. We must

look beyond them.

As is clear from this quote, the reason for Da Costa and Doria to ask for an-
other “hypercomputable” kind of mathematics is not the idea of mechaniza-
tion itself, but rather the fact that the formalisms underlying it have shortcom-
ings — they are marred with the plethora of unsolvability and incompleteness.
But why is this a problem? Their answer: because there are “so many” com-
monplace things which should not be marred with this plethora. We already
pointed out that some of the supporters of hypercomputability have a rather
ambiguous attitude towards the Church-Turing thesis. On the one hand, they
seem to suggest that they do not want to oppose it, but rather the “stronger”
physical version of it. On the other hand, in using phrases like “computing the
uncomputable” ([CP99]) or asking questions like “Can computations be non-
recursive?” ([Sta04], p. 136) they do oppose the Church-Turing thesis, and with
it thesis M. A same attitude seems to underly the quote by Da Costa and Doria,
and is rather revealing: their basic problem is not mechanization itself, but the
fact that it gives rise to unsolvable decision problems not only in mathematics,
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but also in physics.

I have always been attracted to the impossible, and especially its implications
for me as a human being. In my mind, the fact that there are limits for us hu-
mans, is something very fascinating. This is in fact one of the reasons why I
chose to study unsolvability and the question of how the theoretical results that
follow from the Church-Turing thesis and diagonalization, are connected to
specific formal systems and their execution. In Sec. [3.3|we argued, on the basis
of our more historical results, that studying, on the one hand, specific (classes
of) cases, and, on the other hand, formal systems that do not necessarily have a
direct appeal to intuition, is very important from a philosophical point of view.
For me, as a philosopher, exploring variant systems of computability has been
basic to accept the Church-Turing thesis and it has been our study of tag sys-
tems that really confronted us with our own limitations. From this point of view
itisindeed very important to consider other models of computability. However,
this does not imply a hypercomputationalist perspective.

To our mind, the supporters of hypercomputability too much neglect this other
side of the Turing limit. They do not take into account particular systems, nor
do they consider anything else but the Turing limit, and only, in a very general
sense. The fact that Copeland considers the hypothesis that the mind is an or-
acle only illustrates how far he is removed from understanding the true power
of “computability” and the Church-Turing thesis. Again, we would like to em-
phasize, that this statement from our side, does not imply a computationalist
point of view, assuming that the mind itself is computable. rather, we want to
emphasize that as far as problems are concerned that are situated in the context
of computability and unsolvability, the mind is at least as limited as a universal
Turing machine, if one accepts the Church-Turing thesis.

As was argued, both computational complexity theory and hypercomputability
are very closely connected to, on the one hand, theoretical computability and
unsolvability, and, on the other hand, the computer itself. These two develop-
ments stand in a very sharp contrast with each other. Computational complex-
ity theory investigates the practical feasibility of the computable, hypercom-
putability studies the possibility to make feasible the non-computable. In both
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domains, theses have been proposed (or opposed) that are very closely con-
nected to the Church-Turing thesis. However, the Cook-Karp thesis is clearly
not as strong and well-supported as the Church-Turing thesis, while the ad-
vocates of hypercomputability have a rather ambiguous attitude towards the
Church-Turing thesis. They do not explicitly oppose it, but do not give very
clear nor convincing arguments for differentiating it from the thesis they do
want to oppose, i.e., the physical Church-Turing thesis. It is remarkable to see
that what they actually oppose is not really the Church-Turing limit, but indeed
the idea that the computer is the actual physical limit of computability. This po-
sition can only be called “strange” in the light of the previous chapters. Indeed,
since the computer can be regarded as a finite version of a universal Turing ma-
chine, given its physical form, and is thus in fact a “weaker” form of the Turing
limit, it would seem more logical if one would oppose the Church-Turing thesis
itself, rather than its physical version.

Relating the two developments described here to the previous chapters, it is
clear that the theoretical developments in the twenties and thirties, when com-
bined with the physical form of these developments, have given rise to a va-
riety of new fundamental problems, problems closely connected to the limit
imposed by the Church-Turing thesis. In both domains however, Turing ma-
chines and the Turing limit are the dominant paradigm. While this is not a real
problem with respect to computational complexity theory —itis clear that Hart-
manis and Stearns preferred Turing machines because they are close to real
computers — we believe this is a problem in the context of hypercomputabil-
ity. In not taking into account the several other theses as well as the proper
context in which Turing wrote his 1936 paper, some of the advocates of hyper-
computability make fundamental mistakes and are unclear about what they
are actually opposing. Indeed, by stating that they do not want to oppose the
Church-Turing thesis, because Turing himself did not identify physical ma-
chines with his Turing machines, but rather human calculators, they first of
all, neglect Church’s and Post’s statements in this respect, and, secondly, do not
see that the true purpose of the theses was in effect to capture computability
and effectivity in all its possible forms. If e.g. Turing would have believed that
his thesis is merely a theoretical construct, while being convinced that it is pos-
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sible to construct physical machines that are not subject to the Turing limit, I
don’t think that he would have claimed to have proven that the halting problem
is unsolvable!

4.4 Conclusion.

In this chapter we have shown in how far the computer can be considered as
a physical realization of computability (Sec. [4.1). It was argued that as such a
physical realization, that can be effectively used to compute very quickly, the
computer itself has generalized the notion of computability. It is no longer re-
stricted to “pure” computations. Important here, is that the computer did not
solely arise from a formal-theoretical analysis of what we exactly mean with a
computation. Rather, it resulted from the experiences and abstract thinking of
both the logicians and the engineers, or the logician-engineers (like Turing and
Zuse) when developing this device.

As a physical realization of computability, the computer has not only shown us
the rich variety of “tasks” covered by computability — in the end, anything that
can be computed by a computer as we know it today can be computed by a
Turing machine - but has also made available the universe of discourse to an
extent that was not possible before (Sec. [4.2). In this sense, the computer has
given rise to fundamental new results in several different domains. Equally im-
portant in this respect, however, is also the fact that as such, the computer has
made it possible to study the formalizations it is the physical realization of. In
part I, we will give some examples where the computer has played an impor-
tant role in the establishment of certain results.

The computer also resulted in developments that are closely connected to the
question of computability and its (theoretical and practical) limits (Sec. [4.3).
Computational complexity theory studies the feasibility of the computable, while
hypercomputability takes into account the question of the physical realizability
of a device that “computes” the theoretically uncomputable.

To summarize, the computer’s role in the context of computability and unsolv-
ability can hardly be underestimated. Even though it is but a finite realization
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of the formalisms considered in the previous chapters, it has lead to devel-
opments closely connected to the Church-Turing thesis, some of them arising
from the actual use of the computer, some from theoretical considerations con-
nected to computers.

In part II of this dissertation we will study tag systems. Our purpose here is
not to go beyond the Turing limit. Rather we would like to show that there are
enough problems remained unsolved on the level of a class of formalisms that
are known to be capable to compute what any Turing machine can compute.
Although part Il is far less historical as compared to part I, there are several con-
nections between the two parts. In fact, our research on tag systems was very
much inspired by our way of thinking on computers, our more historical study
of the work by Church, Post and Turing and our more or less philosophical con-
clusions on the basis of this study. First of all, tag systems are in a way a “class
example” of a class of formal systems that are far removed from our intuitions
of computability. In the end, one should not forget that they were developed by
Post in order to find abstract forms of mathematics, far removed from interpre-
tation or meaningful concepts. Part II is based on the assumption that studying
systems further removed from intuition, allows to more easy focus on more ab-
stract properties of those systems. Secondly, most of our results are based on
a study of specific (classes of) systems of tag. Finally, as will become clear, the
computer is considered as an important tool to not only study tag systems, but
also to get new results, results which can be heuristic as well as theoretical.



262 CHAPTER 4. THE COMPUTER.



Part 11
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[...] [...] time after time I found that because of my ignorance of these antecedents,
I had not, nor could have, really understood those ideas. All the logical analysis n
the world will not reveal the intentions behind ideas, and without these inten-
tions one all too easily misunderstands and misjudges the ideas and theories of
awriter no longer living. [...] one also finds that current ideas and results can illu-
minate older and crustier ideas. The lesson seems to be this: we cannot fully un-
derstand our own conceptual scheme without plumbing its historical roots, but
in order to appreciate those roots, we may well have to filter them back through
our own ideas.

Judson C. Webb, 198017_3]

In Part I we discussed the early beginnings of unsolvable decision problems,
and showed how, through the computer, new problems and possibilities have
arisen in this context. Although this first part could be understood as a research
in itself, the main recurring theme will now be further investigated from a com-
pletely different point of view. This main theme is the significance of the ac-
tual use, discourse and physical implementation of the several different formal
systems considered by Church, Post and Turing for the abstract results of un-
solvability and the closely connected theses of identifying the intuitive notion
of computability with one of these formalisms. In this second part we will in-
vestigate solvability and unsolvability by starting from the form that first led
Emil Post to the idea that, contrary to what he believed previously, there might
not exist a positive solution to the decision problem for Principia Mathematica.
Here, we will study Post’s form of Tag.

From [Web80], p. xii.
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Chapter 5
Introduction. Why tag systems?

All important fields of human endeavor start with a personal commitment based
on faith rather than on result. [...] Only a sour, crabbed and unadventurous spirit
will hold it against us.

David Marr, 1976E]

Since Post spent nine months of his research during his Procter fellowship at
Princeton (November 1920 — July 1921) on tag systems there has not been very
much research on this class of systems relative to some of the other formalisms
significant in the context of computability and unsolvability. As a consequence
their influence on computer science and mathematical logic is nihil as com-
pared to the influence of e.g. Turing machines and A—calculusE] This does not
imply that they are not known to a wider audience - they are frequently men-
tioned in e.g. surveys of or introductions to mathematical logic or theoretical
computer science. It only means that not many researchers really got involved
with tag systems. As far as the author knows there are about 15 researchers, ex-
cluding Post, who have researched and published on tag systems: Marvin Min-
sky [Min61, Min62, Min62b, (CM63, Min67], Yuri Maslov [Mas4a, Mas4b], Hao

! Mar76]
2The fact that the entries on Wikipedia for A-calculus, Turing machines, primitive and par-

tial recursive functions are significantly longer as compared to that for tag systems (of which
the major part is reserved for cyclic tag systems) can be considered as a kind of superficial in-
dication of the infamousness of tag systems relative to these other formalisms.
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Wang [Wan3a], Shigeru Watanabe [Wat63], Philip K. Hooper [Hoo6a], Stal Aan-
dera and Dag Belsnes [AB71], Charles E. Hughes [Hug73|, David Pager [Pag70],
Turlough Neary and Damien Woods [NWO06a], Frank Rubin [Rub88], Brian Hayes
[Hay86,[Hay6a] and Stephen Wolfram [WolOZ]E]

The limitedness of this research on tag systems naturally leads to the following
question: given the fact that tag systems have hardly been investigated, why
would one be interested at all in these systems? Of course one could claim
that the meagerness itself of this research is reason enough but one could also
argue to the contrary and claim that tag systems simply haven't got much at-
tention because they are not as interesting as, e.g., Turing machines or that this
research would add nothing new to the existing literature.

While it was at first not “part of the plan” to devote more than 1/2 of this dis-
sertation to tag systems, I got more and more attracted by these fascinating
systems. In this sense, it was intuition rather than theoretical considerations
that led me to this research, and our choice for tag systems can thus be called
a subjective choice, one however that is completely in line with some of the
conclusions from part I. We hope that through the results and comments to be
given in the chapters to follow, in the spirit of the idea of “Legitimation durch
Verfahren,’ we will be capable to convince the reader that tag systems were
and are in need of more research. In the remainder of this short introductory
chapter I would like to point out some of the typical general features of tag sys-
tems that make them interesting systems to study, at least for me.

As was pointed out in[2.2.5} one of the reasons why Post wanted his Account of
an anticipation to be published was the difference in method as compared to
Church, Godel or Turing: he was more interested in the outward forms of sym-
bolic logic, rather than in the logical concepts expressed through it. Tag sys-
tems were one of the forms that resulted from this method. As a consequence
it is very hard to attach any concrete interpretation to them since they are far
more abstract. This is to our mind a very important feature of tag systems. First
of all, because of this abstract character, they are far less intuitively appealing

3In Section the research that has already been done on tag systems, will be discussed in
more details.
4“Justification by doing”
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than Turing machines and do not arise from an analysis of the intuitive notion
of computability. In this sense, they have seriously challenged the idea I had
of a computation before I investigated these systems and in fact generalized it.
Secondly, we believe that because of their abstract character, tag systems are
very suitable to confront one with his/her own limitations on a very low level.
Indeed, as was already explained, even the very simple example of a tag system
mentioned by Post is very hard if not impossible to predict. For me personally,
tag systems have played the role of showing me how general the limit implied
by the theses discussed in the previous chapters actually are.

Another feature of tag systems connected to their formal simplicity is that they
are very easy to implement on a computer and allow easily for a more “experi-
mental” approach. In chapter[8|we will use this approach to study tag systems.
A further consequence of their abstractness is that it seems rather straightfor-
ward to find a large number of very small tag systems that are very hard to get a
grip on and might be unsolvable.

A very interesting opportunity offered by tag systems, that cannot be fully ex-
plored in the present research, is to study the connection between number the-
ory and formalized systems of logic. Post repeatedly mentions that there is a
close connection between tag systems and number theory, through the regu-
larity of always removing v letters. In chapter[9] Sec. [9.4.1]we will prove that tag
systems are closely connected to an intricate problem of number theory, and
further discuss these matters.

Although we have pointed out here some features of tag systems, they are merely
general aspects that have yet to prove their merits in the following chapters.
It is only in actually studying tag systems, that they show their true charac-
ter. Still, we believe it is important to give the reader at least one clue from
the existing literature that indicates where tag systems might play a significant
role. There is indeed such a clue: tag systems’ role in the research on small
universal machines and limits of solvability and unsolvability. In the fifties
and sixties of the 20th century, there seemed to have been a small hype for
finding the smallest possible Universal machine, the size of a machine being
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measured by the product of the number of states and symbols The winner of
this “competition” was, for a very long time, Marvin Minsky’s 4-symbol, 7-state
machine [Min62, Min62b]. Without going into the question of why search-
ing for (smallest) universal systems might be interesting (see Ch. [9} Sec.
and [9.2), it is significant to note that Minsky’s 4x7 machine was proven to be
universal because it can compute what any tag system with v = 2 can com-
pute. Since it was already proven by Minsky that there are universal tag systems
Min61, Min62,/CM63] with v = 2, tag systems that are able to represent any Tur-
ing machine, this proofis valid. For the last twenty years, searching for smallest
universal machines has gained new attention, research now being explicitly sit-
uated in the context of studying the limits of solvability and unsolvability. Re-
markable here is that tag systems lie at the basis of many of the small universal
systems known, including cellular automata [Co004], Turing machines (See e.g.
[Rog96]) and circular Post machines (See e.g., [KROI])E] Despite the significance
of tag systems in this context, any extensive research on the limits of solvability
and unsolvability on tag systems is still lacking. In chapter[9} Sec. [9.4 we will
tackle this specific problem, and study limits of solvability and unsolvability in

51n his [Sha56], Shannon argued for the interchangeability between number of states and
symbols, since the product of both has a certain invariance. He thus suggested this product as
ameasure for the size of a Turing machine. Minsky took this over in his [Min62b] and nowadays
it is the conventional measure. For more detailed information see Ch.

51t should be pointed out here that tag systems are of course not the sole means for con-
structing (small) universal systems in the context of determining limits of solvability and un-
solvability. For example, in the domain of diophantine equations one has also done some seri-
ous research on limits of solvability and unsolvability, where universal Diophantine equations
are constructed by other means (e.g. through simulation of partial recursive functions, Turing
machines and register machines). Since Matiyasevich [Mat70] has proven that Hilbert’s tenth
problem is recursively unsolvable, one has searched for small universal diophantine equations,
while there has also been research on solvable classes. The paper by Jones [Jon82] gives an
overview of the smallest known universal diophantine equations (in terms of the number of
unknowns or the total degree) and gives several examples. It should be noted that, as is the
case in the context of Turing machines, it is still not known what the minimum degree or the
minimum number of unknowns is to obtain a universal diophantine equation. It is known
however that the cases with degree 2 are solvable, while one can construct universal equations
for any degree equal to or greater than 4.
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tag systems.

Part Il is divided into several chapters. We will first discuss most of the existing
research results on tag systems and describe the general classes of behaviour in
tag systems and their connection to the two forms of the problem of “tag”. In
this way, the first chapter (Ch. [6) can be considered as a kind of introduction
to tag systems. In the next chapter (Ch. [7), we will consider several features of
tag systems, called constraints, that have been implemented in an algorithm for
generating tag systems that might be considered intractable on a more practical
level, i.e., for now it is very challenging if not impossible to develop methods
for predicting the behaviour of these tag systems. One such class of tag systems
generated was used in several computer experiments, the results of which will
be described in Chapter[8] In the final chapter[9we will situate tag systems in
the research on limits of solvability and unsolvability. It should be pointed out
here that, besides tag systems, our main focus will be on research on limits of
solvability and unsolvability in Turing machines. Other computational systems
in which finding minimum limits for unsolvability or upper limits for solvability
will not be taken into account/[’]

“But see footnote@in this respect.
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Chapter 6

Preliminaries: Some basic aspects of
Tag systems

In this chapter we want to give the reader an introduction to tag systems. In
a first section, we will discuss most of the existing literature and results on tag
systems. This section not only serves the purpose of giving an overview but can
help to make the reader more familiar with the inner workings of tag systems.
The last subsections of this section, will make clear that tag systems are very
‘stubborn’ systems, easy at first sight but particularly hard to structurally un-
ravel. In a second section, we will discuss the several classes of general behav-
iour in tag systems, as first described by Post, and furthermore link these classes
with the two forms of the problem of “Tag”. After having given an example of
how one might proceed to prove specific instances of tag systems solvable, we
will prove a small theorem concerning the reducibility of the decision prob-
lems for specific classes of tag systems to other classes of tag systems, through
decomposition.
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6.1 Discussion of published results on tag systems.

A number of [...] investigators [...] have worked on the problem [...], and in recent
years they have brought the power of the computer to bear on it. Nevertheless,
we live in a state of almost perfect ignorance about the nature of Post’s tag sys-
tem([s].

Brian Hayes, 1986E]

The existing results by on tag systems can be subdivided into two categories.
On the one hand there are theoretical results concerning the whole class of tag
systems, related to general mathematical properties such as unsolvability and
universality. On the other hand, there are some publications that try out a more
concrete approach to tag systems, mostly starting from one and the same spe-
cific case the tag system mentioned by Post, defined in Sec. [2.2.3|

6.1.1 General Theoretical results
Tag systems, Universality and unsolvability

Tag systems were first proven to be unsolvable (relative to Turing machines)
by Marvin Minsky in 1961 [Min61], after the problem was suggested to him
by Martin Davis. Some months after the publication of this first proof, Min-
sky, in collaboration with Cocke, provided an alternative proof, published as
[Min62, Min62b, (CM63]. Hao Wang somewhat modified this second proof in
order to limit the length of the words to be tagged at the end of a string.

The first proof by Minsky will be described here, but not in all its details. It
is added here because it was the first proof of the general unsolvability of tag
systems. The second proof will be described in all its details, since it will be dis-
cussed later on in Chapter[9} Wang's proof will not be included, since it basically
relies on the same methods used by Minsky in his second proof.

§1. Minsky’s first proof To prove the decision problem for tag systems un-
solvable, Minsky showed that tag systems can “compute” anything computable

1[Hay86], p. 21
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by a Turing machine. While the construction in his [Min61] is rather ingenious,
it is also rather complex, contrary to the proof he found some months later.
The proof is not a direct reduction of Turing machines to tag systems. It is first
shown that any Turing machine can be reduced to a 2-tape non-writing ma-
chine. Then, it is proven that any 2-tape non-writing machine can be reduced
to a tag system. The reduction of Turing machines to 2-tape non-writing ma-
chines uses a kind of Gédel numbering, relying on a factoring method.
A 2-tape non-writing machine, consists of two semi-infinite tapes, each of which
is completely blank, except for a single mark indicating the location of the square
at the left end of the tape. The only thing such machines can do is move left or
right and “recognize” that they are at the left end of one of their tapes. Now how
does the encoding of a Turing machine into this 2-tape non-writing machines
work?
Suppose that the Turing machine we want to simulate is 7, T being a 2-symbolic
Turing machineE] and let us indicate the 2-tape non-writing machine to which
T is reduced by T*.
As we already know from Part I, a Turing machine can be represented by a set
of quintuples:

qisj:Sijdijqij
where the g’s represent internal states, the s’s symbols (0 or 1), and d the di-
rection of the motion of the head (left or right). Using this representation, the
operations of T are:

Read the tape. If the current symbol is 0, go to Wj,. If the current symbol

1

Rg;:
is 1, then goto W, .

: write s;,, go to M;,
M;,: Move in direction dj;, go to quo
: write s;;, go to M;,

;- Move in direction d;,, go to R%

2Since Shannon has proven in [Sha56] that any n-symbolic Turing machine can be reduced
to a 2-symbolic Turing machine, this does not lead to any problems with respect to the proof.
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If for some i and j there is no quintuple g;s;, we can set W;; equal to the halt-
ing instruction. For each instruction of T, T* will have a corresponding set of
instructions, and whenever T executes an instruction, 7% will execute the in-
structions from the corresponding set. In order for T to be reducible to T*, T*
must be able to represent the complete state of T, each time T has completed
an instruction. The complete state is given by:

(1) the content of the tape
(2) thelocation of the reading head on the tape
(3) the machine’s internal state

All three tapes of these machines are semi-infinite, ending left. In counting
from the left, the number x denotes the current square of 7. At any moment
in the operation of T its tape contains a finite amount of data, represented by
the integer k. The number k is the decimal value of the binary number that
represents the contents of the tape, where the content of the 0-th square con-
tains the least significant letter of k. The content of the square x scanned at a
given time, is always equal to the x-th digit of k’s decimal expansion. Now, at
the beginning of each instruction of T, the two tapes T;* and T, of 7™ will be in
the following state. Tape T, will be positioned at its left end. Tape T} will have
been moved, such that its reading head is 2¥3%" squares to the right. In this way,
T* indeed represents the entire content of T (k) as well as the location x of the
current square T is scanning. After each read, write or move instruction of T,
T* will be restored in this state, x and k being changed in the appropriate way.
Now how will T* do this? We will not go through the whole proof here, but
merely sketch the global idea behind it. T* is able to “simulate” each of the
instructions of T’s program through its own instruction table, such that, if T
has moved to the right, the reading head of 7} will be moved from the 2k32"_th
square to the 2k32"" _h square. Similarly, if 7" has moved to the left, the reading
head of T;* will be moved from the 2k32"_th square to the 2k32"" _th square. If
the x-th digit in the binary expansion of k has been changed froma0Ointoal, T
has printed a 1 in its x-th square, the reading head of T} will be moved from the
2k32"_th square to the 2K*2"32"-th square. Similarly, if T has changed a 1 into 0,
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the reading head of T} will be moved from the 2F3%"-th square to the 2¥~2"3%"-
th square. Now, T* must also be able to determine whether the x-th digit of the
binary expansion of k is a 0 or a 1. This is done by repeatedly subtracting 2*
from k, until k is exhausted, keeping track of the parity of the number of times
2% has been subtracted from k. If the parity is even, x must have been 0, if not,
x must have been 1.

Now that we know how the tape must be changed, the question of course be-
comes, how will this change be executed? Instead of going through all the oper-
ations, the general principle behind them can be explained by showing how T*
is able to perform the right actions depending as to whether T reads a 1 or a 0.
The first step is to make a copy of k so that T}" is restored i.e. the head is moved
from the 232" -th to the 2¥5%32"-th square. This is done by an iterative method
in which 2¥3%" is first changed to 57¥3%" and then to 2¥5%32", The first step of
this iterative process is accomplished by a subroutine called C(2,35) which will:

(1) divide the length of the Tl* tape by 2; then
(2) multiply its length by 35, goto (1).

This process is repeated until (1) fails and the length of the tape is no longer
divisible by 2, 2¥3%" being changed to 5¥7¥3%". Then, 5¥7%32" is changed to
2k5k32" by a similar subroutine, C(7,2), consecutively dividing by 7 and mul-
tiplying by 2, until we can no longer divide by 7. In general C(S, T) indicates
a loop, of consecutively dividing by S and multiplying by T, until we can no
longer divide by S. Now we still have to repeatedly subtract 2* until k is ex-
hausted. This is done as follows:

C(35,3) C15,7)
_—

2k5k32Xﬂ>2k5k—2x72x okpk-2:27 52"

okgk-3:25 72 CB53)

This cycle is repeated until the substraction is completed, keeping track of the
parity i.e. whether the last operation was a C(35,3) or a C(15,7) loop. After this
is done, the original tape is restored by a simple C(7,3) operation (if the last
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routine performed was C(15,7)). T* then starts with the set of instructions cor-
responding with W;, or W;, of T depending as to whether it ended after having
performed C(35,3) or C(15,7) respectively.

This same kind of reasoning can be applied to the operations of moving to the
left or right, or write 0 or 1. For example, to move to the right, changing 2k32"
to 2k32""" the following process is performed:

C(3,5) C5,9)

2k32" 2k52" 2kg2* = gk32™!

Now that the global encoding scheme from T into T* has been described, we
still have to further specify the routines C(S, T) as lists of instructions for T*.
Since multiplication and division are the operations 7* has to perform in order
to execute a subroutine C(S, T), Minsky shows how one can encode these oper-
ations over an arbitrary number (called MPY(T) and DIV(S)) in T*. We will not
describe in detail how this can be done, since this is, with a little bit of think-
ing, rather straightforward to program (7;’s role is crucial here, functioning as
a kind of calculation sheet for MPY and DIV) .

In assembling MPY(T) and DIV(S) in the right way, using the right indices, 7™ is
then able to represent any complete state of T', emulating the instructions of 7.
It should however be noted that in order for the solution for the Post tag prob-
lem to work, the program for C(S, T') only uses subprograms MPY and DIV, with
prime parameters. Suppose that S = p;, p;,...p;,, and T = pj, pj,...pj,, where no
pi isone of the p;’s. Then if S or T are not prime, one does not directly multiply
resp. divide by S or T, but by the prime factors p of S and T. For example if S
=6, MPY(S) is done by consecutively performing the following two operations:
MPY(2), MPY(3). In doing the right assembling, one can then simulate any Tur-
ing machine T by a 2-tape non-writing machine 7*. Minsky has thus proven
the following theorem:

Theorem 1 T* represents the machine T in the following sense. Suppose that
the machine T is started in state q; at the x-th square of its tape, with the binary
number k written on its tape. Suppose also that the machine T* is started at
instruction Ry, with its tape T|" at its 2%32"_th square, and its tape T; at its left
end square. Then if T ultimately halts on its y-th square with the binary number
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N on its tape, T* will ultimately halt with tape T}" at its 2N32"_th square. Thus
one can conclude that if T is a universal machine, then so will T*.

Now, using this theorem, Minsky showed that any Turing machine can be re-
duced to a tag system, thus obtaining the general unsolvability of tag systems.
We already know that every Turing machine T can be represented by a 2-tape
non-writing machine with a program consisting of a certain number of instruc-
tions I, each instruction being one of the two following forms:

(I}) MPY(Kj). Go to Ij
(I;) DIV(K;). If division is exact go to I}, else go to I},

In each case K; will be one of four primes 2, 3, 5, 7E| So “all” we still have to show
is that one can always encode these operations into a tag system, maintaining
the right transfer-of-control. The shift number v is always equal to the product
of the primes one needs in the encodingﬂ

Now if the j-th instruction is MPY(Kj}), we need v+3 letters: A, a;, Bj,, ..., Bj,, bj,
for the tag system to be able to “simulate” the j-th instruction. The state of the
program at the start of instruction I is always represented by a string in the tag
system that has the following form: A;a ]” This must be converted into A; a]r.lKj ,
if we want to encode MPY(K;). This can be done by the following production

rules:

Aj —»Bj%sz...ij
N

aj bj

(v—i+1)(v-1)

Bj, — b. Aj
e g

bj=a,

The string A; a]’? will indeed be converted into A; a]'.lKj by repeated application
of the production rules.
The encoding for DIV(K;) into tag production rules is a bit more complicated. If

3All the subroutines work with numbers for which the prime factors or never larger than 7.

“It should be noted that, later on in the paper, Minsky shows that the values of K j can be
reduced to 2 and 3 so v becomes 6

SNote that a]’.l means that a; is repeated n times.
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the j-thinstructionis DIV(K;), we now need 2v+2letters: A}, aj, Bj,, ..., Bj,, bj,, ..., bj,,
for the tag system to be able to “simulate” the j-th instruction. We then need
the following production rules:

Aj— BjBj...Bj,

aj — bj, bj,...bj,

B, —ALa"" IfKli
] b — a; " IfK;li

Bj,— Al a™  IfK;ti

bj, — a;, IfKj{i

Applying these production rules to the string A; aj’.l, itwill be converted to Aj, aZ/Kj
or to Aj, aj’z depending as to whether 7 is divisible by K;. Both the produc-
tion rules representing DIV and MPY can be checked manually. The details are
skipped here.

It should be noted that in this encoding, the number of symbols needed for a
tag system “simulating” the operations of a given Turing machine, let alone a
universal Turing machine, is very large. We can make a rough estimate of this
number of symbols in the following way. As was said before, the operations of a
Turing machine T can be represented by 5 instructions: Rg,, Wj,, M;,, W;;, M;, .
Now in order to read a symbol (R;), we need 5 subroutines of the form C(S, T).
Encoding these as MPY and DIV, we need 6 multiplications and 5 divisions. This
implies that, supposing v =2-3 = 6, we need 6 -9 productions for the multipli-
cations, and 5 - 14 productions for the divisions. This results in a total of 124
productions for one single reading operation. For the tape to move to the left,
we need 2 subroutines of the form C(S, T). Encoding these with MPY and DIV,
we get 3 multiplications and 2 divisions, resulting in a total of 28 + 27 = 55 in-
structions. Doing the same calculations for moving to the right we get 60 in-
structions. For writing a 0 we need 55 instructions, for writing a 1 we need 60
instructions. Making a kind of “best-situation” estimate, supposing the Turing
machine one wants to represent only moves to the left, and always prints 0’s,
never 1’s, we need at least 124 + (4 - 55) = 344 productions in the tag system for
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each stateﬁ Now, since the shortest 2-symbolic universal Turing machine has
18 states, a representation of this Turing machine into tag systems — thus con-
structing a universal tag system with an unsolvable decision problem — would
lead to a tag system of at least 18*344 = 6192 productions (and thus symbols).
Besides the gigantic proportions of the tag system, the time needed by the tag
system — the number of productions to be performed - is equally gigantic since
we are working with very large numbers, resp. strings.

Although Minsky must have been satisfied to have solved Post’s problem of tag,
he understood that improvements could be made ([Min61], p. 450):

We have been unable to reduce P [= v] further, and the prospects seem gloomy.
(We have been unable, as was Post, to prove a negative result for P = 2.) It would
be desirable to reduce the exponentiation level in this representation but the
“Tag” systems seem intractable in regard to lower level manipulations. We have
been unable even to find productions which can reduce the length n > P of a

string to n — 1, for arbitrary n.

Some months later, Minsky, in collaboration with Cocke, managed to prove that
any Turing machine can indeed be reduced to a tag system, with a shift number
v = 2. This encoding leads to the possibility of constructing shorter universal
tag systems.

§2. Minsky’s second proof The first proof of the general unsolvability of tag
systems is rather complicated and impractical (given the level of exponentia-
tion). This motivated Minsky to search for a more “elegant proof” of this result
(ICM63], p. 1):

[The previous proof] is very complicated and uses lemmas concerned with a va-
riety of two-tape non-writing Turing machines. Our proof here avoids these oth-
erwise interesting machines and strengthens the main result, obtaining the the-

orem with a best possible “deletion number” P = 2. Also the representation of

80f course the calculation was based on the original encoding of Minksy using four prime
numbers. An encoding with two prime numbers might result in a shorter list of productions.
Still, even if we would be able to halve this number, it remains a fact that we need relatively
large tag systems to do the simulation properly.
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the Turing machine in the present system has a lower degree of exponentiation,

which may be of significance in applications.

In this second proof, it is shown how any two-way infinite Turing machine T
can be directly reduced to a tag system (without the intermediary reduction to
two-tape machines).

In [CMG63], the usual formalization of the operations of a Turing machine — the
machine is in state g;, depending on the symbol it is scanning it writes s; ¢ or
si1, performs move d; o or d;; and goes to state g;o or ¢;; — is replaced by
a slightly different, though completely equivalent one: The machine is in state
qg;, it writes s;, performs move d;. Only then it reads the tape, and depending on
whether a 0 or a 1 was scanned, it goes to state ¢; o or ¢; 1. In converting the first
formalization of a Turing machine to this second form, of course the number
of states has to be doubled[] Within this formalization, a Turing machine is
represented by a set of quintuples of the following form: {q; : s;, d;, qi 0, Qi 1}-
The contents of the tape can then be represented as follows:

.‘dﬁ‘d5‘d4‘d3‘a2‘d1‘d()‘a"b()‘bl‘bg‘bg‘b4‘b5‘b6‘...

where the machine is in state g; and « is the digit on the scanned quare. The
complete state (contents of the tape, the machines present location on the tape
and its internal state) can now be represented by 3 numbers: g; (the state the
machine is in after having read a), m = Y. ;2% and n = ¥ 4,2, a not being in-
cluded because it has become redundant within the present formalization). It
is assumed that the machine is binary, the a’s and b’s thus always equal to 0 or
1. All but a finite number of a’s and b’s are zero, so the summation is defined.

Now, since the complete state of a machine is given by the triple {g;, m, n},
the effect of applying a quintuple {g; : s;, d;, gi 0, gi 1} to such triples — the way
the triples are transformed from each moment to the next — can be very eas-

"Minsky finds this formalization of a Turing machine a bit more honest than the usual one.
As is stated in [CM63]: “In a way, however, this new formalism is a little more honest, because in
the usual formalism the machine needs an extra memory in which to store the symbol just read,
while it writes and then moves. Here, the reading operation causes an immediate state-change,
and no implicit symbol-memory is required.”
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ily described. For example if our machine were to move to the right, the triple
{q;, m, n} will be changed as follows:

e Change mto2m+0or2m+ 1 (depending on whether s; =0 or 1)
* Change n to L%J, i.e. the largest integer < n/2

» Change the new state to g; o or ¢;,1, depending on whether n was even or
odd.

In other words, {g;, m, n} is changed to {¢; (, mod 2),2m + $;, LgJ }. If the machine
has moved to the left, we only have to reverse the roles of m and n. Now, how
will we construct a tag system out of this interpretation?

Given a binary Turing machine, with states ¢, ..., ¢, we define a tag system with
symbols Xi, Aj, ocl-,Bi,,Bl-,D,-,o,Di,l, di,O» diyl,S, S, Ti,O’ ti,l,fOI" i=1,..r.

The complete description (g;, m, n) of a Turing machine at a given time will be
represented by the following letter string in our tag system:

Aixi(aix)"Bix;(Bix)"

where the superscripts m and n mean that the bracketed strings are repeated
m and n times respectively. The indices determine the state the machine is in.
From now on, the state-subscripts, that appear on each letter, will be dropped.
To simulate the operation of moving to the right, the following production rules
in the tag system will be sufficient.

The tag words associated with A; and «a; are:

A—Cx (s;=0)
A—Cxcx (s;=1)
a — cxXcx

Applying these rules to Ax(ax)” Bx(Bx)" we get:
Bx(Bx)"Cx(cx)™ 6.1)

where m’ is 2m or 2m + 1. The rules for B and S are:

B—-S§
B—s
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Applying these to (6.1), we get:

Cx(cx)™ S(s)™ (6.2)
Then, applying
C — DDy
Cc— dl do
to (6.2) we get:
S(5)" D1 Do(dy do)™ 6.3)
The rules for S and s are:
S—"TTy
S—hil

If n is odd, the above given rules result in:
Dy Do(dydo)™ T To(11 1) 7 (6.4)
If n on the other hand is even, (6.3) is changed to:
Dy (ch do)™ Ty To (11 10)? (6.5)

Let us proceed first with the case n odd. The rules for D, and d; are:

D1 - A1 X1

dl — X1 X1
Applying this to we get:

n-1 !
T To(tity) 2 Ayxg(arx)™ (6.6)

The rules for T; and 1 are:

I — Bixy

n— pr1x

and result in:
' n-1
Arx (a1x0)™ Brx (B1xy) 2 (6.7)
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from . Since ”T_l is equal to L%J , we have arrived at the next complete state
of the Turing machine, having gone from {g;, m, n} to {G;  mod 2, M', L 5]}
Now, let us look at the case n even. The rules for Dy and d, are:

D() i XA()JCO
d() — X Xo
Applying these to (6.5) we get:
To (11 10) % x Ao xo (o x0)™ (6.8)
Next, we have:
To — Boxo
fo — BoXo
resulting in:
Apxo(aox0)™ Boxo(Boxo) 2 (6.9)

From this it follows that also in case n even, we have arrived at the next com-

plete state of the Turing machine, {g;, m, n} being changed to {g; ; mod 2, ', L 5]}
Both and have the same form as the string we started from initially,

except for the indices being changed. In this respect the production rules given

here, are exactly those needed for simulating one execution of the operations

that have to be performed in a given state, the Turing machine having moved

to the right. The rules for moving to the right, can be applied in a similar way.

These are:

A—S a—s
B—Cx B — Cxcx(s; =0orl)
B — cxcx

S—-T\T, s—til

{ C—DiDy c—ddy

T —A1xp Tp— xAoxp

h—axy  fo— QoXo

Dy — Bix1 Dy — Byxo

dy — Prx1 do — Poxo

As is clear from these production rules everything depends on the parity of n
(when moving to the right) or m (when moving to the left). This can be clarified
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with an example. Suppose that we want to simulate the machine going from
complete state {q;, m, n} to {g;,2m+1, L%J }. Further suppose thatn=3 and m =
5(...0000011x,101000000...). Then starting from the string, AxaxaxaxaxaxBxfxfxf[x,
which is the encoding of the content of the tape of the Turing machine, applying

the above production rules, we get the following sequence of strings (remember

that v =2):

AxaxaxaxaxaxBxBxBxfx
—_— —_——
m=5 n=3
axaxaxaxaxBxpxpxpxCxcx

axaxaxaxBxfxfxpPxCxcxcx
axaxaxBxpxpxPxCxcxcxcxcxcx
axaxBxpxfxpPxCxcxcxcxcxcxcxcx
axBxpxpxPxCxcxcxcxcxcxcxcxcxcx
BxfxfxpfxCxcxcxcxcxcxcxcxcxcxcxcx
BxPxPxCxcxcxcxcxcxcxcxcxcxcxcxS
BxBxCxcxcxcxcxcxcxcxcxcxcxcxSs
BxCxcxcxcxcxcxcxcxcxcxcxcxSss
CXCXCXCXCXCXCXCXCXCXCXCXSSSS
cxcxcxcxcxcxcxcxcxcxcxSsssDy Dy
cxcxcxcxcxcxcxcxcxcxSsssDyDyd dy
cxcxcxcxcxcxcxcxcxSsssDyDydy dydy dy
cxcxcxcxcxcxcxcxSsssDyDydy dydy dyd, dy
cxcxcxcxcxcxcxSsssDyDydy dydy dydy dydy dy
cxcxcxcxcxcxSsssDyDydy dydy dydy dody dody dy
cxcxcxcexcxSsssDyDody dydy dydy dydy doydy dody dy
cxcxcxcxSsssDyDydy dydy dody dydy dody dydy dody dy
cxcxcxSsssDyDyd, dyd, dydy dyd, dydy, dydy dydy dydy dy
cxcxSsssDyDyd, dyd dyd, dyd, dydy dydy dyd,y dydy dydy dy
cxSsssDyDydy dody dody dody dody do dy do dy do dy do dy do dhy dy
SsssDy Dydy dody dydh dody dody dydh dy dy do dy dy dhy do dy do dy dy
ssDy Dy dh do dy do dy do dy do dy do dy do dy do dy do dhy do dy do dy do T1 To
D1 Dydy dydy dody do dy dy dy do dy do dy do diy do dy do dy dody do Ty To 1 1
dy dydy dody dydy dodh dody do dy dody do dy dodhy dody do Ty To 1 1 A1 X1
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dy dydy dody dydy dydy dody do dy dodh do dy do dy do Ty To 1 Tg Ay Xy X,
dy dydydody dydy dod dody dody dody dody do Ty To by To Ay X1 @y Xy Xy
dydydy dydy dydy dydy dody dody dody do Ty Toty To A Xy @y X1 @y X @01 X1
dydydy dydy dydy dydy dydy dody do Ty To t To Ay X1 @1 X1 @1 X @ X1 @ Xy
dydydy dydy dydy dydydody do Ty Toty to A1 X1 @01 X1 @1 X1 @ X1 @ X X1 X
dydydydody dydy dodydo Ty To 1y To Ay Xy @1 X1 @01 X1 @1 X1 @ X1 @ X @1 X
dydydydody dydy dyTy Toty o A1 X1 @y X1 @ X1 @1 X @] X1 QU1 X1 @1 X1 Q1 X
dydydydydydy Ty Toty Tp A X1 @1 X @1 X @ X @ X1 Q1 X1 Q1 X1 A X1 QU1 X
dydydydy Ty Toty fg Ay X @01 X @1 X1 @ X1 Q1 X1 @1 X1 Q1 X1 QU] X (U] X @] X
didyTy Toty lh A1 X1 @1 X1 Q1 X1 @ X1 @1 X (U] X1 QU1 X1 Q1 X1 @ X @] X (U1 X
NhToti o A1 X101 X1 @1 X1 Q1 X @1 X1 X1 X1 Q1 X1 Q1 X1 Q1 X X1 X1 X1 X1 Q1 Xy

Nip A1 X101 X101 X1 X1 X1 X1 X1 X X1 X X1 X X X X X X X X @ X1 By xg

A1X) @1 X1 Q1 X1 Q1 X @1 X1 QX @1 X1 QX X1 X1 Q1 X X1 X QX B Brx1

2m+1=11 n-1
2
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As is clear from the examples, the production rules indeed do the job for n un-
even: m is changed to 2m + 1 (the string ax is repeated 11 times now, instead
of 5); n is changed to 1 (it is halved): the string of the form fSx is repeated only
once. Moreover, the tag system has “recognized” that n is uneven (look at the
indices). Now let us have a look at an example for which the machine prints a

zero, moves to the right, withn=4,m=2:

AxaxaxBx pxpxfxpx
Lxey B ﬁn Z B
axaxBxpxfxPxPxCx
axBxpxPxBxPxCxcxcx
BxfxfxfxpxCxcxcxcxcx
PxPxpPxfxCxcxcxcxcx$S
BxPxPxCxcxcxcxcxSs
BxPxCxcxcxcxcxSss
BxCxcxcxcxcxSsss
CxcxcxcxcxSssss
cxcxcxcxSssssDy Dy
cxcxcxSssssDyDyd; dy
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cxcxSssssDyDydy dydr dy
cxSssssDyDydy dydy dydy dy
SssssDyDydy dydy dody dydi dy
sssD1Dydy dyd; dody dydy dy Th Ty
sD1Dydy dydy dody dody do' Ty To 1y o
Dody dydydodydydydoTy Toty 1o 1y o
dody dochdody doTy Toty o 1y o X Ag Xo
dody dod do Ty To 1y o 11 To X Ao Xo o Xo
dodydy T Tyt fo 1y tg X Ag X Qo Xp Ao X
do Ty Toty fo 1y X Ag Xo Qo Xo Qo Xo Ao Xo
Toty to by to X AgXo g Xp Qo Xo Qo Xo Ko Xo
to 11 1 X Ag X (X Xio (Lo Xo Cto Xo o Xo Bo Xo
o X Ag Xio @ Xo (o Xo (o Xo o Xo Bo Xo Bo Xo
Ao Xo Qo Xo Ao Xo o Xo o Xo BoXo foXoBoxo

-
2m=4 %:2

This example shows that the rules work for n even too: m is changed to 2m,
n is halved (from 4 to 2), and the index is changed to 0. It has been ‘recog-
nized’ that n is even. As is clear, the recognition of whether 7 is even or odd
is accomplished through an intelligent use of the shift number: evenness or
oddness lead respectively to a kind of de-synchronization and synchronization
(this happens the first time with D; Dy) and a re-synchronization when n is even
through the addition of three symbols instead of two (Dy — xAyxo).

While this proof by Minsky is less complicated and in a way more elegant than
his first proof of the unsolvability of tag systems, it might perhaps already be
clear that Turing machine simulating tag systems are not quite practical: 2-
symbolic Turing machines with m states and 2 symbols can be reduced to a tag
system with v =2 u=16m, i.e,, to still large tag systems. This will be discussed
in more detail in Chapter 12.

Decidability criteria in tag systems

To prove that the whole class of tag systems has an unsolvable decision prob-
lem has been an important result — Post probably would have been relieved to
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hear that the intractability he had experienced when working with tag systems
is actually inherent to these systems. This of course does not mean that every
tag system has an unsolvable decision problem. To exclude specific classes of
tag systems that have an unsolvable decision problem, some mathematicians
have proved the existence of criteria that can mark the difference between solv-
ability and unsolvability. [f

In his Account of an anticipation, Post mentions some results concerning solv-
able cases of tag systems, thus determining a kind of lower bound for unsolv-
ability with respect to the number of symbols and v, which is still the best
known so far. Anything below this limit is known to be solvable. After having
discussed the different types of behaviour, Post writes ([Pos65], p. 362):

[...] the problem of “tag” was made the major project of the writer’s tenure of a
Procter fellowship in mathematics at Princeton during the Academic year 1920-
1921. Indeed, the reduction of the last section, effected early in that year, sealed
this determination. And the major success of that project was the complete so-

lution of the problem for all bases in which u and v were both 2.
In the footnote to this quote he added:

When either p or vis 1 the problem becomes trivial. By contrast, even this special

case u = v =2 involved considerable labor.
Post thus proved the following theorem:

Theorem 6.1.1 For any given tag system T, ifu=1orv=1oru=v =2 then the
two forms of the decision problem for T are solvable.

The proof of the theorem however, was never publishedﬂ Itisindeed a fact that
the case for which p =1 is very trivial. Clearly, the word w,, corresponding to
this one symbol ay, will be a concatenation of lwa0 times ay. Then, if lwa0 <v

8More will be said about such criteria in Chapter[7} where a more exact definition of such
criteria will be given, following Margenstern [Mar00].

9This result or notes relating to this result might still be present in the archive of Emil Post in
Philadelphia (American Philosophical Society). The present author plans a visit to this archive
for exactly this reason.
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the tag system will halt, whatever the initial condition might be, it will become
periodic when v = [, and show unbounded growth when [, > v. The case
with v = 1 seems not that trivial, since Wang took it seriously enough to present
itin his [Wan3al. The case v = u = 2, will be proven to be solvable in chapter@
As will become clear then, the proof indeed involves “considerable labor”.
Both p and v can be regarded as a decidability criteria [Mar00] for tag systems,
since their solvability depends on the size of these parameters. The number of
symbols p is a decidability criterion since tag systems with u = 1 are solvable,
while there also exist tag systems with a given number of symbols p > 1 that are
unsolvablem Cocke and Minsky proved that any Turing machine can be simu-
lated by a tag system for which v =2 (See [CM63], [Min62]). Maslov generalized
this result and proved that for any v > 1 there exists at least one tag system with
an unsolvable decision problem and, independent of Wang, proved that any tag
system for which v = 1 is solvable [Mas4b].

Another such criterion for tag systems, is the length of the words. Let 1,,;;, de-
note the length of the smallest word of a tag system and [, the length of the
lengthiest word. Pager studied classes of tag systems with shift number v, [,;,;,
and [,,,4, that contain tag systems with an unsolvable decision problem. Wang
proved that any tag system for which [/,,;, = v or [,,4, < v is solvable [Wan3a]. It
should be added here that Maslov proved that the tag systems with an unsolv-
able decision problem that can be constructed using his method, for each v > 1
all satisfy the following condition: I;,;,, = v—1, l;4x = v+1 [Mas4b]. Taking into
account Wang’s result, he describes this condition as a kind of minimal condi-
tion for unsolvability in tag systems. This result was independently proven by
Wang for a tag system with v =2 [Wan3a].

Except for Post, nobody takes into account the number of symbols p, determin-
ing the number of production rules, in order to study solvable and unsolvable
classes of tag systemsE] Still, it is clear that the significance of p for determin-

19The exact value for u to mark the difference between solvability and unsolvability will be
