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Abstract

The present paper introduces two new information merging protocols
for the family of adaptive logics ADM, for which majority merging has
been defined in [19]. The new adaptive operators reflect the negotiation
processes of quasi-merging and pure arbitration, known from the Integrity
Constraints framework introduced in [13]. The Adaptive Variant Count-
ing selection provides a result equivalent to the GMax family of merging
operators: it selects a collective model for a multi-set of belief bases based
on the number of disagreements verified by the various models according
to a leximax function. The Adaptive Minimax Counting selection is a
quasi-merging operator which applies a minimax function and it obtains
a larger spectrum of possibilities than the previous selection: it simulates
the behaviour of the Max family of operators from the Integrity Con-
straints framework, avoiding some of its counterintuitive results.
Keywords: Information Fusion, Negotiation Protocols, Arbitra-
tion, Quasi-Merging, Adaptive Logics.

1 Introduction

In the last decade, the logical literature has provided an increasing number of
systems that formalize rational processes where multiple epistemic agents are
involved. The description of processes of collective deliberation is especially rel-
evant for judgement aggregation strategies, or information fusion architectures
in the case of non-human rational systems.

The standard analysis of decision processes focuses naturally on reachable
agreements, in order to perform the most effective selection of common goals and
judgements in the group. But such a process might not be entirely successful and
the presence of a certain degree of internal dissatisfaction can not be completely
ruled out by the negotiation protocol. Frameworks defining knowledge merging
operators, known as information fusion operators in the artificial intelligence
∗Research for this paper was supported by subventions from Ghent University.
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literature, aim at modelling the needed selection procedures, especially in view
of possibly inconsistent sets of data.

The merging of contradictory sources, whose study goes back to [5], has
applications in distributed databases and information systems. In [7], [6] and
[4] the general properties of the logical approaches to merging procedures for
inconsistent information bases have been studied; these are surveyed in [12] and
in the more recent [10].

The definition of an operator called arbitration was given first in [20], and
later considerably reworked in [14] and [15]. In the latter work, the idea of
arbitration is presented as a modification of the more standard revision operator
from the AGM-paradigm in [1]: merging two information bases does not depend
on any order of priority (namely of the newer base over the older one), as it
is the case for update or revision operators. The process might require that
information be preserved from one base in some cases and from the other in
other cases. This general principle has been modified by the use of weights on
the bases, in order to express the relevance of the information contents, rather
than a strict priority relation. Weights have been expressed as priority values (as
in [9]), they have been assigned either to propositional terms (see e.g. [8]) or to
the set of models of formulas (as in [20]), and finally they have been formulated
as possibility values (see [22]).

A second major group of merging operators formulate majority protocols:
these formal selection systems are the main object of study especially in so-
cial choice theory. The ground distinction between majority and arbitration
operators can be reflected in the following terms (see e.g. [11]): whereas major-
ity merging operators aim at minimizing collective dissatisfaction, arbitration
operators aim at maximizing individual satisfaction.

These two sub-classes of merging operators are defined in the general and
standard framework of information merging under intergrity constraints (IC) in
[13]. This framework allows for defining a family of three distinct operators:

1. the 4Σ operator satisfies the postulates for majority and it corresponds
to the merging operator from [16];

2. the 4GMax operator satisfies a pure arbitration procedure, removing the
original restriction on the number of bases involved in the arbitration
process;

3. the 4Max operator is called a quasi-merging operator and it represents a
pseudo-arbitration operator corresponding to the one from [15].

In [19], a majority operator defined in view of the dynamic semantics of
adaptive logics (see [2, 3]) is formulated for bases with partial support in terms
of the logic ADMc (Adaptive Doxastic Merging by Counting). The adaptive
Counting strategy selects from the set of models of a modal language those
that minimize overall disagreements among agents: it is a general protocol of
majority merging equivalent to the generalization under Integrity Constraints
represented by the 4Σ operator. The application of this majority protocol
to the judgment aggregation paradox is considered in [17]: it provides a non-
paradoxical (though somehow inefficient) solution. Effectivity is reached by
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modifying the agenda of interaction.1 In the present paper, we extend the
family of adaptive logics ADM by providing adaptive strategies whose results
are equivalent to the operators 4GMax and 4Max from the IC framework.

The formulation of the arbitration protocol for the family of logics ADM
is given by the formulation of the logic ADMc+ for Adaptive Doxastic Merging
by Variant Counting.2 The semantic selection defined by this adaptive logic is
based on a pre-order of models obtained by calculating disagreements among
the agents following the leximax rule: this has a strict correspondance to the
lexicographic order of models as defined in the IC framework. From this new
logic, a third selection procedure is defined, equivalent to the minimax rule
for quasi-merging. This selection procedure shall be introduced as the logic
ADMc−mm, for Adaptive Doxastic Merging by Minimax Counting. With this
last result, the family of logics ADM is shown to be a general framework to
define all the various negotiation processes modelled by the standard merging
operators, in particular those of the general Integrity Constraints framework.

We shall proceed as follows. After some preliminaries in section 2, we will
consider briefly the quasi-merging and arbitration Integrity Constraints oper-
ators in section 3, and mention an example from the literature to clarify the
functioning of these protocols. The general formulation of the adaptive logic for
merging ADM is introduced in section 4, followed by the definition of the se-
mantic selection of Variant Counting and Minimax Counting. Section 6 uses the
already introduced example to show how these adaptive strategies give equiv-
alent results as in the IC framework. In the final section further steps for the
research on the adaptive procedures of merging are surveyed.

2 Preliminaries

Let L be the standard language of classical propositional logic (henceforth CL)
that is formed from a finite set of atoms P in the usual way. A literal is an atom
or negation of an atom; P± will be used to refer to the set of literals and W to
refer to all well-formed formulas of L. Capital roman letters from the beginning
of the alphabet will be used as meta-variables for well-formed formulas. As is
common, the abbreviation

∨
∆ will stand for the disjunction of the members of

∆, where ∆ is a set of formulas.
A belief base is a finite subset ofW. We shall use T, T1, . . . as meta-variables

for belief bases.3 A belief set is a multiset of belief bases. We say that a literal
A is fully supported by some belief base T if T |= A. We say that a literal A
is partially supported by a belief base T if there is a set of literals ∆ such that
A ∈ ∆, T |=

∨
∆, 6|=

∨
∆, and there is no ∆′ ⊂ ∆ such that T |=

∨
∆.4 The

letter Ψ will be used as a meta-variable for belief sets and we shall use square
brackets to denote multisets, as in [T1, . . . , Tn].

1This corresponds, informally, to an iteration of voting processes and, more formally, to
relaxing the specification on individual judgements being accepted as input in the Universal
Domain Condition.

2This result was first presented in [18].
3In [13] a belief base is seen as the formula obtained by the conjunction of the formulae in

the belief base T . This is justified in view of the fact that belief bases are finite.
4The notions of full and partial support may easily be generalized to complex formulas,

but we do not need them in the context of the present paper.
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Integrity constraints µ are a finite set of sentences, i.e. a belief base. The
merging of a multi-set Ψ under constraints µ is a function from Ψ × µ to a
new belief base. The result of a merging procedure on a multi-set Ψ under
constraints µ shall be denoted as 4µ(Ψ).

A CL-model is a function from P to {0, 1}. We shall use M,M1, . . . as meta-
variables for CL-models and M to denote the set of all CL-models. A model
M is a model of a belief base T iff all the members of T are true in it. As usual,
M |= A will denote that M verifies A. We shall use Mod(T ) to denote the set
of all models of T , and Cn(T ) to denote the semantic consequence set of T .

From Section 3 on, we shall define the notion of distance between models
and a belief set, which gives a preorder on M (also called order of plausibility
on models). A preorder over the set of CL-models is a reflexive and transitive
relation on M. Where ≤ is a preorder, < is defined as: M < M ′ iff M ≤ M ′

and M ′ 6≤ M . The merging protocols will define functions for the ordering on
models, and the models of the resulting merged base will be the minimal ones
in such orderings. Where M is a subset of M, we shall say that a model M is
minimal in M with respect to ≤ iff M ∈ M and there is no M ′ ∈ M such that
M ′ < M . We shall use min(M,≤) to denote the set of models that are minimal
in M with respect to ≤.

From Section 4 on, we shall also need a (multi-)modal language that includes
belief operators. Such language LB is obtained by L extending it with a belief
operator bi for any i ∈ I, where I is a set of indexes {0, 1, . . .}. Each different
base is given an operator bi with i ∈ I \ 0. The operator b0 is used exclusively
for the beliefs selected for the merging state, or for the constraints holding in
such state. Intuitively, biA (for i > 0) will express that agent i believes or
supports A; the formula b0A means that all agents agree on A or that their
decision is constrained by the holding of A. Given a belief base Ti, a modal
belief base that corresponds to Ti will be obtained by preceding each member
of Ti by bi. A modal belief set will be a set of modal belief bases extended with
the set {biA ∨ bi¬A | A ∈ P±; i ∈ I}. We shall use the letter Υ exclusively to
denote the latter set. Thus, where Ψ = [T1, . . . , Tn], the modal translation of
Ψ, denoted by ΨB, is the set {biA | A ∈ Ti; Ti ∈ Ψ} ∪ Υ.5 We shall use WB
to refer to all well-formed formulas of LB. Where necessary, we shall explicitly
indicate whether a formula belongs to W or to WB.
LB enables one to represent a multi-set of belief bases by a single set of

premises. It also enables one to consider (modal) models that validate all the
premises, rather than having to consider models for each of the belief bases
separately. To keep things as simple as possible, and in view of what is needed for
the intended application context, the modal language will be restricted to first
degree modalities. So, only modal formulas in which no nested belief operators
occur will henceforth be considered as well-formed.

The language LB is used to define the logic DM, which is a multi-modal
version of the modal logic D. The logic DM has been introduced in [19] as
the Lower Limit Logic (LLL) of ADMc: this is the same for the two adaptive
logics to be introduced in the present paper.6 In addition to all CL-axioms, the

5Extending the modal belief base in this way is, for the application context at issue,
harmless and greatly simplifies matters, both at the object-level and at the meta-level. See
also [19].

6All of the three are Adaptive Logics in standard format, which is extensively discussed in
[3]. This means that two other elements are needed for their definition along with the LLL:
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logic DM validates for any i ∈ I

• Necessitation Rule: if `CL A then `DM biA;

• Distribution: bi(A ⊃ B) ⊃ (biA ⊃ biB);

• Consistency: biA ⊃ ¬bi¬A.

We shall use MB,MB1 , . . . as meta-variables for DM-models and MB to
denote the set of all DM-models.

3 The Integrity Constraints Merging Framework

In this section we introduce the Integrity Constraints (IC) merging protocols
from [13] that are going to be mimicked by different strategies defined within the
ADM family of adaptive logics. The protocols from the IC Merging framework
are respectively Pure-Arbitration and Quasi-Merging.

The IC merging operators on a multiset Ψ, consisting of n belief bases Ψ =
[T1, . . . , Tn], define different ordering methods on the set of classical models: the
resulting belief base 4µ(Ψ) is “close” in a certain technical sense to the original
multiset, being in general the one whose models are the minimal ones in the
obtained ordering. The definition of distance between the involved belief bases
and the set of interpretations is usually given as the Dalal distance from [8]:7

its intuitive idea is to measure the distance between two models M and M ′,
denoted as dist(M,M ′), as the number of atoms whose valuation differs in the
two models, and the distance between a CL-model M and a belief base T by
the following definition:

dist(M,T ) = minM ′∈Mod(T )(dist(M,M ′)) (1)

in which “min dist” refers to the minimal distance. Where T is inconsistent,
the value of dist(M,T ) is set to zero. Given a multiset of belief bases, a single
model can be close to one of the bases in that set, and distant from another base
in terms of the value of dist. The various merging protocols apply an ordering
on the resulting values according to different functions to obtain the desired
negotiation process.

Let us now consider an example introduced in [13], in order to show how the
operators for arbitration and quasi merging perform their ordering and selections
of models.

At a meeting of a block of flat co-owners, the chairman proposes
for the coming year the construction of a swimming pool, of a tennis
court and a private car park. But if two of these three items are
built, the rent will increase significantly ([13], p.787).

In the following the letters p, q, r stand respectively for the construction of
the swimming pool, the tennis court and the private car park. The rent increase

the set of so-called abnormal formulas, which is also the same among the three logics; and the
adaptive selections, which instead are the distinctive mark of each logic and provide different
consequence sets for the same premise set.

7A variant definition is represented by the Satoh distance from [21].
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will be denoted by s, which is implied by each conjunction of two out of the
three items: this represents our constraint µ = ((p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r))→ s.
The set of beliefs for the co-owners is represented by Ψ = [T1, T2, T3, T4]:

T1 = {p ∧ q ∧ r}
T2 = {p ∧ q ∧ r}
T3 = {¬p ∧ ¬q ∧ ¬r ∧ ¬s}
T4 = {q ∧ r ∧ ¬s}.

The first two co-owners want to build the three items and do not care about
the rent; the third agent does not want the rent to increase nor anything built;
the fourth one has a preference for the last two items, though he does not want
the rent to increase. The result of merging shall select those models that are
minimal with respect to a given pre-order and that satisfy the constraint.

In the following two subsections we shall introduce the definitions needed to
define the IC merging protocols and show how these apply to the calculation of
distances and selection on the set of models M:

M1 = p, q, r, s
M2 = p, q, r,¬s
M3 = p, q,¬r, s
M4 = p, q,¬r,¬s
M5 = p,¬q, r, s
M6 = p,¬q, r,¬s
M7 = p,¬q,¬r, s
M8 = p,¬q,¬r,¬s
M9 = ¬p, q, r, s
M10 = ¬p, q, r,¬s
M11 = ¬p, q,¬r, s
M12 = ¬p, q,¬r,¬s
M13 = ¬p,¬q, r, s
M14 = ¬p,¬q, r,¬s
M15 = ¬p,¬q,¬r, s
M16 = ¬p,¬q,¬r,¬s

3.1 IC Pure-Arbitration

The IC arbitration operator on a multiset Ψ is denoted by 4GMax
µ (Ψ). An

arbitration merging operator corresponds to a mapping from the belief set Ψ
to a belief base whose models are minimal in a total preorder ≤Ψ obtained
according to a leximax function.

Consider a multi-set Ψ = [T1, . . . , Tn]; for each classical model M , consider
the list D = (distM1 , . . . , distMn ) of distances between M and the n belief bases
in Ψ, i.e. the list of distances

distMi = dist(M,Ti) (2)

where dist(M,Ti) is defined by 1 in the previous section. Let LMΨ be the list
obtained from D by sorting its members in descending order. Denote now by
≤lex the lexicographic order between sequences of integers of the same length,
that is the lexicographic order between the LMΨ lists. For any two models M1
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and M2, M1 ≤Ψ M2 holds if and only if LM1
Ψ ≤lex LM2

Ψ . Where Mµ ⊆ M is
the subset of models that satisfy the constraint µ, the selection by the 4GMax

µ

operator is then defined as follows:

Mod(4GMax
µ (Ψ)) = min(Mµ,≤Ψ). (3)

As concerns the example introduced in this section, the 4GMax
µ (Ψ) operaotr

presupposes that the distances of each Ti ∈ Ψ with respect to the set of models
M are calculated. From this set, the models contradicting the contraints µ are
eliminated; this reduces the distances to the following list:

T1 T2 T3 T4 LMΨ
M1 0 0 4 1 4, 1, 0, 0
M3 1 1 3 2 3, 2, 1, 1
M5 1 1 3 2 3, 2, 1, 1
M7 2 2 2 3 3, 2, 2, 2
M8 2 2 1 2 2, 2, 2, 1
M9 1 1 3 1 3, 1, 1, 1
M11 2 2 2 2 2, 2, 2, 2
M12 2 2 1 1 2, 2, 1, 1
M13 2 2 2 2 2, 2, 2, 2
M14 2 2 1 1 2, 2, 2, 1
M15 3 3 1 3 3, 3, 3, 1
M16 3 3 0 2 3, 3, 2, 0

The lexicographic order between LMΨ lists gives models M12,M14 as the
minimal ones, hence the result of merging by the 4GMax

µ operator on Ψ is
(¬p ∧ ¬q ∧ r ∧ ¬s) ∨ (¬p ∧ q ∧ ¬r ∧ ¬s). The preferred choice by the group of
co-owners is therefore to build either the tennis court or the private car park
without increasing the rent.

3.2 IC Quasi-Merging

The pseudo-arbitration operator from [15] has the main property of being con-
strained to only two bases and to require consistency to be obtained without the
average principle on bases to be preserved. This means that the negotiation pro-
cedure is performed among the belief bases rather than among the propositional
letters having different truth values. As a result, if the operator is applied to
two bases that are inconsistent with each other, it will provide their disjunction
without taking into account any combination of consistent contents.

The 4Max operator from [13] is meant to model the very same procedure
of arbitration, without the restriction imposed on the number of belief bases
involved in the negotiation process. This operator is a less fine-grained one
than the 4GMax, because it provides a larger spectrum of possible results, and
therefore it is called a quasi-merging operator.

The IC quasi-merging 4Max operator is defined in terms of the minimax
function. Let Ψ = [T1, . . . , Tn] be the usual belief set, M a classical model and
dist the standard Dalal’s distance value. A new Max-distance (dMax) between
a model M and a belief set Ψ is defined as follows:

dMax(M,Ψ) = maxT∈Ψdist(M,T ); (4)
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that is the maximal distance of model M with respect to each belief base
T ∈ Ψ. Then a preorder M1 ≤Max

Ψ M2 holds if and only if the correspond-
ing maximal distance for M1 is less or equal than the maximal distance for
M2: dMax(M1,Ψ) ≤ dMax(M2,Ψ). Given integrity constraints µ, the 4Max

µ (Ψ)
operator selects in M the subset Mµ of models occupying the lower position
(minimal value) in the obtained pre-order:

Mod(4Max
µ (Ψ)) = min(Mµ,≤Max

Ψ ). (5)

As for the example, one first calculates the maximal distance between each
belief base in Ψ and each of the models (considering those remaining from M
after those contradicting the constraints µ have been eliminated):

T1 T2 T3 T4 dMax(M,Ψ)
M1 0 0 4 1 4
M3 1 1 3 2 3
M5 1 1 3 2 3
M7 2 2 2 3 3
M8 2 2 1 2 2
M9 1 1 3 1 3
M11 2 2 2 2 2
M12 2 2 1 1 2
M13 2 2 2 2 2
M14 2 2 1 1 2
M15 3 3 1 3 3
M16 3 3 0 2 3

The obtained pre-order gives as minimal models M8,11,12,13,14, which means
that the result of IC-merging by the 4Max operator is ((p ∧ ¬q ∧ ¬r ∧ ¬s) ∨
(¬p ∧ q ∧ ¬r ∧ s) ∨ (¬p ∧ q ∧ ¬r ∧ ¬s) ∨ (¬p ∧ ¬q ∧ r ∧ s) ∨ (¬p ∧ ¬q ∧ r ∧ ¬s)).
The result of this merging procedure is therefore to build one of the three items
and not to increase the rent, or to build either the car park or the tennis court
increasing the rent.

4 The Adaptive Logic for Merging

In the following sections, the two Adaptive Logics ADMc+ and ADMc−mm

are introduced. These logics complete the definition of the family ADM, for
which the Counting Strategy for Majority was defined in [19].

The adaptive strategies for the new merging protocols are the Variant Count-
ing and the Minimax Counting strategy:8 they perform selections on the set of
DM-models of a given set of premises Ψb, providing results equivalent to those
of the 4GMax and 4Max operators respectively. The operator 4c+ (eventu-
ally 4c+µ when some set of constraints µ is given) is used for the result of the
Variant Counting strategy and Mod(4c+(ΨB)) to refer to the subset of MB
correspondingly selected; the operator 4c−mm (4c−mmµ respectively) is used
for the result obtained by the Minimax Counting Strategy, Mod(4c−mm(ΨB))
referring to the subset of MB selected by that strategy.

8As mentioned in a previous footnote, the strategy is the peculiar element for each of the
logics of the family ADM.
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Let us consider as an example a set of belief bases

T1 = {p ∨ q}
T2 = {¬p}
T3 = {¬q}.

These belief bases are given a modal translation in any of the logics belonging
to the family ADM as the premise set ΨB = {b1(p∨q), b2¬p, b3¬q}∪Υ. Each of
the adaptive semantic selections on the set of DM-models establishes a related
consequence set: the consequence set of each logic correspond to the result of a
negotiation procedure performed according to a given merging protocol.

The selection is formulated in view of the disagreements derivable from the
modal premise set according to the lower limit logic. Such disagreements are
formalised in terms of a special class of formulas, called abnormalities. In the
case of the previously introduced premise set ΨB = {b1(p ∨ q), b2¬p, b3¬q} ∪Υ,
some of the DM-models of ΨB verify the formula b3¬q ⊃ b0¬q, whereas others
falsify it; or, what comes to the same, verify b3¬q ∧ ¬b0¬q. An abnormality is
precisely a formula of the form biA∧¬b0A, i.e. a formula expressing the support
that some agent i gives to a literal A, which is not merged in view of some other
agent’s disagreement. In all DM-models of ΨB, at least one instance of such an
abnormality is verified. In our example, there will be two types of DM-models
of ΨB: those that verify b0¬q and those that verify ¬b0¬q. Models that verify
¬b0¬q, necessarily verify the abnormality b3¬q ∧ ¬b0¬q; those that verify b0¬q
necessarily verify (b1q ∧ ¬b0q) ∨ (b1p ∧ ¬b0p) ∨ (b2¬p ∧ ¬b0¬p).

The selection gives us a precise way to decide which models should be chosen.

5 The Semantics of ADM

In what follows, we present a formally precise formulation of the semantics of
DM and of the adaptive selection procedures on DM-models.

The semantics of the lower limit logic DM is a standard possible world
semantics, with multiple accessibility relations. A DM-model is a quadruple
〈W,wo,R, v〉 where W is a set of possible worlds, wo ∈W is the actual world, R
is a set of serial accessibility relations Ri (i ∈ I) over W , and v : P×W → {0, 1}
is an assignment function.

The valuation function defined by a model MB is characterized as follows:

C1 where A ∈ P, vMB(A,w) = v(A,w)
C2 vMB(¬A,w) = 1 iff vMB(A,w) = 0
C3 vMB(A ∨B,w) = 1 iff vMB(A,w) = 1 or vMB(B,w) = 1
C4 vMB(A ∧B,w) = 1 iff vMB(A,w) = 1 and vMB(B,w) = 1
C5 vMB(A ⊃ B,w) = 1 iff vMB(A,w) = 0 or vMB(B,w) = 1
C6 vMB(biA,w) = 1 iff vMB(A,w′) = 1 for all w′ such that Riww′

The standard semantic notions are defined as usual: a model MB verifies A
iff vMB(A,w0) = 1, ΨB |=DM A iff all DM-models of ΨB verify A, and |=DM A
iff all DM-models verify A.

Abnormalities express conflicts derivable from a premise set that contains
the beliefs of the agents according to its lower limit logic models; the following
is the formal definition:
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Definition 1 (Set of Abnormalities Ω) Ω = {biA ∧ ¬b0A | i ∈ I \ 0, A ∈
P±}.

In each of the adaptive logics defined as a selection protocol on models of the
lower limit logic DM, a disjunction of abnormalities may be DM-derivable
without any of its disjuncts being DM-derivable. Consider again ΨB = {b1(p∨
q), b2¬p, b3¬q} ∪ Υ. From this, none of the following abnormalities is DM-
derivable: neither b3¬q∧¬b0¬q nor b1q∧¬b0q nor b1p∧¬b0p nor b2¬p∧¬b0¬p;
but their disjunction (b3¬q∧¬b0¬q)∨(b1q∧¬b0q)∨(b1p∧¬b0p)∨(b2¬p∧¬b0¬p)
is DM-derivable. Disjunctions of abnormalities will be called Dab-formulas, and
the abbreviation Dab(∆) will be used to refer to them:

Definition 2 (Dab-Formula) Dab(∆) stands for
∨

(∆) where ∆ ⊆ Ω.

If ∆ is a singleton, Dab(∆) is a single abnormality; if ∆ = ∅, any disjunction
A ∨ Dab(∆) corresponds to A. A Dab-formula that is DM-derivable from ΨB

will be called a Dab-consequence of ΨB:

Definition 3 (Dab-Consequence) Dab(∆) is a Dab-consequence of a premise
set ΨB iff ΨB |=DM Dab(∆).

If Dab(∆) is a Dab-consequence of a set ΨB, then so is any Dab(∆′) such that
∆′ ⊃ ∆. This is why a further definition is needed:

Definition 4 (Minimal Dab-Consequence) A disjunction of abnormalities
Dab(∆) is a minimal Dab-consequence of ΨB iff ΨB |=DM Dab(∆) and there is
no ∆′ ⊂ ∆ such that ΨB |=DM Dab(∆′).

It is in view of the derivability of Dab-formulas from a premise set that the
adaptive strategy is needed. Intuitively, the adaptive strategy specifies what it
means, in the case of disjunctions of abnormalities, that the abnormalities are
false unless and until proven otherwise. Given the same lower limit logic and the
same set of abnormalities, there are different ways to interpret a set of premises
as normally as possible: the precise interpretation of this ambiguous phrase is
determined by the adaptive strategy.

In the present case, we will distinguish between interpreting a premise set
as normally as possible in view of the Variant Counting Strategy in ADMc+,
and in view of the Minimax Counting Strategy in ADMc−mm.

5.1 Variant Counting for Arbitration

The selection by Variant Counting gives rise to the adaptive logic ADMc+.
The selection is performed on the basis of the disagreements verified in each
DM-model with respect to each agent: the number of disagreements provides
the ratio by which models are ordered. The task is to select those models that –
according to such ordering – satisfy the smallest combination of disagreements
among agents.

Consider first all the formulas A ∈ Ω such that the b-operator indexed 1
occurs in A: typically, this will be the set of all abnormalities of the form
b1A ∧ ¬b0A or, in other words, all the formulas expressing a conflict involving
agent 1. Call this set Ω1. Then consider the set of all formulas of the same kind
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occurring with b-operator indexed 2 – that is the set of formulas expressing
the conflicts involving agent 2 – and call this set Ω2, and so on up to index n.
Hence, for any given index i ∈ I, a corresponding set of abnormalities can be
formulated:

Definition 5 Ωi = {A ∈ Ω | bi occurs in A (i ∈ I \ 0)}.

The set of abnormalities with a given index is a proper subset of Ω and in turn
the set Ω is the union of all the various Ωi sets:

Definition 6 (The set of indexed abnormalities)

Ω =
n⋃
i=1

Ωi.

For each model MB, consider now the set of abnormal formulas with index
i verified by that model. We shall call this set the abnormal part with index i
of the model MB:

Definition 7 (The abnormal part with index i of a model) Abi(MB) =
{A | A ∈ Ωi and MB |=DM A}.

For any model MB, let us denote by CiMB = |Abi(MB)| the cardinality of its
abnormal part of index i:

Definition 8 (Cardinality of the abnormal part with index i of a model)
Given the abnormal part Abi(MB) with index i of a DM-model, we call its car-
dinality CiMB the number of abnormal formulas A ∈ Ωi such that MB |=DM A.

The cardinality CiMB expresses the number of disagreements involving agent i
verified by the modelMB. For each modelMB, we construct the list (C1

MB , . . . , CnMB),
where n is the number of elements of I occurring in ΨB. For each MB, let LM

B

be the list obtained by (C1
MB , . . . , CnMB) by sorting its elements in descending

order. Let now ≤lex be the lexicographic order between the various lists LM
B

.
On the basis of the ordering ≤lex, a total preorder ≤CΨB holds among the models
MB1 , . . . ,M

B
n in the following way:

Definition 9 (Preorder by Minimal Cardinality) A total preorder ≤CΨB holds
between DM-models according to the following definition:

MBi ≤CΨB M
B
j iff LM

B
i ≤lex LM

B
j . (6)

According to this definition, a pre-order on MB is obtained by ordering lexico-
graphically the descending lists of cardinalities for each MB ∈MB with respect
to their abnormal parts. Where MΨB stands for the set of DM-models for the
literals contained in ΨB, the Variant Counting strategy 4c+(ΨB) will select
among those models the minimal ones with respect to the ordering obtained by
≤CΨB :

Definition 10 (Selection of Models by ADMc+)

Mod(4c+(ΨB)) = Min(MΨB ,≤CΨB). (7)
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The merging operator 4c+ reflects an arbitration selection on the DM-
models: it selects the models of the belief bases that support contents corre-
sponding to the median choices among each Ti ∈ ΨB. In the case of the adaptive
selection, this means that the selected models are those with lower position in
the pre-order given by cardinalities of their abnormal parts.

5.2 Minimax Counting for Quasi-Merging

In the present section the Minimax Counting selection of the adaptive logic
ADMc−mm is introduced. It aims at providing the same kind of negotiation
process obtained by the 4Max operator. The resulting 4c−mm operator for
the Minimax Adaptive Counting applies the minimax rule to select among the
DM-models of a premise set in view of the cardinality of their abnormal parts
with a given index. This latter notion is the same as in Definition 8.

A new maximal distance Max is defined by the selection of the first element
in each list LMΨB for each model MB:

Definition 11 (Maximal Abnormal Distance) Max(MB,ΨB) = CiMB such
that there is no index k for which |Abk(MB)| > |Abi(MB)| holds.

i.e. Max(M,ΨB) picks the highest value Ci for each model MB. Informally, the
Maximal Abnormal Distance expresses – for each model – the highest number
of disagrements in which a given agent is involved. On its basis, one derives a
new total pre-order for the abnormal models in the following way:

Definition 12 (Preorder by Maximal Abnormal Distance) A total pre-
order ≤Max

ΨB on DM-models holds according to the following definition

MBi ≤Max
ΨB MBj iff Max(MBi ,Ψ

B) ≤Max(MBj ,Ψ
B). (8)

Where MΨB stands for the set of DM-models for the literals contained in ΨB,
the Minimax Counting strategy of ADMc−mm will select the minimal models
with respect to the ordering obtained by ≤Max

ΨB :

Definition 13 (Selection of Models by ADMc−mm)

Mod(4c−mm(ΨB)) = Min(MΨB ,≤Max
ΨB ). (9)

This selection first considers the highest cardinality of the indexed abnormal
parts fro each DM-models; then it orders these values and it considers only
those models that have the minimal among these maximal values. The result of
this selection expresses a negotiation procedure that accounts for all the possible
consistent combinations of contents.

6 An Example

We shall now refer to the example introduced in section 3, in order to show how
the operators 4c+ and 4c−mm work, and that the same result is obtained as by
the corresponding IC-operators. The corresponding premise set in DM is of the
form ΨB = {b1(p∧ q∧ r), b2(p∧ q∧ r), b3(¬p∧¬q∧¬r∧¬s), b4(q∧ r∧¬s)}∪Υ.
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Let us now consider the DM-models for which cardinalities of their abnormal
parts shall be calculated:9

MB1 = b0p, b0q, b0r, b0s
MB2 = b0p, b0q, b0r, b0¬s
MB3 = b0p, b0q, b0¬r, b0s
MB4 = b0p, b0q, b0¬r, b0¬s
MB5 = b0p, b0¬q, b0r, b0s
MB6 = b0p, b0¬q, b0r, b0¬s
MB7 = b0p, b0¬q, b0¬r, b0s
MB8 = b0p, b0¬q, b0¬r, b0¬s
MB9 = b0¬p, b0q, b0r, b0s
MB10 = b0¬p, b0q, b0r, b0¬s
MB11 = b0¬p, b0q, b0¬r, b0s
MB12 = b0¬p, b0q, b0¬r, b0¬s
MB13 = b0¬p, b0¬q, b0r, b0s
MB14 = b0¬p, b0¬q, b0r, b0¬s
MB15 = b0¬p, b0¬q, b0¬r, b0s
MB16 = b0¬p, b0¬q, b0¬r, b0¬s

In view of our constraint µ, the models MB2 ,M
B
4 ,M

B
6 ,M

B
10 are rejected, i.e. any

model satisfying b0((p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r)) ∧ ¬s is ignored. The following
models are left:

MB1 = b0p, b0q, b0r, b0s
MB1 = b0p, b0q, b0r, b0s
MB5 = b0p, b0¬q, b0r, b0s
MB7 = b0p, b0¬q, b0¬r, b0s
MB8 = b0p, b0¬q, b0¬r, b0¬s
MB9 = b0¬p, b0q, b0r, b0s
MB11 = b0¬p, b0q, b0¬r, b0s
MB12 = b0¬p, b0q, b0¬r, b0¬s
MB13 = b0¬p, b0¬q, b0r, b0s
MB14 = b0¬p, b0¬q, b0r, b0¬s
MB15 = b0¬p, b0¬q, b0¬r, b0s
MB16 = b0¬p, b0¬q, b0¬r, b0¬s

6.1 Arbitration

For each of the remaining models we calculate the cardinality with respect to
the sets of abnormalities Ωi = {biA ∧ ¬b0A | A ∈ P±; i ∈ I}. For each model
MB and any indexed set of abnormalities Ωi, there will be a value to CiMB .
These values are listed in the following table, where at the intersection of each
MBj and Ci one has the value of |Abi(MB)|; in the last column LM

B
is the list

of the obtained values of cardinalities of the abnormal parts of each model in
descending order:

9In the following we restricts the representation of models only to formulas prefixed by the
b0-operator.
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C1
MB C2

MB C3
MB C4

MB LM
B

MB1 0 0 4 1 4, 1, 0, 0
MB3 1 1 3 2 3, 2, 1, 1
MB5 1 1 3 2 3, 2, 1, 1
MB7 2 2 2 3 3, 2, 2, 2
MB8 2 2 1 2 2, 2, 2, 1
MB9 1 1 3 1 3, 1, 1, 1
MB11 2 2 2 2 2, 2, 2, 2
MB12 2 2 1 1 2, 2, 1, 1
MB13 2 2 2 2 2, 2, 2, 2
MB14 2 2 1 1 2, 2, 2, 1
MB15 3 3 1 3 3, 3, 3, 1
MB16 3 3 0 2 3, 3, 2, 0

The lexicographic order ≤CΨB among the sequences of LM
B

gives the total pre-
order among the various models:10

MB12,14 ≤MB8 ≤MB11,13 ≤MB9 ≤MB3,5 ≤
MB7 ≤MB16 ≤MB15 ≤MB1 .

(10)

The result of merging according to min(M,≤CΨB) is given by the disjunction of
the two minimal models (12, 14) in the preorder:

4c+µ (ΨB) = b0((¬p ∧ q ∧ ¬r ∧ ¬s) ∨ (¬p ∧ ¬q ∧ r ∧ ¬s)). (11)

This is also the result of the pure arbitration 4GMax operator from [13].

6.2 Quasi-merging

By means of the same example, we show now the selection performed by the
4c−mm operator for Minimax Adaptive Counting. From the very same premise
set ΨB = {b1(p∧ q ∧ r), b2(p∧ q ∧ r), b3(¬p∧¬q ∧¬r ∧¬s), b4(q ∧ r ∧¬s)} ∪Υ,
the same list of CiMB values are formulated for the cardinalities of the indexed
abnormal part of each model. The models that allow the combination b0((p ∧
q)∨ (p∧ r)∨ (q∧ r)∧¬s) are obviously still rejected in view of the constraint µ.

According to Definition 11, one selects the Maximal Abnormal Distance for
each of the remaining models:

10To make it easier for the reader, super- and subscripts on the ordering symbol ≤C
ΨB

have
been removed.
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C1
MB C2

MB C3
MB C4

MB Max(Mj ,ΨB)
MB1 0 0 4 1 4
MB3 1 1 3 2 3
MB5 1 1 3 2 3
MB7 2 2 2 3 3
MB8 2 2 1 2 2
MB9 1 1 3 1 3
MB11 2 2 2 2 2
MB12 2 2 1 1 2
MB13 2 2 2 2 2
MB14 2 2 1 1 2
MB15 3 3 1 3 3
MB16 3 3 0 2 3

from which the following preorder based on ≤Max
ΨB is obtained:

MB8,11,12,13,14 ≤Max
ΨB MB3,5,7,9,15,16 ≤Max

ΨB MB1 . (12)

From these values the selection of models with the minimal values provides the
following alternatives:

4c−mmµ (ΨB) = b0((p ∧ ¬q ∧ ¬r ∧ ¬s) ∨ (¬p ∧ q ∧ ¬r ∧ s)∨
(¬p ∧ q ∧ ¬r ∧ ¬s) ∨ (¬p ∧ ¬q ∧ r ∧ s)∨

(¬p ∧ ¬q ∧ r ∧ ¬s)).
(13)

Also in this case, the adaptive selection by 4c−mm provides the same result as
the 4Max operator from [13].

7 Conclusion

In this paper, adaptive selection procedures corresponding to pure-arbitration
and quasi-merging fusion protocols have been provided. The obtained adaptive
logics complete the formal presentation of the family ADM, together with the
adaptive logic for majority ADMc from [19]. The formulation of an adaptive
proof theory for ADMc+ and ADMc−mm shall easily follow along the line of
the derivability and marking relations defined for the majority protocol. We
also expect to be able to define a selection procedure for ADM that reflects
the 4n operators from [11], which define protocols belonging simultaneously to
majority and arbitration. The formulation of positive and negative results for
the application of the adaptive protocols, as for example in relation to judgment
aggregation procedures (see [17]), is foreseen.
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[13] S. Konieczny and R. Pino-Pŕez. Merging information under constraints:
A logical framework. Journal of Logic and Computation, 12(5):773–808,
2002.

[14] P. Liberatore and M. Schaerf. Arbitration: a commutative operator for
belief revision. In Proceedings of the Second World Conference on the Fun-
damentals of Articial Intelligence, pages 217–228, 1998.

[15] P. Liberatore and M. Schaerf. Arbitration (or how to merge knowledge
bases). IEEE Transactions on Knowledge and Data Engineering, pages
76–90, 1998.

[16] J. Lin and A.O. Mendelzon. Knowledge base merging by majority. In
Dynamic Worlds: from the Frame Problem to Knowledge Management.
Kluwer, 1999.

[17] G. Primiero. Aggregating collective judgements by selecting disagreements.
accepted for presentation at LOFT08, 8th Conference on Logic and the
Foundations of Game and Decision Theory, Amsterdam 3-5 July 2008,
2008.

16



[18] G. Primiero and J. Meheus. Adaptive arbitration by variant counting on
commutative bases with weights. In Proceedings of the 11th International
Conference on Information Fusion, IEEE Conferences, pages 1374–1380,
2008.

[19] G. Primiero and J. Meheus. Majority merging by adaptive counting. Syn-
these (KRA Serie), 165(2):203–223, 2008.

[20] P.Z. Revesz. On the semantics of arbitration. Journal of Algebra and
Computation, 7(2):133–160, 1997.

[21] K. Satoh. Nonmonotonic reasoning by minimal belief revision. In Pro-
ceedings of the International Conference on Fifth Generation Computer
Systems, pages 455–462, 1988.

[22] L.A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets
and Systems, 1(1):3–28, 1978.

17


