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Abstract

The basic logic of proofs extends the usual propositional language by
expressions of the form “s is a proof of A”, for any proposition A. In this
paper we explore the extension of its intuitionistic fragment to a language
including expressions of the form “t is a proof of B, dependent from s
being a proof of A”. We aim at laying down a ground comparison with
equivalent constructions present in theories of dependent types, especially
those similarly based on the Brouwer-Heyting-Kolmogorov semantics. We
further translate this extended language to a natural deduction calculus
which allows for a double interpretation of the construction on which
a proof term may depend: as actually proven, or valid assumption, or
as possibly proven, locally true assumption. We show meta-theoretical
properties for this calculus and explain normalisation to a language with
only unconditional proofs. We conclude by stating the characterization of
our calculus with standard intutionistic logic of proofs.

1 Introduction

The Logic of Proofs (LP, [4], [5], recently presented in its more general epistemic
setting as Justification Logic in [6]) bridges the BHK semantics to a real seman-
tics of proofs. It extends the usual connectives of propositional logic by a a proof
polynomial s attached to the appropriate proposition A, so that the formula s :A
reads: “s is a proof of A”. Furthermore, proof terms are combined by standard
propositional connectives. It has been shown how each theorem from the modal
logic S4 corresponds to an appropriate formula in LP, and how in general the
latter provides a natural interpretation of the semantics of mathematical proofs
fro S4, a task first posed by Gödel [17]. In [5], the BHK semantics at the basis of
LP is characterized in its original aspiration of determining meanings in terms
of provability, going back to Brouwer’s definition of truth in terms of proof. The
fragment that relies on an Intuitionistic Logic has been explored [7] and proven
to be complete with respect to Heyting Arithmetics in [11].

A complementary interpretation of BHK was given in [19], where the com-
putational counterpart was introduced. A representative of this interpretation
are the intuitionistic-based theories of types, satisfying the proofs-as-terms in-
terpretation known as Curry-Howard correspondence, in the style of Martin-Löf
type theory [20] or the Logical Frameworks, from Automath [12], to ELF [18]
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and their many programming variations, see [22], [23]. In particular in type-
theories, the generalization from the propositional to the first-order setting is
justified by the extension to dependent types. A dependent type is a family of
types parametrized by another type. Here, a formula of the form b :B[x/a :A]
with a a term and x in the set of variables for values, stands for the validity
of type B, provided the substitution of a variable x in A by a term a is ob-
tained. The latter represents the reconstruction of the missing computational
information by renaming all the closed variables in the type A from which B
depends. In this way one constructs the (set of) propositional function(s) from
A to B. In Dependent Type Theories this functional relation is used to formal-
ize quantifiers; the rule for justifying the implication connective is then a result
of explaining the elimination rule for the universal quantification, see [20, p.34].

A notion of functional expression for LP has also been given. In [14], the
quantification extension of LP is obtained by having in the language not only
constants, but also function symbols of various arities which are called “primitive
function symbols”. The quantifiers are defined then as ranging over proof terms.
In [8], a first-order logic of proofs is defined, which interprets formulas of the
form p :A(x) in each of the two following senses:

1. p proves A(x) for a given value of the parameter x;

2. p is a proof of a formula with a free variable x (hence p :A(x) does not
depend on x).

The relation between the provability and the computational interpretations of
BHK semantics is still open to exploration. One aspect of such topic is precisely
an analysis of the current relation between type theories with types depending
on typed terms and its counterpart in LP. This corresponds to the introduction
of functionals expressions where the variable is explicitly typed by means of a
corresponding proof polynomial.

The first aim of this paper is to answer to this request, providing an extension
of the Intuitionistic fragment of the Logic of Proofs which contains a notion of
dependent proof that mimics that of dependent types, or functional expressions
with terms explicitly typed in another proposition. We give this by a language
called ILPdep, which contains formulas of the form 〈s〉t :B[A], which reads: “t
is a proof of B, dependent from s being a proof of A”.

A second task of this paper is that of providing a Natural Deduction inter-
pretation of ILPdep – called ILPnd♦ – which gives more structure in the use of
dependent terms. This is obtained by distinguishing functional expressions from
the corresponding implicational instances. To explain this, let us refer again to
the mentioned relation between universal quantification and implication: in
dependent type theories, an introduction of A ⊃ B is obtained from the corre-
sponding universal quantification by suppressing the proof; completeness of the
rule is given by the corresponding process of reconstructing the computational
value on A. In the following, we mimic this relation by introducing functions as
derivability from True Assumptions, and interpreting implications as the result
of discharging those assumptions, so that it corresponds to derivability from
Valid Assumptions.

In [9], a Natural Deduction interpretation for ILP was already presented.1

1A previous attempt to formalize in a λ-calculus the conceptual mapping between Curry-
Howard style proofs, λ-terms and proofs in the sense of the logic of proofs was given in [3].
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It contains formulas expressing Hypothetical Judgements with Evidence deriv-
able from Valid Assumptions of the form v : A and True Assumptions of the
form a : A stating that A holds at the current world. This system for Hypo-
thetical Judgements with Explicit Evidence internalizes the notion of proof to
express in the language the sentence “s is a proof of A”.2. The internalization
rule says that provided a proof s for A holds under valid assumptions ∆, then
under any additional true assumptions Γ, there is a proof that s is a proof of
A. We shall introduce in ILPnd♦ a new expression ∆; Γ ` s :: A to express
that s is a proof of A dependent on some true assumption contained in Γ. Cor-
respondingly, the internalization rule says that provided a dependent proof s
for A holds, then there is a proof ?s that s is a proof of A, conditional on the
verification of assumptions in Γ. We claim that this offers an appropriate prov-
ability interpretation of a possibility operator in the intuitionistic setting, and
it allows representing contents whose proof is dependent locally on the proof of
some other proposition.3

We suggest here to combine these two issues:

1. provide a distinction between a proof term holding under Valid Assump-
tions and one holding under True Assumptions; the former corresponds to
an unconditional proof term for implication, the latter a dependent one
(as term from term) simulating a functional structure;

2. use the notion of dependent term to formulate a basic provability inter-
pretation for a ♦ operator.

A final task of this paper is to establish the correct characterization of ILPdep
with respect to the standard intuitionistic fragment of LP.

In section 2 we shall present ILP extended with the notion of dependent
proof, defining equality rules, dependence from more than one term, quantified
expressions and some examples. In section 3 we shall introduce the Natural De-
duction system whose crucial property is to separate derivability from valid and
true assumptions, allowing an interpretation of implication and of functional
expressions. In section 3.1 we further extend this language with an appropri-
ate equality relation on terms. The two final sections are dedicated to meta-
thereotical issues: in section 4 we prove that all connectives are locally sound
and complete by contractions and expansions derivations; in section 5 we prove
that the extension by the notion of dependent proof is ‘safe’, by showing weak
and strong normalization and confluence for the system. On this basis, we shall
be able to state our main result in section 7, where ILPdep is characterized in
view of ILP.

2For preserving uniformity of notation and readability in the formulation of the two calculi
introduced in this paper, I will privilege the more common notation s :A for expressions of
LP in place of the one given in [9] which uses expressions of the form JsKA. I will also make
uniform use of the term ‘proof’ in place of the term ‘evidence’, which currently bears a larger
range of meanings related to its epistemic uses.

3In [10], a semantics derived from LPnd is used to interpret mobile code; the authors
mention that using a possibility modality one can interpret code at remote locations, provided
a provability interpretation of ♦ in the intuitionistic setting is given. Cf. [10, §8].
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2 ILPdep: Axioms and Inference Schemes

In the following, we shall refer to an extension of the usual interpretation of
ILP, obtained by introducing a dependent term to formulate expressions of the
form:

“t is a proof of B, dependent from s being a proof of A”.

Definition 1 (Language). We denote with ILPdep a language that contains a
countable set of symbols A,B, . . . for propositions; individual variables x, y, . . .
and constants s, t, . . . for proof terms; functional expressions B[A]; functional
symbols for operations on proof terms: ·, !,+, .,∃,∀.

Definition 2 (Proof Terms). In ILPdep each proof variable or proof constant
is a proof term; we denote the fact that s is the proof term of proposition A by
the formula s :A; if s and t are proof terms, so are: s · t, !s, s+ t. Moreover, we
denote the fact the t is a proof term of proposition B dependent from the fact
that s is a proof of proposition A by the formula 〈s〉t :B[A]; if 〈s〉t is a proof
term, so are (s)t and t.s.

ILPdep extends therefore the standard set of proof polynomials of ILP com-
posed by s, s · t, s + t, !s, with some more: the dependent term 〈s〉t reads: “t
is a proof provided s is a proof” (of distinct propositions); the term (s)t reads:
“the proof term t, abstracting from the computational content of proof term s”;
the applied term t.s reads: “the proof term t (with no dependencies) is applied
to the reconstructed computational content of proof term s (with no dependen-
cies)”. The intended meaning of the latter two terms is to express within a
proof polynomial the computational processes that dependent terms perform in
multiple steps.

Definition 3 (Axioms and Rules of ILPdep). Axioms and Rules of the system
are:

A0. Axioms schemes of intuitionistic logic in the the language of LP

A1. s :A ⊃ A (Unconditional Proof)

A2. s :A ⊃!s : (s :A) (Proof Checker)

A3. s : (A ⊃ B) ⊃ (t :A ⊃ s · t :B) (Application for Unconditional Proof)

A4. s :A ⊃ s+ t :A; t :A ⊃ s+ t :A (Sum)

A5. A ` t :B ⊃ 〈s〉t :B[A] (Dependent Proof)

A6. 〈s〉t :B[A] ⊃ (s)t.s :B (Application for Dependent Proof)

R1. Γ ` A ⊃ B and Γ ` A implies Γ ` B (Modus Ponens)

R2. If A is an axiom A0.−A6. and c is a proof constant, then ` c :A
(Necessitation)
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Unconditional Proof reads: “if s is a proof of A, then A holds”. Proof
checking reads: “if s is a proof of A, then !s is a proof of the sentence ‘s is a
proof of A’ ”. Application for Unconditional Proof reads: “If there is a proof s
that A implies B, then a proof t of A implies that s·t is a proof of B”. Sum reads:
“if s is a proof of A, then s+ t is also a proof of A” (alternatively, for t a proof
of A). Dependent Proof reads: “If t is a proof of B under assumption A, then
there is a proof t of B dependent on a proof s of A”. Application for Dependent
Proof reads: “If there is a proof t of B dependent on a proof s of A, then a
proof t abstracted from s followed by an application to the reconstructed proof
s is a proof of B”. This application is reducible to a different proof of the same
type, obtained by the Application for Unconditional proof: this shows that the
notion of unconditional proof supports a polymorphism of proofs embedding
procedural steps in one polynomial. Modus Ponens holds, and Necessitation
remains valid for axioms.

In the following section, equality rules for proof terms and reduction of the
previous rules to computational ones are given.

2.1 Equality Rules

By the notion of dependent proof 〈s〉t :B[A], the language is able to mimic the
notion of functional expression: “t is a proof of B, dependent from s being a
proof of A”. This gives a way to formulate in ILP expressions of the form: “Let
A be a proposition with proof s, and B a proposition dependent on A” as a
formal assumption over term s. This is obtained by constructing the proof for
B assuming a proof in A. The next step is defining extensional equivalence over
such terms:4

A ≡ A′ ⊃ s :A ≡ s′ :A′ A ` t :B ≡ A′ ` t′ :B′
Equality on DepProof

〈s〉t :B[A] ≡ 〈s′〉t′ :B′[A′]

which says that we get identical dependent terms 〈s〉t, 〈s′〉t′ for B[A], B′[A′]
when equivalent proof terms s, s′ respectively for equivalent A,A′ are formu-
lated. Discharging of such dependency relation is given by an instance of the
Application for Dependent Proof, with the corresponding Equality Rule:

〈s〉t :B[A] ≡ 〈s′〉t′ :B′[A′] s ≡ s′ :A
Equality on Application

(s)t.s :B ≡ (s′)t′.s′ :B′

When the construction in the depending term is discharged, Dependent Proof
reduces to an implicational relation; hence, from it one can define an abstraction
on terms:

〈s〉t :B[A]
Abstraction

(s)t :A ⊃ B
4In the following the equivalence sign ≡ is used to refer to formal equivalence among

formulas; the identity sign = to express identity of values. A first approach to an interpretation
of types dependent on terms for LP was given in a λ-calculus version in [2].
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which reads as follows: “if t is a proof for B, depending on s being a proof for
A, then there is a proof t abstracting from s of A ⊃ B”. Its explanation is given
by reduction which equals the corresponding Application:

s :A 〈s〉t :B[A]
β-rule

(s)t.s = s · t :B

where the first polynomial in the conclusion can be read as an abstraction
followed by an application. It also has appropriate identity rules:

〈s〉t ≡ 〈s〉t′ :B[A]
ξ-rule

(s)t ≡ (s)t′ :A ⊃ B

〈s〉t :B[A]
α-rule

(s)t = (s′)t :A ⊃ B

where variables in s′ are not free in s.

〈s〉t :B[A]
η-rule

(s)t.s ≡ 〈s〉t :B[A]

where variables in s are not free variables in t. In the latter rule, the formal
identity is obtained for the right-left direction is given by Axiom A6 and in the
opposite direction by constructing s :A from an Abstraction Rule, followed by
a construction for A ` t :B and an instance of Axiom A5.

2.2 Proof Dependent from more than one term

We can now provide the formal translation between dependent terms and truth
under more than one assumption. The basic case with two assumptions is of
the from 〈s1, s2〉t :B[A2[A1]] which reads informally as follows:

“t is a proof of B, dependent from s2 being a proof of A2, which in
turn depends from s1 being a proof of A1”.

This means that the structure of a context of assumptions is given recursively
by sets of dependent proofs. In the following, for purposes of readability, we
shall adopt the convention that multiple dependencies are written in increasing
order of index, their reading remaining the same as the above. The general
format is obtained by repeated abstractions on dependent terms:

〈s1 . . . sn〉t :B[A1, . . . , An]

(s1 . . . (sn−1(sn)))t : (A1, . . . , An) ⊃ B

The informal semantics of this rule says: “if t is a proof for B dependent on
proofs for A1, . . . , An, then t abstracting from s1, . . . sn is a proof that A1, . . . An
imply B”.

By repeated application we obtain the inverse operation:
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(s1(s2(. . . , (sn−1(sn)))))t : (A1, . . . , An)B s1 :A1, s1 · s2 :A2·, . . . , ·sn−1 · sn :An

t.(s1.s2., . . . , .sn) :B

which reads:

“if t is a proof for B provided proofs for A1, . . . , An and provided sn
is a proof of As provided sn−1 is a proof of Sn−1 up to s1 is a proof
of A1, then t is a proof for B dependent on proofs s1 applied to s2,
then applied to s3 up to sn”.

2.3 Rules for Quantifiers

By our notion of dependent proof we have a direct translation of 〈s〉t :B[A] in
terms of A ` B and so (a)b : (A)B which reduces to b : B(a). We hence use
quantifiers to express the validity of the formula B(x) parametrised with x :A.

a :A 〈a〉b :B[A]
∀-introduction

(x)b.x :∀x :A.B(x)

a :A 〈a〉b ≡ 〈a〉b′ :B[A]
∀-equality

(x)b.x ≡ (x)b′.x :∀x :A.B(x)

d :∀x :A.B(x) a :A
∀-elimination

d · a :B(x)

a :A a · b :B ∃-introduction
(x)b.a :∃x :A.B(x)

a ≡ a′ :A 〈a〉b ≡ 〈a′〉b :B[A]
∃-equality

(x)b.a ≡ (x)b.a′ :∃x :A.B(x)

d :∃x :A.B(x) 〈d〉c :C[∃x :A.B(x)]
∃-elimination

c · d :C
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2.4 Some Examples

2.4.1 Example 1: Relations as Functions

Show that a function C(y)[y : (B(x)[x :A]] is given by a function C(x, y) with
arguments respectively in A and B[A]. So we assume a :A, construct 〈a〉b :B[A]
and 〈a, b〉c :C[B[A]]. We want an element of

C(x, y)[y : (B(x)[x :A])] ⊃ (x)(y)c.(a, b) :C

So we construct

A ` b :B B ` c :C
A5〈a, b〉c :C[B[A]]
Repeated Abstraction

(a, b)c : (A ⊃ (B ⊃ C))
Repeated Application

c.((a).b)) :C
β-rule

(a · b) · c :C

2.4.2 Example 2: Identity of Functions

Show that for any elements a, a′, if a ≡ a′ :A, then 〈a〉b :B[A] ⊃ 〈a′〉b :B[A].
For this it is enough to show that 〈a〉b :B[A] ≡ 〈a′〉b :B[A]:

〈a〉b :B[A]
a :A a′ :A A ≡ A

a ≡ a′ :A
〈a′〉b :B[A]

(a′)b :A ⊃ B
(a ≡ a′ :A)b.a ≡ b.a′ :B
〈a〉b :B[A] ≡ 〈a′〉b :B[A]

〈a〉b :B[A] ⊃ 〈a′〉b :B[A]

2.4.3 More Examples: Axioms

Prove that for all propositions A, A ⊃ A:

a :A
A1

A A ` A
A5〈a〉a :A[A]

Abstraction
(a)a :A ⊃ A

Prove that for all propositions A,B: A ⊃ (B ⊃ A) from 〈a〉b :B[A]:

a :A A ` b : (B ⊃ A))
A5〈a〉b : (B ⊃ A)[A]

A5〈b, a〉b :A[B[A]]
Abstraction

(b)a : (A ⊃ (B ⊃ A))
β-rule

(a)b.a :A ⊃ (B ⊃ A)
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This is equivalent to the following derivation using ∀-introduction:

a :A 〈a〉b :B[A]
Abstraction

(b).x :B(x) ⊃ A
∀-intro

(a, b).x : (∀x :A.B(x))

Prove that for all propositions A,B: A ⊃ (B ⊃ (A ∧B)):

A ⊃ (B ⊃ (A ∧B))
R2

c : (A ⊃ (B ⊃ (A ∧B)))
Abstraction

c := (a)s : (B ⊃ (A ∧B))
A5〈a〉s : (B ⊃ (A ∧B))[A]

Application
(a)s.t : (A)B ⊃ (A ∧B)

Abstraction
(b, a)s.t : (B)(A ∧B))

A5〈(a, b)〉s.t : (A ∧B)[B[A]]
Application

(a, b)s.t.(a, b) :A ∧B

A derivation which does not make use of the rule of constant specification R2:

a :A 〈a〉b :B[A]
∃-intro

(x)b.a :∃x :A.B(x)
Abstraction

(b)(x)b.a :B(x) ⊃ ∃x :A.B(x)
∀-intro

(a)(b)(x)b.a :∀x :A.B(x) ⊃ ∃x :A.B(x)
Application

a :A ⊃ (b :B ⊃ (x)b.a :A ∧B)

where B does not depend on x. Notice that (x)b.a can be further reduced to
a · b by β-rule.

Prove the axiom (A ⊃ B) ⊃ A ⊃ B:

a :A 〈a〉b :B[A]
Abstraction

(b).x :B(x) ⊃ A
Application

(a)b.a :B
R1

(a)b.a : (A ⊃ B) ⊃ a :A ⊃ b :B

3 The Language LPnd♦

We now proceed with defining a natural deduction version of our calculus for
Dependent Proof, called LPnd♦.5 The main aim is to translate unconditional
proof as a term derivable under valid assumptions and dependent proof as a
term derivable under true assumptions. This will give us even more structure

5The use of the subscript ♦ is intentional in explicitly relating our ? internalization operator
for dependent proof to a possibility reading.
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to be able to characterize the relation between dependent and unconditional
proofs. In the new calculus LPnd♦ the formula s :A expresses the validity of
A by proof s holding under satisfied conditions; the formula s :: A expresses
validity of A, dependently from the verification of a locally valid s. In terms of
the system LPnd♦ we establish some meta-theoretical properties as confluence
and strong normalisation. This in turn will allow to give a full characterization
also for ILPdep.

We shall consider first Judgements with Unconditional Proof as those derived
from Valid Assumptions only:

∆; · ` s :A UnProof

which reads “s is a proof of A, derivable from valid assumptions ∆”; an alterna-
tive, but equivalent, reading is: “s is a proof of A holding at all states accessible
from ∆”. UnProof further induces A valid under any True Assumption.

Then we consider Judgements with Dependent Proof as those derived from
Valid and True Assumptions:

∆; Γ ` s ::A DepProof

which reads “s is a proof of A, derivable from Valid Assumptions ∆ and de-
pendent on True Assumptions Γ”; an alternative, but equivalent reading is: “s
is a proof of A holding at states accessible from ∆ where Γ holds”. DepProof
induces A valid under no further true assumptions.

Definition 4 (Language). The syntax is defined by the following alphabet:

Proof Terms s := x | λv : A.s | t · s | 〈s〉t | (s)t.s |!s | XTRT s AS v :
A IN s |?s | ASSM s AS a :A INs

Propositions A := P | A ∧B | A ⊃ B | B[A]

Truth Contexts Γ := · | Γ, a :A

Validity Contexts ∆ := · | ∆, v :A

A proposition is either a propositional variable P , a conjunction, an impli-
cation or a function B[A] where a proposition B depends from a proposition
A. A proposition can be constructed as a valid proposition s :A, or as a true
proposition s :: A, or by a term t for B dependently valid from another term
s for A, 〈s〉t : B[A]. Truth and validity contexts remain as usual sequences
of propositions with “·” denoting the empty context. We reserve the notation
a/v :A for (true/valid) Assumptions only.

Definition 5 (The Logic LPnd♦). LPnd♦ is defined by the following schemes:

V alV ar
∆, v :A; ∆′ ` s :A

∆, v :A; · ` s :B
⊃ I

∆; Γ ` λv :A.s :A ⊃ B
∆; · ` s :A ⊃ B ∆; · ` t :A

⊃ E
∆; Γ ` s · t :B

TruV ar
∆, a :A; · ` s ::A
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∆, a :A ` t ::B
DepProof Formation

∆; · ` 〈s〉t :B[A]

∆; Γ ` 〈s〉t :B[A] ∆; Γ ` s :A
Application

∆; Γ ` (s)t.s :B

∆; · ` s :A
!I

∆; Γ `!s : (s :A)

∆; · `!s : (s :A) ∆, v :A ` t :B
!E

∆; Γ ` XTRT !s AS v :A IN t :Bvs

∆; Γ ` s ::A
?I

∆; Γ; · `?s : (s ::A)

∆; Γ `?s : (s ::A) ∆, a :A; · ` t ::B
?E

∆; Γ; · ` ASSM ?s AS a :A IN t ::Bas

The axiom scheme V alV ar states that a valid assumption v for A is a proof
term for A under no further conditions, hence it can be derived from valid as-
sumptions only and it will remain valid under all accessible states. The schemes
for ⊃ are for implication from valid or discharged assumptions, i.e. from uncon-
ditional proof, as a proof derivable from V alV ar. The introduction rule takes
a pair satisfying the implication to establish the equivalence over all terms in
the antecedent to a term in the consequent; the elimination extracts precisely
such a pair from an instance of an implication. TruV ar states that whenever a
is a true assumption for A, it can be taken as a proof term for A, dependent on
its own verification. Dependent Proof Formation constructs a proof polynomial
for a functional expressions from dependent proof, as a proof derivable from
TrueV ar: if t is a proof of B dependent on a true assumption on A, then there
is a proof t of B dependent on a term s for A. Application is the corresponding
function elimination rule: if t is a proof for B provided s is a proof for A and
given s : A is true, then the process of constructing t abstracting from s and
then applied to s is a witness of B. These schema are here used to express the
type of all functions for b[a] ∈ B[A] for any a ∈ A. The scheme !I internalises
the metalevel of proofs by using unconditional proof: it says that if s is an
unconditional proof of A, then !s is a witness to the validity of A given by s.
The corresponding elimination allows to discharge valid assumptions: to do so,
one needs to prove that s :A is true by some unconditional proof; this is then
used to build some unconditional proof t of C by taking s as a valid assump-
tion in A. Introduction and elimination schemes for ?s are used to internalise
the meta-level of proofs with true assumptions by using dependent proof: the
introduction rule says that if s is a proof of A derivable from valid assumptions
∆ and dependent on true assumptions Γ, then ?s is a witness to the dependent
validity of A. The corresponding elimination allows to use true assumptions
(without discharging): to do so, one needs to prove that s ::A is true by some
dependent proof term ?s; this is then used to build some dependent proof term
t of C by taking s as a true assumption in A.

The meaning of hypothetical judgements is standardly given by substitution
principles fro validity and truth with proof terms:

Theorem 1 (Substitution on terms). The following substitutions hold:

1. If ∆; · ` s :A and ∆, v :A,∆′ ` t :B, then ∆; Γ; ∆′ ` tvs :Bvs .

2. If ∆, a :A ` t ::B and ∆,∆′ ` s :A, then ∆; Γ,∆′; · ` tBas .
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Proof.

1. by induction on the first given derivation, where s :A can be of the form

(a) s :A (base case): derived by V alV ar; similarly so for t :B; immediate
by subsitution v/t;

(b) λv :A.s :A ⊃ B: derived from v :A ` t :B by ⊃ I; then ∆, s · v :A ⊃
B,∆′ ` u :C and ∆,Γ,∆′ ` u :Cs·vλv:A.s;

(c) !s : (s :A): derived from ∆; · ` s :A by !I; then ∆, !s : (s :A),∆′ ` t :B
and ∆,Γ,∆′ ` t :B!s

XTRT !s AS v:A IN t.

2. by induction on the first given derivation, where t ::B can be of the form:

(a) t ::B (base case): derived by TruV ar from a :A; then use 1.a above
to infer v :A and perform substitutions v/a in t;

(b) 〈s〉t :B[A]: derived from ∆, a :A ` t ::B by Function Formation; then
by the second derivation obtain ∆; Γ `!s : (s : A) and use Function
Application to obtain: ∆; Γ; ∆′ ` (s)t.s :Ba!s;

(c) ?t : (t ::B): derived from ∆; Γ ` t :B by ?I; the second derivation al-
lows ∆; Γ,∆′ `!t : (t :B) by !I and ∆,Γ,∆′ ` t :BaXTRT !t AS a:B IN t.

3.1 Extending with Proof Equality

To obtain normalisation of derivations one needs to show equality of terms,
both for the Unconditional and the Dependent Proof cases to reflect derivation
identity in the object language. Standard identity rules hold for judgements
with unconditional proof ∆; · ` s ≡ t : A which reads “s and t are provably
equivalent proof terms of the truth of A under valid assumptions ∆”, obtained
by the following schema:

∆; · ` s :A ∆; · ` s ≡ t :A
EqUnProof

∆; Γ ` t :A

The meaning is given by the standard β, η and !η equivalences,6 with the due
conservative restriction that allows using valid assumptions only in the first
premise.

∆; · ` s :A
Reflexivity

∆; Γ ` s ≡ s :A

∆; v :A ` t :B ∆; · ` s :A
Eqβ

∆; Γ ` tvs ≡ (λv :A.s).t :B

6Similarly to what done in [9] for the � operator.
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∆; · `!s : (s :A) ∆; v :A ` t :B
Eq!β

∆; Γ ` tvs ≡ XTRT !s AS v :A IN t :Bvs

∆; · ` s :A ⊃ B
Eqη

∆; Γ ` (λv :A.s) · v ≡ s :A ⊃ B

∆; · `!s : (s :A) ∆, v :A ` s :A
Eq!η

∆; Γ `!s ≡ XTRT !s AS v :A IN s :A

In the following we shall define the meaning of the equality for judgements
with dependent proof ∆; Γ· ` s ≡ t ::A, which reads “s and t are provably equal
proof terms of the truth of A under valid assumptions ∆ and dependent on true
assumptions Γ”, obtained by the following schema:

∆; Γ, · ` s ::A ∆; · ` s ≡ t :A
EqDepProof

∆; Γ, · ` t ::A

Standardly, η-conversions for Unconditional Proof guarantee strong normaliza-
tion when paired with β-reduction. To obtain the same for Dependent Proof,
one needs explicit parameterisation by the current context of true assumptions
of the proof term. There might be (equivalent) terms that satisfy different
propositions once their contexts of true assumptions change; moreover, β nor-
mal forms are no longer preserved by the corresponding η expansions alone. One
needs therefore to formulate a basic additional requirement on the η-expansions
(besides the usual one on the free variables of the unconditional proof) which
says that the context in which the new (dependent) term is taken as valid is
normalizable, hence standard βη normal forms hold for the new dependent proof
by reducing it to its unconditional counterpart. Without this additional require-
ment, semantically distinct terms are equated and our intended polymorphism
lost, as shown in the following reduction:

∆; Γ, a :A ` s :B ⇒β ∆; Γ ` sat ≡ (λa :A.s) · t :B ⇒η ∆; Γ ` s :A ⊃ B

This reduction does no longer hold once the first term of the reduction is ex-
pressed as ∆; Γ, a :A ` s ::B, as the contractum for B[A] presents a different
kind of proof term. A counterpart in our language has ∆; Γ, v :A ` s :B as the
first term, i.e. with the additional condition that the dependent term reduces
to an unconditional one.

In the following we shall treat true assumptions and dependent proofs as
pre-terms and valid assumptions and unconditional proofs as terms. A context
Γ of True Assumptions is therefore called a pre-context. An empty (pre-)context
is denoted as previously by ‘·’. First let us formulate a substitution principle
with identity for valid and true assumptions:

Theorem 2 (Substitution on terms and pre-terms with identity). The following
substitutions hold:

1. Let ∆; · ` s : A and ∆; · ` s ≡ s′ : A. If ∆, v : A,∆′ ` t : Bvs , then
∆, v′ :A,∆′ ` t′ :Bv′s′ and ∆,Γ,∆′ ` t′v′s′ :Bv

′

s′ .
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2. Let ∆; Γ ` s ::A and ∆,∆′ ` s′ :A. If ∆, a :A,Γ ` t ::B, then ∆, v :A,Γ `
tBas′ and ∆,∆′ ` t′Bvs′ .

Proof.

1. By induction on s :A, which can be of the form:

(a) s :A (base case): derived from v :A by V alV ar; perform appropriate
substitutions on s′/v′ in t of B, directly by equivalence of uncondi-
tional proof;

(b) λv :A.s :A ⊃ B: derived from v :A ` s :B by ⊃ I; then ∆, s · v :A ⊃
B,∆′ ` t :C by ⊃ E; so ∆; Γ ` ts·vλv:A.s′ ≡ (λv :A.s) · t :Bs·vλv:A.s by Eqβ;
perform now substitutions on t with (λv :A.s) · t as by Theorem 1,
Part 1.b;

(c) !s : (s :A): derived from ∆; · ` s :A by !I; then ∆, !s : (s :A),∆′ ` B | t
and ∆,Γ,∆′ ` tv!s ≡ XTRT λv :A.s AS v.s :A IN t :Bv!s by Eq!β;
perform now substitutions on t with (λv :A.s) · t as by Theorem 1,
Part 1.c;

2. By induction on s ::A, which can be of the form:

(a) s :: A (base case): derived by TruV ar from a : A; then use s : A
from the second derivation and perform substitutions v/s in t by
EqDepProof ;

(b) 〈s〉t : B[A]: derived from ∆, a : A ` t :: B by Function Forma-
tion; then by the second derivation obtain ∆; Γ,∆′ `!s′ : (s′ : A);
so ∆; Γ,∆′ ` tvs′ ≡ XTRT !s′ AS s :A IN t :s′ :A by Eq!β; perform
now substitutions on t with !s′ in B;

(c) ?s : (s ::A): derived from ∆; Γ ` s ::A by ?I; the second derivation
allows ∆; Γ,∆′ `!s : (s′ :A) by !I and ∆,Γ,∆′ `!s ≡ XTRT !s′ AS v :
A IN v :s′ :A by Eq!η; perform now substitutions on t with !s′ in B.

Definition 6 (Context Equivalence). Identity of (pre-)terms inductively gen-
erates (pre-)context equivalence by the following inference rules (for i either 1
or 2):

· =βη ·
Γ1 =βη Γ2 Γ1 ` A =βη A

′ Γ2 ` A =βη A
′

Γ1 ` si ::A =βη Γ2 ` si ::A′

Under the conditions of equality for pre-terms, pre-contexts are sound for
equivalent propositions and for equivalent terms; this is needed for the standard
equivalence properties to extend to dependent proofs:

Lemma 1. If Γ1 =βη Γ2 and Γ1 ` s ::A, then Γ2 ` s ::A.
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Lemma 2. If Γ ` s1 =βη s2 ::A, then Γ ` s1 ::A and Γ ` s2 ::A.

Proof. Proofs are by induction on Γ1,Γ2 using Definition 6 and on A using
Theorem 2.

We can now define the meaning of terms depending from local assumptions
by laying down the full set of axioms and inference schemes that regulate the
two forms of judgement presented at the beginning of this section.

Definition 7 (Axiom and Inference Schemes for Identity with Unconditional
and Dependent Proof). Identity for Unconditional and Dependent Proof is given
by the following:

Reflexivity

∆; · ` s :A
EqReflUnProof

∆; Γ ` s ≡ s :A

∆; Γ ` s ::A
EqReflDepProof

∆; Γ ` s ≡ s ::A

Symmetry. (With Γ possibly empty and s : A).

∆; Γ ` s ≡ t ::A
EqSymm

∆; Γ ` t ≡ s ::A

Transitivity. (With Γ possibly empty and s : A).

∆; Γ ` s1 ≡ s2 ::A ∆; Γ ` s2 ≡ s3 ::A
EqTrans

∆; Γ ` s1 ≡ s3 ::A

⊃

∆; v :A ` s ≡ t :B
Eq⊃ I

∆; Γ ` λv :A.s ≡ λv :A.t :A ⊃ B

∆; Γ ` s1 ≡ s2 :A ⊃ B ∆; · ` t1 ≡ t2 :A
Eq⊃ E

∆; Γ ` s1 · t1 ≡ s2 · t2 :B

⊃ βη

∆; · ` s :A ∆, v :A ` t :B
Eqβ

∆; Γ ` svt ≡ s · t :B

∆,Γ ` t :A ⊃ B v /∈ fv(s)
Eqη

∆; Γ ` λv :A.s ≡ s · t :B

DepProof

∆; a :A ` t1 ≡ t2 ::B
EqDepProof

∆; · ` 〈s〉t1 ≡ 〈s〉t2 :B[A]
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∆; Γ ` 〈s1〉t1 ≡ 〈s2〉t2 :B[A] ∆; · ` s1 ≡ s2 :A
EqApplication

∆; Γ ` (s1)t1.s1 ≡ (s2)t2.s2 :B

!

∆; · ` s ≡ t :A
Eq!Il

∆; Γ `!s ≡!t : (s :A)

∆; · ` s ≡ t :A
Eq!Ir

∆; Γ `!s ≡!t : (t :A)

∆; · `!s1 ≡!s2 : (r :A) ∆; v :A; · ` t1 ≡ t2 :B
Eq!E

∆; Γ ` XTRT s1 AS v :A IN t1 ≡ XTRT s2 AS v :A IN t2 :Bvr

!βη

∆; · `!s : (s :A) ∆; v :A ` t :B
Eq!β

∆; Γ ` tvs ≡ XTRT !s AS v :A IN t :Bvs

∆; · `!s : (s :A) ∆, v :A ` s :A
Eq!η

∆; Γ `!s ≡ XTRT !s AS v :A IN s :A

?

π
∆; Γ ` s ≡ t ::A

Eq?Il
∆; Γ; · `?s ≡?t : (s ::A)

π
∆; Γ ` s ≡ t ::A

Eq?Ir
∆; Γ; · `?s ≡?t : (t ::A)

where π is a derivation according to the Theorem 2.

∆; Γ `?s1 ≡?s2 : (r ::A) ∆′; · ` u :A ∆, a :A; Γ ` t1 ≡ t2 :B
Eq?E

∆; Γ; ∆′ ` ASSM s1 AS a :A IN t1 ≡ ASSM s2 AS a :A IN t2 ::Bar

?βη

∆; Γ `?s : (s ::A) ∆′; · ` s :A ∆, a :A; Γ ` t ::B
Eq?β

∆; Γ; ∆′ ` tas ≡ ASSM ?s AS a :A IN t ::Bas

∆; Γ `?s : (s ::A) ∆′; · ` s :A s /∈ fv(t)
Eq?η

∆; Γ; ∆′; · `?s ≡ ASSM ?s AS a :A IN s ::A

Completing this schema with appropriate βη rules for dependent proof –
via appropriate expansions and contractions to the given ones – will allow us
to prove Normalization and Confluence, to characterize safely ILPnd♦ (and so
ILPdep) in view of standard ILP.
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3.2 Structural Properties

Structural properties are validated in ILPnd♦ by the following results:

Lemma 3 (Properties). The system satisfies

1. (Exchange) If ∆;u :A, v :B; · ` s :C then If ∆; v :B, u :A; · ` s :C

2. (Weakening) If ∆; · ` s :A then ∆, v :B ` s :A

3. (Weakening) If ∆; Γ ` s ::A then ∆, a :B,Γ ` s ::A

4. (Contraction) If ∆;u :A, v :A; ∆′, · ` s :A then ∆;w :A; ∆′, · ` su,vw :Au,vw
for w fresh

5. (Contraction) If ∆; Γ, a :A, b :A ` s ::A then ∆; Γ, c :A ` sa,bc ::Aa,bc for c
fresh.

Proof. The proof for every item is by induction.

� Exchange for Unconditional Proof, by induction on C, starting by:

1. s :C

ValVar
∆;u :A; v :B ` s :C

⊃ I
∆;u :A, · ` λv :B.t :B ⊃ C ∆;u :A; · ` v :B

⊃ E
∆, u :A, · ` s · v :C

!I
∆;u :A; · `!r : (s · v :C) ∆; v :B, u :A ` s :C

!E
∆;u :A; · ` XTRT !r AS v :B IN (s · v :C)

Exchange
∆; v :B, u :A ` s :C

2. C := (D ⊃ E): immediate with additional construction;

3. !s : (s :C): immediate with additional construction;

� Weakening for unconditional proof, with a standard proof by deriving the
same formula with or without the additional unconditional proof. The
simple construction is by induction on B of the form:

1. v :B:

ValVar
∆; · ` s :A ∆′; · ` t :B

Weak
∆, v :B ` s :A

2. B ⊃ C:

∆; v :B ` t :C
⊃ I

∆,Γ ` λv :B.t :B ⊃ C ∆; · ` s :A
Weak

∆, v :B ⊃ C ` s :A

3. !t : (t :B):
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∆, · ` t :B
!I

∆,Γ `!t : (t :B) ∆; · ` s :A
!E

∆; · ` XTRT !t AS v :B IN s :A
Weak

∆, v :B,` s :A

� Contraction for unconditional proof, with a standard proof by deriving
the same formula with a copy of the additional unconditional proof in the
antecedent. In the newly formulated derivation, the novel proof term is
obtained by substitution of terms according to Theorem 2, part 1.

� Weakening for dependent term, on B:

1. t ::B:

TruVar
∆, a :B; · ` t ::B ∆; Γ ` s ::A

Weak
∆; a :B,Γ ` s ::A

2. 〈t〉v :B[C]:

∆, a :B; · ` t :C
DepEv Formation

∆; · ` 〈t〉v :B[C] ∆; Γ ` s ::A
Weak

∆, a :B[C],Γ ` s ::A

3. ?t : (t ::B):

∆; Γ ` t ::B
?I

∆,Γ; · `?t : (t ::B) ∆; · ` s ::A
Weak

∆, a : t ::B,Γ ` s ::A

� Contraction for unconditional proof: entirely similar to the cases above,
with the additional use of substitutions on terms as by Theorem 2, part
2.

The following easy construction shows why Exchange cannot be satisfied for
dependent terms:

∆, a :A, b :B ` t ::B
∆; a :A ` 〈b〉t :C[B]

∆, · ` 〈a〉(b)t :C[B(A)]

which is obtained by using abstraction and dependent proof formation; allowing
exchange on true assumptions induces mixed constructions of dependent terms.
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4 Transformations

We now define transformation of derivations by contractions and expansions on
connectives, adding appropriate operations for dependent proof terms.

Contraction for ⊃

∆; v :A; · ` s :B
⊃ I

∆; Γ ` λv :A.s :A ⊃ B ∆; · ` t :A
⊃ E

∆; Γ ` (λv :A.s) · t :B

contracts to

π
∆; Γ ` sat :B

∆; v :A ` s :B ∆, · ` t :A
Eqβ

∆,Γ ` svt ≡ (λv :A.s) · t :B
EqUnProof

∆; Γ ` (λv :A.s) · t :B

where π is a derivation according to Theorem 2, point 1.

Contraction for !

∆; · ` s :A
!I

∆; Γ `!s : (s :A) ∆; v :A; · ` t :B
!E

∆; Γ ` XTRT s AS v :A IN t :Bvt

contracts to

π
∆; Γ ` tvs :Bvs

∆; · ` s :A ∆, v :A; · ` t :B
Eq!β

∆,Γ ` tvs ≡ XTRT t AS v :A IN t :Bvs EqUnProof
∆; Γ ` XTRT !s AS v :A IN t :Bvs

where π is a derivation according to Theorem 2, point 1.

Contraction for ?

∆; Γ ` s ::A
?I

∆; Γ, · `?s : (s ::A) ∆, a :A ` t ::B
?E

∆; Γ, · ` ASSM ?s AS a :A IN t ::Bas

contracts to

π
∆; Γ ` tas :Bas

∆; Γ ` s ::A ∆, a :A; Γ; · ` t ::B
Eq?β

∆,Γ; · ` tas ≡ ASSM ?s AS a :A IN t ::Bas EqDepProof
∆; Γ, · ` ASSM ?s AS a :A IN t ::Bas

where π is a derivation according to Theorem 2, point 2, which in turn guaran-
tees that the contraction terminates if the pre-term s can be equated to a term
t.

Contraction for DepProof
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∆; a :A ` t ::B
DepProof Formation

∆; · ` 〈s〉t :B[A] ∆; · ` s :A
Appl

∆; Γ ` (s)t.s :B

contracts to

∆; Γ; · `?s : (s ::A) ∆; a :A ` t ::B
EqDepProof

∆; Γ; · ` ASSM ?s AS a :A IN t ::Bas ≡ 〈s〉t :B[A] ∆; · ` s :A
Application

∆; Γ ` (s)t.s :B

where the rule EqDepProof takes in one step a ?E rule and aDepProof Formation
rule to equate their proof terms.

Expansion for ⊃

∆; Γ ` s :A ⊃ B

expands to

∆; · ` s :A ⊃ B ∆; · ` v :A
⊃ E

∆; v :A; Γ ` s · v :B
⊃ I

∆; Γ ` λv :A.(s · v) :A ⊃ B
∆; Γ ` s :A ⊃ B v /∈ fv(t)

Eq⊃I
∆; Γ ` λv :A.(s · v) ≡ s :A ⊃ B

EqUnProof
∆; Γ ` s :A ⊃ B

Expansion for !

∆; Γ `!s : (s :A)

expands to

∆; · ` t :A
∆; · ` s :A

!I
∆; Γ `!s : (s :A)

!E
∆; Γ ` XTRT !s AS v :A IN t :Avs

∆; · `!t : (s :A) v /∈ fv(t)
Eq!η

∆; Γ `!(XTRT !t AS v :A IN !v ≡ s) :s :A
EqUnProof

∆; Γ `!s : (s :A)

Expansion for ?

∆; Γ; · `?t : (s ::A)

expands to

∆; a :A; · ` t ::A
∆; a :A; · ` s ::A

?I
∆; Γ `?s : (s ::A)

?E
∆; Γ ` ASSM ?s AS a :A IN t ::Aas

Π Σ T Eq?η
∆; Γ; ∆′; · `?(r ≡ t) : (s ::A)

EqDepProof
∆; Γ; · `?t : (s ::A)
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where Π = ∆; Γ `?t : (s :: A); Σ = ∆′; · ` u : A; T = u /∈ fv(t); r =
ASSM ?t AS a :A IN s ::Aas .

Expansion for DepProof

∆; · ` 〈s〉t :B[A]

expands to

∆; Γ ` 〈s〉t :B[A] ∆; Γ ` s :A
Application

∆; Γ ` (s)t.s :B ∆; v :A ` t :B
!E

∆; Γ ` XTRT s AS v :A IN t :Bs(s)t.s
Eqβ

∆; Γ; · ` tvs ≡ (s)t.s :B ∆; Γ ` s ::A
DepEv Formation

∆; · ` 〈s〉t :B[A]

5 Normalisation

To show that (Weak and Strong) Normalisation holds for this system, we need
a detour imposed by the newly added dependent terms. For these terms, βη
equivalent redexes might not be equivalent, as this two diagrams show:

∆; · ` 〈s〉t :B[A] ⇒Eqβ ∆; Γ ` svt ≡ (s)t.s :B

⇓Eqη ⇑EqUnProof

∆; Γ ` s · t :A ⊃ B ⇒Eq!β ∆; Γ ` tvs ≡ XTRT !s AS v :A IN t :Bv
s

∆; · ` 〈s〉t :B[A] ⇒Eqβ ∆; Γ ` svt ≡ (s)t.s :B

⇓Eqη

∆; Γ ` s · t :A ⊃ B ⇒Eq?β ∆; Γ; · ` tas ≡ ASSM ?s AS a :A IN t ::Ba
s

The first diagram commutes, as the antecedent in the implication is con-
verted in a valid assumption, hence the two terms on the right-hand side are
equivalent. In the second diagram, the transformation by Eq?β abstracts from
the valid assumption in A to a locally valid one which becomes strictly depen-
dent on Γ and it requires explicit subsititution to be shown to reduce to its
valid counterpart v : A; hence the diagram does not commute. To show that
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the extension by the notion of dependent proof term is preserving with respect
to normalisation, one needs to prove that expressions with dependent proof are
valid only by reduction to a normal form that corresponds to an unconditional
proof for the same proposition.7

5.1 Reduction of Normal Forms

A standard η-expansion Γ ` t⇒ λx :A.t.x for a variable x which is not among
the free ones in t (which shall be indicated as x /∈ FV(t)), holds if A is neither
a λ-abstraction itself, nor is applied to another term. For dependent terms, as
in dependent type theories, these restrictions on the applicability of expansions
further require that the term A is a long βη-normal form, so that the crucial
procedure to obtain term normalization is to proceed on evaluation on terms,
two terms or types being equal if and only if their normal forms are identical.8

The solution can be adapted also for our notion of dependent proof term, fol-
lowing the idea of explicit substitution that was already required as additional
premise in the rules of identity.9

We shall consider a Reduction (or Rewrite) relation →R; with →+
R we in-

dicate its transitive closure; with →∗R its reflexive and transitive closure; with
→=
R its reflexive, transitive and symmetric closure. A term t is said to be in

normal form if there is no term t′ such that t →R t′. A relation is strongly
normalising if there are no infinite reduction sequences t →R t′ →R t′′ . . . . A
relation is weakly normalising if for every term t there is a normal form term t′

such t →R t′. Moreover, t →βη t
′ means that t′ represents the βη-long normal

form of t.
Our strategy to obtain normalisation for the system ILPnd♦ is inspired by

a similar procedure for a system with dependent types, pursued in [16]. It con-
sists of two steps. First, define two normal form predicates, called respectively
internal normal form (INF) and full normal form (FNF) such that the former
is used in defining the latter when dependent proofs occur:

Definition 8 (Predicates INF and FNF ). The normal form predicates INF
and FNF are defined according to the following schemas:

∆; · ` s :A

∆; Γ ` FNF (s)

Γ ` s ::A
Γ; · ` INF (s)

∆; · ` FNF (A) ∆; a :A ` FNF (t)

∆; Γ; · ` FNF ([a/v] · t)

Γ; · ` INF (A) ∆; a :A ` FNF (t)

∆; Γ; · ` INF (t[a :A])

7In the system with simple proofs presented in [9], weak normalisation is obtained by
induction on the length of derivations with contraction, whereas strong normalisation is ob-
tained by translation of the Intensional Lambda Calculus λI to an Abstract Reduction System
composed by the set of derivations and a rewriting system composed by the corresponding
contractions.

8See e.g. [1].
9This recalls a standard proviso on reductions for system with for constructive modalities,

see for example [15, 13, 21, 24].
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Second, define the standard reduction relation →R including one rewrite
relation for pure η-expansions that involve only FNF s (→ηFNF ) and by estab-
lishing →ηINF as a subrelation of →ηFNF , where the former does not include
top-level expansions in order to avoid infinite reductions:

Definition 9 (Rewriting Rules for INF/FNF predicates). The η-expansion
rewriting rules for INF/FNF predicates are defined according to the following
rules:

∆; Γ ` s · t :A ⊃ B ∆; Γ ` FNF (s · t)
∆; Γ ` s→ηFNF v :A.s

∆; · ` t→ηFNF t
′

∆; Γ ` t→ηINF t
′

∆; v :A ` t→ηFNF t
′

∆; Γ ` t[a :A]→ηINF t
′[a :A]

∆; Γ ` A→ηINF A
′

∆; Γ ` B[A]→ηINF B[A′]

∆; · ` A→ηFNF A
′

∆; Γ ` A[B]→ηINF A
′[B]

∆; · ` s :A ∆; v :A ` t :B →ηFNF t
′ :B′

∆; Γ ` XTRT s AS v :A IN t :Bvt →ηFNF XTRT s AS v :A IN t′ :Bvt

∆; Γ ` s ::A ∆; a :A; Γ ` t :B →ηFNF t
′ :B′

∆; Γ ` ASSM s AS a :A IN t :Bat →ηINF ASSM s AS a :A IN t′ :Bat

Rewriting corresponds therefore to either η-expansions on INF/FNF or
β-reductions:

Definition 10 (Reductions). Let →β be standard β-reduction on terms, then

1. ∆; Γ; · ` t→INF t
′ iff ∆; Γ; · ` t→β t

′ or ∆; Γ; · ` t→ηINF t
′;

2. ∆; · ` t→FNF t
′ iff ∆; Γ ` t→β t

′ or ∆; Γ ` t→ηFNF t
′;

Definition 11 (Equality for βη-reducts with Dependent Proof). The closure
of βη-normal forms for identity of dependent proofs requires the following rule:

∆; · ` A→βη A
′ ∆; a :A ` B ≡ B′

βηEq DepProof
∆; Γ ` a ::B ≡ a′ ::B′

Lemma 4 (Equivalence of βηNF under →INF/FNF ). Let ∆; Γ ` t→INF/FNF

t′, then there is a judgement ∆; Γ ` t→βη t
′. If ∆; Γ→βη ∆′; Γ′, then ∆′; Γ′ `

t→INF/FNF t′. Finally, let t be in βNF and ∆; Γ ` t→ηFNF t′, then t′ is in
βNF .

Proof. The first implication is satisfied by using Definition 8 to show that every
INF is internal to a FNF and by Definitions 9 and 10 for the equivalence to a
corresponding βη reduction. For the second implication, the construction will
be done similarly by induction on ∆ and using Definition 11 for Γ. ηFNF just
preserves β Normal Forms.
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Lemma 5 (β Normal Forms). If ∆; Γ ` t ≡ t′, then ∆; Γ ` t→βη t
′, for every

term t.

Proof. Immediate by Lemma 4.

Lemma 6 (Normalisation). If ∆; Γ ` FNF (t), then there is no t′ such that
∆; Γ ` t→βη t

′

Proof. By induction on the derivation. By using Definition 8, one shows that
schemas of INF are included into FNF ; by Definition 9, one shows that every
INF normal form can be η-reduced to a FNF normal form; applying Lemma
4, every η equivalent NF has a unique β-FNF (t). Then by Lemma 5, there
is a finite number of steps leading to an equivalent βη term which must be in
normal form.

Dependent proof is now defined by an internal normal form which occurs
in the definition of a full normal form; normalisation obtains by reduction to
the latter. At this stage the rewriting relation induced by the FNF/INF
predicates is only weakly normalising. In order to show that it induces also
strong normalisation, one needs to prove that every term can be reduced to full
normal form, i.e. the reverse of Lemma 6. The interesting part concerns the
judgement

∆; Γ; · ` tas ≡ ASSM ?s AS a :A IN t ::Bas

for which one needs to show that there is another judgement

∆; Γ ` tvs ≡ XTRT !s AS v :A IN t :Bvs

and FNF (A ⊃ B).

6 (Strong) Normalisation and Confluence

We now want to show that every expression (including those with dependent
terms) reduces to a unique confluent η-expanded full normal form. To do so,
we shall prove that terms in (either) normal form derivable under equivalent
assumptions, are equal; and that βη equivalent terms in (either) normal form
are equal. In this way, one can prove a confluence relation up to equivalence of
terms that can be different up to βη-equivalence.

We start by defining a notion of Type Equivalence which applies to both
terms and pre-terms (i.e. to both terms with INF and FNF ):

Definition 12 (Type Equivalence). Two (pre-)terms are said to be type equiva-
lent ∆; Γ ` b ≈ b′ if their (pre-)contexts respect context equivalence (by Lemmas
1 and 2) and their βη-normal forms are equivalent (by Lemma 6).

This definition is given for terms by the following inference rules:

∆; · ` · ≈ ·
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∆ ` s :A
∆; · ` s ≈ s

∆; · ` s :A =βη s
′ :A′ ∆; v :A ` B ≈ B′

∆; Γ ` λv :A.s :A ⊃ B ≈ λv :A′.s′ :A′ ⊃ B′

∆; · ` s :A =βη s
′ :A′

∆; Γ `!s :s :A ≈!s′ : (s′ :A)

Type equivalence requires preservation by substitution of True Assumptions
by Valid Assumptions:

Lemma 7. Let ∆; a : A; · ` t :: B and ∆; · ` s : A. If ∆; Γ ` t ≈ t′ and
∆; Γ ` s ≡ s′ then ∆; Γ[a/s] ` t[a/s] ≈ t′[a/s′].

Proof. The proof goes by induction on t ::B, using substitution on terms as by
Theorem 2.

Now we can extend the previous set of rules to include pre-terms:

∆; Γ ` · ≈ ·

Γ ` s ::A ∆ ` s′ :A
∆; Γ ` s ≈ s′

∆; · ` s :A =βη s
′ :A′ ∆; a :A ` B ≈ B′

∆; Γ ` 〈s〉t :B[A] ≈ 〈s′〉t′ :B′[A′]

∆; Γ ` s ::A ∆; · ` s :A =βη s
′ :A′

∆; Γ `?s : (s ::A) ≈?s′ : (s′ ::A′)

From this it follows immediately that ≈ is an equivalence relation and hence
a sub-relation of a β-reduction, hence it is strongly normalising. We can prove
now that our rewriting relation is coherent with the type equivalence relation.

Lemma 8. The rewriting relation →βFNF is coherent with type equivalence: if
∆; Γ ` t→βFNF t

′ and ∆; Γ ` t ≈ u, then ∆; Γ ` u→βFNF t
′.

Proof. The proof is by induction on the rewrite relation →βFNF , with one
interesting case: if ∆; Γ ` t →βFNF t[a : A] when ∆; · ` s : A and a /∈ FV(t).
Then a reduction is required ∆; Γ ` t[a :A] →βFNF ([a/v] · t) to obtain ∆; v :
A′,Γ ` t →βFNF t′. Then u must be of the form t′′[a′ :A′] and ∆; Γ ` t′ ≈ t′′

and ∆; a :A,Γ ` t ≈ t′. Hence, there must be a reduction ∆; Γ ` t′′[a′ :A′] →β

([a′/v′] · t′′). Then by Lemma 7, t′′[a′ :A′] ≡ ([a′/v′] · t′′) so it is a reduction
holding under type equivalence, so by substitution ([a/v] · t) ≈ ([a′/v′] · t′′) and
as required ∆; Γ ` t′′[a′ :A′]→βFNF ([a/v] · t).

It follows that →βFNF is strongly normalising. By extending with INF -
normal forms, we prove confluence:
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Lemma 9 (Confluence of β-expanded expressions). If ∆; Γ ` t→∗βFNF/INF t′

then there is ∆; Γ ` t→∗βFNF/INF t
′′ such that ∆; Γ ` t′ ≈ t′′.

Proof. The proof is on the length of the reduction sequence for ∆; Γ ` t→∗βFNF/INF
t′:

1. length 1: then either ∆; Γ ` t ≈ t′ and t′′ = t or ∆; Γ ` t 6≈ t′ and t′′ = t′.

2. inductive step: if ∆; Γ ` t′ →βFNF/INF u, then by Lemma 8, there
is u′ such that ∆; Γ ` t′ →∗βFNF/INF u′ and u′ ≈ u′′; and if ∆; Γ `
t →∗βFNF/INF t′′ such that t′ ≈ t′′, then ∆; Γ ` t′′ →∗βFNF/INF t′′′ such

that u′′ ≈ t′′′.

We now want to prove that also the η-expanded forms are confluent.

Lemma 10. The rewriting relation →ηFNF is coherent with type equivalence:
if ∆; Γ ` t→ηFNF t

′ and ∆; Γ ` t ≈ u, then ∆; Γ ` u→ηFNF t
′.

Proof. The proof is by induction on the rewrite relation given by the first deriva-
tion. We consider the two interesting cases:

1. if ∆; Γ ` t →ηFNF v :A.t when ∆; · ` t :A and v /∈ FV(t). Then t is not
context dependent, neither is u. If ∆; Γ ` t ≈ u then ∆; Γ ` t →βη u
by Definition 10 and by Definition 12 there is ∆; · ` u : A such that
∆; Γ ` t →βη u holds. This also means there is an expansion ∆; Γ `
u→ηFNF v :A.t when ∆; · ` A | u and v /∈ FV(t). So by substitution and
the hypothesis, ∆; Γ ` u→βFNF t

′.

2. if ∆; Γ ` t →ηINF t[a :A] when ∆; · ` tA and a /∈ FV(t). By η-reductions
on ∆; Γ ` INF (A), ∆; a : A ` FNF (t′) and ∆; ·A →ηFNF A′, obtain
∆; Γ ` FNF ([a/v]·t) and use the latter to obtain ∆; v :A′,Γ ` t→ηFNF t

′.
Then proceed as in the previous case to show coherence for t ≈ u.

Lemma 11 (Confluence of η-expanded expressions). If ∆; Γ ` t→ηFNF/INF t
′

then there is ∆; Γ ` t→ηFNF/INF t
′′ such that ∆; Γ ` t′ ≈ t′′.

Proof. The proof goes by induction on the structure of terms. As above, there
are two interesting cases:

1. If ∆; Γ ` t →ηFNF v : A.s and ∆; Γ ` t →ηFNF v : A′.s′, then ∆; Γ `
A =βη A

′ and ∆; Γ ` v :A.s ≈ a :A′.s′;

2. if ∆; Γ ` t →ηFNF v : A.s and ∆; Γ ` t →ηINF t′, then t′ must have a
redex which is context independent and ∆; Γ ` t ≈ t′. Hence, there must
be rewriting relations ∆; Γ ` t′ →ηFNF v :A.s and ∆; Γ ` v :A′.s →ηINF

v :A.t′.
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Lemma 12 (Confluence). If ∆; Γ ` s →βFNF t and ∆; Γ ` s →ηINF t′, then
either

1. ∆; Γ ` t′ →+
βFNF t

′′ ≈ u and ∆; Γ ` t→∗ηINF u; or

2. ∆; Γ ` t′ →+
βFNF t

′′ ≈ u and ∆; Γ ` t→ηFNF u.

If ∆; Γ ` s→ηFNF t
′ in the second premise, then ∆; Γ ` t→∗ηFNF u.

Proof. One needs to show that the transitively closed β-reduction t′ →+
βFNF t

′′

is preserved under type-equivalence. Proof is by induction on t, with the usual
two relevant cases:

1. If ∆; Γ ` t→ηFNF t[a :A], then reduction is performed as for Lemma 10.
If t′ := t′[a′ :A′], then by Definitions 6, 11 it holds ∆; Γ ` A =βη A

′, so
∆; Γ ` t[a :A]→β t

′[a′ :A′]→β t ≈ t′.

2. If ∆; Γ ` ([a/x] :A)t →β v :A.t, then any rewrite on A terminates, and
so does any →ηINF from a or t, which makes them both preserving type-
equivalence.

All the previous results taken together show that our reduction relation
→FNF/INF for both β and η conversions is confluent under type equivalence.
This is all that is needed to prove uniqueness of →FNF/INF normal forms.

Lemma 13 (Uniqueness of FNF/INF normal forms). For ∆; Γ ` t ≈ t′ such
that there are s →βηINF t and s′ →βηINF t′, then t = t′. For ∆; Γ ` t =βη t

′

such that there are s→βηFNF t ands′ →βηFNF t
′, then t = t′.

Proof. By induction on t, t′, with the interesting cases:

1. t := [a/x] :A.t, then t′ := [a′/x′] :A′.t′ and ∆; Γ ` A =βη A
′ and ∆; a :

A; Γ ` t ≈ t′. Since t, t′ are INF -redexes, by induction t = t′.

2. As t, t′ are FNF -redexes and βη-equivalent, they must be type equiva-
lent. Then from them infer the corresponding INF -redexes and apply the
argument as by the previous point.

It remains to prove strong normalisation for →INF/FNF , i.e. that each ter-
mination chain for such predicate has no infinite series of terms. As for theories
of types with dependencies, the crucial step is to show calculation of variables
to their reducts (see [16], [1]) to extend recursively a standard subject reduction
lemma for terms by one reduction step for each occurrence of a dependent term.

Definition 13. The set of typable terms Tz(S) for each typing judgment ∆; Γ `
S, with S either a with variable z(s) /∈ dom(Γ) is given by:

1. Tz(B[A]) = {z} ∪ {[x/v :A] · [s/t :B] such that v ∈ Tx(A) and t ∈ Ts(B)
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2. Tz(S) = {z} iff for no A ⊆ S, A := B[C].

with variables v, s fresh.

Lemma 14 (Subject reduction for terms). Let ∆; · ` FNF (S) and s :S, then
∆; a :S ` a→ηFNF t iff t ∈ Tx(S).

Proof. This is established by induction on S.

⇒ The set of typable terms in S is closed under →ηFNF reduction: if for no
A ⊆ S, s ::A, then there is no judgement Γ ` 〈s〉t :B[A] and FNF (B[A])
as by term identity and Context Equivalence A already is a reduct of a
dependent proof, hence its term s is already in normal form; if S ≡ B[A]
and ∆; Γ ` 〈s〉t :B[A]→ηFNF (s)t.s :B[A], then [s/v] · t ∈ Tx(S).

⇐ Any ηFNF reduction provides typable terms: with S ≡ B[A], the follow-
ing reduction sequence hold:

Γ ` t→ηFNF 〈s〉t :B[A]→ηFNF (s)t.s :B →ηFNF (s)t :B.s[a/v]

with a ∈ Tx(A) and t ∈ Ty(B). As the last step is an application, it
preserves typing.

Lemma 15. There are no infinite sequences of reductions ∆; Γ ` t→ηINF/FNF

t′ →ηINF/FNF t
′′ . . .

Proof. The proof is by induction on t. To prove the general form, is enough to
show that there is no infinite reduction sequence for ∆; Γ ` t→ηINF t′ →ηINF

t′′ . . . , because if t contains no local variable a :A, then each term is in FNF -
normal form and hence a β-reduced term. If for some term a reduction ∆; Γ `
t →ηINF t′ applies, then there are at most a finite number of reduction steps
with B[A] ∈ S from ` s :S; any other compound term reduces by an →ηINF or
→ηFNF step, including by Lemma 14 that every assumption a :A requires at
most one extra induction step to reduce to the previous finite case. Hence the
rewriting relation →ηINF/FNF is strongly normalising.

7 Realization of ILPdep

Normalization has shown that every formula of ILPdep of the form 〈s〉t :B[A]
when reduced corresponds to one of the form r : A ⊃ B; this can be further
broken down to r ≡ (s)t.s for B. This full normalization of dependent proof
terms, allows us to compare with the standard language of ILP .10

For every proof variable r of an intuitionistic logic-admissible rule, there is
an ILP polynomial. We shall give as a last result the proof that this is true for
ILPdep and intuitionistic logic with the internalization property:

10See [7], in particular section 5.
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A1, . . . , An `ILP B
a1 :A1 . . . , an :An `ILP t(a1, . . . , an)B

The proof is given by adapting the usual Lifting Lemma for ILP to the
presence of dependent proof terms:

Lemma 16 (Lifting for Dependent Proof Terms). Let ∆ = a1 :A1, . . . , an :An
and Γ = b1 : B1, . . . , b1 : Bn. If ∆; Γ ` t :: C then ∆; · ` 〈b〉t : C[B] and
∆; · `!s′(u) : s(a, b) :C, where s(a, b) = (a1, . . . , an).(b1, . . . , bn) :B and s′(u) =
XTRT b :B AS u :C[B] IN !(∆.s(a, b)).

Proof. The proof is by induction on Γ, requiring a step by step weakening of
∆ by each true assumption Bi ∈ Γ for C[Bn], followed by an application to a
fresh variable a to extract it as a valid variable in order to get an unconditional
proof term s in C. An example of one such step with Γ = {bi :Bi}:

∆; bi :Bi ` t ::C
DepProof

∆;` 〈bi〉t :C[Bi]

∆;` bi :Bi
!I

∆; · `!bi : (bi :Bi)
!E

∆; Γ ` XTRT !biAS vi :B IN t :Cvbi

The selection of elements in Bn proceeds from Bi to Bi−1 for Γ = {b1 :
B1, . . . , bn : Bn}. The additional step required by the !I Rule allows the dis-
charging of the dependent term, followed by the additional discharging by the !
operator.

Theorem 3 (Characterization). ILPdep is the language of ILP enhanced with
an operation on polynomials for the internalization property.

Proof. Immediate by the construction presented for Lemma 16.

8 Conclusions

We have shown how to extend the standard setting of the Intuitionistic Logic
of Proofs with identity by means of a notion of dependent proof term. This
provides an easy extension to the functional fragment of the theory and it sug-
gests a ground comparison with theories of dependent types. Moreover, we have
given an interpretation of such dependent terms by means of a natural deduc-
tion calculus by separating derivations from valid assumptions and derivations
including true assumptions: the notion of dependent proof term is translated as
term derivability from locally valid assumptions. Our claim is that the notion
of true assumption derived from a dependent term is an appropriate interpreta-
tion of possibility for proof terms. Basic properties such as normalisation and
confluence are shown for this calculus in terms of reductions to standard non-
dependent terms. As last result, normalisation allows to present ILPdep as the
standard translation of intuitionistic logic with the internalization property into
the Logic of Proofs. Further research shall focus on the use of dependent terms
for epistemic purposes, especially in the study and definition of knowledge in a
multi-agent and distributed setting.
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[9] Sergei N. Artëmov and Eduardo Bonelli. The intensional lambda calculus.
In Sergei N. Artëmov and Anil Nerode, editors, LFCS, volume 4514 of
Lecture Notes in Computer Science, pages 12–25. Springer, 2007.

[10] Eduardo Bonelli and Federico Feller. The logic of proofs as a foundation
for certifying mobile computation. In Sergei N. Artëmov and Anil Nerode,
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