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ABSTRACT. In this paper I present a simple and straightforward logic

of induction: a consequence relation characterized by a proof theory

and a semantics. This system will be called LI. The premises will be

restricted to, on the one hand, a set of empirical data and, on the oth-

er hand, a set of background generalizations. Among the conse-

quences will be generalizations as well as singular statements, some

of which may serve as predictions and explanations.

1.  Prelude

I published my first paper in English a long time ago. In the paper (Batens
1968) I compared Carnap’s and Popper’s approach to induction, and basically
assigned each approach a context of application, except that a modification
was proposed for Popper’s corroboration function. I had sent the paper to Car-
nap, Popper, Hempel, Kemeny, and several other famous people. With one
exception, all had returned a few encouraging lines. Not long thereafter, I re-
ceived a letter, in Dutch, by someone I immediately recognized as Dutch be-
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cause he used an impressive number of middle initials – the Flemish use them

in official documents only. The letter contained some questions and sugges-

tions; a brief correspondence ensued.

I left the field later. However, for the sake of an old friendship, I dedicate

this first logic of induction to Theo.

2. Aim of this paper

It is often said that there is no logic of induction. This view is mistaken: this

paper contains one. It is not a contribution to the great tradition of Carnapian

inductive logic – see Kuipers (2000, Ch. 4); it is a logic of induction in the

most straightforward sense of the term, a logic that, from a set of empirical da-

ta and possibly a set of background generalizations, leads to a set of conse-

quences that comprises generalizations and their consequences. Incidentally,

the underlying ideas oppose the claims that were widespread in Carnap’s tra-

dition – see, for example, Bar-Hillel (1968).

LI is characterized by a proof theory and a semantics. Some people will

take these properties to be insufficient for calling LI a logic. I shall not quar-

rel about this matter, which I take to be largely conventional. As far as I am

concerned, any further occurrence of ‘logic’ may be read as ‘giclo’. The es-

sential point is that LI is characterized in a formally decent way, that its

metatheory may be phrased in precise terms, and, most importantly, that LI

may serve to explicate people’s actual inductive reasoning.

LI takes as premises descriptions of empirical data as well as background

generalizations that are formulated in the language of standard predicative log-

ic. Its consequences follow either deductively or inductively from the premis-

es. By deductive consequences I mean statements that follow from the prem-

ises by Classical Logic (CL). The main purpose of LI obviously concerns the

inductive consequences. In this respect the proof of the pudding will be in the

eating: the reader will have to read this paper to find out whether he or she con-

siders LI as sensible with respect to the intended domain of application. For

now, let me just mention that the inductive consequences of a set of empirical

data and a set of background knowledge will, first and foremost, be empirical

generalizations, and next, the deductive consequences of the empirical gener-

alizations and the premises, including singular statements that may serve the

purposes of prediction and explanation.

LI is only one member of a family of logics. It is severely restricted by the

standard predicative language. This rules out statistical generalizations as well
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as quantitative predicates (lengths, weights, etc.). LI will not take account of
degrees of confirmation or the number of confirming (and disconfirming) in-
stances. LI will not deal with serious problems, usually connected to discov-
ery and creativity, such as the genesis of new concepts and other forms of
conceptual dynamics. Nor will LI deal with the historically frequent case of
inconsistent background knowledge – see Brown (1990), Norton (1987; 1993),
Smith (1988), Nersessian (2002), Meheus (1993; 2002), … LI is a bare back-
bone, a starting point.

More sophisticated inductive logics may be designed by modifying LI. Some
of the required modifications are straightforward. But given the absence of any
logic of induction of the kind, it seems advisable to present a simple system that
applies in specific (although common) contexts. Incidentally, I shall also keep
my remarks in defense and justification of LI as simple as possible. As most peo-
ple reading the present book will be familiar with the literature on induction,
they will easily see further arguments. It also seems wise, in defending a logic
of induction, to refrain from siding with one of the many parties or schools in the
research on induction. The logic LI is intended to please most of these parties.
It should serve as a point of unification: this bit at least we all agree about, even
if each explains it in his or her own way.

When working on this paper I wondered why a system as simple and clari-
fying as LI had not been presented a long time ago.1 However, although LI is
simple and straightforward to understand, its formulation presupposes familiar-
ity with the adaptive logic programme. I shall not summarize this programme
here because several easy introductions to its purpose and range are available,
such as Batens (2000; 2004). Rather, I shall introduce the required adaptive el-
ements as the paper proceeds. However, it is only fair to the reader to mention
that the ideas underlying adaptive logics and dynamic proof theories have some
pedigree and are by no means the outcome of the present research.

3.  Tinkering with the dynamic proof theory

Children have a profound tendency to generalization. This tendency has a clear
survival value. In a sense, our present scientific (and other) knowledge is the
result of a sophistication of this tendency. Of course, we know today that all
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simple empirical generalizations are false – compare Popper (1973, p. 10).
This insight is a result of experience, of systematization, of free inquiry, and
of systematic research. Our present knowledge, however, is neither the result
of an urge that is qualitatively different from children’s tendency to systemati-
zation, nor the outcome of a form of reasoning that is qualitatively different
from theirs.

Let us for a moment consider the case in which only a set of empirical da-
ta is available – I shall remove this utterly unrealistic supposition in the pres-
ent section. Where these empirical data are our only premises, what shall we
want to derive from them? Apart from the CL-consequences of the premises,
we shall also want to introduce some general hypotheses. Only by doing so
may we hope to get a grasp of the world – to understand the world and to act
in it. And from our premises and hypotheses together we shall want to derive
CL-consequences (to test the hypotheses, to predict facts, and to explain
facts).

LI should define a consequence relation that connects the premises with
their CL-consequences, with the generalizations, and with their common
CL-consequences. Is there such a consequence relation? Of course there is.
The consequence relation is obviously non-monotonic2 – inductive reasoning
is the oldest and most familiar form of non-monotonic reasoning.

Generalizations that are inductively derived from the set of premises, Γ,
should be compatible with Γ. A further requirement on inductively derived
statements is that they should be jointly compatible with Γ. The latter re-
quirement is the harder one. The logic of compatibility – see Batens and
Meheus (2000) – provides us with the set of all statements that are compatible
with Γ. The problem of induction is, in its simplest guise, to narrow down this
set in such a way that the second requirement is fulfilled. And yet, as I shall
now explain, this problem is easy to solve.

Consider an (extremely simple) example of a CL-proof of the usual kind –
for the time being, just disregard the ∅s at the end of the lines. As stated be-
fore, all premises will be singular statements.

1 (Pa ∧ Pb) ∧ Pc PREM ∅
2 Rb ∨ ~Qb PREM ∅
3 Rb ⊃ ~Pb PREM ∅
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4 (Sa ∧ Sb) ∧ Qa PREM ∅
5 Pa 1 RU ∅
6 Pb 1 RU ∅
7 Qa 4 RU ∅
8 Sa 4 RU ∅
9 Sb 4 RU ∅

The rule applied in lines 5-9 is called RU. This name refers to the generic “un-
conditional rule”. For the moment, just read it as: formula 5 is CL-derivable
from formula 1, etc.

Suppose that our data comprise 1-4, and that we want to introduce an em-
pirical generalization, for example (∀x)(Px ⊃ Sx). Obviously, this formula is
not CL-derivable from 1-4. However, we may want to accept it until and un-
less is has been shown to be problematic – for example, because some P are
not S. In other words, we may want to consider (∀x)(Px ⊃ Sx) as conditional-
ly true in view of the premises. By a similar reasoning, we may want to con-
sider (∀x)(Px ⊃ Qx) as conditionally true. This suggests that we add these
universally quantified formulas to our proof, but attach a condition to them, in-
dicating that the formulas will not be considered as derived if the condition
shows false. So we extend the previous proof as follows:3

10 (∀x)(Px ⊃ Sx) RC {(∀x)(Px ⊃ Sx)}
11

L
l4 (∀x)(Px ⊃ Qx) RC {(∀x)(Px ⊃ Qx)}

The set {(∀x)(Px ⊃ Sx)} will be called the condition of line 10. If some mem-
ber of this set is contradicted by the data, the formula derived at line 10, which
happens to be (∀x)(Px ⊃ Sx), should be withdrawn (considered as not derived).
Conditionally derived formulas may obviously be combined by RU. As ex-
pected, the condition of the derived formula is the union of the conditions of
the formulas from which it is derived. Here is an example:

12
L

l4 (∀x)(Px ⊃ (Qx ∧ Sx)) 10, 11 RU    {(∀x)(Px ⊃ Sx), (∀x)(Px ⊃ Qx)}

The interpretation of the condition of line 12 is obviously that (∀x)(Px ⊃ (Qx ∧ Sx))
should be considered as not derived if either (∀x)(Px ⊃ Sx) or (∀x)(Px ⊃ Qx)
turns out to be problematic.
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Logicians not familiar with dynamic proofs will complain that the negation
of 11 is derivable from 1-4. Let me first show them to be right:

13 ~Qb 2, 3, 6 RU ∅
14 ~(∀x)(Px ⊃ Qx) 6, 13    RU ∅

As (∀x)(Px ⊃ Qx) is shown to be contradicted by the data, lines 11 and 12,
which rely on the presupposition that (∀x)(Px ⊃ Qx) is not problematic, have
to be marked. Formulas that occur in marked lines are considered as not being
inductively derivable from the premises.4

Some logicians may still complain: 14 is CL-derivable from 1-4, and
hence, they might reason, it was simply a mistake to add lines 11 and 12 to the
proof. Here I strongly disagree. Moreover, the point touches an essential prop-
erty of dynamic proofs; so let me explain the matter carefully.

Suppose that Γ is a finite set. In view of the restrictions on generalizations
and on Γ, it is decidable whether a generalization (in the sense specified be-
low) is or is not derivable, and hence it is decidable whether some singular
statement is or is not derivable. So, indeed, one may avoid applications of RC
that are later marked (if Γ is finite). However, nearly any variant of LI that
overcomes some of the restrictions on LI – see earlier as well as subsequent
sections – will be undecidable and, moreover, will lack a positive test for de-
rivability.5

In view of this, and in preparation for those more fascinating variants, it
seems rather pointless to try circumventing a dynamic proof theory for LI.
There is a second argument and it should not be taken lightly. It is the purpose
of the present paper to explicate actual inductive reasoning. Quite obviously,
humans are unable to see all the relevant consequences of the available infor-
mation. Given our finite brains it would be a bad policy to make inductive hy-
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potheses contingent on complete deductive certainty. To do so would slow
down our thinking and often paralyse it. This does not mean that we neglect
deductive logic. It only means that we often base decisions on incomplete
knowledge, including incomplete deductive knowledge – see Batens (1995)
for a formal approach to the analysis of deductive information. The third (and
last) argument is of a different nature. I shall show in this paper that the dy-
namic proof theory of LI is formally sound and leads, within the bounds de-
scribed in Section 2, to the desired conclusions. All this seems to offer a good
reason to continue our journey.

To find out whether the sketched proof procedure holds water, we should
also have a look at its weirder applications. Let us consider a predicate that
does not occur in our premises, and see what happens to generalizations in
which it occurs.

15
L

l7 (∀x)(Px ⊃ Tx) RC {(∀x)(Px ⊃ Tx)}

Obviously, 1-4 do not enable one to contradict (∀x)(Px ⊃ Tx). However, we
may moreover add:

16
L

l7 (∀x)(Px ⊃ ~Tx) RC      {(∀x)(Px ⊃ ~Tx)}

And now we see that we are in trouble, as the proof may obviously be contin-
ued as follows:

17 ~(∀x)(Px ⊃ Tx) ∨ ~(∀x)(Px ⊃ ~Tx)        5 RU      ∅

Although neither 15 nor 16 is contradicted by the empirical data, their con-
junction is. The thing to do here is obvious (and well known from the Relia-
bility strategy of adaptive logics). As 15 and 16 are on a par, both of them
should be considered as unreliable, and hence lines 15 and 16 should both be
marked in view of their conditions.6

Let me straighten this out and introduce some useful terminology. We sup-
pose that generalizations are not problematic until and unless they are shown
to be contradicted by the empirical data. So the normal case will be that a gen-
eralization is compatible with the data. In view of this, the (derivable) nega-
tion of a generalization will be called an abnormality. Sometimes abnormali-
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ties are connected. Line 17 is a good example: the disjunction of two abnor-
malities is derivable, but neither of the abnormalities is. Derivable abnormali-
ties and derivable disjunctions of abnormalities will be called Dab-formulas –
an abnormality is itself a disjunction with one disjunct only. Where ∆ is a fi-
nite set of generalizations, Dab(∆) is a handy abbreviation for V({~A | A ∈ ∆})
(the disjunction of the negations of the members of ∆).

In view of the derivability of 17, both (∀x)(Px ⊃ Tx) and (∀x)(Px ⊃ ~Tx)
are unreliable. But the fact that Dab(∆) is derivable does not indicate that all
members of ∆ are unreliable. Indeed,

~(∀x)(Px ⊃ Qx) ∨ ~(∀x)(Px ⊃ Sx)

is derivable from 14, but adding this formula to the proof does not render
(∀x)(Px ⊃ Sx) unreliable. The reason is that, even if the displayed formula were
added to the proof, it would not be a minimal Dab-formula in view of 14 (in the
sense that a formula obtained by removing one of its disjuncts has been de-
rived). A is unreliable at some stage of a proof, iff there is a ∆ such that A ∈ ∆
and Dab(∆) is a minimal Dab-formula that is unconditionally derived in the
proof at that stage.7 Here is a further illustration:

18 ~(∀x)(Px ⊃ Sx) ∨ ~(∀x)(Px ⊃ ~Sx)    5 RU ∅
19 ~(∀x)(Px ⊃ ~Sx) 5, 8   RU ∅

At stage 18 of the proof, (∀x)(Px ⊃ Sx) is unreliable, and hence line 10 is
marked. However, at stage 19, (∀x)(Px ⊃ Sx) is again reliable – 19 is a mini-
mal Dab-formula at this stage, whereas 18 is not – and hence line 10 is un-
marked.8 This nicely illustrates both sides of the dynamics: formulas consid-
ered as derived at one stage may have to be considered as not derived at a lat-
er stage, and vice versa. All this may sound unfamiliar, or even weird. And yet,
as we shall see in subsequent sections, everything is under control: ultimately
the dynamics is bound to lead to stability, the stable situation is determined on-
ly by the premises (as the semantics illustrates), and there are heuristic means
to speed up our journey towards the stable situation.
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CL, and neither of its disjuncts does.
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Having made this precise – formal definitions follow in Section 4 – I leave
it to the reader to check that the introduction of ‘wild’ hypotheses leads
nowhere. As the predicates U and V do not occur in the premises 1-4, apply-
ing RC to add formulas such as (∀x)(Ux ⊃ Vx) to the proof, will lead to lines
that are bound to be marked sooner or later – and very soon if some simple
heuristic instructions are followed.

Before moving on to background knowledge, let me add some important
comments. We have seen that (∀x)(Px ⊃ Qx) was not inductively derivable
from 1-4. However, (∀x)((Px ∧ Rx) ⊃ Qx) is. Indeed, line 20 below is not
marked in the present proof. In some artificial and clumsy extensions of the
proof, line 20 may be marked. But it is easy enough to further extend the proof
in such a way that line 20 is unmarked. This is an extremely important remark
to which I return later.

20 (∀x)((Px ∧ Rx) ⊃ Qx) RC {(∀x)((Px ∧ Rx) ⊃ Qx)}

The next comment concerns the form of formulas derived by RC. All that was
specified before is that these formulas should be universally quantified. How-
ever, a further restriction is required. Suppose that it is allowed to add

[21] (∀x)((Qx ∨ ~Qx) ⊃ ~Sc) RC        {(∀x)((Qx ∨ ~Qx) ⊃ ~Sc)}

to the proof. As

~(∀x)(Px ⊃ Sx) ∨ ~(∀x)((Qx ∨ ~Qx) ⊃ ~Sc)

is derivable from 1, not only line [21] but also line 10 would be marked in view
of this formula. Similar troubles arise if it is allowed to introduce such hy-
potheses as (∀x)((Qx ∨ ~Qx) ⊃ (∃x)(Px ∧ ~Sx)).

The way out of such troubles is simple enough. RC should not allow one to
introduce singular statements or existentially quantified statements in disguise.
Hence, we shall require that the generalizations introduced by RC consist of a
sequence of universal quantifiers followed by a formula of the form A ⊃ B in
which no constants, propositional letters or quantifiers occur. From now on,
‘generalization’ will refer to such formulas only.9 Some people will raise a his-
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torical objection to this restriction. Kepler’s laws explicitly refer to the sun,
and Galileo’s law of the free fall to the earth. This, however, is related to the
fact that the earth, the sun, and the moon had a specific status in the Ptolema-
ic worldview, and were slowly losing that status in the days of Kepler and
Galileo. In the Ptolemaic worldview, each of those three objects was taken,
just like God, to be the only object of a specific kind. So those generalizations
refer to kinds of objects, rather than to specific objects – by Newton’s time,
any possible doubt about this had been removed.10

Any generalization may be introduced by RC. This includes such formulas
as 21 and 22, that are CL-equivalent to 23 and 24 respectively. So the im-
plicative form of generalizations may be circumvented.

21 (∀x)((Qx ∨ ~Qx) ⊃ Px) RC    {(∀x)((Qx ∨ ~Qx) ⊃ Px)}
22 (∀x)(Rx ⊃ (Qx ∧ ~Qx)) RC    {(∀x)(Rx ⊃ (Qx ∧ ~Qx))}
23 (∀x)Px 21   RU     {(∀x)((Qx ∨ ~Qx) ⊃ Px)}
24 (∀x)~Rx 22   RU     {(∀x)(Rx ⊃ (Qx ∧ ~Qx))}

Is the dynamics of the proofs bound to stop at some finite point? The answer
to this question is not simple, but nevertheless satisfactory. However, I post-
pone the related discussion until we have gained a better grasp of LI.

Let us now move on to situations in which background knowledge is avail-
able. Clearly, background knowledge cannot be considered as unquestionable.
For one thing, the empirical data might contradict it. If they do, we face an in-
consistent set of premises, which leaves us nowhere on the present approach.11

So we shall consider background knowledge as defeasible. It is taken for
granted unless and until it is shown to be problematic.

This being settled, it is simple enough to integrate background knowledge
in the dynamic proof format. Background knowledge is the result of inductive
inferences made in the past, by ourselves our by our predecessors.12 For this
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ic of induction, but that I leave it out for reasons of space as well as for pedagogical reasons.
12 Or rather, background knowledge is so interpreted for present purposes. This is a simpli-



reason, I shall restrict background knowledge to background generalizations
– another simplification – and introduce them as conditional premises. Here
is an example:

25 (∀x)(Qx ⊃ Rx) BK {(∀x)(Qx ⊃ Rx)}
26 Ra 7, 25 RU    {(∀x)(Qx ⊃ Rx)}

The central difference between background generalizations and other gener-
alizations – the latter will be called local generalizations from now on – is that
the former are retained whenever possible. If Dab(∆) is unconditionally de-
rived, and each member of ∆ is a background generalization, then, in the ab-
sence of further information, we have to consider all members of ∆ as unreli-
able. So we shall mark all lines the condition of which overlaps with ∆. This
includes the lines on which the background generalizations are introduced as
conditional premises.13

If, however, we unconditionally derive ~A1 ∨ ... ∨ ~An ∨ ~B1 ∨ ... ∨ ~Bm,
and each Ai is a reliable background generalization (in the sense of the previ-
ous paragraph), then we should consider the local generalizations B1, ..., Bm as
unreliable, and retain the background knowledge A1, ..., An. Here is a simple
example:

27
L

29 (∀x)(Qx ⊃ ~Rx) RC {(∀x)(Qx ⊃ ~Rx)}
28

L
29 ~Ra 7, 27 RC {(∀x)(Qx ⊃ ~Rx)}

29 ~(∀x)(Qx ⊃ Rx) ∨ ~(∀x)(Qx ⊃ ~Rx)      7 RU     ∅

(∀x)(Qx ⊃ Rx) is a background generalization and has not been shown to be
an unreliable background generalization.14 But the local generalization
(∀x)(Qx ⊃ ~Rx) is unreliable in view of 29. Hence, lines 27 and 28 are
marked, but lines 25 and 26 are not, as desired.

In view of the asymmetry between background hypotheses and local hy-
potheses, LI is a prioritized adaptive logic. This means that the members of
one set of defeasible formulas, the background hypotheses, are retained at the
expense of the members of another set, the local generalizations.
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it) would be B-marked in view of line 14. See the next section for the precise definition.
14 This agrees with the above criterion: there is no set of background generalizations ∆ such

that (∀x)(Qx ⊃ Rx) ∈ ∆ and Dab(∆) is a minimal Dab-formula at stage 29 of the proof.



Before moving on to the precise formulation of the dynamic proof theory,

let me intuitively explain some peculiarities of the proof format. Traditionally,

a proof is seen as a list of formulas. This is not different for LI-proofs: the line

numbers, the justification of the line (a set of line numbers and a rule), the con-

ditions, and the marks are all introduced to make the proof more readable, but

are not part of the proof itself. However, there is a central difference in this

connection. In the dynamic case, one writes down a list of formulas, but the

proof consists only of the unmarked formulas in the list. This does not make

the marks part of the proof itself: which formulas are marked is determined by

the empirical data, the background generalizations, and the list of formulas

written down. Let us now continue to speak in terms of the annotated proof

format.

What we are interested in are formulas that are finally derivable. On our

way toward them, we have to go through the stages of a proof. Some formu-

las derived at a stage may not be finally derivable. As formulas that come with

an empty condition (fifth element of the line) cannot possibly be marked at a

later stage, they are sometimes called unconditionally derived. These formulas

are deductively derived (by CL) from the empirical data. Formulas that have

a non-empty condition are called conditionally derived. These formulas are in-

ductively derived only. Of course, the interesting formulas are those that are

inductively derived only, but nevertheless finally derived. In the present paper

I offer a correct definition of final derivability, but cannot study the criteria that

are useful from a computational point of view.

A last comment concerns the rules of inference. The unconditional rules of

LI are those of Classical Logic, and they carry the conditions from their prem-

ises to their conclusion. The conditional rules BK and RC add a new element

to the condition, and hence start off the dynamics of the proofs. As far as their

structure is concerned, however, they are of the same type as the standard

premise and axiom rules.

4.  The dynamic proof theory

Our language will be that of predicative logic. Let ∀A denote A preceded by a

universal quantifier over any variable free in A. A generalization is a formula

of the form ∀(A ⊃ B) in which no individual constant, sentential letter or quan-

tifier occurs in either A or B.
A dynamic proof theory consists of (i) a set of unconditional rules, (ii) a set

of conditional rules, and (iii) a definition of marked lines. The rules allow one
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to add lines to a proof. Formulas derived on a line that is marked at a stage of
the proof are considered as not inductively derived at that stage (from the
premises and background generalizations).15

Lines in an annotated dynamic proof have five elements: (i) a line number,
(ii) the formula derived, (iii) a set of line numbers (of the lines from which the
formula is derived), (iv) a rule (by which the formula is derived), and (v) a set
of conditions.

The logic LI operates on ordered sets of premises, Σ = 〈Γ, Γ*〉, in which Γ
is a set of singular formulas (the empirical data) and Γ* is a set of generaliza-
tions (the background generalizations).

The rules of LI will be presented here in generic format. There are two un-
conditional rules, PREM and RU, and two conditional rules, BK and RC:

PREM If A ∈ Γ, one may add a line comprising the following elements:
(i) an appropriate line number, (ii) A, (iii) –, (iv) PREM, and (v) ∅.

BK If A ∈ Γ*, one may add a line comprising the following elements:
(i) an appropriate line number, (ii) A, (iii) –, (iv) BK, and (v) {A}.

RU If A1, ..., An ACL B and each of A1, ..., An occur in the proof on lines
i1, ..., in that have conditions ∆1, ..., ∆n respectively, one may add a
line comprising the following elements: (i) an appropriate line num-
ber, (ii) B, (iii) i1, ..., in, (iv) RU, and (v) ∆1 ∪ ... ∪ ∆n.

RC Where A is a generalization, one may add a line comprising the fol-
lowing elements: (i) an appropriate line number, (ii) A, (iii) –, (iv)
RC, and (v) {A}.

A proof constructed by these rules will be called an LI-proof from Σ. In such
a proof, a formula is unconditionally derived iff it is derived at a line of which
the fifth element is empty. It is conditionally derived otherwise.

An abnormality is the negation of a generalization. Dab-formulas are for-
mulas of the form Dab(∆) = V{~A | A ∈ ∆}, in which ∆ is a finite set of gen-
eralizations.16 Dab(∆) is a minimal Dab-formula at stage s of a proof iff Dab(∆)

15
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defeasible premises.
16 Note that Dab(∆) refers to any formula that belongs to an equivalence class that is closed

under permutation and association.



is unconditionally derived in the proof at stage s and there is no ∆′ ⊂ ∆ such that
Dab(∆′) is unconditionally derived in the proof at that stage.

DEFINITION 1
Where Dab(∆1), ..., Dab(∆n) are the minimal Dab-formulas at stage s of a

proof from Σ = 〈Γ, Γ*〉, U*
s (Γ) = ∪{∆i ⊆ Γ* | 1 ≤ i ≤ n}.

DEFINITION 2
Where ∆ is the fifth element of line i, line i is B-marked iff ∆ ∩ U*

s (Γ) ≠ ∅.

U*
s (Γ) comprises the background generalizations that are unreliable at stage s

of the proof. As lines that depend on unreliable background generalizations are
B-marked, these generalizations are themselves removed from the proof. This
is interpreted by not considering them as part of the background knowledge at
that stage of the proof. What remains of the background knowledge at stage s
will be denoted by Γ*

s = Γ* – U *
s (Γ).

Now we come to an important point. In order to determine which local
generalizations are unreliable, we have to take the reliable background
knowledge for granted. A Dab-formula Dab will be called a minimal local
Dab-formula iff no formula Dab(∆′) occurs in the proof such that 
(∆′ – Γ*

s) ⊂ (∆ – Γ*
s).

DEFINITION 3
Where Dab(∆1), ..., Dab(∆n) are the minimal local Dab-formulas at stage s

of a proof from Σ = 〈Γ, Γ*〉, U ºs (Γ) = ∪{∆i – Γ*
s | 1 ≤ i ≤ n}.

DEFINITION 4
Where is the fifth element of a line i that is not B-marked, line i is L-marked

iff ∆ ∩ Uºs (Γ) ≠ ∅.

Uºs (Γ) comprises the unreliable local generalizations at stage s. These gener-
alizations may have been introduced by RC, they may be unreliable back-
ground generalizations, or they may be generalizations that do not occur in
the proof (or occur as derived formulas only). Let me briefly clarify Defini-
tion 3.

Given the B-marks, we have to assess the hypotheses introduced by RC.
Which of these are unreliable at stage s of the proof? The key to the answer to
this question lies in the following theorem, the proof of which is obvious:
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THEOREM 1
Dab(∆ ∪ ∆′) is a minimal Dab-formula at stage s of a proof, iff a line may

be added that has Dab(∆) as its second, RC as its fourth, and ∆′ as its fifth el-
ement.

Suppose that, in a proof at stage s, ∆′ contains only reliable background gener-
alizations, whereas no such background generalization is a member of ∆ – that
is, ∆′ ⊆ Γ*

s and ∆ ∩ Γ*
s = ∅. That Dab(∆) is derivable on the condition ∆′ in-

dicates that some member of ∆ is unreliable if the background generalizations
in ∆′ are reliable. Moreover, we consider the background generalizations to be
more trustworthy than the local generalizations. So from the occurrence of the
minimal local Dab-consequence Dab(∆ ∪ ∆′) we should conclude that the
members of ∆ are unreliable.

Incidentally, an equivalent (and also very intuitive) proof theory is obtained
by defining Uºs (Γ) in a different way. Let Dab(∆1), ..., Dab(∆n) be the minimal
(in the usual, simple sense) Dab-formulas that have been derived at stage s on
the conditions Θ1, ..., Θn respectively, and for which (∆1 ∪ ... ∪ ∆n) ∩ Γ*

s = ∅
and Θ1 ∪ ... ∪ Θn ⊆ Γ*

s . Uºs  (Γ) may then be defined as ∆1 ∪ ... ∪ ∆n.17 But let
us stick to Definition 3 in the sequel.

DEFINITION 5
A formula A is derived at stage s of a proof from Σ, iff A is the second ele-

ment of a non-marked line at stage s.

DEFINITION 6
Σ ALI A (A is finally LI-derivable from Σ) iff A is derived at a stage s of a

proof from Σ, say at line i, and, whenever line i is marked in an extension of
the proof, it is unmarked in a further extension of the proof.

This definition is the same as for other dynamic proof theories. The following
theorem is helpful to get a grasp of LI-proofs. The formulation is somewhat
clumsy because the line may be marked, in which case A cannot be said to be
derivable.
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THEOREM 2
To an LI-proof from Σ = 〈Γ, Γ*〉 a (marked or unmarked) line may be added

that has A as its second element and ∆ as its fifth element, iff  Γ ACL A ∨ Dab(∆).

The proof of the theorem is extremely simple. Let the CL-transform of an LI-
proof from Σ = 〈Γ, Γ*〉 be obtained by replacing any line that has B as its second
and Θ as its fifth element, by an unconditional line that has B ∨ Dab(Θ) as its
second element. To see that this CL-transform is a CL-proof from Γ, it is suffi-
cient to note the following: (i) the CL-transform of applications of PREM are
justified by PREM, (ii) the CL-transform of applications of BK and RC are jus-
tified in that they contain a CL-theorem of the form A ∨ ~A, and (iii) the CL-
transform of applications of RU are turned into applications of the CL-derivable
(generic) rule “If A1, ..., An ACL B, then from A1 ∨ C1, ..., An ∨ Cn to derive B ∨
C1 ∨ ... ∨ Cn”. This establishes one direction of the theorem. The proof of the
other direction is immediate in view of the LI-derivable rule: “Where all mem-
bers of ∆ are generalizations, to derive A on the condition ∆ from A ∨ Dab(∆)”.

So, in a sense, LI-proofs are CL-proofs in disguise. We interpret them in a
specific way in order to decide which generalizations should be selected.

In order to obtain a better grasp of final derivability, I first define the sets
of unreliable formulas with respect to Γ, independently of the stage of a proof.
First we need: Dab(∆) is a minimal Dab-consequence of Γ iff Γ ACL Dab(∆)
and, for no ∆′ ⊂ ∆, Γ ACL Dab(∆′).

DEFINITION 7
Where Ω* is the set of all minimal Dab-consequences of Γ in which occur

only members of Γ*, U* (Γ) = ∪(Ω*).

This defines the set of background generalizations that are unreliable with re-
spect to the empirical data Γ. The set of retained background generalizations
is Γ*

Γ = Γ* − U*(Γ).
Dab(∆) is a minimal local Dab-consequence of Γ iff Γ ACL Dab(∆) and, for

no ∆′, Γ ACL Dab(∆′) and (∆′ − Γ*
Γ) ⊂ (∆ − Γ*

Γ).18

DEFINITION 8
Where Ω is the set of all minimal local Dab-consequences of  Γ, U º (Γ) =

∪ (Ω) − Γ*
Γ.
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This defines the set of local generalizations that are unreliable with respect to
the empirical data Γ.

Given that LI-proofs are CL-proofs in disguise, the proofs of the following
theorems can safely be left to the reader:

THEOREM 3
Where Σ = 〈Γ, Γ*〉, Γ*

Γ = {A ∈ Γ* | Σ ALI A}.

THEOREM 4
Where Σ = 〈Γ, Γ*〉, Σ ALI A, A is finally LI-derivable from Σ, iff there is a

(possibly empty) ∆ such that (i) Γ ∪ Γ*
Γ ACL A ∨ Dab(∆), and (ii) (∆ − Γ*

Γ) ∩
U º (Γ) = ∅.

This sounds much simpler in words. A is an LI-consequence of Σ iff A is CL-
derivable from Γ together with the reliable background generalizations, or, for
some set ∆ of reliable local generalizations,19 A ∨ Dab(∆) is CL-derivable
from Γ together with the reliable background generalizations.

The LI-consequence relation may be characterized in terms of compatibil-
ity – where  is compatible with ∆′ iff ∆ ∪ ∆′ is consistent (iff no inconsisten-
cy is CL-derivable from this set).20 The characterization is remarkably simple,
as appears from the following three theorems. The proof of the theorems is ob-
vious in view of Definition 7 and Theorem 4.

THEOREM 5
A ∈ Γ*

Γ iff A ∈ Γ* and ∆ ∪ {A} is compatible with Γ whenever ∆ ⊆ Γ* is
compatible with Γ.

A background generalization A is retained iff, whenever a set of background
generalizations is compatible with the data, then A and ∆ are jointly compati-
ble with the data.

THEOREM 6
Where Σ = 〈Γ, Γ*〉 and A is a generalization, Σ ALI A iff ∆ ∪ {A} is compat-

ible with Γ ∪ Γ*
Γ, whenever a set of generalizations ∆ is compatible with Γ ∪ Γ*

Γ.
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A generalization A is inductively derivable iff, whenever a set ∆ of generalizations
is compatible with the data and retained background generalizations, then A and
∆ are jointly compatible with the data and retained background generalizations.
Let ΣG be the set of generalizations that are inductively derivable from Σ.

THEOREM 7
Where Σ = 〈Γ, Γ*〉, Σ ALI A iff Γ ∪ Γ*

Γ ∪ ΣG ACL A.

A is inductively derivable from a set of data and background generalizations
iff it is CL-derivable from the data, the reliable background generalizations,
and the inductively derivable generalizations.

Let me finally mention, without proofs, some properties of the LI-conse-
quence relation: Non-Monotonicity, Proof Invariance (any two proofs from Γ de-
fine the same set of final consequences), CL-Closure (CnCL(CnI(Σ)) = CnI(Σ)),21

Decidability of 〈Γ, Γ*〉 ALI A whenever Γ and Γ* are finite and A is either a
generalization or a singular formula. Cautious cut with respect to facts:
where A is a singular statement, if 〈Γ, Γ*〉 ALI A and 〈Γ ∪ {A}, Γ*〉 ALI B,
then 〈Γ, Γ*〉 ALI B. Cautious monotonicity with respect to facts: where A is a
singular statement, if 〈Γ, Γ*〉 ALI A and 〈Γ, Γ*〉 ALI B, then 〈Γ ∪ {A}, Γ*〉 ALI B.
By the last two: that inductively derivable predictions are verified, does not
lead to new inductive consequences. Cautious cut with respect to generaliza-
tions: where A is a generalization, if 〈Γ, Γ*〉 ALI A and 〈Γ, Γ* ∪ {A}〉 ALI B,
then 〈Γ, Γ*〉 ALI B. Cautious monotonicity with respect to generalizations: where
A is a generalization, if 〈Γ, Γ*〉 ALI A and 〈Γ, Γ*〉 ALI B, then 〈Γ, Γ* ∪ {A}〉 ALI B.
By the last two: if inductively derivable generalizations are accepted as back-
ground knowledge, no new inductive consequences follow.

5.  The semantics

The previous sections merely considered the dynamic proof theory of LI. This
proof theory is extremely important, as it enables us to explicate actual induc-
tive reasoning – humans reach conclusions by finite sequences of steps. A log-
ical semantics serves different purposes. Among other things, it provides in-
sights into the conceptual machinery. Such insights increase our understanding
of a logic, even if they are not directly relevant for the computational aspects.

Let MΓ denote the set of CL-models of Γ. The LI-models of Σ = 〈Γ, Γ*〉,
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will be a subset of MΓ. This subset is defined in terms of the abnormal parts
of models – see Batens (1986) for the first application of this idea (to a com-
pletely different kind of logic). The abnormal part of a model (the set of ab-
normalities verified by a model) is defined as follows. Let G denote the set of
generalizations.

DEFINITION 9
Ab(M) = {∀(A ⊃ B) | M H ∀(A ⊃ B); ∀(A ⊃ B) ∈ G}.

In words: the abnormal part of a model is the set of generalizations it falsifies. Ob-
viously, Ab(M) is not empty for any model M. For example, either (∀x)((Px ∨
~Px) ⊃ Qx) ∈ Ab(M) or (∀x)((Px ∨ ~Px) ⊃ ~Qx) ∈ Ab(M). And if M B Pa,
then either (∀x)(Px ⊃ Qx) ∈ Ab(M) or (∀x)(Px ⊃ ~Qx) ∈ Ab(M). However, in
some models of Pa both (∀x)(Px ⊃ Qx) and (∀x)(Px ⊃ ~Qx) belong to Ab(M),
whereas in others only one of them does.

Given that CL is sound and complete with respect to its semantics,
Dab(∆) is a minimal Dab-consequence of  Γ iff all M ∈ MΓ verify Dab(∆)
and no ∆′ ⊂ ∆ is such that all M ∈ MΓ verify Dab(∆′).

This semantic characterization of the minimal Dab-consequences of Γ im-
mediately provides a semantic characterization of U*(Γ), of U º (Γ), and of Γ*

Γ.
This is sufficient to make the first required selection. The proof of Theorem 8
is obvious.

DEFINITION 10
M ∈ MΓ is background-reliable iff (Ab(M) ∩ Γ*) ⊆ U*(Γ). 

THEOREM 8
M ∈ MΓ is background-reliable iff M B Γ*

Γ.

In words, the retained background knowledge consists of the members of Γ*

that are verified by all background-reliable models of Γ. So a model M of Γ is
background-reliable iff it verifies all reliable background generalizations.
For any consistent Γ and for any set of background generalizations Γ*, there
are background-reliable models of Γ.22 This is warranted by the compactness of
CL: Γ is compatible with Γ*

Γ iff it is compatible with any finite subset of Γ*
Γ.

I now proceed to the second selection of models of Γ.
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DEFINITION 11
M ∈ MΓ is reliable (is an LI-model of Σ)23 iff Ab(M) ⊆ U º(Γ).

Since, in view of Definitions 7 and 8, U*(Γ) = U º(Γ) ∩ Γ*, it follows that: 

THEOREM 9
All reliable models of Σ are background reliable.

One should not be misled by this. Ab(M) ⊆ U º(Γ) only warrants (Ab(M) ∩ Γ*)
⊆ U*(Γ) because the definition of U º(Γ) refers to the definition of U*(Γ).

DEFINITION 12
Where Σ = 〈Γ, Γ*〉, Σ BLI A iff all reliable models of Γ verify A.

THEOREM 10
Σ ALI A iff Σ BLI A. (Soundness and Completeness)

The proof is longwinded, especially its right-left direction, but follows exactly
the reasoning of the proofs of Theorems 5.1 and 5.2 from Batens (1999). The
present proof is simpler, however, as it concerns CL.

Some further provable properties: Strong Reassurance (if a CL-model M of Γ
is not an LI-model of Σ, then some LI-model M′ of Σ is such that Ab(M′ ) ⊂
Ab(M)), and Determinism of final derivability (the co-extensive semantic con-
sequence relation defines a unique consequence set for any Σ).

Although it is important to semantically characterize final LI-derivability in
terms of a set of models of Σ, some might complain that the dynamics of the
proofs does not appear in the semantics. However, there is a simple method to ob-
tain a dynamic semantics for adaptive logics. This method, exemplified in Batens
(1995), offers a dynamic semantics that is characteristic for derivability at a stage.

A slightly different (and richer) result would be obtained by applying the
Minimal Abnormality strategy. I skip technicalities and merely mention the cen-
tral difference from the Reliability strategy. In the presence of an instance24 of Px
and in the absence of instances of both Px ∧ Qx and Px ∧ ~Qx, the Reliability
strategy leads to the rejection of both (∀x)(Px ⊃ Qx) and (∀x)(Px ⊃ ~Qx) – if any
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of these formulas occurs in the fifth element of a line, the line is marked. It fol-
lows that even the disjunction of both generalizations will be marked. On the Min-
imal Abnormality strategy, both generalizations are marked but their disjunction
is not. This supplementary consequence seems weak and pointless. Moreover, the
Minimal Abnormality strategy, while leading to a very simple semantics, terribly
complicates the proof theory. For this reason I shall not discuss it further here.

6.  Heuristic matters and further comments

Some people think that all adaptive reasoning (including all non-monotonic
reasoning) should be explicated in terms of heuristic moves rather than in
terms of logic proper. For their instruction and confusion, I shall first spell out
some basics of the heuristics of the adaptive logic LI. I leave it to the reader
to compare both conceptions.

Suppose that one applies RC to introduce, on line i, the generalization ∀(A ⊃ B)
on the condition {∀(A ⊃ B)}. As (1) is a CL-theorem, it may be derived in the
proof and causes ∀(A ⊃ B) to be L-marked.

~∀(A ⊃ B) ∨ ~∀(A ⊃ ~B) ∨ ~∀(~A ⊃ B) ∨ ~∀(~A ⊃ ~B)            (1)

So, in order to prevent ∀(A ⊃ B) from being L-marked, one needs to uncondi-
tionally derive

~∀(A ⊃ ~B) ∨ ~∀(~A ⊃ B) ∨ ~∀(~A ⊃ ~B)

or a “sub-disjunction” of it. How does one do so? An instance of A enables one
to derive

~∀(A ⊃ B) ∨ ~∀(A ⊃ ~B)                                            (2)

whereas an instance of ~A enables one to derive

~∀(~A ⊃ B) ∨ ~∀(~A ⊃ ~B)                                   (3)

An instance of A ∧ B enables one to derive

~∀(A ⊃ ~B)                                                            (4)

and so on.

23

ON A LOGIC OF INDUCTION



In view of this, it is obvious how one should proceed. Suppose that one
is interested in the relation between A and B. It does not make sense to in-
troduce by RC, for example, the generalization ∀(A ⊃ B), if falsifying in-
stances (instances of A ∧ ~B) are derivable – if there are, the generalization is
marked and will remain marked forever. Moreover, in order to prevent ∀(A ⊃ B)
from becoming marked in view of (1) or (2), one needs a confirming25 in-
stance (an instance of A ∧ B) and one needs to derive (4) from it. So two
aims have to be pursued: (i) search for instances of A ∧ ~B in order to make sure
that one did not introduce a falsified generalization, and (ii) search for instances
of A ∧ B in order to make sure that the generalization is not marked.

To see that the matter is not circular, note that it does not make sense, with
respect to (ii) from the previous paragraph, to derive, say B(a) from A(a) to-
gether with the generalization ∀(A ⊃ B) itself. Indeed, B(a) will then be de-
rived on the condition {∀(A ⊃ B)}. (4) is derivable from B(a), but again only
on the condition {∀(A ⊃ B)}. The only Dab-formula that can be uncondition-
ally derived from (4) on the condition {∀(A ⊃ B)} is (2) – compare Theorem
2. In view of this, the line at which ∀(A ⊃ B) was introduced by RC will still
be marked.

But suppose that A(a) and C(a) occur unconditionally in the proof and that
the generalization ∀(C ⊃ B) was introduced by RC. If we derive B(a) from
these, it will be derived on the condition {∀(C ⊃ B)}. So we are not able to un-
conditionally derive (4) from A(a) and B(a). All we can unconditionally derive
along this road is

~∀(A ⊃ ~B) ∨ ~∀(C ⊃ B) (5)

and, in view of this, both ∀(C ⊃ B) and B(a) will be marked.
The reader might find this weird. There may be unconditional instances of

C ∧ B in the proof, and hence ~∀(C ⊃ ~B) may be unconditionally derived.
This seems to warrant that ∀(C ⊃ B) is finally derived, but obviously it does
not. If such unexpected dependencies between abnormalities obtain, are we
not losing control? Nothing very complicated is actually going on here. Con-
trol is provided by the following simple and intuitive fact:

(†) If the introduction of a local generalization G entails a falsifying in-
stance of another generalization ∀(A ⊃ B), and no falsifying instance
of the latter is derivable from the empirical data together with the re-
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liable background knowledge, then ~G ∨ ~∀(A ⊃ ~B) is uncondi-
tionally derivable.

What does all this teach us? If we introduce a generalization, we want to find out
whether it is finally derived in view of the present data. In order to do so, we
should look for falsifying as well as for confirming instances, and we should
look for falsifying instances of other generalizations, as specified in (†).26 These
instances may be derived from the union of the empirical data, the reliable back-
ground generalizations, and the reliable local generalizations. There is a clear
bootstrapping effect here. At the level of the local generalizations the effect is
weak, in that wild generalizations will not be finally derivable. At the level of the
background generalizations, the effect is very strong – it is only annihilated by
falsifying instances. However, at the level of the local generalizations, the boot-
strapping effect does not reduce to a form of circularity.

So in order to speed up our journey towards the stable situation we need to
look for the instances mentioned in the previous paragraph. As this statement
may easily be misunderstood let me clarify it. Let the generalization intro-
duced by RC be ∀(A ⊃ B). (i) We need to find a confirming instance – if there
are none, the generalization is bound to be marked.27 (ii) We need to search for
falsifying instances of the generalization and for falsifying instances of other
generalizations that are novel with respect to the empirical data and reliable
background generalizations – if there are falsifying instances of either kind,
the generalization is bound to be marked. As a result of the search for falsify-
ing instances (of either kind), we may find more confirming instances as well
as a number of undetermined cases – individual constants for which there is an
instance of A but not of either B or ~B. When new empirical data become
available, objects about which we had no information, or only partial informa-
tion, may turn out to be falsifying, and so may objects about which we can on-
ly derive conditionally that they are confirming. So, (iii) we need to collect fur-
ther data, by observation and experiment. At this point, confirmation theory
enters the picture. Although LI does not take into account the number of con-
firming instances, only well-established hypotheses will convincingly elim-
inate potential falsifiers. Incidentally, I tend to side with Popper in this re-
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spect: what is important is not the number of confirming instances, but rather
the strength of the tests to which a generalization has been subjected.
Whether this concept may be explicated within the present qualitative frame-
work is dubious.

Although the heuristics of LI depends on confirmation theory in the sense
described above, LI in itself enables us to spell out quite interesting heuristic
maxims. Given a set of empirical data and a set of background generalizations,
it is clear how we should proceed. Most of what was said above relates to that.
If the given data and background knowledge do not allow one to finally derive
any generalization concerning the relation between A and B because there is
insufficient information, LI clearly instructs one about the kind of data that
should be gathered to change the situation. In this sense, LI does guide em-
pirical research. This guidance may be considered somewhat unsophisticated,
but it is the basic guidance, the one that points out the most urgent empirical
research.

I now turn to a different kind of heuristic maxims. In order to speed up our
journey towards stability with respect to given empirical data and background
generalizations, it is essential to derive as soon as possible the minimal Dab-con-
sequences of Γ and to derive as soon as possible the minimal local Dab-conse-
quences of Γ. Some LI-derivable rules are extremely helpful in this respect,
and are related to deriving inconsistencies – the techniques to do so are well-
known from the CL-heuristics. I mention only two examples. Suppose that, in
an LI-proof from Σ, A is unconditionally derived, and that ~A is derived on the
condition ∆. Then Dab(∆) is unconditionally derivable in the proof. Similarly,
if an inconsistency is derived on the condition ∆, Dab(∆) is unconditionally
derivable in the proof.

An equally helpful derivable rule was exemplified before (and is warrant-
ed by Theorem 2). If a Dab-formula Dab(∆) is derived on the condition ∆′,
then Dab(∆ ∪ ∆′) is unconditionally derivable. Similarly, if an instance of A is
derived on the condition ∆ and an instance of B is derived on the condition ∆′,
then ~∀(A ⊃ ~B) ∨ Dab(∆ ∪ ∆′) is unconditionally derivable – either or both
of ∆ and ∆′ may be empty.

A very rough summary reads as follows: derive all singular statements that
lead to instances of formulas no instances of which have been derived, and de-
rive Dab-formulas that change either the minimal Dab-formulas or the minimal
local Dab-formulas. The first instruction requires the derivation of a few for-
mulas only. The second may be guided by several considerations, (i) Whenever
Dab(∆) has been derived, one should try to unconditionally derive Dab(∆′) for
all ∆′ ⊂ ∆. This is a simple and decidable task. (ii) One should only try to de-
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rive Dab(∆) when ∆ consists of background generalizations, generalizations

introduced by the rule RC, or “variants” of such generalizations – the variants

of ∀(A ⊃ B) being the four generalizations that occur in (1). This instruction

may be further restricted. Given a background generalization or local general-

ization ∀(A ⊃ B), one should first and foremost try to derive the Dab(∆) for

which ∆ contains variants of ∀(A ⊃ B). The only cases in which it pays to con-

sider other Dab-formulas is the one described in (†).
Up to now I have considered the general heuristic maxims that apply to LI.

However, LI has distinct application contexts, in which different aims are pur-

sued and specific heuristic maxims apply. I shall consider only two very gen-

eral application contexts.

If one tries to derive Dab-formulas that result in some lines being marked

or unmarked, one basically checks whether the introduced generalizations are

compatible with and confirmed by the available empirical data. However, one

might also, after introducing a generalization, concentrate on its consequences

by deriving singular statements from it. These singular statements will be de-

rived conditionally. As said before, this may be taken to be a good reason to

invoke observation and experiment in order to test them. This leaves room for

a “Popperian” application of LI. Even if a generalization may be marked in

view of derivable Dab-formulas, and even if it is marked in view of derived

Dab-formulas, we may try to gather novel data that cause the generalization to

be unmarked. Incidentally, the “stronger” generalizations in the sense of Pop-

per (1935; 1963) are those from which a larger number of weaker generaliza-

tions are derivable, and hence have more potential falsifiers. Popper was quite

right, too, to stress that it is advisable to infer the most general (the bolder)

generalizations first. If they become marked, we may still retract to less gen-

eral generalizations. As long as these are not marked, the less general general-

izations are available for free because they are CL-consequences of the more

general ones.

A distinction is useful in the present context. If an instance of Px is deriv-

able from the empirical data together with the reliable background knowledge,

but no instances of either Px ∧ Qx or Px ∧ ~Qx are so derivable, then both

(∀x)(Px ⊃ Qx) and (∀x)(Px ⊃ ~Qx) may be marked because we have no means
to choose between them. If instances of both Px ∧ Qx and Px ∧ ~Qx are CL-

derivable from the empirical data together with the reliable background

knowledge, then both (∀x)(Px ⊃ Qx) and (∀x)(Px ⊃ ~Qx) may be marked be-
cause both are falsified. The transition from the first situation to the second

clearly indicates an increase in knowledge. Moreover, in the second situation

it does not make sense to look for further confirming instances of either gen-
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eralization. What does make sense in the second situation, and not in the first, is
that one looks for less general hypotheses, for example (∀x)((Px ∧ Rx) ⊃ Qx)
that may still be derivable.

This at once answers the objection that LI too severely restricts a scientist’s
freedom to launch hypotheses. LI does not in any way restrict the freedom to in-
troduce generalizations. Rather, LI points out, if sensibly applied, which gener-
alizations cannot be upheld, and which empirical research is desirable. A scien-
tist’s “freedom” to launch hypotheses is not a permission for dogmatism – to
make a claim and stick to it. If it refers to anything, then it is to the freedom to
break out of established conceptual schemes. Clearly, the introduction of new
conceptual schemes goes far beyond the present simple logic of induction – I re-
turn to this in Section 7. Given the limits of LI, the set of LI-consequences of a
given Σ should be determined by Σ and should be independent of any specific
line of reasoning. In this respect the rule RC differs drastically from such rules
as Hintikka’s bracketing rule – see, for example, Hintikka (1999; forthcoming).

A very different application context concerns predictions derived in view
of actions. It makes sense, in the Popperian context, to derive predictions from
a generalization A, even before checking whether the proof can be extended in
such a way that A is marked. In the present context, it does not. It would be
foolish to act on the generalization (∀x)(Px ⊃ Qx) in the absence of confirm-
ing instances – such actions would be arbitrary. In action contexts, one should
play the game in a safer way by introducing only well-confirmed generaliza-
tions, not bold ones. Thus (∀x)(Px ⊃ Qx) should be derived from safe gener-
alizations, for example, (∀x)((Px ∧ Rx) ⊃ Qx) and (∀x)((Px ∧ ~Rx) ⊃ Qx) if
both of these happen to be safe.

In both contexts,28 LI suggests a specific heuristic procedure. This proce-
dure differs from one context to the other, and may be justified in view of the
specific aims.

Some people may find it suspect that applications of the rule RC do not re-
quire the presence of any formulas in the proof. RC is a positing rule rather than
a deduction rule. This is no reason to worry. LI has a dynamic proof theory. A
proof at a stage should not be confused with a proof of a logic that has a (static)
proof theory of the usual kind. The central question in an LI-proof is not whether
a generalization can be introduced, but whether it can be retained – the aim is fi-
nal derivability, not derivability at a stage. The preceding paragraphs make it suf-
ficiently clear that final derivability is often difficult to reach, and that one needs
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to follow a set of heuristic rules in order even to obtain a sensible estimate of fi-

nal derivability – see also below. In this connection, it is instructive to see that

CnI(〈∅, ∅〉) = CnCL(∅), that CnI(〈{Pa, ~Pa}, ∅〉) = CnCL({Pa, ~Pa}), and

hence that neither of these comprises a non-tautological generalization.

A final comment concerns the nature of an adaptive logic. It would be fool-

ish to build a logic that allows for some mistakes. Obviously, adaptive logics

do not allow for mistakes: CnI(Σ) is a well-defined set that leaves no room for

any choice or arbitrariness. The dynamic proof theory constitutes a way to

search for CnI(Σ). A proof at a stage merely offers an estimate of CnI(Σ) – an

estimate that is determined by the insights in the premises that are provided by

the proof. We have seen that there are heuristic means to make these insights

as rich and useful as possible. There also are criteria to decide, in some cases,

whether a formula is finally derived in a proof – see Batens (2002). In the ab-

sence of a positive test, that is the best one can do in a computational respect.

For large fragments of the language, LI-derivability is decidable. This in-

cludes all generalizations, and hence all predictions and explanations. But

even for undecidable fragments of the language, dynamic proofs at a stage of-

fer a sensible estimate of CnI(Σ), the best estimate that is available from the

proof – see Batens (1995). This means that an LI-proof at a stage is sufficient

to take justified decisions: decisions that may be mistaken, but are justified in

terms of our present best insights.

7.  Further research

As announced, LI is very simple – only a starting point. In the present section

I briefly point to some open problems. Some of these relate to alternatives for

LI, others to desirable sophistication.

With respect to background generalizations, an interesting alternative ap-

proach is obtained by not introducing members of Γ* but rather generalizations

that belong to CnCL(Γ*). Suppose that (∀x)(Px ⊃ Qx) ∈ Γ*, and that Pa, Ra and

~Qa are CL-consequences of Γ. According to LI, (∀x)(Px ⊃ Qx) is falsified,

and hence not retained. According to the alternative, (∀x)((Px ∧ ~Rx) ⊃ Qx)

would, for all that has been said, be a retained background generalization. This

certainly deserves further study, both from a technical point of view and with

respect to application contexts.

LI is too empiricist, even too positivistic. Let me just mention some obvi-

ous sophistication that is clearly desirable. Sometimes our background knowl-

edge is inconsistent and sometimes falsified generalizations are retained. As
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there is room for neither in LI, this logic is unfit to explicate certain episodes
from the history of the sciences. It is not difficult to modify LI in such a way
that both inconsistent background knowledge and the application of falsified
generalizations are handled. Available (and published) results on inconsisten-
cy adaptive logics make this change a rather easy exercise.

Another weakness of LI, or rather of the way in which LI is presented in
the present paper, is that there seems to be only room for theories in the sim-
ple sense of the term: sets of generalizations. This weakness concerns espe-
cially background theories – the design of new theories is not a simple induc-
tive matter anyway. Several of the problems listed above are solved in Batens
and Haesaert (2001); this paper contains also a variant of LI that follows the
standard format for adaptive logics.

LI does not enable one to get a grasp of conceptual change or of similar
phenomena that are often related to scientific creativity and discovery. This
will be the hardest nut to crack. That it is not impossible to crack it will be ob-
vious to readers of such papers as Meheus (1999a; 1999b; 2000).

Let me say no more about projected research. The basic result of the pres-
ent paper is that there is now a logic of induction. It is simple, and even a bit
old-fashioned, but it exists and may be applied in simple circumstances.29
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