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Abstract

In this paper I present a non-trivial but inconsistent set theory based on the axioms of naive set
theory. The theory is provably non-trivial and strong enough for most of the applications of regular

mathematics. This is realized by distinguishing between strong and weak set membership and allow-
ing for the derivation of strong membership from weak membership whenever this is not problematic

(it does not lead to paradoxes). This idea of applying rules whenever unproblematic is formalized

by means of an adaptive logic.
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1 Introduction

In what follows I define a theory to be a couple 〈A1 + . . . + An,L〉, where Ai are
axioms or sets of axioms and L is a logic. A ∈ 〈A1 + . . . + An,L〉 iff A ∈ CnL(Γ)
where Γ = Γ1 ∪ . . . ∪ Γn and for all i ≤ n, Γi = {Ai}, if Ai is an axiom, and Γi = Ai,
if Ai is a set of axioms.

A set theory is a theory that determines how a binary predicate ∈, denoting set
membership, functions. It formalizes the common scientific and mathematical practice
of collecting objects into a larger object.

Now, what do we ideally expect from such a theory? I assume that one would
ideally prefer a set theory that has the following properties.

(PNT) Provable non-triviality
(UNI) Universality
(MS) With mathematical strength

(PNT) says there should exist a finitistic proof for the non-triviality of the set theory,
otherwise one is never certain that working with the theory makes any sense at all.
(UNI) stands for the existence of every set defined by means of an expression of the
form {x | A(x)}. Finally, (MS) states that one should be able to translate most of
mathematics into the set theory. This means for example that one should be able to
express all interesting theorems of complex number theory within the set theory. This
might sound unrealistic, but it is generally accepted that most of classical mathematics
can be reduced to classical set theory ZFC.

Let us now go through some existing candidates for a proper set theory.
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1.1 Naive set theory

Naive set theory is the theory 〈COMP1 + EXT,CL〉, where CL is classical logic and
EXT and COMP1 are defined as follows2:

EXT ∀x∀y(∀z(z ∈ x ≡ z ∈ y) → x = y)
COMP1 ∃x∀y(y ∈ x ≡ A(y))

This theory is trivial. Many famous paradoxes can be derived in this theory. The
most important paradoxes are the following.

We start with Russell’s paradox.

∃x∀y(y ∈ x ≡ ¬y ∈ y)

Less famous variants of the Russell paradox are the following generelizations, which
are discovered by Quine (cf. [15]): for every n,

∃x∀y(y ∈ x ≡ (¬∃z1 . . .∃zn(y ∈ z1 ∧ z1 ∈ z2 ∧ . . . ∧ zn ∈ y))) .

One could interpret this axiom as follows. It states that the set of sets {x|x is a set
and x is not part of a loop of n sets} exists, where a loop of m sets is a series of sets
a0, a1, . . . am with the property a0 ∈ a1, a1 ∈ a2, . . . am−1 ∈ am. Curry’s paradox (cf.
[7]) shows that one can also express Russell’s paradox without a negation:

∃x∀y(y ∈ x ≡ (y ∈ y → A)) .

Also Quine’s variants of Russell’s paradox are expressible without a negation:

∃x∀y(y ∈ x ≡ (∃z1 . . .∃zn(y ∈ z1 ∧ z1 ∈ z2 ∧ . . . ∧ zn ∈ y) → A))) .

Let us call this last series of paradoxes the Quine-Curry-paradoxes (QCP). Remark
that all of the former paradoxes can be considered as instances of (QPC). Let me
prove (QPC) for the case where n = 2. The other cases are very similar.

In the proof below, every implication A → B is replaced by its disjunctive counter-
part ¬A ∨ B, which is equivalent to A → B in classical logic (and in all other logics
discussed in this paper). In the third column of the proof below, the justification for
the derivation is mentioned. I∀ and I¬∃ abbreviate the universal instantiation rules
(respectively ∀αA(α) ` A(β) and ¬∃αA(α) ` ¬A(β)), E≡1 and E≡2 stand for the
elimination of an equivalence (respectively A ≡ B ` ¬A ∨ B and A ≡ B ` ¬B ∨ A).
EA∨A and EA∧A denote the elimination of twice the same disjunct resp. conjunct
(respectively A ∨ A ` A and A ∧ A ` A). DM abbreviates the De Morgan rules.
E¬¬ stands for the elimination of double negation (¬¬A ` A). D∧∨ denotes the
distributivity of conjunction and disjunction ((A ∧ B) ∨ C ` (A ∨ C) ∧ (B ∨ C)).
SIM abbreviates the simplification rule (A ∧ B ` A and A ∧ B ` B). EQ stands for
the equivalence rule (A ≡ B,C ` C ′ where A is a subformula of C and C ′ is the
result of substituting A by B in the formula C). ASS refers to the associativity of
the disjunction and ADD to the addition rule (A ` A ∨B). Finally, EM denotes the
excluded middle rule (A ∨B,¬A ∨B ` B).

2Every instantiation of an axiom (schema) in this paper should be closed under universal quantification, prior

to introduction in an object language proof. The axioms therefore stand for closed, well formed formulas, even if

they are not closed in their bare form.
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Note that I do not use every rule literally for efficiency reasons. The rules are often
applied on a formula within another formula and commutativity of the disjunction
and conjunction is often used implicitly. The reader can verify that this is valid in the
relevant cases. Also note that I use the rule E∃. This refers to the rule ‘from ∃αA(α)
derive A(β) where β is a new constant’. Of couse, this rule is not generally valid in
CL, but this is harmless in the proof below because the new constants oC and oD

do not occur in the arbitrary formula A, which is what I actually want to prove, and
because ∃αA(α), A(β) → B `CL B holds whenever β does not occur in A(α) or B.

Proof.
1 ∃x∀y(y ∈ x ≡ (¬∃z(y ∈ z ∧ z ∈ y) ∨A)) COMP1

2 ∀y(y ∈ oC ≡ (¬∃z(y ∈ z ∧ z ∈ y) ∨A)) E∃;1
3 oC ∈ oC ≡ (¬∃z(oC ∈ z ∧ z ∈ oC) ∨A) I∀;2
4 ¬oC ∈ oC ∨ ¬∃z(oC ∈ z ∧ z ∈ oC) ∨A E≡1;3
5 ¬oC ∈ oC ∨ ¬(oC ∈ oC ∧ oC ∈ oC) ∨A I¬∃;4
6 ¬oC ∈ oC ∨ ¬oC ∈ oC ∨A EA∧A;5
7 ¬oC ∈ oC ∨A EA∨A;6
8 ¬(¬∃z(oC ∈ z ∧ z ∈ oC) ∨A) ∨ oC ∈ oC E≡2;3
9 (¬¬∃z(oC ∈ z ∧ z ∈ oC) ∧ ¬A) ∨ oC ∈ oC DM;8
10 (∃z(oC ∈ z ∧ z ∈ oC) ∧ ¬A) ∨ oC ∈ oC E¬¬;9
11 (∃z(oC ∈ z ∧ z ∈ oC) ∨ oC ∈ oC) ∧ (¬A ∨ oC ∈ oC) D∧∨;10
12 ∃z(oC ∈ z ∧ z ∈ oC) ∨ oC ∈ oC SIM;11
13 (oC ∈ oD ∧ oD ∈ oC) ∨ oC ∈ oC I∃;12
14 (oC ∈ oD ∨ oC ∈ oC) ∧ (oD ∈ oC ∨ oC ∈ oC) D∧∨;13
15 oD ∈ oC ∨ oC ∈ oC SIM;14
16 oD ∈ oC ≡ (¬∃z(oD ∈ z ∧ z ∈ oD) ∨A) I∀; 2
17 (¬∃(oD ∈ z ∧ z ∈ oD) ∨A) ∨ oC ∈ oC EQ;15,16
18 (¬(oD ∈ oC ∧ oC ∈ oD) ∨A) ∨ oC ∈ oC EQ;17
19 ¬(oD ∈ oC ∧ oC ∈ oD) ∨ (A ∨ oC ∈ oC) ASS;18
20 (oC ∈ oD ∧ oD ∈ oC) ∨ (A ∨ oC ∈ oC) ADD;13
21 A ∨ oC ∈ oC EM;19,20
22 A EM;7,21

1.2 ZFC-set theory

ZFC-set theory is the theory 〈EXT + SUB + UNION + POWER + INF + REPL +
FOUND+CHOICE,CL〉, where CL is classical logic and EXT, SUB, UNION, POWER,
INF, REPL, FOUND, and CHOICE are defined as follows:
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EXT (x ∈ y ≡ x ∈ z) → y = z
REPL ∀w∃y∃z(∀yA(w, y) → z = y) → ∃y∀z(z ∈ y ≡ ∃w(w ∈ x ∧ ∀yA(w, z))
UNION ∃y∀z(z ∈ y ≡ ∃u(u ∈ x ∧ z ∈ u))
POWER ∃y∀z(z ∈ y ≡ ∀w(w ∈ z → w ∈ x))
INF ∃y(x ∈ y ∧ ∀z(z ∈ y → ∃w(z ∈ w ∧ w ∈ y)))
FOUND ∃y(y ∈ x) → ∃y(y ∈ x ∧ ∀z(z ∈ x → ¬z ∈ y))
CHOICE ∃y∀z∀w((z ∈ w ∧ w ∈ x) →

∃v∀u(∃t((u ∈ w ∧ w ∈ t) ∧ (u ∈ t ∧ t ∈ y)) ≡ u = v))

The theory ZFC is the most commonly used set theory (cf. [9]). It is an extension
of Zermelo’s set theory (cf. [22]).

It is commonly accepted that most of actual mathematics can be done in ZFC. In
the project Metamath (cf. http://us.metamath.org), for example, many interesting
mathematical thoerems of very different domains of mathematics are formally proved
from the axioms of ZFC.

Due to Gödel’s second incompleteness theorem (cf. [10]) and the reducibility of
Peano arithmatic to ZFC, there cannot be a straight forward way to finitistically
prove the non-triviality of ZFC.

The theory is not universal as many sets (among which the set of all sets and the
set of all ordinals) do not exists according to the axioms.

1.3 The axioms of naive set theory with a monotonic non-classical
logic

Many systems have been proposed to give a non-trivial version of the comprehension
axiom. They use (monotonic) fragments of CL as their underlying logic. Most of the
proposed set theories use a relevant logic that does not validate the rule of contraction
to avoid Curry’s paradox (cf. [5], [6], [19] and [20]). One can also use other logics
without contraction (cf. [12], [8], [17] and [21]) or a weak paraconsistent logic like LP
(cf. [14] and [16]).

I shall refer to the set theoretic system described in [16] by means of the abbreviation
LPST. This is the theory 〈COMP1 +EXT,LP〉, where LP is a predicative version of
Priest’s Logic of Paradox (cf. [13]).

All set theories of this type are universal (they use full comprehension), but are often
too weak for useful mathematical purposes or they are strong enough too formalize
basic arithmatic, in which case they have the same problem as ZFC with respect to
proving non-triviality.

1.4 Adaptive set theory

In this paper I shall construct a set theory based on adaptive logic. This universal set
theory is able to accept only the unproblematic consequences of the comprehension
axiom schema, and avoid the ones that lead to paradoxes. Adaptive logics are per-
fectly suitable for this mission as they localize the problems of theories and restrict
this theory only wherever this is strictly necessary. The resulting set theory will be
universal, evidently non-trivial, and, on the condition that ZFC is consistent, the
theory will also have mathematical strength.
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Now, there are of course several ways to construct such a set theory, but anyhow,
one has to start from a so called lower limit logic. This is a usual monotonic, transi-
tive and reflexive logic. The rules of this logic determine the entirely unproblematic
consequences of the adaptive logic.

Next to this logic one also needs to define a set of axioms for the adaptive set
theory. Together with the lower limit logic, this set of axioms already constitutes a
weak universal set theory. This theory should be as strong as possible, but still be
evidently paradox free. The adaptive logic will extend this theory with some more
dangerous consequences: the classical logic consequences, except the ones that lead
to paradoxes. In the next section, I define this weak monotonic set theory.

2 Weak universal set theory

2.1 The logic LPC

The logic I shall use is basically Priest’s LP enriched with a classical negation ¬ and
a stronger (defined) equivalence connective. Of course one could use another logic,
and there may even be much stronger or more sensible logics available, but this logic
is sufficiently strong and quite elegant. Let us call it LPC. I will define the logic
semantically. But let us start with the language of the logic and some preliminaries.

Let L be the language with the logical symbols ¬, ¬̌, ∧, ∨, →, ⇁=, ≡, ∀, ∃, and =
(but without function symbols). L is defined in the usual way from 〈C,V,P0,P1, . . .〉,
in which C is the set of individual constants, V the set of individual variables, and Pr

the set of predicates of rank r ≥ 0—predicates of rank 0 will function as sentential
letters, with the restriction that ⇁= cannot occur within the scope of another ⇁=. Let
F and W denote respectively the set of formulas and the set of closed formulas of L.
Let P ⊂ F denote the set of primitive formulas and let P¬ = {¬A | A ∈ P}.

There are two negations. A paraconsistent negation ∼A and a classical negation
¬A. Unlike many other paraconsistent logics, the classical negation can occur within
the scope of a paraconsistent negation.

Formulas will have four truth values. T stands for pure truth, F for pure falsity, B
for both A and ∼A true and D for A false, ∼A true, but ∼¬A also true. The fourth
value is necessary because the classical negation ¬A can occur within the scope of
the paraconsistent negation ∼. The semantics is recursive and every inconsistency
boils down to inconsistencies on the level of primitive formulas or on the level of the
classical negation of primitive formulas. The designated truth values are T and B.

Because I only need the paraconsistent negation ∼ for the definition of a special
equivalence symbol ⇁= (which I need for a non-trivial version of the comprehension
axiom), I take the ⇁=-symbol as a primitive symbol and define the ∼-symbol.

In order to simplify the characterization of the semantics, I introduce a pseudo-
language. Let O be a set of pseudo-constants; O should have at least the cardinality
of your largest set—the domain of a model is a set and a member of O should be
mapped by the assignment v on every element of O. The pseudo-language +L is
defined from 〈C ∪ O,V,P0,P1, . . .〉. Let +F and +W denote respectively the set of
formulas and the set of closed formulas of +L.

Let, for every r > 0, D(r) denote the r-th Cartesian product of D and let D(0) = {∅},
i.e. a 0-tuple will be identified with ∅.
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VM (A ⇁= B) VM (A ∨B) VM (¬A)XXXXXXXXVM (A)

VM (B) B T F D B T F D

B T T F F B T B B D
T T T F F T T T T F
F F F T T B T F D T
D T T T T B T D D B

Table 1. Matrices for the propositional symbols.

An LPC-model M (for the language L) is a couple 〈D, v〉 in which D is a non-empty
set and the assignment v is as follows:

C1.1 v : C ∪ O → D (where D = {v(α) | α ∈ C ∪ O})
C1.2 vV : Pr → ℘(D(r)) (for every r ∈ N and every V ∈ {B, T, F,D})
C1.3

⋂
{vV(π)|V ∈ {B, T, F,D}} = ∅

C1.4
⋃
{vV(π)|V ∈ {B, T, F,D}} = D(r)

The following clauses define how a model M determines the truth values VM for-
mulas receive in that model.

C2.1 VM (πrα1 . . . αr) = V iff 〈v(α1), . . . , v(αr)〉 ∈ vV(πr) where V ∈ {B, T, F,D}3.
C2.2 VM (¬A), VM (A ⇁= B) and VM (A ∧ B) are determined according to the truth

values in table 1.
C2.3a VM (∀ξA(ξ)) = T iff VM (A(α)) = T for all α ∈ C ∪ O
C2.3b VM (∀ξA(ξ)) ∈ {B, T} iff VM (A(α)) ∈ {B, T} for all α ∈ C ∪ O
C2.3c VM (∀ξA(ξ)) = F iff VM (A(α)) = F for at least one α ∈ C ∪ O
C2.3d VM (∀ξA(ξ)) ∈ {F,D} iff VM (A(α)) ∈ {F,D} for at least one α ∈ C ∪ O
C2.4a VM (α = β) ∈ {T, F}
C2.4b VM (α = β) = T iff v(α) = v(β)

Some symbols are defined from the other symbols. The defined symbols function
as mere abbreviations of more complex formulas.

D1 A → B =def ¬A ∨B
D2 A ∧B =def ¬(¬A ∨ ¬B)
D3 A ≡ B =def (A → B) ∧ (B → A)
D4 ∃αA(α) =def ¬∀α¬A(α)
D5 ∼A =def ¬A ⇁= (A ∨ ¬A)

Definition 2.1
LPC-satisfaction. Where A ∈ L, Γ ⊆ L and M = 〈v,D〉 is an LPC-model, M |= A
iff VM (A) ∈ {B, T} and M |= Γ iff M |= A for every A ∈ Γ.

Definition 2.2
LPC-consequence. Where Γ ∪ {A} ⊆ L, A is an LPC-consequence of Γ, in symbols
Γ �LPC A, iff M |= A, for every LPC-model M such that M |= Γ. Let A ��LPCB
abbreviate A �LPC B and B �LPC A.

3Remember that 〈v(α1), . . . , v(αr)〉 = ∅ if r = 0. So VM (π0) = T iff vT (π0) = {∅}.
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VM (A ∧B) VM (∼A) VM (∼¬A) VM (A ⇁= ¬A)XXXXXXXXVM (A)

VM (B) B T F D

B B B F D T T F
T B T F D F T F
F F F F F T F F
D D D F D T T T

Table 2. Truth functionality of some important formulas

One can easily devise a sound and complete proof theory for this logic (very similar
to the proof theory LP), but for my current purpose, this is not needed. The reader
can check the following theorem by means of truth tables.

Theorem 2.3
Important properties of this logic are the following:

F1 A ⇁= B ��LPC(A → B) ∧ (B → ∼¬A)
F2 ∼¬A 2PCL A
F3 A ∧ ∼A ��LPC¬A ⇁= A
F3 ¬A ∧ ∼¬A ��LPCA ⇁= ¬A
F4 ∼(A ∧B) ��LPC∼A ∨ ∼B
F5 ∼(A ∧B) ��LPC∼A ∧ ∼B
F6 if A ��LPCB then ∼A ��LPC∼B
F7 A ⇁= B ��LPC(A ≡ B) ∨ (A ⇁= ¬A)
F8 if VM (A) = D then M |= A ⇁= B
F9 the truth functionality matrices in table 2 are correct
F10 ¬A,∼¬A ` A ⇁= B
F11 M |= ¬A iff M 6|= A
F12 M |= A ∧B iff M |= A and M |= B
F13 M |= A ∧B iff M |= A or M |= B
F14 Γ ∪ {¬(B ⇁= ¬B) | B ∈ P ∪ P¬} �PLC A iff Γ �CL A

This logic is not paraconsistent because it is explosive (for all A,B ∈ W, A,¬A �LPC

B holds), but ∼ is a fully paraconsistent negation, i.e. (for every A ∈ W there is a
B ∈ W such that A,∼A 2LPC B).

2.2 A weak but universal and non-trivial set theory based on LPC

Definition 2.4
The universal set theory WUST is defined as 〈EXT + COMP2,LPC〉, where EXT
and COMP2 are defined as follows

EXT ∀x∀y(∀z(z ∈ x ≡ z ∈ y) → x = y)
COMP2 ∀x(x ∈ x{y | A(y)}y ⇁= A(x))

Remark that COMP2 does not have its more common existential form. We need the
version in which the created sets have a name, because we need to distinguish between
different individuals of the theory in function of the adaptive systems presented in
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the next section. However, the existential version is of course a consequences of this
version, so I can do this without loss of generality.

Remark moreover that COMP2 does not allow us to derive α ∈ x{y | A(y)}y from A(α).
However one is able to derive ∼¬α ∈ x{y | A(y)}y from A(α). So it makes sense to define
what I shall call weak membership, denoted by the symbol ∈̃: let α∈̃β =def ∼¬α ∈ β.
I shall use the word strong membership for the usual membership predicate ∈.

The following theorem states that the presence of a rule that allows for the deriva-
tion of strong membership from weak membership would make the set theory identical
to naive set theory. It is an immediate consequence of F14.

Theorem 2.5
If one adds the rule ∼¬A ` A or the axiom ¬(A ⇁= ¬A), where A ∈ P∪P¬, to WUST,
one obtains naive set theory.

The following theorem is true in quite a strong sense, because for every formula
A(α), (1) the set a = x{x | A(x)}y for which holds that (y ∈ a ⇁= A(y)) ∈ WUST exists
and (2) A(α) is WUST-equivalent to α∈̃x{x | A(x)}y. Many other universal alternative
set theories only have property (1) and not property (2), because they do not enable
the possibility of defining a weak set membership predicate like ∈̃.

Theorem 2.6
WUST is universal.

Theorem 2.7
The theory WUST is non-trivial, i.e. it has a model that does not make all formulas
true.

Proof. Let D be the singleton {s}, let v(α) = s for every α ∈ C ∪ O and let 〈s, s〉 ∈
vD(∈) but vB(∈)∪ vT (∈)∪ vF (∈) = ∅. Suppose M = 〈D, v〉. The truth functionality
of ¬ and ∼ and the definition of LPC-satisfaction ensure that for every α, β ∈ C ∪O,
M |= ¬β ∈ α and M |= ∼¬β ∈ α. F10 warrants that M |= β ∈ α ⇁= A. Using
the definition of ∀, one obtains M |= COMP2. Because M |= ∀x∀yx = y (D is a
singleton), also M |= EXT.

So WUST has at least one model. Moreover, M does not satisfy every formula,
as e.g. M 6|= ∀xx ∈ x.

WUST is a rather weak theory that is satisfied by (among more interesting models)
a rather simplistic model consisting of only one individual. We can, however, literally
add most of the ZFC-axioms (with their full classical meaning) to this theory, without
losing this simplistic model (which warrants the non-triviality).

Definition 2.8
The universal set theory WUST+ is defined as 〈EXT + COMP2 + FOUND + FAF +
REPL + UNION + CHOICE,LPC〉, where FAF is defined as follows:

FAF
∨
{
∧
{¬xi ∈ xj | i ≤ n} | j ≤ n} where n ∈ N

FAF is a finitistic version of the axiom of Foundation (FOUND). It is simply the
result of instantiating the universal quantifier ∀x in FOUND with every possible finite
set, i.e. with the sets {x0}, {x0, x1}, {x0, x1, x2} and so on, for every possible set x0,
x1, x2, and so on (and afterwards simplifying the obtained expression). Hence, in
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combination with the POWER-axiom and the UNION-axiom of ZFC, FAF is a CL-
consequence of FOUND, but this is not the case in WUST+, because WUST+ does
not prove simple ZFC-truths like a ∈ {a}, a ∈ {a, b}, or a ∈ {a, b, c}, and so on.
Although FOUND is not a CL-consequence of FAF, FAF seems to be equivalent to
FOUND for every sensible set theoretic model. Let me explain this. In fact FOUND
states that for every set x of sets it holds that here is no loop of sets among the
elements of x. If x is infinite and there would be a loop of sets among the members
of x, then there must be a finite subset y of x, such that there is a loop of sets among
the members of y. Now, remark that FAF exactly states that there is no loop of sets
among the members of a finite set. The reason why FAF and FOUND are nevertheless
not equivalent in a classical ZFC context is related to omega incompleteness, but
elaborating on this particularity falls out of the scope of this paper.

After analyzing the axioms FOUND, FAF, REPL, UNION and CHOICE, one immedi-
ately discovers that they are PLC-consequences of the formula ∀x∀y¬x ∈ y, whence
they are satisfied by the model described in proof 2.2. Hence, the latter proof is also
sufficient to show the following theorem.

Theorem 2.9
The theory WUST+ is non-trivial.

As WUST ⊂ WUST+, the following theorem is evident.

Theorem 2.10
The theory WUST+ is universal.

For the following theorem, let the weak equivalence ≡ from LP correspond to the ⇁=-
equivalence in LPC. The proof of the theorem is rather straight forward considering
the fact that LPC is conceived as an extension of LP and the fact that LP has a
weaker equivalence-connective and that it does not have a classical negation nor an
implication which can be used in a modus ponens rule.

Theorem 2.11
LPST ⊂ WUST, i.e. WUST is stronger than LPST.

Although WUST+ is already stronger than WUST, also WUST+ is terribly
weak. Simple classical derivations like ∼¬A ` A are not allowed in LPC, which
disables the derivation of evident truths like ∀x(x ∈ x{y | y = x}y), although ∼¬∀x(x ∈
x{y | y = x}y) ∈ WUST. Without the capacity of proving membership of even simple
sets like this singleton, none of the interesting mathematical theorems are provable.
Consequently, the following theorem holds.

Theorem 2.12
The theories WUST and WUST+ do not have mathematical strength.

Remark that this is unavoidable, given the fact that WUST is provably non-
trivial and the fact that there is a positive test for WUST-theoremhood. Suppose a
provably non-trivial theory like WUST would have mathematical strength, then it
would be a system stronger than Peano arithmetic and it would be able to prove its
own non-triviality. Gödels second theorem proves that this is impossible.

It is perfectly possible to make WUST stronger without losing its provable non-
triviality. WUST+ is a first step towards a stronger version of WUST. Without any
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doubt, one is able to make this even stronger in a sensible way. A sensibly stronger
version of WUST+ is definitely preferable for our present purpose. Nevertheless,
one should be very careful with the addition of more ZFC-theorems to WUST+ or
CL-rules to LPC. All evident enrichments have the consequence that there are no
finite models that satisfy the theory (i.e. only models in which there are infinitely
many sets). This makes it very probable that the non-triviality proof for the theory
(if there is any) will no longer be evidently or finitistically acceptable.

If one would add the ZFC-axioms to WUST, the resulting theory would be uni-
versal and would have mathematical strength, but one would fail to finitistically prove
this theory’s non-triviality.

3 Full adaptive set theory

We have observed that the set theory WUST is interesting because of its universality
and its non-triviality, but at the same time it is so terribly weak that it becomes totally
useless (although it is already stronger than Priest and Restall’s LPST). Adding the
rule ∼¬A ` A would make the theory trivial. Nevertheless, a lot of cases (formulas
A) exist in which the application of ∼¬A ` A is probably harmless. How can we
formally distinguish between the safe cases, and the cases that lead to paradoxes.
Well, adaptive logic is the perfect tool to guide this process of applying rules only
when this does not cause problems.

3.1 The adaptive logic LPCr

A reasoning form with rules of the type ‘conclude A unless and until A delivers
problems’ is a typical form of defeasible reasoning. In that sense, the intuitive picture
of the logic for the more subtle set theory we are looking for definitely refers to a form
of defeasible reasoning.

Adaptive logics are excellent tools to formalize defeasible reasoning (cf. [2], [4],
[3] and [1] for some general formal and philosophical introductions to AL). A large
amount of very different types of defeasible reasoning have been characterized by
means of an adaptive logic: abductive reasoning, inductive reasoning, inconsistency
corrective reasoning, reasoning with vagueness, reasoning with ambiguity, reasoning
about compatibility, question raising, coping with theories where statements are only
plausibly true, diagnosis, causal discovery, belief merging and default reasoning. The
semantics of adaptive logics defines the set of stable consequences of dynamic defea-
sible reasoning. The dynamic proofs of adaptive logics are intuitive explications for
actual defeasible reasoning processes.

There is an elegant formal format for adaptive logics, called the standard format
of adaptive logic. The dynamic proof theory, the semantics and the meta-theory of
adaptive logics in standard format are generic and intuitive. An adaptive logic AL is
defined by a triple:

1. A lower limit logic LLL: a reflexive, transitive, monotonic, and compact logic
that has a characteristic semantics and contains CL (Classical Logic).

2. A set of abnormalities Ω : a set of LLL-contingent formulas, characterized by a
(possibly restricted) logical form which contains at least one logical symbol.
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3. An adaptive strategy : Reliability (r) or Minimal Abnormality (m).

The lower limit logic is the stable part of the adaptive logic; anything that follows
from the premises by LLL will never be revoked. The lower limit logic is an extension
of CL because it contains all the classical symbols next to its standard symbols.
Abnormalities are supposed to be false, ‘unless and until proven otherwise’. Strategies
are ways to cope with derivable disjunctions of abnormalities: an adaptive strategy
picks one specific way to interpret the premises as normally as possible.

If the lower limit logic is extended with an axiom that declares all abnormalities
logically false, one obtains the upper limit logic ULL. If a premise set Γ does not
require that any abnormalities are true, the AL-consequences of Γ are identical to its
ULL-consequences.

For the logic LPCr the LLL is LPC, Ω = {A ⇁= ¬A | A ∈ P} ∪ {¬A ⇁= A | A ∈ P}
and the strategy is Reliability. The ULL of this logic is full classical logic.

In the expression Dab(∆), ∆ is a finite subset of Ω and Dab(∆) denotes the classical
disjunction of the members of ∆. Dab(∆) is called a Dab-formula. Dab(∆) is a
minimal Dab-consequence of Γ iff Γ `LLL Dab(∆) whereas Γ 0LLL Dab(∆′) for any
∆′ ⊂ ∆. Where Dab(∆1), Dab(∆2), . . . are the minimal Dab-consequences of Γ,
U(Γ) = ∆1 ∪∆2 ∪ . . . The set U(Γ) comprises the abnormalities that are unreliable
with respect to Γ. Where M is a LLL-model, Ab(M) is the set of abnormalities
verified by M .

Definition 3.1
A LPC-model M of Γ is reliable iff Ab(M) ⊆ U(Γ).

Definition 3.2
Γ �LPCr A iff A is verified by all reliable models of Γ.

There exists an interesting dynamic proof theory for adaptive logics, but I do not
need it for the present purpose. For an introduction, cf. [4]. The proof theory is sound
and complete with respect to the semantics. Hence, syntactic adaptive consequence
Γ `ALm A or Γ `ALr A is equivalent to semantic adaptive consequence Γ �ALm A or
Γ �ALr A, respectively.

The fact that LPCr is in standard format also immediately shows the following
lemma (cf. [2]).

Lemma 3.3
If there are LPC-models for Γ, there are also reliable LPC-models for Γ.

3.2 First attempt

Definition 3.4
The universal set theory WUSTr is defined as 〈EXT + COMP2,LPCr〉

Theorem 3.5
WUSTr is universal and non-trivial.

Proof. The universality is an immediate consequence of the fact that WUST is
non-trivial and the fact that WUSTr is an extension of WUST. The non-triviality
is a consequence of lemma 3.3.
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Intuitively this results in a theory which is much richer than WUST. Every time
one can only derive ∼¬A in WUST, the adaptive logic allows for the conditional
derivation of A from ∼¬A. The idea is that whenever it turns out that problematic
instances of COMP2 are used, one can also (unconditionally) derive ¬A. Whenever
this happens, the derivation of A from ∼¬A is not any more adaptively valid. If no
problems occur, the derivation of A should be adaptively accepted.

This is very attractive. However, the Curry-Quine-paradoxes make this adaptive
set theory useless, i.e. the formulas true in all PCL-models of the axioms are the
same as the formulas true in the reliable models of the axioms. Suppose for arbitrary
α and β that ∼¬α ∈ β ∈ WUST and α ∈ β is a harmless ZFC-theorem (for example
a ∈ {a}). Hence also α ∈ β ∨ (α ∈ β ⇁= ¬α ∈ β) ∈ WUST (1). Now, by COMP2,
we know that ∀x(x ∈ x{y | ¬y ∈ y ∨ ¬α ∈ β}y ⇁= (¬x ∈ x ∨ ¬α ∈ β)). Hence, by F7 and a
reasoning similar to the one used in proof 1.1, ¬α ∈ β∨(sc ∈ sc ≡ ¬sc ∈ sc) ∈ WUST
(2), where sc abbreviates x{y | ¬y ∈ y ∨ ¬α ∈ β}y. From (1) and (2) we can conclude that
(α ∈ β ⇁= ¬α ∈ β) ∨ (sc ∈ sc ≡ ¬sc ∈ sc) ∈ WUST. Because α ∈ β is supposed
to be a harmless consequence, α ∈ β ⇁= ¬α ∈ β 6∈ WUST. Observe moreover that
sc ∈ sc ≡ ¬sc ∈ sc /∈ WUST (otherwise ¬sc ∈ sc ∈ WUST would be true, but
there is a WUST-model M such that M |= sc ∈ sc and M 6|= α ∈ β). Consequently,
(α ∈ β ⇁= ¬α ∈ β)∨ (sc ∈ sc ≡ ¬sc ∈ sc) is a minimal Dab-consequence of the axioms
and both abnormalities are unreliable, which means that there are reliable models M
in which M |= α ∈ β ⇁= ¬α ∈ β whence M |= ¬α ∈ β. Those reliable models will not
satisfy the unproblematic consequence α ∈ β whence α ∈ β 6∈ WUSTr.

Generalizing this problem, we obtain the following theorem.

Theorem 3.6
With respect to the set theory WUST, going adaptive does not result in a stronger
theory, i.e. WUSTr = WUST.

This theorem holds for universal set theory with underlying logic PLC, but as far
as I have checked, exactly the same problem occurs in about every sensible candidate
for a lower limit logic.

3.3 Further localization of the inconsistencies

Fortunately, there is an easy way out of this problem. The solution is achieved
by further localization of the inconsistencies. The basic problem of the previous
subsection is related to the fact that no explicit inconsistency is derivable from the
Curry-Quine-paradoxes. Such an explicit inconsistency is nevertheless derivable in
the presence of the FAF-axioms. This is stated in the following lemma.

Lemma 3.7
(¬sc ∈ sc) ∈ WUST+ where sc = x{x|¬∃y1 . . . ∃yn(x ∈ y1 ∧ y1 ∈ y2 ∧ . . . ∧ yn ∈ x) ∨A}y.

This fact warrants that for every Curry-Quine-paradoxical set sc a formula (sc ∈
sc ⇁= ¬sc ∈ sc)∨ (α ∈ β ⇁= ¬α ∈ β) is never a minimal Dab-consequence in WUST+,
whence the problem for WUSTr is solved in WUST+r.

Definition 3.8
The universal set theory WUST+r is defined as 〈EXT + COMP2 + FOUND + FAF +
REPL + UNION + CHOICE,LPCr〉
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Theorem 3.9
The adaptive set theory WUST+r is universal and non-trivial.

Theorem 3.10
If A ∈ ZFC, then there is a ∆ ⊂ Ω such that A ∨ Dab(∆) ∈ WUST+r, i.e. the
conditional consequences of the adaptive set theory WUST+r are a superset of the
ZFC-theorems.

Although it seems unlikely that harmless ZFC-consequences would not be verified
by all reliable WUST+-models, it seems to be rather difficult to prove such a state-
ment, as it seems to require a full overview over the ZFC-consequences and the other
conditional WUST+-consequences (otherwise one is unable to assure that there are
no harmful minimal Dab-consequences).

Conjecture 3.11
If ZFC is non-trivial, the adaptive set theory WUST+r has mathematical strength.

Why is it possible for adaptive set theory to be very strong and provably non-
trivial while this is impossible for all usual classical, non-classical set theories? Well
the answer is very simple: the Gödel proof relies heavily on the fact that the notion
proof is recursive for the systems he talks about. A proof for finally demonstrating
some adaptive consequence of a set of formulas, is definitely not recursive as it is based
on the question whether some formulas are not LLL-consequences and this question
is definitely not recursive.

3.4 Localizing the inconsistencies even further

Another, new (although arguably somewhat ad hoc) adaptive strategy can be con-
ceived, in such a way that conjecture 3.11 can be proved for the resulting set theory.

Let ΩZFC = {A|A ∈ Ω and A only contains constants that refer to sets that
exist according to ZFC}. Where Dab(∆1), Dab(∆2), . . . are the minimal Dab-
consequences of Γ,

∆′
i =

{
∆i if ∆i ⊂ ΩZFC

∆i − ΩZFC otherwise,

Let UZFC(Γ) = ∆′
1 ∪ ∆′

2 ∪ . . . The set UZFC(Γ) comprises the abnormalities that
are ZFC-unreliable with respect to Γ. Where M is a LLL-model, Ab(M) is the set
of abnormalities verified by M .

Definition 3.12
A PCL-model M of Γ is ZFC-reliable iff Ab(M) ⊆ UZFC(Γ).

Definition 3.13
Γ �PCLZFC A iff A is verified by all ZFC-reliable models of Γ.

Lemma 3.14
If there are LPC-models for Γ, there are also ZFC-reliable LPC-models for Γ.

Lemma 3.15
If A ∈ ZFC, then there is a ∆ ⊂ ΩZFC such that A ∨ Dab(∆) ∈ WUST+, i.e. the
conditional consequences of the adaptive set theory WUST+ZFC are a superset of
the ZFC-theorems.
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Theorem 3.16
If ZFC is non-trivial, the adaptive set theory WUST+ZFC = 〈EXT + COMP2 +
FOUND + FAF + REPL + UNION + CHOICE,LPCZFC〉 is universal, non-trivial and
has mathematical strength.

Proof. Non-triviality is a consequence of lemma 3.14. Universality is evident.
Let me prove the (conditional) mathematical strength of WUST+ZFC. Suppose

that ZFC is non-trivial. In that case, there are no inconsistencies in ZFC, which
means that every time (¬α ∈ β) ∈ ZFC, also (α ∈ β) /∈ ZFC, whence (α ∈ β ⇁= ¬α ∈
β) /∈ WUST+ and (¬α ∈ β ⇁= α ∈ β) /∈ WUST+. Now suppose some ZFC-theorem
A is not derivable in WUST+ZFC. In view of lemma 3.15, A∨Dab(∆) ∈ WUST+
for some ∆ ⊂ ΩZFC. It follows that A ∈ WUST+ZFC if there is no B ∈ ∆ such that
also B ∈ UZFC(Γ).

So it suffices to prove that B /∈ UZFC(Γ) for every possible B ∈ ∆. If B would
be in UZFC(Γ), then B would be in one of the sets ∆′

1, ∆′
2, . . . . Suppose it would

be in ∆′
i. In that case B would also be in ∆i (because B ∈ ΩZFC), ∆i would be a

subset of ΩZFC and ∆i would be a minimal Dab-consequence, which conflicts with
our assumption that ZFC would be non-trivial and hence consistent.

4 Discussion

I have presented several set theories. The first two set theories WUST and WUST+
are monotonic extensions of Priest’s LPST. Based on those two rather weak set theo-
ries, I have constructed the adaptive set theories WUSTr, WUST+r and WUST+ZFC.
WUSTr turned out to be too weak, but the logics WUST+r and WUST+ZFC

succeed in adding some unproblematic richer consequences to the monotonic conse-
quences. By means of these systems, I have provided a set theory which is universal,
non-trivial and sufficiently strong. This is exactly what is ideally required from a set
theory.

Universality is an important property. It means that collecting objects by means
of the criterion that they share some property is possible for every property. In other
words, for every property there exists a set. Although one needs to be very cautious
with the things one does with these sets (otherwise one runs into paradoxes), the
intuitive idea of collecting objects by their common properties turns out to be possible
without giving up to much of the mathematical strength of a usual theory of sets.
Where, for example, most mathematicians do not consider the collection of all sets
(formerly called the universal set) as a set itself (they would call it a class or an
object of another type), it seems to be possible to state the existence of a universal
set without risk of triviality. In the theory WUSTr the universal set exists (e.g. the
set named x{x | x ∈ x ∨ ¬x ∈ x}y) and it is a (weak) member of itself, as the following holds:

(x{x | x ∈ x ∨ ¬x ∈ x}y∈̃x{x | x ∈ x ∨ ¬x ∈ x}y) ∈ WUSTr .

However, it is impossible to have all these wonderful advantages without disad-
vantages. The most important disadvantage is a substantial increase in complexity.
Unlike in usual theories, there is no positive test nor a negative test for theorem-
hood. Of course, this can be considered as a major drawback, but compare this to
the alternatives. All other universal set theories either use very weak logics or their
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non-triviality cannot be proved finitistically. This means that the former theories give
some formal explication of a concept set, but these interesting formal tools cannot
be considered as explications for the concept set used in actual modern mathematics
(LPST, for example, does not even have the property that if α ∈ {x | A(x)}, then
also A(α), a very basic principle of set theory which cannot really be considered as
a paradox). The latter set theories on the other hand use sufficiently strong logics,
but have exactly the same problem as ZFC: one cannot convincingly prove their
non-triviality.

Most mathematicians nowadays do not really care about non-triviality. They find
it very unlikely that their systems would turn out to be inconsistent after so many
decades of unproblematic work with these systems. Their triviality may indeed be
very unlikely, but if someone would one day find a contradiction in some exotic part
of ZFC (and there is no absolute guarantee that this will not happen), the whole
framework of formal mathematics entirely collapses into triviality. Interesting results
that are proved in many decades of work with ZFC become as valuable as the sentence
∀x∀y(x ∈ y ∧ ¬x ∈ y). Without tools that are as complex as adaptive logics, one
would not be able to safe the parts of set theory that seem unproblematic, even after
the inconsistency is found.

Now, how problematic is this increase in complexity, given that it is unavoidable? I
argue that it is not problematic at all. One is still able to conditionally prove theorems
in adaptive set theory (by means of the ULL, by supposing that some abnormalities
are false), in the same way and with the same ease as one would do this in ZFC. The
only problem is that one is never really certain that these conditional theorems are
also reliable consequences. But the same is true in ZFC: one is never really certain
that one’s theorems have any more value than nonsensical sentences. The difference
with the adaptive way of working is that the adaptive set theorist is constantly aware
of the possibly problematic assumptions he has based his proof on. If one day he
would find a contradiction, he only has to give up on some limited part of his system
(and he knows which part this is!).

The adaptive set theories WUSTr and WUSTZFC are Σ0
3-complete (cf. [11]).

For abstract purposes like my present purpose, the Minimal Abnormality strategy
is a far more elegant and intuitive adaptive strategy, and it allows for more con-
sequences, so one could claim that it would have been more sensible if I used this
strategy, but because this strategy is even more complex (such a set theory would
even be Π1

1-complete, cf. [18]) and because I could not come up with any sensible
extra consequences it delivers, I opted for the simpler Reliability strategy.

Apart from the fact that they are interesting theory in their own right, the presented
adaptive set theories give a formal explication of how inconsistencies are localized and
neutralized in inconsistent theories. Adaptive logics capture the methodology that
can be used to resolve problems in mathematical theories. It is quite interesting to
see the process of moving from the weak theory WUST to WUST+, to WUSTr,
to WUST+r and to WUSTZFC. With every step of this metalogical process, the
inconsistencies are further localized. This results in more consequences.
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