
A Rich Paraconsistent Extension

of Full Positive Logic∗

Diderik Batens Kristof De Clercq†

Centre for Logic and Philosophy of Science
Universiteit Gent, Belgium

Diderik.Batens,Kristof.DeClercq@UGent.be

January 21, 2005

Abstract

In the present paper we devise and study the most natural predicative
extension of Schütte’s maximally paraconsistent logic. With some of its
large fragments, this logic, CLuNs, forms the most popular family of
paraconsistent logics. Devising the system involves some entanglements,
and the system itself raises several interesting questions. As the system
and fragments were studied by other authors, we restrict our attention to
results that we have not seen in press.

1 Aim of this Paper

In [33], Schütte presents a propositional logic Φv. The logic is paraconsistent
(A,∼A 0Φv B) and displays all usual negation properties that ‘drive negations
inwards’: ∼∼A ≡ A, ∼(A ∧ B) ≡ (∼A ∨ ∼B), etc. Schütte devised Φv for a
special purpose, a purpose for which he does not need a predicative version of
it. In the present paper we devise the most natural such extension, and call it
CLuNs for reasons that become obvious later. Devising this system involves
several entanglements and raises some interesting questions.

Actually, CLuNs and some of its fragments obtained by dropping certain
logical symbols became the most popular paraconsistent logics. For some ex-
amples see [5], [6], [19], [20], [21], [22], [23], [24], [25] and [30], [34]—with thanks
to João Marcos for some of these references. There are not many references in
the paraconsistent literature, though, even after Φv was (explicitly ascribed to
Schütte and) studied, together with other propositional paraconsistent logics in
[7].

∗Research for this paper was supported by subventions from Ghent University and from the
Fund for Scientific Research – Flanders, and indirectly by the the Flemish Minister responsible
for Science and Technology (contract BIL98/37). We are indebted to Natasha Kurtonina who
did part of the research on the first contract. We are also grateful to João Marcos and to the
referees for comments on a former draft.

†Research Assistant of the Fund for Scientific Research – Flanders.

1

Some paraconsistent logicians object to a detachable material implication,
but like the other properties of the logic. For example, Priest’s preferred para-
consistent system, LP, is (at the propositional level) the ∼-∧-∨-fragment of
CLuNs.

Φv contains a constant, now usually written as “⊥”, that represents ‘The
Falsehood’ (or the ‘conjunction of all formulas’) and is characterized by ⊥ ⊃ A.
In this system, classical negation may be defined by ¬A =df A ⊃ ⊥. In [7], the
⊥-less (and ¬-less) fragment of Φv is studied (under the name PIs) and is shown
to be maximally paraconsistent—i.e. propositional CL is the only non-trivial
logic that extends Φv. In the present paper, we shall distinguish CLuNs,
in which classical negation and bottom are primitive or definable, from pure
paraconsistent CLuNs, in which classical negation is not definable.

It is not our aim, in the present paper, to offer a complete study of CLuNs,
but rather to describe some properties that thus far went largely unnoticed.
Three main topics are dealt with. First, we devise CLuNs as a natural pred-
icative extension of Φv and present a variety of semantics for it—the system
turns out to be rather natural under a large class of very different descrip-
tions. Next we offer some comments on definability in CLuNs and consider
the (remarkable) relation between non-equivalent formulas containing a single
propositional letter—we refer to [19] for an interesting study of definable propo-
sitional connectives in CLuNs. Finally we consider some further properties of
the system.

A separate motivation for devising CLuNs is that we want to study, in a
separate paper, the properties of the inconsistency-adaptive logics—see, e.g.,
[10] or [13]—that are based upon it. Although our preferred inconsistency-
adaptive logics for studying inconsistencies in empirical (scientific and everyday)
theories have CLuN—see below—as their lower limit logic, most inconsistencies
in mathematical theories seems to require inconsistency-adaptive logics that
have CLuNs as their lower limit logic.

2 Syntax

Let L be the language of CL (with identity but without function symbols). We
shall take “∼” to be the standard negation of the language—the unqualified
word “negation” will always refer to it. For future reference we shall say that
L is defined (in the usual way) from 〈S, C,V,P1,P2, . . .〉, in which S is the set
of sentential letters, C the set of (letters for) individual constants, V the set of
variables, and Pr the set of predicates of rank r.

In agreement with the presentation in [33], we shall take L to contain bottom
(⊥). It will have no meaning in pure paraconsistent CLuNs, but is implicitly
defined by the axiom schema ⊥ ⊃ A in full CLuNs.1 The negation ¬, explicitly
defined by ¬A =df A ⊃ ⊥, is coextensive with ∼ in CL, but not in CLuNs.
So CLuNs may be seen as weaker than CL, but also as an extension of CL
obtained by adding a (rich) paraconsistent negation ∼.

CLuNs is an extension of the basic paraconsistent logic CLuN,2 which
1This greatly simplifies metatheoretic proofs whereas the properties of pure paraconsistent

CLuNs are derivable by simple means.
2CLuN is basic in the following sense. Where ¬ is considered as the standard negation of

CL, CLuN is the intersection of all ∼-complete extensions of CL. Without ¬, CLuN is the

2

consists of the full positive fragment of CL together with A ∨ ∼A.3

It is worth pointing out that Replacement of Equivalents and Replacement of
Identicals are not generally valid in CLuN. If `CLuN A ≡ B and D is obtained
by replacing A by B in C, then `CLuN C ≡ D provided the replacement did
not take place within the scope of a “∼”. The origin of the proviso is easily
detected. The positive fragment of CL does not allow for the replacements
within the scope of ∼, and adding A ∨ ∼A does not repair this. Similarly for
Replacement of Identicals.

The propositional part of CLuN is axiomatized by:

MP From A and A ⊃ B to derive B
A⊃1 A ⊃ (B ⊃ A)
A⊃2 ((A ⊃ B) ⊃ A) ⊃ A
A⊃3 (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))
A⊥ ⊥ ⊃ A
A∧1 (A ∧B) ⊃ A
A∧2 (A ∧B) ⊃ B
A∧3 A ⊃ (B ⊃ (A ∧B))
A∨1 A ⊃ (A ∨B)
A∨2 B ⊃ (A ∨B)
A∨3 (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨B) ⊃ C))
A≡1 (A ≡ B) ⊃ (A ⊃ B)
A≡2 (A ≡ B) ⊃ (B ⊃ A)
A≡3 (A ⊃ B) ⊃ ((B ⊃ A) ⊃ (A ≡ B))
A∼1 (A ⊃ ∼A) ⊃ ∼A

Full CLuN is obtained by adding:

R∀ To derive ` A ⊃ (∀α)B(α) from ` A ⊃ B(β), provided β does not occur
in either A or B(α).

A∀ (∀α)A(α) ⊃ A(β)
R∃ To derive ` (∃α)A(α) ⊃ B from ` A(β) ⊃ B, provided β does not occur

in either A(α) or B.
A∃ A(β) ⊃ (∃α)A(α)
A=1 α = α
A=2 α = β ⊃ (A ⊃ B) where B is obtained by replacing in A an occurrence

of α that occurs outside the scope of a negation by β

The propositional fragment of CLuNs, viz. Φv, is obtained by adding to
that for CLuN a set of axiom schemas that ‘drive negation inwards’ in the
expected way:

A∼∼ ∼∼A ≡ A
A∼⊃ ∼(A ⊃ B) ≡ (A ∧ ∼B)
A∼∧ ∼(A ∧B) ≡ (∼A ∨ ∼B)
A∼∨ ∼(A ∨B) ≡ (∼A ∧ ∼B)
A∼≡ ∼(A ≡ B) ≡ ((A ∨B) ∧ (∼A ∨ ∼B))

intersection of all ∼-complete extensions of full positive CL. We refer to [26] for a proof at
the propositional level which is easily generalized to the full logic.

3Where negation in CL is characterized by the consistency and the completeness presup-
position, CLuN just retains the latter, thus allowing for gluts with respect to negation.

3

To obtain CLuNs without identity, add the pertinent axiom schemas and
rules of CLuN together with:

A∼∀ ∼(∀α)A ≡ (∃α)∼A
A∼∃ ∼(∃α)A ≡ (∀α)∼A

It is worth pointing out two interesting facts at this point. First equivalence
is not in general contraposable. Next, the contraposed versions of A∼∼, A∼∧,
A∼∨, A∼∀, and A∼∃ are derivable, but those of A∼⊃ and A∼≡ are not.
(It follows at once that the rule of Replacement of (Provable) Equivalents is
not derivable, but it is possible to define another equivalence that warrants
replacement—see Section 6.)

How should identity behave in CLuNs? We may associate it with “≡”,
in which case it will, as in CLuN, lead to the Replacement of Identicals that
do not occur within the scope of a negation. Alternatively, we may require
that identity behaves fully classical in sanctioning Replacement of Identicals
everywhere. There are three good reasons for the latter decision. The first is
that the Replacement of Identicals is of the same type as other ‘natural’ rules,
such as de Morgan properties—compare section 1. The second reason is this. As
we shall see in Section 6, it is possible to define in CLuNs an equivalence that
warrants replacement of formulas that are equivalent (in this sense). Given this,
it would be odd not to have full Replacement of Identicals. The third reason is
related to the relation between CLuNs and CL—we postpone its discussion to
Section 7. So, while there is no formal objection against keeping A=2, we shall
take identity in CLuNs to be defined by A=1 and A=2s:

A=2s α = β ⊃ (A ⊃ B) where B is obtained by replacing in A an occurrence
of α by β

Of course one may consider the variant defined by A=2—there is no formal
objection to this.

The pure paraconsistent versions of CLuN and CLuNs are obtained by
dropping the axiom A⊥. In pure paraconsistent CLuN no logical symbol can
be eliminated by defining it from the others. In pure paraconsistent CLuNs
some logical symbols can be eliminated by defining them from the others, as we
shall see in Section 6.

3 Semantics and Some Metatheory

We begin with a semantics for CLuNs that is arrived by modifying and ex-
tending the CLuN-semantics—see [10] and especially [17].

According to the CLuN-semantics the assignment function v assigns a truth
value to all closed formulas—henceforth wffs—of the form ∼A. In view of the
clause

vM (∼A) = 1 iff vM (A) = 0 or v(∼A) = 1,

CLuN-models are negation-complete but possibly inconsistent. In CLuNs the
value of the negation of a complex wff depends on the value of its subformulas
and/or their negations. Moreover, we have to make sure that A=2s comes out
valid; if v(a) = v(b), then, for example, it is required that v(∼Pa) = v(∼Pb).

4

We shall meet this requirement by applying the (general) method suggested
at the end of Section 8 of [10]: v does not assign a truth value to negations of
wffs that contain constants, but rather assigns a set of n-tuples of members of
the domain to some (specified) meta-linguistic formula of the same form. To
simplify the notation, we write, where πr ∈ Pr, ∼πr instead of ∼πrα1 . . . αr;
similarly, we write ∼= instead of ∼ α = β.

Let O be a set of pseudo-constants; O should have at least the cardinality of
the domain of the largest models one wants to consider. Let the pseudo-language
L+ be defined from 〈S, C ∪ O,V,P1,P2, . . .〉—see Section 2. Let F+ and W+
denote respectively the set of formulas and the set of wffs of L+. Formulas that
do not contain any logical symbols, except possibly for identity, will be called
primitive formulas. Finally, let ∼S = {∼A | A ∈ S}, ∼Pr = {∼πr | πr ∈ Pr}
(r > 0), and extend ∼P2 with ∼=.

A CLuNs-model is a couple M = 〈D, v〉 in which D is a non-empty set and
v is an assignment function defined by:

C1.1 v : S 7→ {0, 1}
C1.2 v : C ∪ O 7→ D (where D = {v(α) | α ∈ C ∪ O})
C1.3 v : Pr 7→ ℘(Dr) (the power set of the r-th Cartesian product of D)
C1.4 v : ∼S 7→ {0, 1}
C1.5 v : ∼Pr 7→ ℘(Dr)

The valuation function vM determined by M is defined as follows:

C2.1 vM : W+ 7→ {0, 1}
C2.2 where A ∈ S, vM (A) = v(A); vM (⊥) = 0
C2.3 vM (πrα1 . . . αr) = 1 iff 〈v(α1), . . . , v(αr)〉 ∈ v(πr)
C2.4 vM (α = β) = 1 iff v(α) = v(β)
C2.5 vM (A ⊃ B) = 1 iff vM (A) = 0 or vM (B) = 1
C2.6 vM (A ∧B) = 1 iff vM (A) = 1 and vM (B) = 1
C2.7 vM (A ∨B) = 1 iff vM (A) = 1 or vM (B) = 1
C2.8 vM (A ≡ B) = 1 iff vM (A) = vM (B)
C2.9 vM ((∀α)A(α)) = 1 iff vM (A(β)) = 1 for all β ∈ C ∪ O
C2.10 vM ((∃α)A(α)) = 1 iff vM (A(β)) = 1 for at least one β ∈ C ∪ O
C2.11 where ∼A ∈ ∼S, vM (∼A) = 1 iff vM (A) = 0 or v(∼A) = 1
C2.12 where r > 0, vM (∼πrα1 . . . αr) = 1 iff vM (πrα1 . . . αr) = 0 or

〈v(α1), . . . , v(αr)〉 ∈ v(∼πr)
C2.13 vM (∼∼A) = vM (A)
C2.14 vM (∼(A ⊃ B)) = vM (A ∧ ∼B)
C2.15 vM (∼(A ∧B)) = vM (∼A ∨ ∼B)
C2.16 vM (∼(A ∨B)) = vM (∼A ∧ ∼B)
C2.17 vM (∼(A ≡ B)) = vM ((A ∨B) ∧ (∼A ∨ ∼B))
C2.18 vM (∼(∀α)A(α)) = vM ((∃α)∼A(α))
C2.19 vM (∼(∃α)A(α)) = vM ((∀α)∼A(α))

Truth in a model, semantic consequence, and validity are defined as usual—
we sometimes shall write M |= A to express that M verifies A.

Any model is equivalent to (verifies the same wffs as) a N -minimal model,
viz. a model in which v(∼A) = 0 whenever vM (A) = 0. A model is consistent
and N -minimal if v(∼A) = 0 for all A; if the condition is not fulfilled the model
may still be consistent, in which case it is not N -minimal.

5

The Deduction Theorem is obviously provable. Similarly for Compactness
with respect to derivability, semantic consequence, satisfiability, triviality, ¬-
consistency, and ∼-consistency.

Theorem 1 CLuNs is sound with respect to the semantics.

Proof. The only non-trivial case concerns the truth of A∨∼A in every model. To
show this, we prove, by an induction on the complexity of A, that vM (∼A) = 1
if vM (A) = 0. The base case follows immediately from C2.11 and C2.12. For
the induction step we consider one clause as an example. Let A be of the form
B ∧ C. Suppose vM (B ∧ C) = 0. By C2.6 vM (B) = 0 or vM (C) = 0. Hence,
by the induction hypothesis, vM (∼B) = 1 or vM (∼C) = 1. Consequently
vM (∼(B ∧ C)) = vM (∼B ∨ ∼C) = 1.

For the following theorem, consider a denumerable O◦ ⊆ O and let L◦ be
the defined from 〈S, C ∪ O◦,V,P1,P2, . . .〉.

Theorem 2 CLuNs is strongly complete with respect to the semantics.

Proof. Suppose that Γ 0CLuNs A. Consider, as for the proof in CL, a sequence
B1, B2, . . . that contains all wffs (of L◦) and in which each wff of the form (∃α)C
is followed immediately by an instance with a constant that does not occur in
Γ, in A, or in any previous member of the sequence. We then define

∆0 = CnCLuNs(Γ)
∆i+1 = CnCLuNs(∆i ∪ {Bi+1}) if A /∈ CnCLuNs(∆i ∪ {Bi+1}), and
∆i+1 = ∆i otherwise

∆ = ∆0 ∪∆1 ∪ . . .

Each of the following is provable:

(i) Γ ⊆ ∆ (by the construction).
(ii) A /∈ ∆ (by the construction).
(iii) ∆ is deductively closed (by the definition of ∆).
(iv) ∆ is maximally non-trivial. To see this, remark first that A ⊃ C ∈ ∆ for all

C. Indeed, if A ⊃ C /∈ ∆, then there is a ∆i such that ∆i ∪ {A ⊃ C} ` A;
hence ∆i ` (A ⊃ C) ⊃ A by the Deduction Theorem; hence, in view of
A⊃2, ∆i ` A, which is impossible. If E /∈ ∆, then there is a ∆i such that
∆i ∪ {E} ` A and hence ∆ ∪ {E} ` A; as A ⊃ C ∈ ∆ for all C, ∆ ∪ {E}
is trivial.

(v) ∆ is prime, i.e.: if C ∨ E ∈ ∆, then C ∈ ∆ or E ∈ ∆. Suppose that
C ∨E ∈ ∆, C /∈ ∆ and E /∈ ∆; hence, as in the proof of (iv), ∆∪{C} ` A
and ∆ ∪ {D} ` A, and also ∆ ` C ⊃ A and ∆ ` D ⊃ A by the Deduction
Theorem; but then ∆ ` (C∨D) ⊃ A and hence ∆ ` A, which is impossible.

(vi) ∆ is ω-complete with respect to L◦.4 As for CL, the order of the sequence
B1, B2, . . . and R∃ warrant that, if (∃α)C(α) ∈ ∆, then C(β) ∈ ∆ for some
β ∈ C ∪ O◦.

We now define a CLuNs-model M from ∆. Let ~α�, the equivalence class of
α ∈ C ∪ O◦, be such that β ∈ ~α� iff α = β ∈ ∆.

4∆ is ω-complete iff, if (∃α)A(α) ∈ ∆, then A(β) ∈ ∆ for some β ∈ C ∪ O◦.

6

1. D = {~α� | α ∈ C ∪ O◦};
2. for all C ∈ S, v(C) = 1 iff C ∈ ∆;

3. for all α ∈ C ∪ O◦, v(α) = ~α�;

4. for all r, v(πr) = {〈~α1�, . . . , ~αr�〉 | πrα1 . . . αr ∈ ∆};
5. for all ∼C ∈ ∼S, v(∼C) = 1 iff ∼C ∈ ∆;

6. for all πr ∈ Pr, v(∼πr) = {〈~α1�, . . . , ~αr�〉 | ∼πrα1 . . . αr ∈ ∆}.

We finally show, by an induction on the complexity of the wffs of L◦, that,
for every wff C, vM (C) = 1 iff C ∈ ∆.

In view of C2.2–4, 1–6 warrant that, where C is a primitive wff, vM (C) = 1
iff C ∈ ∆—the proof is completely standard. Also, if C is a primitive wff, then
5 and 6 warrant that vM (∼C) = 1 iff ∼C ∈ ∆.5

With primitive wffs and their negations as the base case, we proceed by the
usual induction. Let us consider one of the many cases, viz. C = ∼(D ∧ E):

∼(D ∧ E) ∈ ∆ iff ∼D ∨ ∼E ∈ ∆ (as ∆ is deductively closed)
iff ∼D ∈ ∆ or ∼E ∈ ∆ (as ∆ is prime)
iff vM (∼D) = 1 or vM (∼E) = 1 (by the induction hypoth-

esis)
iff vM (∼(D ∧ E)) = 1 (by C2.7 and C2.15)

As vM (C) = 1 iff C ∈ ∆, (i) and (ii) give us: vM (B) = 1 for all B ∈ Γ, and
vM (A) = 0. Hence Γ 2CLuNs A.

The semantics for the pure paraconsistent version of CLuNs is obtained
by dropping the subclause on ⊥ from C2.2. The proof of all aforementioned
theorems for that version is easily derived from the above proofs. The situation
is exactly the same for the semantic systems presented in subsequent sections,
whence we shall not repeat it there.

4 Three-Valued Semantics

Several brands of semantic styles allow for more elegant characterizations of
CLuNs. We shall mention four of them: a three-valued semantics (this Section),
a plus-minus semantics, a Priest-style semantics, and an ambiguity semantics
(next section). The elegance of the three-valued semantics resides especially in
the fact that all logical constants are truth-functions in it—this was shown in
[8] for the propositional version and is extended here for the predicative version.

Consider the values T , I, and F , corresponding to “consistently true”, “in-
consistent” and “consistently false” respectively. Where M = 〈D, V 〉 (defined
for the language L+) is a three-valued CLuNs-model, the valuation function
VM maps W+ on {T, I, F}. A is true in M iff VM (A) ∈ {T, I}. Let us start
with the propositional fragment. The behaviour of propositional letters is char-
acterized by:

5This can still be proved by relying on C2.11 and C2.12 if one requires, in 5, that C,∼C ∈
∆, and, in 6, that πrα1 . . . αr,∼πrα1 . . . αr ∈ ∆. In this case M is N -minimal.

7

V : S 7→ {T, I, F}
where A ∈ S, VM (A) = V (A); VM (⊥) = F

The meaning of three connectives is defined by the following matrices:

∼ ⊃ T I F ∧ T I F
T F T T I F T T I F
I I I T I F I I I F
F T F T T T F F F F

whereas the two further connectives may be defined explicitly—we list the tables
for the reader’s ease:6

A ∨B =df ∼(∼A ∧ ∼B)
A ≡ B =df (A ⊃ B) ∧ (B ⊃ A)

∨ T I F ≡ T I F
T T T T T T I F
I T I I I I I F
F T I F F F F T

In order to extend this to the predicative level, we let V assign elements of
D to members of C∪O in such a way that D = {V (α) | α ∈ C∪O}. Next, we let
V assign a triple 〈Σ1, Σ2,Σ3〉 to members of Pr such that Σ1,Σ2, Σ3 ∈ ℘(Dr),
Σ1 ∩ Σ2 = Σ1 ∩ Σ3 = Σ2 ∩ Σ3 = ∅, and Σ1 ∪ Σ2 ∪ Σ3 = ℘(Dr). To simplify
the notation, we consider V as composed in this case of the three functions V T ,
V I , and V F , with V T (πr) = Σ1, V I(πr) = Σ2, and V F (πr) = Σ3. The three
functions determine for which r-tuples the predicate is true, inconsistent, and
false respectively. The values of primitive predicative expressions are obviously
determined by:

VM (πrα1 . . . αr) = T iff 〈V (α1), . . . , V (αr)〉 ∈ V T (πr)
VM (πrα1 . . . αr) = I iff 〈V (α1), . . . , V (αr)〉 ∈ V I(πr)
VM (πrα1 . . . αr) = F iff 〈V (α1), . . . , V (αr)〉 ∈ V F (πr)

Identity is considered as a binary predicate with the special characteristic
that V T (=) ∪ V I(=) = {〈o, o〉 | o ∈ D}. This obviously warrants that VM (α =
α) ∈ {T, I} for all α and M .

Finally, the value of universally quantified wffs is determined by:

VM ((∀α)A(α)) = T iff VM (A(β)) = T for all β ∈ C ∪ O
VM ((∀α)A(α)) = F iff VM (A(β)) = F for at least one β ∈ C ∪ O
VM ((∀α)A(α)) = I iff VM (A(β)) ∈ {T, I} for all β ∈ C∪O and VM (A(β)) =
I for at least one β ∈ C ∪ O

whereas the existential quantifier can be explicitly defined by

(∃α)A(α) =df ∼(∀α)∼A(α)

Remark that the value of universally and existentially quantified formulas
corresponds respectively to that of the infinite conjunctions and disjunctions of
their instances in L+—compare to the instructive table on p. 140 of [19].

We shall say that two semantic systems are equivalent iff their semantic
consequence relations coincide.

6It follows that the system RM⊃
3 from [5] is identical to the propositional fragment of pure

paraconsistent CLuNs.

8

Theorem 3 The two-valued CLuNs-semantics is equivalent to the three-valued
CLuNs-semantics.

Proof. It is obvious that any two-valued model M = 〈D, v〉 may be transformed
to a three-valued model M ′ = 〈D, V 〉, and that any three-valued model M ′ =
〈D, V 〉 may be transformed to a two-valued model M = 〈D, v〉 such that

(i) Where α ∈ C ∪ O, V (α) = v(α).
(ii) where A ∈ S, V (A) = T iff v(A) = 1 and v(∼A) = 0, V (A) = I iff

v(A) = 1 and v(∼A) = 1, V (A) = F iff v(A) = 0 and v(∼A) = 1.
(iii) where πr ∈ Pr, V T (πr) = v(πr) − v(∼πr), V I(πr) = v(πr) ∩ v(∼πr),

V F (πr) = v(∼πr)− v(πr).7

The method for obtaining the three-valued model from the two-valued one is im-
mediate and elementary transformations provide the method for the converse.8

We leave it to the reader to check that, whenever A is an a primitive wff or
its negation, the following equivalences hold:9

(1) VM ′(A) = T iff vM (A) = 1 and vM (∼A) = 0
(2) VM ′(A) = I iff vM (A) = 1 and vM (∼A) = 1
(3) VM ′(A) = F iff vM (A) = 0 and vM (∼A) = 1

By the usual induction on the complexity of wffs, it is easily seen that (1)–(3)
hold for all wffs. It follows that M and M ′ verify exactly the same wffs.

5 Some Further Semantic Characterizations

Rather elegant characterizations are obtained by a so-called plus-minus seman-
tics.10 One of the sources of paraconsistency is that, in some circumstances and
for some A, one has good reasons to assert A and one also has good reasons
to deny A. The idea is naturally rendered by a valuation function that assigns
to each wff an assertion value as well as a denial value. Similarly, the assign-
ment function will assign a couple of values to members of S, P1, P2 (including
identity), P3, . . . Negation is then analysed by identifying the assertion value
of ∼A with the denial value of A. Where v is the assignment function, we shall
refer to the elements of the couple separately by v+ and v−; similarly for the
valuation function vM .

A model is a couple M = 〈D, v〉 in which D is a set and v is an assignment
function defined by:

C1.1 v+ : S 7→ {0, 1}
v− : S 7→ {0, 1}
restriction: where A ∈ S, v+(A) + v−(A) ≥ 1

7Remember that this handles identity.
8For example (iii) is equivalent to “where πr ∈ Pr, v(πr) = V T (πr)∪V I(πr) and v(∼πr) =

V F (πr) ∪ V I(πr)”.
9(1)–(3) are obviously equivalent to (1′) vM (A) = 1 iff VM′ (A) ∈ {T, I} and (2′) vM (∼A) =

1 iff VM′ (A) ∈ {F, I}.
10To the best of our knowledge, this type of semantics was derived from Asenjo’s semantics

for the logic of antinomies (see for example [4]) in which two n-place relations are assigned to
each predicate of rank n. It is not difficult to show that CLuNs coincides with the antinomic
predicate calculus (if it is described in the standard metalanguage and if one disregards ⊥).

9

C1.2 v : C ∪ O 7→ D
C1.3 v+ : Pr 7→ ℘(Dr) (the power set of the r-th Cartesian product of D)

v− : Pr 7→ ℘(Dr)
restriction: v+(πr) ∪ v−(πr) = Dr

C1.4 v+(=) = {〈o, o〉 | o ∈ D}
v−(=) ⊆ D2

restriction: v+(=) ∪ v−(=) = D2

The valuation function vM determined by the model M is defined by

C2.1 v+
M : W+ 7→ {0, 1}

v−M : W+ 7→ {0, 1}
C2.2 where A ∈ S, v+

M (A) = v+(A); v+
M (⊥) = 0

where A ∈ S, v−M (A) = v−(A); v−M (⊥) = 1
C2.3 v+

M (πrα1 . . . αr) = 1 iff 〈v(α1), . . . , v(αr)〉 ∈ v+(πr)
v−M (πrα1 . . . αr) = 1 iff 〈v(α1), . . . , v(αr)〉 ∈ v−(πr)

C2.4 v+
M (α = β) = 1 iff 〈v(α), v(β)〉 ∈ v+(=)

v−M (α = β) = 1 iff 〈v(α), v(β)〉 ∈ v−(=)
C2.5 v+

M (∼A) = v−M (A)
v−M (∼A) = v+

M (A)
C2.6 v+

M (A ⊃ B) = 1 iff v+
M (A) = 0 or v+

M (B) = 1
v−M (A ⊃ B) = 1 iff v+

M (A) = 1 and v−M (B) = 1
C2.7 v+

M (A ∧B) = 1 iff v+
M (A) = 1 and v+

M (B) = 1
v−M (A ∧B) = 1 iff v−M (A) = 1 or v−M (B) = 1

C2.8 v+
M ((∀α)A(α)) = 1 iff v+

M (A(β)) = 1 for all β ∈ C ∪ O
v−M ((∀α)A(α)) = 1 iff v−M (A(β)) = 1 for at least one β ∈ C ∪ O

A ∨B, A ≡ B, and (∃α)A are defined as in Section 4. A is true in a model
M iff v+

M (A) = 1. Semantic consequence and validity are defined as usual.
The reader may easily check that the clauses are quite intuitive. For example,

one has a reason to deny A ∧B iff one has a reason for denying at least one of
them; one has a reason to deny a universally quantified statement iff one has a
reason for denying at least one instance of it (supposing that we had no trouble
naming every object in the domain), etc.

Theorem 4 The three-valued CLuNs-semantics is equivalent to the ‘plus-minus’
CLuNs-semantics.

Proof. The proof is longwinded but obvious. A three-valued model M is turned
into a ‘plus-minus’ model M ′, and vice versa, in view of the following equiva-
lences:

(i) Where α ∈ C ∪ O, V (α) = v(α).
(ii) where A ∈ S, v+(A) = 1 iff V (A) ∈ {T, I}, v−(A) = 1 iff V (A) ∈ {I, F}.
(iii) where πr ∈ Pr, v+(πr) = V T (πr) ∪ V I(πr), v−(πr) = V I(πr) ∪ V F (πr).

Next one establishes that the following equivalences hold for all primitive
wffs of L+, and one applies an induction similar to that in the proof of Theorem
3 to generalize this result to all wffs of L+:

(1) VM (A) = T iff v+
M ′(A) = 1 and v−M ′(A) = 0

10

(2) VM (A) = I iff v+
M ′(A) = 1 and v−M ′(A) = 1

(3) VM (A) = F iff v+
M ′(A) = 0 and v−M ′(A) = 1

It seems worthwhile to look at some variants of the present semantics. First,
the requirements in the definition of the assignment may be dropped, provided
one ensures the validity of A ∨ ∼A by the valuation functions. For example,
C2.2 then needs to be modified by (leaving ⊥ alone and) either changing the
first part to

where A ∈ S, v+
M (A) = 1 iff v+(A) = 1 or v−(A) = 0

or by changing the second part to

where A ∈ S, v−M (A) = 1 iff v−(A) = 1 or v+(A) = 0

In proceeding thus, the assignment itself is neutral with respect to properties
of ∼-consistency and ∼-completeness, and the valuation determines whether
the models are interpreted classically, paraconsistently, paracompletely, or both
paraconsistently and paracompletely.

It may be more elegant to loosen C1.4 thus:

v+(=) ⊇ {〈o, o〉 | o ∈ D}
v−(=) ⊇ {〈o1, o2〉 | o1, o2 ∈ D and o1 6= o2}

Both identity and its negation then behave abnormally in a symmetric way.
Technically, a = b ` A(a) ≡ A(b) is warranted by defining equivalence classes of
members of D such that [o1] = [o2] iff 〈o1, o2〉 ∈ v+(=), and by letting v assign
such equivalence classes to members of C ∪ O and r-tuples of such equivalence
classes to members of Pr.

The same idea may be realized in an even simpler way. Let S be a non-
empty set, R an equivalence relation over S, and D the set of the equivalence
classes obtained from R. v(a) ∈ D is then a set of members of S. Identity may
be handled directly by the valuation thus:

v+
M (α = β) = 1 iff v(α) = v(β)

v−M (α = β) = 1 iff o1 6= o2 for some o1 ∈ v(α) and an o2 ∈ v(β)

The upshot is that v+
M (α = β) = 1 and v−M (α = β) = 0 iff v(α) = v(β) and

v(α) is a singleton; v+
M (α = β) = 1 = v−M (α = β) iff v(α) = v(β) and v(α) is not

a singleton; v+
M (α = β) = 0 and v−M (α = β) = 1 iff v(α) 6= v(β). In other words,

inconsistencies with respect to identity arise just in case two terms refer to the
same equivalence class, but refer inconsistently, viz. to a multiplicity of objects
that are ‘erroneously’ identified. The idea is related to collapsed models in the
sense of [31]. We shall see below that it may be generalized.

In Priest’s preferred semantic style, the truth-values are not members but
subsets of {0, 1}. This is combined with the plus-minus approach for predicative
letters. In view of Theorems 3 and 4, we can be very brief. First, the three-
valued values T , I, and F are translated as {1}, {1, 0}, and {0} respectively.
Next, primitive predicative expressions (including identities) are evaluated by

VM (πrα1 . . . αr) = {1} iff 〈V(α1), . . . , V(αr)〉 ∈ V+(πr)− V−(πr)

11

VM (πrα1 . . . αr) = {0, 1} iff 〈V(α1), . . . , V(αr)〉 ∈ V+(πr) ∩ V−(πr)
VM (πrα1 . . . αr) = {0} iff 〈V(α1), . . . , V(αr)〉 ∈ V−(πr)− V+(πr)

That the resulting CLuNs-semantics is equivalent to the semantic systems
listed before is immediate. It follows at once that Priest’s LP —see e.g., [30]—is
the ∼-∨-∧-∀-∃-fragment of CLuNs.11

This semantic style is attractive for dialetheists like Priest. They want their
paraconsistent logic as the logic of the metalanguage, and want to say that
some A is both true and false, rather than saying that both A and ∼A are true.
Indeed, the three values {0}, {1}, {0, 1} may be interpreted as “false only”,
“true only”, and “both true and false”. Much of the attractiveness vanishes if
one realizes that the dialetheist seems unable to formulate this semantics in his
preferred metalanguage.12

The assignment functions of all semantic systems mentioned up to this point
seem to suggest that CLuNs presupposes that “the world” is in one way or other
inconsistent. This, however, is not the case as may be seen from the seman-
tics presented in the Appendix of [11]. We briefly outline a (simplified and)
two-valued counterpart to that semantics, and shall call it here the ambigu-
ity semantics for CLuNs to distinguish it from the two-valued semantics from
Section 3.

Where the assignment function of the standard CL-model assigns an element
of a set S to some non-logical symbol, the assignment function of an ambiguity
model assigns to the symbol a non-empty subset of S. Intuitively, the symbol
may have different meanings rather than one.13

A model is a couple M = 〈D, v〉 in which D is a set and v is an assignment
function defined by:

C1.1 v : C ∪ O 7→ (℘(D)− ∅) (where ℘(D)− ∅ = {v(α) | α ∈ C ∪ O})
C1.2 v : S 7→ (℘({0, 1})− ∅)
C1.3 v : Pr 7→ (℘(℘(Dr))− ∅)

Identity is not handled as a predicate of rank 2, but will be handled directly
by the valuation function.

We shall use R, R1, etc. as variables for relations over D (sets of r-tuples
of members of D). Where π is a predicate of rank r, v(π) is a set of relations
of adicity r. This explains phrases as the following: 〈o1, . . . , or〉 ∈ R for some
R ∈ v(π). Remark that, where A ∈ S, v(A) ∈ {{0}, {1}, {0, 1}}.

The valuation function vM : W 7→ {0, 1} is defined as follows for primitive
wffs and their negations:

C2.1 where A ∈ S,
vM (A) = 1 iff 1 ∈ v(A)
vM (∼A) = 1 iff 0 ∈ v(A)
vM (⊥) = 0
vM (∼⊥) = 1

11Where we use a classical metalanguage, Priest uses a metalanguage that has LP as its
underlying logic. However, as was shown in [9], the statement in the text holds true under
both metalinguistic descriptions. See, however, the following paragraph in the text.

12Some arguments to this effect are presented in [9]. A more extensive and updated discus-
sion, including arguments from for example [2, pp. 496–497] and [32], is presented in [14].

13The symbol has an unambiguous meaning iff it is assigned a singleton.

12

C2.2 where π ∈ Pr and α1, . . . , αr ∈ C ∪ O,
vM (πα1 . . . αr) = 1 iff 〈o1, . . . , or〉 ∈ R for some o1 ∈ v(α1), . . ., for
some or ∈ v(αr) and for some R ∈ v(π),
vM (∼πα1 . . . αr) = 1 iff 〈o1, . . . , or〉 /∈ R for some o1 ∈ v(α1), . . ., for
some or ∈ v(αr) and for some R ∈ v(π)

C2.3 where α, β ∈ C ∪ O,
vM (α = β) = 1 iff v(α) = v(β)
vM (∼α = β) = 1 iff o1 6= o2 for some o1 ∈ v(α) and o2 ∈ v(β)

All other wffs are handled by clauses C2.5–10 and C2.13–19 of the two-valued
semantics from the Section 3 (replacing vM by vM).

In order to clarify the second half of the proof of the following theorem,
we mention that a CLuNs-model verifies a = b ∧ ∼a = b iff it verifies both
a = b and a = a ∧ ∼a = a and the latter holds just in case, in the two-valued
semantics, v(∼a = a) = 1.

Theorem 5 The ambiguity semantics is equivalent to the two-valued semantics.

Proof. We outline the proof that, from each ambiguity model M , an equivalent
two-valued model M ′ may be defined, and vice versa. To simplify the notation,
D will be the domain of the ambiguity model M and o, o′, o1 etc. will refer to
members of D; D′ will be the domain of the two-valued model M ′ and x, x′, x1

etc. will refer to members of D′.
From an ambiguity model M = 〈D, v〉 we define a two-valued model M ′ =

〈D′, v〉 as follows.

(1) D′ = ℘(D)− ∅.
(2) Where A ∈ S, v(A) = 1 iff 1 ∈ v(A), and v(∼A) = 1 iff 0 ∈ v(∼A).
(3) Where α ∈ C ∪ O, v(α) = v(α)—remark that v(α) ∈ D′ as required.
(4) Where π ∈ Pr, v(π) is the set of 〈x1, . . . , xr〉 such that 〈o1, . . . , or〉 ∈ R for

some o1 ∈ x1, . . ., for some or ∈ xr and for some R ∈ v(π).
(5) v(∼=) is the set of 〈x1, x2〉 such that o1 6= o2 for some o1 ∈ x1 and o2 ∈ x2.
(6) Where π ∈ Pr is different from =, v(∼π) is the set of 〈x1, . . . , xr〉 such

that 〈o1, . . . , or〉 /∈ R for some o1 ∈ x1, . . ., for some or ∈ xr and for some
R ∈ v(π).

We leave to the reader the (by now obvious) task to show that vM ′(A) = vM (A),
first for all primitive wffs A, and next, by the standard induction on the com-
plexity of wffs, for all wffs A.

From a two-valued model M ′ = 〈D′, v〉 we define an ambiguity model M =
〈D, v〉 as follows. Let f be a function such that, for all x ∈ D′, f(x) = {x} if
〈x, x〉 /∈ v(∼=), and f(x) = {x, {x}} if 〈x, x〉 ∈ v(∼=).

(1) D =
⋃{f(x) | x ∈ D′}

(2) Where A ∈ S,

· 1 ∈ v(A) iff v(A) = 1 and
· 0 ∈ v(A) iff v(A) = 0 or v(∼A) = 1.

(3) Where α ∈ C ∪ O, v(α) = f(v(α)).
(4) Where π ∈ Pr, v(π) = {Rπ, R′π} in which

· Rπ = {〈o1, . . . , or〉 | o1 ∈ f(x1), . . . , or ∈ f(xr), for some 〈x1, . . . , xr〉 ∈
v(π)− v(∼π)} and

13

· R′π = {〈o1, . . . , or〉 | o1 ∈ f(x1), . . . , or ∈ f(xr), for some 〈x1, . . . , xr〉 ∈
v(π)}.

We now show that vM (A) = vM ′(A) for all primitive formulas A.
Consider some A ∈ S. We have (with some notational abuse):

(i) vM ′(A) = 1 iff v(A) = 1 iff 1 ∈ v(A) iff vM (A) = 1, and
(ii) vM ′(∼A) = 1 iff (v(A) = 0 or v(∼A) = 1) iff 0 ∈ v(A) iff vM (∼A) = 1.

Where α, β ∈ C ∪ O, we have for identity:

(i) vM ′(α = β) = 1 iff v(α) = v(β) iff v(α) = f(v(α)) = f(v(β)) = v(β) iff
vM (α = β) = 1,

(ii) vM ′(∼α = β) = 1 iff (v(α) 6= v(β), or 〈v(α), v(β)〉 ∈ v(∼=)) iff (v(α) 6=
v(β), or v(α) = v(β) = {v(α), {v(α)}}) iff o1 6= o2 for some o1 ∈ v(α) and
o2 ∈ v(β) iff vM ′(∼α = β) = 1.

Consider some π ∈ Pr that is different from identity.

(i) Suppose that vM ′(πα1 . . . αr) = 1. It follows that 〈v(α1), . . . , v(αr)〉 ∈
v(π) and hence 〈v(α1), . . . , v(αr)〉 ∈ R′π. Hence 〈o1, . . . , or〉 ∈ R′π for some
o1 ∈ v(α1), . . ., for some or ∈ v(αr). Hence vM (πα1 . . . αr) = 1.

(ii) Suppose that vM (πα1 . . . αr) = 1. Hence 〈o1, . . . , or〉 ∈ Rπ ∪ R′π = R′π
for some o1 ∈ v(α1) = f(v(α1)), . . ., for some or ∈ v(αr) = f(v(αr)).
By the definitions of v(αi) and R′π, if 〈o1, . . . , {v(αi)}, . . . , or〉 ∈ R′π then
〈o1, . . . , v(αi), . . . , or〉 ∈ R′π (1 ≤ i ≤ r). But then, 〈v(α1), . . . , v(αr)〉 ∈
v(π), and hence vM ′(πα1 . . . αr) = 1.

(iii) Suppose that vM ′(∼πα1 . . . αr) = 1. Hence vM ′(πα1 . . . αr) = 0 or 〈v(α1), . . . ,
v(αr)〉 ∈ v(π)∩ v(∼π). If vM ′(πα1 . . . αr) = 0, then vM (πα1 . . . αr) = 0 in
view of (ii). If 〈v(α1), . . . , v(αr)〉 ∈ v(π)∩v(∼π), then 〈v(α1), . . . , v(αr)〉 /∈
Rπ. In both cases vM (∼πα1 . . . αr) = 1.

(iv) Suppose that vM ′(∼πα1 . . . αr) = 0. It follows that vM ′(πα1 . . . αr) = 1
and 〈v(α1), . . . , v(αr)〉 /∈ v(∼π). As vM ′(πα1 . . . αr) = 1, vM (πα1 . . . αr) =
1 in view of (i) and 〈v(α1), . . . , v(αr)〉 ∈ v(π). But then, in view of the
definition of M , 〈o1, . . . , or〉 ∈ Rπ ∩R′π for all o1 ∈ v(α1) = f(v(α1)), . . . ,
and or ∈ v(αr) = f(v(αr)). Hence vM (∼πα1 . . . αr) = 0.

We leave to the reader the obvious task to show, by the standard induction
on the complexity of wffs, that vM ′(A) = vM (A) for all wffs A.

It follows immediately from the proof that any ambiguity model is equivalent
to an ambiguity model in which v(. . .) comprises at most two members.

6 On Defining in CLuNs

In CLuNs, ⊃ cannot be defined in terms of ∼ and ∧ or in terms of ∼ and ∨.
Similarly, ∨ (and ∧) cannot be defined in terms of ∼ and ⊃.14 So pure para-
consistent CLuNs is not functionally complete—for example, classical negation
cannot be defined in it.

The following definition is well-known from the literature:
14This was checked (indirectly) in terms the three-valued semantics by a computer program

(82 different binary truth-functions may be defined in terms of “∼” and “∧”; 896 different
binary truth-functions may be defined in terms of “∼” and “⊃”). Obviously proofs may be
given (and are standard).

14

DA A A B =df ∼A ∨B

This ‘implication’ is not detachable, but it is transposable: A A B and
∼B A ∼A are true in the same models (similarly for A A ∼B and B A ∼A,
etc.). Many relevant (and some other paraconsistent) logicians—see e.g., [1]
and [30]—have argued or claimed that “A” is material implication, but ‘they
are mistaken’.15

Material implication, “⊃”, is detachable but not transposable in CLuNs. It
is, however, not difficult to define a strong implication that is both detachable
and transposable:

D→ A → B =df (A ⊃ B) ∧ (∼B ⊃ ∼A)

This implication has many relevant properties, such as: A 0CLuNs B → A;
∼A 0CLuNs A → B; . . . Obviously, “→” is not a relevant implication because
it is a truth-function in the three-valued semantics, because `CLuNs (A →
B)∨ (B → A) (and A∧B `CLuNs ∼A → B), and because `CLuNs A → B does
not warrant that A and B share a letter (e.g., `CLuNs ∼(p ∨ ∼p) → (q ∨ ∼q)).

The Rule of Replacement of Equivalents is not derivable in CLuNs. Indeed,
`CLuNs (p ∨ ∼p) ≡ (q ∨ ∼q), but 0CLuNs ∼(p ∨ ∼p) ≡ ∼(q ∨ ∼q)—the latter
is false in a model in which V (p) = I and V (q) = T . However, the Rule of
Replacement of Equivalents holds if the replacement takes place outside the
scope of a negation sign—the proof proceeds by properties of positive logic and
is standard. Moreover, it is possible to define a strong equivalence for which the
Rule of Replacement of Strong Equivalents holds generally:

D↔ A ↔ B =df (A ≡ B) ∧ (∼A ≡ ∼B)

The same connective is defined by (A → B) ∧ (B → A).16 In terms of the
three-valued semantics: A and B have the same value in a model that verifies
A ↔ B, and hence have the same value in all models iff A ↔ B is valid; whence
A and B can be replaced by each other, salva veritate, even within the scope of
a negation (∼).

There is a different definable equivalence that warrants replacement of equiv-
alents. One of its possible definitions is:

D⇔ A ⇔ B =df (¬¬A ≡ ¬¬B) ∧ (¬¬∼A ≡ ¬¬∼B)

We shall stick to ↔ in the sequel. As appears from the following matrices,
`CLuNs A ↔ B iff `CLuNs A ⇔ B.

↔ T I F ⇔ T I F
T T F F T T F F
I F I F I F T F
F F F T F F F T

This equivalence enables us to clarify the behaviour of negation in front of
complex formulas in CLuNs. All of the following are valid:

15Remark also that the CLuNs-material implication (⊃) is a truth-functional connective
in the strict sense of the term (in all semantic systems presented above).

16This connective is called “≡◦” in [4].

15

∼∼A ↔ A
∼(A ∧B) ↔ (∼A ∨ ∼B)
∼(A ∨B) ↔ (∼A ∧ ∼B)
∼(∀α)A ↔ (∃α)∼A
∼(∃α)A ↔ (∀α)∼A

In general, `CLuNs A ≡ B is sufficient to warrant `CLuNs A ↔ B, provided
neither A nor B contains ⊃ or ≡, and neither A nor B are CLuNs-theorems.17

Also principles as the following hold:

A ↔ ((B ∨ ∼B) ⊃ A) .

The reason is that VM (B ∨ ∼B) ∈ {T, I} for all M , and that VM (C ⊃ D) =
VM (D) whenever VM (C) ∈ {T, I}.

However, neither of the following is valid:

∼(A ⊃ B) ↔ (A ∧ ∼B)
∼(A ≡ B) ↔ ((A ∨B) ∧ (∼A ∨ ∼B)) .

The corresponding material equivalences (≡) are valid. The failure of the strong
equivalences derives from the difference between the values T and I.18

This seems the right place to warn the reader for a possible confusion. The
classical negation of a formula that has a designated value has the value false,
the classical negation of a formula that has a non-designated value has the value
true.19 If no paraconsistent or paracomplete negation is present in the system,
this results in a two-valued semantics in which all logical constants are truth-
values—thus the ∼-less fragment of CLuNs is simply CL. There is a single
designated value in this semantics, and a single non-designated value. If A has
the one, then ¬A has the other, and hence ¬¬A has the same value as A.

The presence of a paraconsistent negation (or a paracomplete negation or
both) changes the picture drastically. CLuNs clearly illustrates this. The
negation ∼ is not a truth-function in the two-valued semantics (and is not a
truth-function in any two-valued semantics), which comes to saying that consis-
tent truth is distinguished from inconsistent truth. Given that three values have
to be distinguished in a semantics in which all connectives are truth functions—
the quantifiers being border cases—material equivalence (≡) fails to warrant
replacement of equivalents. Only strong equivalence (↔) warrants this. As a
result,

`CLuNs ∼∼A ↔ A

but
0CLuNs ¬¬A ↔ A ,

precisely because, in the presence of three distinct values, ¬ conflates them to
two whereas ∼ does not:

17Given that `CLuNs A ≡ B, A is a CLuNs-theorem iff B is. That CLuNs-theorems have
to be ruled out is easily seen from the following example (out of many): `CLuNs (p ∨ ∼p) ≡
(q ∨ ∼q) whereas 0CLuNs (p ∨ ∼p) ↔ (q ∨ ∼q).

18If VM (A) = I and VM (B) = F , then VM (∼¬A) = VM (¬¬A) = T , VM (∼¬A ∧ ∼B) = T
and VM (A ∧ ∼B) = I. Hence, ∼(A ⊃ B) is only materially equivalent to A ∧ ∼B. Remark,
however, that `CLuNs ∼(A ⊃ B) ↔ (∼¬A ∧ ∼B).

19The latter holds also if, e.g., a fourth value is introduced to label negation-incompleteness,
viz. that neither A nor ∼A is true. Relevant logicians use to call this value N(either).

16

A ∼A ∼∼A ¬A ¬¬A
T F T F T
I I I F T
F T F T F

The formula ¬¬A ↔ A is not CLuNs-valid because ¬¬A and A have a different
truth value in the three-valued semantics, in which ↔ is a truth-function. In
the two-valued semantics ¬¬A and A have the same truth value, but ↔ is not
a truth-function; the value of ¬¬A ↔ A also depends on the values of ∼A and
∼¬¬A—the latter has the same value as ¬A—and these need not be identical.

It is instructive to consider the expressions that may be built from some
wff A by the logical constants of CLuNs. Twelve distinct truth-functions are
distinguished in CLuNs. They are represented by A, ∼A, ¬A, ¬∼A, ¬¬A,
¬¬∼A, A∧∼A, ¬¬A∧¬¬∼A, ¬∼A∨¬A, A∨∼A, ¬∼A∧¬A (which is strictly
equivalent to ⊥), and ¬¬A ∨ ¬¬∼A (which is strongly equivalent to ¬⊥). In
Figure 1, we show the relations between these wffs: a line going up indicates
derivability. The wffs not named in the Figure may be easily completed in terms
of conjunctions and disjunctions. The two top nodes (on the middle row) are
CLuNs-valid. Only the bottom node has no CLuNs-models.

Figure 1: Not strongly equivalent expressions built from A.

•¬¬A

•A

•¬∼A

•¬¬∼A

•∼A

•¬A

◦

◦

•

•

•

◦J
J

J
JJ J

J
J

JJ J
J

J
JJ

­
­

­
­­­

­
­

­­­
­

­
­­

­
­

­
­­­

­
­

­­­
­

­
­­

J
J

J
JJ J

J
J

JJ J
J

J
JJ

The figure may be seen as composed of three superposed ‘squares’. Each of
these may be related to a notion of truth. The middle square is related to truth
simpliciter, characterized by a predicate that is definable as follows:

T (A) =df A

If a notion of falsehood is connected to it, as is done in [30] and in [1], viz. by
F (A) =df ∼A, T (A) and F (A) do not exclude each other but one of them is
bound to obtain. A is true simpliciter iff ∼A is false simpliciter, and vice versa.

The lower square is related to strong or consistent truth, which may be
defined by

T s(A) =df ¬∼A

17

The corresponding strong or consistent falsehood is defined by F s(A) =df ¬A.
Strong truth and strong falsehood exclude each other (have no common model),
but both may fail to obtain (because both A and ∼A may obtain). A is strongly
true iff ∼A is strongly false, and vice versa.

Finally, weak truth may be defined by

Tw(A) =df ¬¬A

and the corresponding weak falsehood by Fw(A) =df ¬¬∼A. Tw(A) and Fw(A)
do not exclude each other but one of them is bound to obtain. A is weakly true
iff ∼A is weakly false, and vice versa.

The difference between the three notions of truth is obviously related to the
value I, which represents inconsistent truth. In the following table, we use B(A)
(both) to abbreviate T (A)∧F (A), and E(A) (either) to abbreviate T (A)∨F (A);
similarly for Bs(A), etc. To save space, we write T instead of T (A), etc. The
table lists the twelve wffs mentioned in Figure 1, in an order that we think to
reveal the differences most clearly.20

A Bs T s F s Es B T F E Bw Tw Fw Ew

T F T F T F T F T F T F T
I F F F F I I I I T T T T
F F F T T F F T T F F T T

Neither of these three notions of truth corresponds to the classical one (or to
the notion of truth in a model, which actually is the classical one). Classical
logicians collapse the three squares (by recognizing only ¬A as the negation
of A). Relevant logicians introduce four truth values (identifying I with the
designated “Both” and introducing the undesignated “Neither” as well). Re-
jecting the CLuNs-connective “⊃” as a sensible logical connective, they end up
with just the middle square of which the top node is valid but the bottom node
(which is the ∼-negation of the top node) is not trivial. Dialetheists like Graham
Priest stick to the three values of CLuNs, reject the CLuNs-connective “⊃”
as a sensible logical constant, but recognize bottom (⊥) as a sensible non-logical
constant. As a result, they end up with the middle diamond extended by the
top and bottom node of Figure 1.21

Let us return to strong equivalence in CLuNs. (A ∨ A) ↔ A, (A ∧ ∼A) ↔
(A ≡ ∼A), (A ⊃ A) ↔ (∼A ∨ A) and A ↔ ((A ⊃ A) ⊃ A) are all valid; but
(A ⊃ B) ↔ (∼A ∨B) and A ↔ ((B ⊃ B) ⊃ A) are not.

Neither the disjunction defined by ∼A ⊃ B nor that defined by (A ⊃ B) ⊃ B
are commutative in the strong sense (that is, with respect to ↔). The disjunc-
tion defined by ∼A → B is commutative in this sense, but Addition does not
hold for it. And yet, the latter disjunction is an important one.

Relevant logicians have capitalized on the distinction between extensional
connectives, such as disjunction and conjunction, and intensional connectives
such as relevant implication, to define fusion and fission—a kind of ‘strong’
conjunction and ‘strong’ disjunction. In CLuNs, there is a somewhat similar
distinction between disjunction and conjunction on the one hand, and implica-
tion on the other hand. However, as mentioned in the previous paragraph, the

20We do not pursue the study of the properties of the structure in Figure 1. The interested
reader might start by considering the behaviour of the functions ¬ and ∼.

21Bottom does not occur in Priest’s original LP. In [30], however, Priest introduces a modal
implication, and next combines it with bottom.

18

‘strong’ disjunction defined from this implication is not commutative. This is cir-
cumvented by defining fusion and fission from A → B, rather than from A ⊃ B.
The resulting definitions are A⊕B =df ∼A → B, and A⊗B =df ∼(∼A⊕∼B).
This line of approach was followed, as was shown afterwards in [12], by Joke
Meheus in [27] and [28], where the logic AN∅ is defined by the ∼–→–⊗–⊕–∀–∃–
fragment of CLuNs.22 It is instructive to list the matrices for the propositional
connectives:

∼ → T I F ⊕ T I F ⊗ T I F
T F T T F F T T T T T T T F
I I I T I F I T I F I T I F
F T F T T T F T F F F F F F

These define a paraconsistent logic that validates Modus Ponens, Modus Tol-
lens, Disjunctive Syllogism, and similar ‘analysing’ rules, but not Addition,
Irrelevance, and similar ‘constructive’ rules.

7 Some Further Metatheory

For the Interpolation Theorem and a set of Embedding Theorems, we refer
to [16] and [15]. From the proofs of the Embedding theorems, it follows that
the fragments that are known to be decidable in CL are decidable in CLuNs.
Hence, all effective proof-search procedures for fragments of CL are effective for
the corresponding fragments of CLuNs.

Theorem 6 CLuNs and CL have the same valid wffs in the ∼-∨-∧-∀-∃-fragment
of L.

Proof. As CL extends CLuNs, A is CL-valid if it is CLuNs-valid. For the
converse, remark first that any wff A of the intended fragment is CL-equivalent
to a wff B that is in prenex conjunctive normal form. As all the required
equivalences are valid strong equivalences in CLuNs, `CLuNs A ↔ B. If B is
CL-valid, each of its conjuncts has the form . . . ∨ C ∨ . . . ∨ ∼C ∨ . . . (in which
each occurrence of “. . . ” may be empty). But then B, and hence A, is also
CLuNs-valid.

Let us now turn to an interesting property of models.

Theorem 7 If M is a non-trivial CLuNs-model, then {A | A ∈ W;M |= A}
is deductively closed and maximally non-trivial.

Proof. The set is obviously deductively closed. That it is maximally non-trivial
is immediate from the semantics: if M 6|= A, then M |= (A ⊃ B) for all B.

The theorem also holds for the pure paraconsistent fragment of CLuNs. The
theorem does not hold for Priest’s LP, viz. the ∼-∧-∨-fragment of CLuNs—no
set of formulas verified by the model warrants that A is false in the model.

The proof of Theorem 2 is easily transformed into a proof of each of the
following:

22Meheus writes ⊃ where we write →, etc. The logic AN is obtained by reducing formulas
to a specific prenex conjunctive normal form, and next by evaluating the latter in terms of
AN∅.

19

1. Every deductively closed, maximally non-trivial set Γ ⊆ W has a N -
minimal CLuNs-model.

2. All CLuNs-models of a deductively closed, maximally non-trivial set Γ ⊆
W are equivalent.

Clearly CLuNs is not Post complete: some CL-theorems are not CLuNs-
theorems and CL is not trivial. A logic L is said to be Lindenbaum complete
if the following holds in it: if no substitution instance of A is a theorem of L,
then ∼A is a theorem of L.

Theorem 8 CLuNs is not Lindenbaum complete.

Proof. ∼∼((p ⊃ (q∧∼q)) ⊃ ∼p) is not a CLuNs-theorem. Indeed, it is invalid,
viz. false in a model that verifies p, q, and ∼q and falsifies ∼p. However, no
wff of the form ∼((A ⊃ (B ∧ ∼B)) ⊃ ∼A) is a CLuNs-theorem, which is
easily seen from the fact that all CLuNs-theorems are CL-theorems (because
all CL-models are CLuNs-models).

In [1, p. 121], Anderson and Belnap write: “We offer [Lindenbaum com-
pleteness] as a plausible syntactical condition which ought to be satisfied by a
semantically complete system.” This statement is clearly confusing. In many
senses of the term, CLuNs is as semantically complete as any system could be.
Needless to say, CLuNs is Lindenbaum complete with respect to the defined
classical negation ¬.

A logic L is strictly paraconsistent iff A, †A `L A is not a valid schema
for any unary connective † and for any metalinguistic formula A in which the
metavariable A does not occur. That the propositional fragment of the pure
paraconsistent CLuNs is strictly paraconsistent was shown in [7] (and is a
corollary of Theorem 9). The propositional fragment of CLuNs is obviously
not strictly paraconsistent. Yet, it is possible to show a related property of this
logic.

We shall say that a unary connective “†” is strictly paraconsistent in a logic
L iff A, †A 0L A whenever A is a metatheoretic formula that does not contain
⊥ and A does not occur in A.23

Theorem 9 In CLuNs, ∼ is strictly paraconsistent.

Proof. Consider a B ∈ W and a sentential letter A that does not occur in B.
It is easily seen that there is a model M of the three-valued CLuNs-semantics
such that V (A) = F whereas VM (C) = I for all primitive formulas that occur in
B. It follows that VM (B) = VM (∼B) = I and that VM (A) = F . By Theorems
2 and 3, B,∼B 0CLuNs A.

A propositional logic L is maximally paraconsistent iff it has no ‘exten-
sion’ that is paraconsistent—we mean only extensions that are Compact and
Monotonic, and the set of theorems of which is closed under Uniform Substitu-
tion. It was shown in [7] that the propositional fragment of pure paraconsistent

23We mean that A does not contain ⊥ and does not contain a logical symbol from which
⊥ can be defined. The sense of the definition is that, for some paraconsistent negations, for
example the one from [3], the Ex Falso Quodlibet does not hold generally, but A∧B,∼(A∧B) `
C does.

20

CLuNs is maximally paraconsistent. A related property may be proved for the
propositional fragment of CLuNs (including ⊥ and ¬), viz. that this fragment
is maximally ∼-paraconsistent. Where L is restricted to its propositional part,
a logic is maximally ∼-paraconsistent iff (i) it is ∼-paraconsistent (for some A,
A,∼A 0 B and (ii) its only ‘extensions’ are not ∼-paraconsistent (viz. either
(propositional) CL or the trivial logic). To interpret this claim, recall that ∼
is taken to be the standard negation of both CL and CLuNs, whereas ¬ is
a defined negation (that is co-extensive with ∼ in CL). The set of extensions
should obviously be restricted as above.

First we define the Conjunctive Normal Form, CNF, for CLuNs-formulas.
Where A is a sentential letter, A, ∼A, ¬A, ¬∼A, ¬¬A, and ¬¬∼A will be
atoms.24 Moreover, ⊥ and ¬⊥ (to which ∼⊥ is strongly equivalent) will also be
called atoms.

Definition 1 A wff A is in CNF iff it has the form (B1∧. . .∧Bn) (n ≥ 1), each
of these Bi is a disjunction of (one or more) atoms, no Bi is strongly implied
by another Bj, and no atom that occurs in a Bi is strongly implied by another
atom that occurs in the same Bi.25

Remark that ⊥ and ¬⊥ cannot both occur in the same Bi, and that, if one
of them occurs in it, then it forms the only conjunct of the wff. We leave it
to the reader to show, by nearly standard means, that any wff A is strongly
equivalent to some wff B that is in CNF.

Theorem 10 If A is a propositional formula and 0CLuNs A, then any exten-
sion of CLuNs in which A is a theorem is not ∼-paraconsistent.

Proof. Where 0CLuNs A, let CLuNs+ be an extension of CLuNs in which
A is a theorem. Let B be strongly equivalent to A and in CNF. At least one
conjunct of B is a theorem of CLuNs+ and not a theorem of CLuNs. Let the
following wff be such a conjunct

¬∼C1 ∨ . . . ∨ ¬∼Cn1 ∨D1 ∨ . . . ∨Dn2 ∨ ¬¬E1 ∨ . . . ∨ ¬¬En3∨
¬F1 ∨ . . . ∨ ¬Fn4 ∨ ∼G1 ∨ . . . ∨ ∼Gn5 ∨ ¬¬∼H1 ∨ . . . ∨ ¬¬∼Hn6 (1)

with n1 ≥ 0, . . . , n6 ≥ 0 and n1 + . . . + n6 > 0.
In view of the definition of CNF and the fact that (1) is not a CLuNs-

theorem:

Fact 1 All Ci, Ei , Fi , Gi, and Hi are propositional letters and all Di are
propositional letters or some Di is ⊥, in which case it is the only disjunct of
(1).

Fact 2 At most some Ci are identical to some Fi.

Indeed, by the definition of CNF, all Ci, Di and Ei are different from one
another, and all Fi, Gi and Hi are different from one another. As (1) is not a

24Compare Figure 1 and the subsequent table.
25See Figure 1 for strong implication between atoms.

21

CLuNs-theorem, all Ci, Di and Ei are different from all Gi and Hi, and all Fi

are different from all Di and Ei.
Case 1. n1 > 0 and n4 > 0. Let I be a propositional letter that does not

occur in (1). In view of Facts 1 and 2, one obtains a theorem of CLuNs+ if
one substitutes I for all Ci and Fi, ∼∼⊥ for all Di and Ei, and ∼⊥ for all Gi

and Hi. Deleting disjuncts that occur twice, we obtain the formula:

¬∼I ∨ ¬I ∨ ∼∼⊥ ∨ ¬¬∼∼⊥

in which the last or next to last disjunct (or both) may be empty. This is
CLuNs-equivalent to

(I ∧ ∼I) ⊃ ⊥ (2)

As I is a propositional letter, CLuNs+ is not paraconsistent (and is identical
to CL).

Case 2. n1 = 0. In view of Facts 1 and 2, one obtains a theorem of CLuNs+

if one substitutes ∼∼⊥ for all Di and Ei, and substitutes ∼⊥ for all Fi, Gi and
Hi. Deleting disjuncts that occur twice, we obtain:

∼∼⊥ ∨ ¬∼⊥ ∨ ¬¬∼∼⊥

or one or two disjuncts of this formula. As this is CLuNs-equivalent to ⊥,
CLuNs+ is the trivial system.

Case 3. n4 = 0. In view of Facts 1 and 2, one obtains a theorem of CLuNs+

if one substitutes ∼∼⊥ for all Ci, Di and Ei, and substitutes ∼⊥ for all Gi and
Hi. Deleting disjuncts that occur twice, we obtain:

¬∼∼∼⊥ ∨∼∼⊥ ∨ ¬¬∼∼⊥

or one or two disjuncts of this formula. As this is CLuNs-equivalent to ⊥,
CLuNs+ is the trivial system.

Corollary 1 The propositional fragment of CLuNs is maximally ∼-paraconsistent.

What about maximal paraconsistency in the predicative case? All we can
offer here is, apart from complications, an open problem with a tentative answer.

First there is the complication related to a suitable substitution rule, studied
very carefully in [29]. Next, a central difference with the propositional case is
that there are many logics between (predicative) CL and the trivial logic. For
example, one might add to CL an axiom schema that restricts the cardinality of
the domain, (∃α)(∃β)∼α = β, or an axiom schema that requires all binary re-
lations to be transitive, even (∀α)(∀β)(∀γ)(A(αβ) ⊃ (A(βγ) ⊃ A(αγ))), and so
on. Third, it is quite obvious that CLuNs can be extended with axiom schemas
that introduce Ex Falso Quodlibet for some logical form without introducing it
for all of them. Thus adding the schema (α = β ∧ ∼α = β) ⊃ A to CLuNs
does not make A,∼A ` B hold in general.

The semantics suggests that ∼ is not strictly paraconsistent in any logic
between CLuNs and CL, more precisely that the negation ∼ is not strictly
paraconsistent in any logic CLuNs+ obtained by extending CLuNs with an
axioma schema that holds in CL.

22

This impression is further confirmed by attempts to falsify it. Extensions of
CLuNs seem all to introduce Ex Falso Quodlibet for at least a specific form
and under some condition, whence they all seem to be equivalent to an axiom
schema of the form C ⊃ (Q(A ∧ ∼A) ⊃ B). If some metalinguistic formula
has a more specific form (but also the above one) in which C is a CLuNs-
theorem, Q(A∧∼A) ⊃ B is derivable, and the CLuNs-extension is not strictly
paraconsistent. So let us consider an extension of CLuNs obtained by adding
the following axiom schema, of which the antecedent cannot be turned into a
CLuNs-theorem:

(∃α)(∀β)α = β ⊃ (∃α)(∼α = α ⊃ B) , (3)

which expresses that x = x behaves consistently for at least one x in models
with a singleton domain.

As (3) is a theorem of the extension, so is

(∃α)(∀β)α = β ⊃ (∀α)(∼α = α ⊃ B) (4)

and as (∀α)(∀β)(α = β ⊃ (∼α = β ⊃ ∼α = α)) holds, it follows that

(∃α)(∀β)α = β ⊃ (∀α)(∀β)(α = β ⊃ (∼α = β ⊃ B)) (5)

and from this easily follows

(∃α)(∀β)α = β ⊃ (∼(∃α)(∀β)α = β ⊃ B) , (6)

whence the extension is not paraconsistent. There is nothing puzzling here
obviously. If identity behaves consistently in models with singleton domains, no
model verifies both implicantia of (6).

Not finding a proof that ∼ is not strictly paraconsistent in any logic between
CLuNs and CL, we tried a host of possible counterexamples, but without
success. So we have to leave this an open problem (both for CLuNs and for
pure paraconsistent CLuNs).

8 In Conclusion

The main interest of CLuNs seems to reside in the fact that it combines the
theorems and rules of the full positive fragment of CL and the usual rules for
driving negations inwards. As a side-effect, it also contains all theorems of the
∼-∨-∧-∀-∃-=-fragment of CL. It follows that CLuNs contains all theorems of
CL in that the aforementioned fragment is functionally complete.

Among the possible applications, both inconsistent empirical theories and
inconsistent arithmetic seem attractive domains, except of course if there are
reasons to prefer an inconsistency-adaptive logic. Remark that inconsistent
arithmetic is often studied in terms of the ∼-∨-∧-∀-∃-=-fragment of CL. The
presence, in CLuNs, of a detachable implication for which the deduction the-
orem holds, makes it attractive for the aforementioned application contexts.
Indeed, the presence of the implication warrants that the models are maximally
non-trivial (see Theorem 7), and, combined with bottom, enables one to express
falsehood (in the sense of the two-valued semantics) within the object language.

23

References

[1] Alan Ross Anderson and Nuel D. Belnap, Jr. Entailment. The Logic of
Relevance and Necessity, volume 1. Princeton University Press, 1975.

[2] Alan Ross Anderson, Nuel D. Belnap, Jr., and J. Michael Dunn. Entail-
ment. The Logic of Relevance and Necessity, volume 2. Princeton University
Press, 1992.

[3] Ayda I. Arruda. On the imaginary logic of N.A. Vasil’ev. In Ayda I. Ar-
ruda, Newton C.A. da Costa, and R. Chuaqui, editors, Non-classical Logics,
Model Theory and Computability, pages 3–24. North-Holland, Amsterdam,
1977.

[4] F.G. Asenjo and J. Tamborino. Logic of antinomies. Notre Dame Journal
of Formal Logic, 16:17–44, 1975.

[5] Arnon Avron. On an implication connective of RM. Notre Dame Journal
of Formal Logic, 27:201–209, 1986.

[6] Arnon Avron. Natural 3-valued logics—Characterization and proof theory.
The Journal of Symbolic Logic, 56:276–294, 1991.

[7] Diderik Batens. Paraconsistent extensional propositional logics. Logique et
Analyse, 90–91:195–234, 1980.

[8] Diderik Batens. A bridge between two-valued and many-valued semantic
systems: n-tuple semantics. Proceedings of the 12th International Sympo-
sium on Multiple-Valued Logic, IEEE:Los Angeles, 318–322, 1982.

[9] Diderik Batens. Against global paraconsistency. Studies in Soviet Thought,
39:209–229, 1990.

[10] Diderik Batens. Inconsistency-adaptive logics. In Ewa OrÃlowska, editor,
Logic at Work. Essays Dedicated to the Memory of Helena Rasiowa, pages
445–472. Physica Verlag (Springer), Heidelberg, New York, 1999.

[11] Diderik Batens. Linguistic and ontological measures for comparing the
inconsistent parts of models. Logique et Analyse, 165–166:5–33, 1999. Ap-
peared 2002.

[12] Diderik Batens. Rich inconsistency-adaptive logics. The clash between
heuristic efficiency and realistic reconstruction. In François Beets and
Éric Gillet, editors, Logique en perspective. Mélanges offerts à Paul Go-
chet, pages 513–543. Éditions OUSIA, Brussels, 2000.

[13] Diderik Batens. A general characterization of adaptive logics. Logique et
Analyse, 173–175:45–68, 2001. Appeared 2003.

[14] Diderik Batens. In defence of a programme for handling inconsistencies.
In Joke Meheus, editor, Inconsistency in Science, pages 129–150. Kluwer,
Dordrecht, 2002.

[15] Diderik Batens and Kristof De Clercq. Embedding and interpolation for
some paralogics. The predicative case. Forthcoming.

24

[16] Diderik Batens, Kristof De Clercq, and Natasha Kurtonina. Embedding
and interpolation for some paralogics. The propositional case. Reports on
Mathematical Logic, 33:29–44, 1999.

[17] Diderik Batens and Joke Meheus. A tableau method for inconsistency-
adaptive logics. In Roy Dyckhoff, editor, Automated Reasoning with Ana-
lytic Tableaux and Related Methods, volume 1847 of Lecture Notes in Arti-
ficial Intelligence, pages 127–142. Springer, 2000.

[18] Diderik Batens, Chris Mortensen, Graham Priest, and Jean Paul Van Ben-
degem, editors. Frontiers of Paraconsistent Logic. Research Studies Press,
Baldock, UK, 2000.

[19] Walter A. Carnielli, João Marcos, and Sandra de Amo. Formal inconsis-
tency and evolutionary databases. Logic and Logical Philosophy, 8:115–152,
2001. Appeared 2002.

[20] Itala M. L. D’Ottaviano. Sobre uma Teoria de Modelos Trivalente (in
Portuguese). PhD thesis, State University of Campinas (Brazil), 1982.

[21] Itala M. L. D’Ottaviano. The completeness and compactness of a
three-valued first-order logic. In Proceedings of the 5th Latin American
Symposium on Mathematical Logic, pages 77–94. Revista Colombiana de
Matemáticas, 1–2, 1985.

[22] Itala M. L. D’Ottaviano. The model extension theorems for J3-theories. In
Carlos A. Di Prisco, editor, Methods in Mathematical Logic: Proceedings of
the 6th Latin American Symposium on Mathematical Logic, Lecture Notes
in Mathematics 1130, pages 157–173. Springer-Verlag, 1985.

[23] Itala M. L. D’Ottaviano. Definability and quantifier elimination for J3-
theories. Studia Logica, 46(1):37–54, 1987.

[24] Itala M. L. D’Ottaviano and Richard L. Epstein. A paraconsistent many-
valued propositional logic: J3. Reports on Mathematical Logic, 22:89–103,
1988.

[25] Olivier Esser. A strong model of paraconsistent logic. Notre Dame Journal
of Formal Logic, 44:149–156, 2003.

[26] Iddo Lev. Preferential systems for plausible non-classical reasoning. Mas-
ter’s thesis, Department of Computer Science, Tel-Aviv University, 2000.
Unpublished M.A. dissertation.

[27] Joke Meheus. Wetenschappelijke ontdekking en creativiteit. Een poging tot
theorievorming op basis van een conceptuele, methodologische en logische
studie. PhD thesis, Universiteit Gent (Belgium), 1997. Unpublished PhD
thesis.

[28] Joke Meheus. An extremely rich paraconsistent logic and the adaptive logic
based on it. In Batens et al. [18], pages 189–201.

[29] Witold A. Pogorzelski and Tadeusz Prucnal. The substitution rule for pred-
icate letters in the first-order predicate calculus. Reports on Mathematical
Logic, 5:77–90, 1975.

25

[30] Graham Priest. In Contradiction. A Study of the Transconsistent. Nijhoff,
Dordrecht, 1987.

[31] Graham Priest. Is arithmetic consistent? Mind, 103:337–349, 1994.

[32] Graham Priest. What not? A defence of dialetheic theory of negation. In
D. M. Gabbay and H. Wansing, editors, What is Negation?, pages 101–120.
Kluwer, Dordrecht, 1999.

[33] Kurt Schütte. Beweistheorie. Springer, Berlin, 1960.

[34] Elena D. Smirnova. An approach to the justification of semantics of para-
consistent logics. In Batens et al. [18], pages 255–262.

26

