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In this paper, I illustrate the main characteristics of abductive reasoning processes by means of an example from the 
history of the sciences. The example is taken from the history of chemistry and concerns a very small episode from 
Lavoisier’s struggle with the ‘air’ obtained from mercury oxide. Eventually, this struggle would lead to the discovery of 
oxygen. I also show that Lavoisier’s reasoning process can be explicated by means of a particular formal logic, namely 
the adaptive logic LAr. An important property of LAr is that it not only nicely integrates deductive and abductive steps, 
but that it moreover has a decent proof theory. This proof theory is dynamic, but warrants that the conclusions derived 
at a given stage are justified in view of the insight in the premises at that stage. Another advantage of the presented 
logic is that, as compared to other existing systems for abductive reasoning, it is very close to natural reasoning.  

 
 

1. Introduction 
 

The aim of this paper is twofold. First, I want to illustrate the main characteristics of abductive 
reasoning processes by means of an example from the history of the sciences. Next, I want to show 
that such reasoning processes can be explicated by means of a formal logic. 

The example is taken from the history of chemistry and concerns a very small episode from 
Lavoisier’s struggle with the ‘air’ obtained from mercurius calcinatus per se (mercury oxide, in 
modern terminology). Eventually, this struggle would lead to the discovery of oxygen. 

Readers who have a romantic view on scientific discovery and creativity should immediately 
be warned: they will probably be disappointed by the example. It is not a story about a series of 
genius insights that all of a sudden led to one of the most important discoveries in chemistry. To the 
contrary, the steps that I shall document on were all very small and quite mundane, and some may 
even question whether they were rational. However, what makes the example so fascinating is that 
it is one of those extremely rare occasions where one obtains some insight in the microstructure of 
reasoning—thanks to some notes that were preserved, it is possible to reconstruct, step by step, the 
individual inferences that Lavoisier made. 

As the example will nicely show, abductive reasoning processes have two important 
characteristics. The first is that abductive steps are combined with deductive steps. The second is 
that, partly because of this combination, abductive reasoning processes are dynamic. For instance, a 
conclusion reached on the basis of an abductive step may be withdrawn when its negation is derived 
by deductive means. 

These characteristics confront logicians with the problem to design systems that combine (in a 
sensible way) deductive and abductive inference rules and that can moreover account for the 
dynamics involved. In Meheus et al. (2006), it is shown that so-called adaptive logics enable one to 
solve this problem. Adaptive logics are a specific kind of formal systems that are especially suited 
for the study of reasoning processes that are non-monotonic and/or dynamic.1

The logic presented in Meheus et al. (2006) is called LAr and is an ampliative extension of 
first-order Classical Logic (henceforth CL). The logic is intended for the abduction of singular 
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hypotheses and presupposes that, with respect to a specific application, the set of explananda and 
the set of possible explanantia are disjoint (but not necessarily exhaustive). Where an explanandum 
can be explained by different explanantia, LAr allows only for the abduction of their disjunction. 

In this paper, I shall show that the logic LAr allows for the explication of Lavoisier’s 
reasoning, and thus provides an insight in the logical structure of his reasoning. I shall also argue 
that this logical explication enables us to counter the claim that Lavoisier’s reasoning was 
fallacious. 

A second warning is in order. I am evidently not claiming that Lavoisier was using an 
adaptive logic. I am even not claiming that he had any explicit ideas about the logic behind his 
reasoning—he most likely had not. What I do believe, however, is that Lavoisier had sound logical 
intuitions, and that the logic LAr provides us with a justification for this claim. 

 
 

2. Explaining the Properties of ‘Oxygen’ 
 

Early March 1775,2 Lavoisier conducted a series of experiments on the ‘air’ that is released when 
one reduces the red calx of mercury (mercury oxide) to mercury, without the addition of charcoal.3 
As Lavoisier believed that the red calx of mercury was mercury combined with fixed air,4 he was 
convinced before beginning the experiments that the air he obtained from the reduction of the 
mercury calx would be fixed air—see Holmes (1985, p. 45). However, when he performed the 
standard limewater test for fixed air, he found out that the air obtained from the mercury calx did 
not form a precipitate (as it should have, had it been fixed air). 

Lavoisier next turned to the other standard qualitative tests for ‘airs’. Also these ruled out that 
the air was fixed air. As he wrote in his notebook,5

 
One was first of all curious to test the effect of this air on animals. For this purpose one passed it into a jar into 
which one introduced a bird. One left the bird inside it for a good half minute, without its appearing to suffer 
there in the least. Removed from the air, it flew away without having suffered in any way. [Holmes (1985, 
p. 46)] 

 
This test suggested that the air was very respirable. His experiments with burning candles further 
confirmed that the air involved was ‘better’ than common air: 

 
One repeated the experiment of the candle two times, and in large jars. It is charming. The flame is much larger 
and much clearer and much more beautiful than in common air, but in color no different from an ordinary flame. 
[Holmes (1985, p.  47)] 

 
Believing by now that the air was better than common air (in the sense that it better supported 
respiration and combustion than common air does), Lavoisier performed the nitrous air test.6 This 
quantitative test was designed by Priestley and was considered by Lavoisier as more reliable than 
the qualitative tests. During the nitrous air test, one portion of nitrous air was mixed with two 
portions of the air one wanted to test. The diminution in volume provided an indication of the air 
one was dealing with. For instance, it was known that common air led to a diminution of one-fifth. 

During the nitrous air test, there were actually two kinds of results. On the one hand, there 
were a number of qualitative results, such as the colour of the vapours that were formed and the 
rapidity of the effect. These results were available almost immediately after the experiment started. 
On the other hand, there were the quantitative results concerning the diminution of the volume of 
the mixed airs. These were available only at the end of the test. 

The day that Lavoisier performed the nitrous air test (March 31, 1775), he entered the 
following note in his notebook:7

 
One introduced [one part of] nitrous air into two parts of this air. It appeared that the red color of the vapors was 
more marked, and the effect more rapid than with common air.  
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 There was a diminution of  
 

Lavoisier did not finish this sentence. This indicates that he wrote this note at the beginning of the 
experiment, when he did not yet know the amount of the diminution. He left a space open, where he 
could later fill in the amount of the diminution, and wrote below it 

 
so that, according to this operation, one could judge that this air is more perfect to common air.  

 
What happened here? The first qualitative results strengthened Lavoisier’s belief that he was 
dealing with an air that is better than common air (the colour of the vapours was more intense and 
the effect more rapid that in the case of common air). This belief must have been so strong that he 
entered it as the conclusion of the entire experiment, even before he knew the quantitative results. 
From the way in which he wrote the note (leaving open a space to fill in later the outcome of the 
experiment), one may infer that Lavoisier was fully confident that the quantitative results would 
confirm the belief with which he started the experiment. 

But then something fascinating happened. When he actually obtained the quantitative results, 
Lavoisier changed his mind about the conclusion. Instead of simply entering the amount of the 
diminution in the open space, he left the unfinished sentence unfinished, and entered instead all the 
numerical details (which previously he did not bother to mention): 

 
One employed two measures of this air, 

each 2.7 cubic inches, making together 5.4 
One added nitrous air  2.7 
   —— 
 8.1 cubic inches 
The 8.1 cubic inches was reduced almost 

immediately to 4.42 
 

Having thus filled the open space, he crossed out his first conclusion (namely that the air was more 
perfect than common air), and now wrote below it: 

 
That is to say, regarding the portion of nitrous air as probably entirely absorbed, there was one cubic inch, that is 
to say one-fifth, of the air absorbed.  
 
That is about the proportion of common air.  

 
As is clear from this passage, Lavoisier gave priority to the quantitative results of the nitrous air 
test, and hence, concluded that the air obtained from mercury calx was simply common air. 

Obviously, the story does not end here. The problem remained why the qualitative results 
indicated that the air was better than common air. Lavoisier never arrived at a satisfactory solution 
to this problem. It was Priestley who eventually solved the problem by demonstrating, on the basis 
of a revised version of the nitrous air test, that the air obtained from mercury calx was indeed 
different from common air. 

However, for this paper, the rest of the story is not important. In what follows, I shall 
concentrate on the elements that led to Lavoisier’s note of March 31, 1775. 

 
 

3. Analysis of Lavoisier’s Reasoning 
 

The qualitative tests that Lavoisier performed confronted him with two surprising facts concerning 
the sample of air obtained from the reduction of mercury calx: 

 
F1 Some bird stayed in a sample of the air under investigation for more than half a minute 

without suffering.  

 3



F2 Some candles burned in a sample of the air under investigation with a larger flame than a 
normal candle does in a sample of common air. 

 
These facts where surprising in view of Lavoisier’s initial expectation that the air under 
investigation was fixed air (and hence that candles would extinguish in it and birds would die in it). 
Both facts, however, could easily be explained in view of the following generalizations: 
 
G1 If some air is better than common air, then a bird can stay in it for more than half a minute 

without suffering.  
G2 If some air is better than common air, then a candle burns in it with a larger flame than a 

normal candle does in common air.  
 
These generalizations were common knowledge at that time and were accepted by Lavoisier. From 
F1 and R1, one can derive, by abduction: 
 
G2 The air under investigation is better than common air. 

 
The same conclusion also follows abductively from F2 and G2. 

This is the conclusion that Lavoisier first entered in his notebook. This conclusion was further 
confirmed by the qualitative results of the nitrous air test. However, the nitrous air test also led to 
the following fact:  
 
F3 A sample of the air under investigation led to a reduction of one-fifth in the nitrous air test. 

 
As Lavoisier also accepted the following generalization: 
 
G3 Some air is common air if and only if it leads to a reduction of one-fifth in the nitrous air test. 
 
he was able to derive, deductively: 
 
C2 The air under investigation is common air. 
 
This is the conclusion which Lavoisier retained and for which he rejected the earlier conclusion C1. 

 
 

4. Characterisics of Lavoisier’s Reasoning Process 
 

The reasoning process analysed in the previous section has several interesting properties. The first 
is that ampliative steps are combined with deductive steps in one and the same reasoning process. 
For instance, whereas C1 is derived by means of abduction, C2 is derived deductively. 

The second property is that the reasoning process is non-monotonic: earlier conclusions are 
rejected in view of new information. As soon as F3 is added as a new premise, Lavoisier rejects C1. 
This seems reasonable in view of the fact that C1 was only derived abductively and that, from F3 
and G3, it follows, deductively, that C1 does not hold true. Thus, ampliative conclusions are 
reviewed when a ‘stronger’ derivation to their negation is available. 

A final characteristic is that inference rules are validated contextually. The abductive 
inference to C1 is considered as valid until C2 is derived. At that point, it is no longer considered as 
a valid inference. Lavoisier makes this clear by striking out its conclusion. 
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5. Logic-Based Approaches to Abduction 
 

In the next section, I shall briefly present the adaptive logic LAr and show that it is suitable for the 
explication of Lavoisier’s reasoning. But first I argue why LAr is better suited for this explication 
than the logic-based approaches to abduction which were developed in Artificial Intelligence.8

Within logic-based approaches, abductive inferences are perceived as falling under the 
following argumentation scheme:  

 
(†) A B⊃ , B  / A   

 
This scheme, which is generally known as Affirming the Consequent, is evidently not deductively 
valid. Hence, as the framework of most logic-based approaches is a deductive one, the above 
scheme is not implemented directly. Instead, abductive inferences are specified as a kind of 
‘backward reasoning’: given a theory T  and an explanandum B , find an A  such that 
 
(1)  .  { }T A∪ A B
(2)  T BA   
(3)  T A¬A . 
(4)  B AA . 
(5)  A  is ‘minimal’.  
 
The first of these requirements needs no explanation. Also the next two requirements are 
straightforward: (2) warrants that the explanandum B  is not explained by the background theory, 
and (3) that the explanatory hypothesis A  is compatible with T .9 (4) is needed to rule out 
degenerate cases. For instance, we do not want to abduce B  as an explanation for itself. Also, if 

, then , but we do not want { }T A∪ A B B{ }T A B∪ ∨ A A B∨  as an explanation for B . Cases like 
this are ruled out by requiring that the truth of the explanatory hypothesis is not warranted by the 
truth of the explanandum—this is what (4) comes to. (5) is related to the fact that, when trying to 
explain some explanandum, one is interested in explanations that are as parsimonious as possible. 
Hence, in view of ( )A B A D⊃ ∧CLA B⊃ , one needs to prevent that A D∧  can be abduced, 
whenever A  can. This can be realized by requiring that the explanatory hypothesis is ‘minimal’. 
This notion of minimality can be defined in different ways—one may, for instance, consider an 
explanatory hypothesis as minimal if no alternative is available that is logically weaker. However, 
no matter how it is defined, minimality is a comparative notion: whether some explanatory 
hypothesis A  is minimal with respect to some explanandum B  depends on the available 
alternatives. 

It is important to note that several of the above requirements are negative. This does not only 
hold true for (2)–(4), but also for (5). Indeed, as minimality is a comparative notion, (5) entails: 

 
(5’) { }T C∪ CLA B , for every C  that satisfies (2)–(4) and in view of which B is not minimal.  
 
One consequence of these negative clauses was already mentioned in the previous section: the 
consequence relation defined by (1)–(5) is non-monotonic. Conclusions that follow abductively 
from some theory T  may be withdrawn when is extended to T T T ′∪ . 

Another consequence is that, at the predicative level, the consequence relation defined by 
(1)-(5) is not only undecidable, there even is no positive test for it10. This is related to the fact that 
first-order predicate logic is undecidable—if some conclusion A  does not follow from a set of 
premises , we may not be able to establish this. Hence, as the consequence relation is partly 
defined in terms of negative requirements, it immediately follows that, for undecidable fragments, it 
lacks a positive test. Suppose, for instance, that for some theory T , some explanandum 

Γ

B  and some 
sentence A , (1) is satisfied. In that case, it seems reasonable to conclude that A  follows 
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abductively from T . However, if one is unable to establish that also (2)–(5) are satisfied, no 
reasoning can warrant that this conclusion is not erroneous. 

There are different ways to deal with the lack of a positive test. The one usually followed 
within Artificial Intelligence is to consider only decidable fragments of first-order logic. The 
rationale behind this is clear: when dealing with decidable fragments, one may be sure that, for 
arbitrary theories T  and explananda B , there is an algorithm for (2)–(5), and hence, that a decision 
method can be designed for “follows abductively from”. From the point of view of applications, 
however, this is an enormous restriction: many interesting theories are undecidable. 

An alternative way is to allow that inferences are made, not on the basis of absolute warrants, 
but on the basis of one’s best insights in the premises. When this second option is followed, 
abductive reasoning processes not only exhibit an external form of dynamics (adding new 
information may lead to the withdrawal of previously derived conclusions), but also an internal one 
(the withdrawal may be caused by merely analysing the premises). Suppose, for instance, that for 
some theory T , some explanandum B , and some sentence A , one established that (1) is satisfied, 
and one did not establish that one of (2)–(5) is violated. In that case, it seems rational to conclude 
that A  follows abductively from T . This conclusion, however, is provisional. If at a later moment 
in time, one is able to show that one of the negative requirements is violated (for instance, because 
one established that A  follows from T ), A  has to be withdrawn as an explanation for B . ¬

There are several arguments in favour of this second option. The first is that unwanted 
restrictions are avoided: abduction can be defined for any first-order theory. A second argument is 
that the conclusions of abductive reasoning processes are defeasible anyway. Whether the 
withdrawal of a conclusion is caused by an external factor or an internal one does not seem to be 
essential. The third, and most important argument is that, even for decidable fragments, it is often 
unrealistic to require absolute warrants. Even if a decision method is available, reasoners may lack 
the resources to perform an exhaustive search, and hence, may be forced to act on their present best 
insights. 

The logic LAr follows the second option. This has the advantage that, even for undecidable 
fragments, it enables one to come to justified conclusions. These conclusions are tentative and may 
later be rejected, but they constitute, given one’s insight in the premises at that moment, the best 
possible estimate of the conclusions that are ‘finally derivable’ from the premises.11

The logic LAr has several other advantages. A first one is that (unlike the systems developed 
within Artificial Intelligence) it has a proof theory. As we shall see below, this proof theory is 
dynamic (conclusions derived at some stage may be rejected at a later stage), but it warrants that the 
conclusions derived at a given stage are justified in view of the insight in the premises at that stage. 
This is especially important as, at the predicative level, there is no positive test for abductive 
reasoning. 

Another advantage of the proposed logic is that it is much closer to natural reasoning than the 
existing systems. As was mentioned in the beginning of this section, abduction is usually viewed as 
a form of backward reasoning—“find an A  that satisfies the requirements (1)–(5)”. The search 
procedure by which this is realized in the existing systems (for instance, some form of linear 
resolution) is very different from the search procedures of human reasoners. The logic LAr treats 
abduction as a form of ‘forward reasoning’: it is an ampliative system that directly validates 
inferences of the form . (†)

The third advantage is related to this: unlike what is the case for the AI approaches to 
abduction, deductive and abductive steps are nicely integrated into a single system. As a 
consequence, the logic not only enables one to generate explanatory hypotheses, but also to infer 
predictions on the basis of explanatory hypotheses and the background theory. This is highly 
important from the point of view of applications. In scientific contexts, for instance, explanatory 
hypotheses are typically used to derive predictions which, in turn, may lead to a revision of the 
original hypotheses. 
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6. An Adaptive Logic for Abduction 
 

The general idea is extremely simple: it is allowed that the predicative version of ( ), namely †
 
(‡) ( )B β , ( )( ( ) ( )A B )α α α∀ ⊃  / ( )A β  
 
is applied “as much as possible’’. For the moment, this ambiguous phrase may be interpreted as 
“unless and until ( )( ( ) ( )) ( ( ) ( ))A B B Aα α α β β∀ ⊃ ∧ ∧¬  turns out to be -derivable from CL Γ ”. 
So, whenever it is -derivable from CL Γ  that, for some general rule ( )( ( ) (A B )α α α∀ ⊃ ) and some 
explanandum ( )B β , (‡ ) cannot be applied consistently (because, ( )A β¬  is -derivable from 

), the application of (‡ ) is overruled. In view of what we have seen in the previous sections, this 
is exactly what we want. 

CL
Γ

There is one general restriction, which is needed to obtain a sensible system. Where W  is the 
set of closed formulas of the standard predicative language, one needs two sets of truth functions of 
closed primitive formulas,12  and , such that no primitive formula occurs in a member of 

 as well as in a member of . The sets may but need not be combinatorially closed, in other 
words, they need not contain all subformulas of their members or all truth-functions of these 
subformulas. 

eW aW
eW aW

Intuitively,  is the set of explananda, formulas that are considered as requiring an 
explanation, whereas  is the set of explanantia, formulas that, if they can be abduced, form 
potential explanations for the explananda. The requirement that no primitive formula occurs in 
members of both sets can be easily justified with respect to applications. If one tries to abduce an 
explanation, one has in mind a phenomenon for which an explanation is sought, and the explanation 
should be logically independent of the explained phenomenon—everyone rejects (even partial) self-
explanations. 

eW
aW

To save space, expressions of the form ( )( ( ) ( )) ( ( ) ( ))A B B Aα α α β β∀ ⊃ ∧ ∧¬  will be 
abbreviated as ( ), ( )B Aβ β¬a b  and, in line with what is common for adaptive logics, the formula 

( ), ( )B Aβ β¬a b  will be called an “abnormality”.13 As we will see below, it is possible that a 
disjunction of abnormalities is CL -derivable from a set of premises Γ  without any of its disjuncts 
being derivable from it. 

LAr can be formulated in the standard format from Batens (2007), which greatly simplifies 
the technical matters. An adaptive logic  is in standard format if it is characterized as a triple 
consisting of three elements: (i) LLL , a compact and monotonic lower limit logic, (ii) Ω , a set of 
abnormalities that all have the same logical form, and (iii) an adaptive strategy. 

AL

The lower limit logic LLL determines the part of the adaptive logic AL hat is not subject to 
adaptation. From a proof theoretic point of view, the lower limit logic delineates the rules of 
inference that hold unexceptionally. From a semantic point of view, the adaptive models of a 
premise set Γ  are a selection of the LLL-models of Γ . The lower limit logic of LAr is CL, and 
remember that its premise set is . , ,e a〈Γ 〉W W

Abnormalities are formulas that are presupposed to be false, unless and until proven 
otherwise.  comprises all formulas of a certain (possibly restricted) logical form. In the case of 
LA

Ω
r the restriction will refer to  and . and the set of abnormalities Ω is defined as 

. In the 
present extensional framework, ( )

eW aW
{( )( ( ) ( )) ( ( ) ( ( )) | ( ) ; ( ) ; ( )( ( ) ( ))}a eA B B A A B A Bα α α β β β β α α α∀ ⊃ ∧ ∧ ¬ ∈ ∈ ∀ ⊃CLW W G

( ( ) ( )A B )α α α∀ ⊃  can be taken to express that A  contains a 
(sufficient) cause for B —I write “contains” because A  may itself be a conjunction and some of its 
conjuncts may not be required for warranting B . The second conjunct of an abnormality states that 
the specific sufficient cause ( )A β  for ( )B β  did not occur. The requirement that the generalization 
( )( ( ) ( )A B )α α α∀ ⊃  is not a CL-theorem has to be added in order to prevent that all models would 
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display abnormalities. However, as this rules out at once cases in which ( )A β  is a contradiction or 
( )B β  is a tautology, this requirement is harmless. (Nobody wants to seek an explanation for a 

tautology and nobody will accept an explanation by Ex Falso Quodlibet.) An adaptive logic 
presupposes that abnormalities are false unless and until proven otherwise. So, the presupposition of 
LAr is that, if an effect did occur, then all its potential causes (in the weak, extensional, sense) did 
also occur. 

The strategy is Reliability. This strategy warrants that, in cases where more than one 
explanatory hypothesis can be abduced for the same explanandum, only their disjunction is 
derivable by LAr. It also warrants that, in cases where there are mutually inconsistent explanatory 
hypotheses, only those explanations are abduced that are jointly compatible with the premises. Both 
cases will be illustrated in the example at the end of this section.14

If one adds to the lower limit logic an axiom schema excluding that abnormalities occur, viz. 
an axiom schema that reduces abnormal premise sets to triviality, one obtains the so-called upper 
limit logic. The upper limit logic of LAr is somewhat unusual as it refers to the sets  and . It 
is obtained by extending CL with the axiom schema 

eW aW
( )( ( ) ( )) ( ( ) ( ))A B B Aα α α β β∀ ⊃ ⊃ ⊃  

provided  and . It is easily seen that this comes to the requirement that, if the 
proviso is met, 

( ) eB β ∈W ( ) aA β ∈W
( )( ( ) ( )A B )α α α∀ ⊃  is logically equivalent to ( )( ( ) ( ))A Bα α α∀ ≡ . As the upper 

limit logic is not interesting in itself, I shall not bother to give it a name. 
Let us now turn to the proofs. If the deduction rules are formulated in generic format, they are 

identical for all adaptive logics in standard format. Let Γ  contain the (declarative) premises as 
before, let the notation 

 
A ∆  
 

abbreviate that A  occurs in the proof on the condition ∆ , and let ( )Dab ∆  be the disjunction of the 
members of a finite . The rules may be phrased as follows:∆ ⊂ Ω 15  
 
PREM If A∈Γ  ...   ...  
  ————— 
  A   ∅  
 
RU If 1 C, , n LA A B… A  1A    1∆  
  ...   ...  
  nA    n∆   
  ———————— 
  B    1 n∆ ∪ ∪∆…  
 
RC If  1 CL, , ( )nA A B Dab∨ Θ… A 1A    1∆  
  ...   ...  
  nA    n∆   
  ———————————  
  B    1 n∆ ∪ ∪∆ ∪Θ…   
 

In addition to the inference rules, also a marking definition is needed. The marking definition 
determines which lines of a proof have to be marked. Formulas that occur on marked lines are no 
longer considered to be derived in the proof. 

I shall say that  is a minimal -formula at stage  of a proof if, at that stage, 
 occurs in the proof on the empty condition and, for any 

( )Dab ∆ Dab s
( )Dab ∆ ′∆ ⊂ ∆ ,  does not occur ( )Dab ′∆
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in the proof on the empty condition. Where 1( )Dab ∆ , ..., ( )nDab ∆  are the minimal -formulas 
at stage  of the proof, 1

Dab
s ( , , ) =e a

s nU 〈Γ 〉 ∆ ∪ ∪∆…W W  is the set of unreliable formulas at stage . 
The marking definition for the Reliability Strategy is as follows: 

s

  
Definition 1 Line i  is marked at stage  iff, where s ∆  is its condition, ( , , )e a

sU∆∩ 〈Γ 〉 ≠ ∅W W . 
 

If  is a minimal -formula at stage of the proof, then, in as far as one knows in view 
of the proof at this stage, the premises require one of the abnormalities in  to be true but do not 
specify which one is true. The Reliability Strategy considers all of them as unreliable. So the 
underlying idea is: if the understanding of the premises provided by the present stage of the proof is 
correct, the formulas occurring at unmarked lines are derivable from the premises, whereas the 
formulas occurring at marked lines are not. 

( )Dab ∆ Dab s
∆

Apart from the unstable derivability at a stage, one wants a stable kind of derivability, which 
is called final derivability. 

  
Definition 2 A  is finally derived from , ,e a〈Γ W W 〉  on line  of a proof at stage  iff (i) i s A  is the 
second element of line i , (ii) line  is not marked at stage , and (iii) any extension of the proof in 
which line i  is marked may be further extended in such a way that line  is unmarked. 

i s
i

 
Definition 3 , , re a A〈Γ 〉 LAW W A  ( A is finally LAr-derivable from Γ ) iff A is finally derived on a 
line of a LAr-proof from , ,e a〈Γ 〉W W . 

 
Remark that these are definitions, and that they are not intended to have a direct computational use. 

For the semantics of LAr, I refer the reader to Meheus et al. (2006). There, it is also shown 
that the semantics is sound and complete with respect to the dynamic proof theory. 

The rest of this section is devoted to an illustration of the proof theory. I shall present a very 
simple example and not bother too much about technicalities. I shall concentrate on showing (i) that 
the logic leads to a nice integration of deductive and abductive steps, (ii) that it can handle the 
dynamics that is typical of abductive reasoning processes, and (iii) that the inference rule which 
corresponds to abduction is validated contextually. 

Suppose that our set of premises consists of the following generalizations Γ
  
( )( )x Px Rx∀ ⊃ , ( )( )x Px Sx∀ ⊃ ( )( )x Qx Sx∀ ⊃ , ( )( )x Qx Tx∀ ⊃ ( )( )x Px Tx∀ ¬ ⊃, ,  
 

and the following data 
  
Ra , Rb , , , , , Sb¬ Sc Sd Td¬ Re ,  Te
 
Let  be the set of all singular formulas that are truth-functions of primitive formulas 

containing the predicates 

eW
R ,  and T , and the set of all singular formulas that do not contain 

these predicates. 
S aW

One way to start a LAr-proof from Γ  is by entering all the premises:  
 

1 ( )( )x Px Rx∀ ⊃  PREM ∅  
2 ( )( )x Px Sx∀ ⊃  PREM ∅  
3 ( )( )x Qx Sx∀ ⊃  PREM ∅  
4 ( )( )x Qx Tx∀ ⊃  PREM ∅  
5 ( )( )x Px Tx∀ ¬ ⊃  PREM ∅  
6 Ra  PREM ∅  
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7 Rb  PREM ∅  
8  PREM Sb¬ ∅  
9  PREM Sc ∅  
10  PREM Sd ∅  
11  PREM Td¬ ∅  
12 Re  PREM ∅  
13  PREM Te ∅  

 
For each of these lines, the third element forms the “justification” for the formula that 

constitutes the second element. It contains the line numbers of the formulas from which the formula 
is derived (obviously empty in the case of premises) as well as the name of the rule by means of 
which the formula is derived (in the above case the premise rule PREM). The sets at the end of each 
line are the conditions—also these are obviously empty in the case of premises. 

We are now in a position to make inferences from the premises. Let us first concentrate on the 
explanandum Ra . As is easily observed, the first generalization can be used to ‘abduce’ an 
explanatory hypothesis for Ra . In an LAr-proof from Γ , this is done by applying the rule RC: 
 
14  ; RC Pa 1,6 ,{ }Ra Pa¬a b  
 
RC allows one to add abductive hypotheses to the proof, but only on a certain condition. This 
condition is represented by the fifth element of the line. Intuitively, line 14 can be read as:  is 
derivable from the formulas on lines 1 and 6, unless and until it can no longer be assumed 
(consistently) that 

Pa

,Ra Pa¬a b  is false. 
Given our present insights in the premises (represented by the formulas that are explicitly 

written down in the proof), there is no reason to believe that Pa¬  is true, and hence, it is consistent 
to assume that ,Ra Pa¬a b  is false. This is why, at this stage of the proof,  is considered to be 
derivable from the premises (in view of line 14). If, at a later stage of the proof, it would turn out 
that the condition of line 14 is no longer satisfied, then this line will be ‘marked’ and the formula 
that occurs on it will no longer be considered to be derived. (The marking of lines will be illustrated 
below.) 

Pa

In view of the formula on line 14, the second generalization allows one to infer the prediction 
; this is done by means of the rule RU:  Sa

 
15  ; RU Sa 2,14 ,{ }Ra Pa¬a b  

 
RU is a generic rule that allows one to infer all CL -consequences: whenever some formula A  is 

-derivable from a number of formulas  that are considered to be derived in the proof at 
some stage, then, at that stage, 
CL 1, , nBB …

A  can be added to the proof by means of RU. Note that RU is an 
unconditional rule: unlike RC, it does not lead to the introduction of new conditions. If, however, 
some of the  to which RU is applied are themselves derived on a non-empty condition, then these 
conditions are conjoined for the conclusion. Thus, as the formula of line 14 is used to derive the 
formula on line 15, the condition of the former is ‘carried over’ to the latter. This is obviously as it 
should be: if, at a later stage in the proof, the conclusion of line 14 is withdrawn because its 
condition is no longer satisfied, then all formulas that rely on it should also be withdrawn. 

iB

This is a first illustration of the way in which abductive steps and deductive steps are 
integrated. The rule RC allows one to generate new explanatory hypotheses (for instance, the one 
on line 14), and RU allows one to derive predictions from these. 

Let us now turn to the explanandum Rb . As in the previous case, the rule RC enables us to 
abduce an explanatory hypothesis for Rb  (see line 16 below). However, this time, we are also able 
to infer, by means of RU, the negation of our explanatory hypothesis:  
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16  ; RC Pb 1,7 ,{ }Rb Pb¬a b  
17  ; RU Pb¬ 2,8 ∅  
 
Hence, we are able to infer the following abnormality:  

 
18 ,Rb Pb¬a b  ; RU 1,7,17 ∅  
 

At this stage in the proof, the condition of line 16 is no longer satisfied. As a consequence, the 
conclusion of line 16 is withdrawn from the proof. The withdrawal of a conclusion from the proof is 
recorded by marking the line on which the formula occurs. This is how the proof looks like at stage 
18 (lines 1 to 15 are as before):  
 
  …
16  ; RC Pb 1,7 ,{ }Rb Pb¬a b  18√  
17  ; RU Pb¬ 2,8 ∅  
18 ,Rb Pb¬a b  ; RU 1,7,17 ∅  

 
I shall now show what happens when more than one explanatory hypothesis can be abduced 

for the same explanandum. Have a look at Sc . In view of the relevant generalizations, the proof can 
be extended as follows:  
 
19  ; RC Pc 2,9 ,{ }Sc Pc¬a b   

20  ; RC Qc 3,9 ,{ }Sc Qc¬a b   
 
However, as the reader can verify, the following disjunctions of abnormalities are -derivable 
from the premises:  

CL

 
21  ; RU  , , (Sc Pc Sc Qc Pc¬ ∨ ¬ ∧¬a b) 2,3,9 ∅   
22  ; RU  , , (Sc Qc Sc Pc Qc¬ ∨ ¬ ∧¬a b) 2,3,9 ∅   
 
The formula on line 21 expresses that ,Sc Pc¬a bor , ( )Sc Qc Pc¬ ∧¬a b  is true. Hence, it cannot be 
assumed that both disjuncts are false. 

In view of such a disjunction of abnormalities, different strategies are possible. The one 
followed by LAr is very cautious. As (at this stage of the proof) it is unclear which one of the two 
disjuncts is true, both disjuncts are (at this stage of the proof) considered as ‘unreliable’. As a result, 
all formulas that are derived on the assumption that one of these disjuncts is false, are withdrawn. 
Thus, in our case, the formula on line 19 is withdrawn in view of the formula on line 21. By an 
analogous reasoning, the formula on line 20 is withdrawn in view of the formula on line 22:  
 
  …
19  ; RC  Pc 2,9 ,{ }Sc Pc¬a b  21√  

20  ; RC  Qc 3,9 ,{ }Sc Qc¬a b  22√  
21  ; RU  , , (Sc Pc Sc Qc Pc¬ ∨ ¬ ∧¬a b) 2,3,9 ∅   
22  ; RU  , , (Sc Qc Sc Pc Qc¬ ∨ ¬ ∧¬a b) 2,3,9 ∅   
 

A mark may be removed at a later stage. Suppose, for example, that  is 
CL-derivable from the premises, and is actually derived in the proof. So it would be clear which of 

, ( )Sc Qc Pc¬ ∧¬a b
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the two disjuncts of the formula of line 21 is true, viz. the second one. As a result, line 19 would not 
be marked any more (unless  is a disjunct of another disjunction of abnormalities). ,Sc Pc¬a b

As we have seen, apart from derivability at a stage, a stable notion of derivability is defined, 
viz. final derivability. Intuitively, a formula is finally derived on line  of a proof iff it is possible to 
extend the proof in such a way that line i  is unmarked and remains unmarked in every further 
extension of the proof. 

i

In view of the present premises, lines 19 and 20 will remain marked in any extension of the 
proof. So neither  nor Qc  is finally derivable from the premises. However, their disjunction 

 is. This can be seen from the following extension of the proof: 
Pc

Pc Qc∨
 

23 ( )(( ) )x Px Qx Sx∀ ∨ ⊃  ; RU  2,3 ∅  
24  ; RC Pc Qc∨ 9,23 { , ( )Sc Pc Qc }¬ ∨a b  
 

As no minimal disjunction of abnormalities is derivable that has  as one of 
its disjuncts, the formula on line 24 is finally derivable from the premises. 

, ( )Sc Pc Qc¬ ∨a b

Also for the explanandum  the rule RC enables one to derive a disjunction of explanatory 
hypotheses: 

Sd

 
25  ; RC Pd Qd∨ 2,3,10 { , ( )Sd Pd Qd }¬ ∨a b  
 
This time, however, one of the disjuncts can be eliminated by pure deductive means: 

 
26  ; RU Qd¬ 4,11 ∅  
27  ; RU Pd 25,26 { , ( )Sd Pd Qd }¬ ∨a b  
 

 
This again nicely illustrates how LAr allows for the integration of deductive and abductive steps.  

Let us finally turn to the situation where different explanatory hypotheses are mutually 
incompatible with the premises. As may be seen from the following extension of the proof, this is 
the case for the explanatory hypotheses that are abducible for Re  and Te : 

 
28  ; RC Pe 1,12 { , }Re Pe¬a b  
29  ; RC  Pe¬ 5,13 { ,Te Pea b}
 
Although both these hypotheses may be entered at some stage in the proof, neither of them is finally 
derivable from the premises. This is warranted by the following -derivable disjunction of 
abnormalities:  

CL

 
30 , ,Re Pe Te Pe¬ ∨a b a b  ; RU 1,5,12,13 ∅  
 

As soon as the formula on line 30 is added to the proof, lines 28 and 29 are marked—they 
remain marked in any extension of the proof. 

 
 

7. Was Lavoisier’s Reasoning Rational? 
 

To some it may seem that Lavoisier, in the course of that particular experiment in March 1775, was 
not reasoning in a rational way. As some may argue, Lavoisier not only committed the fallacy of 
“affirming the consequent”, he moreover jumped to the conclusion on the basis of partial 
information. 
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In the absence of formal logics for abduction, this argument carries some weight. It seems 
good practice to link rationality to “reasoning according to the standards of an appropriate logic’’. 
Hence, if there are doubts about the logicality of a particular inference form, this immediately casts 
doubts on its rationality. 

In the case of abduction, the suspicion seemed justified. Not only is the inference not 
deductively valid, many examples of purportedly sound abductions seem to rely on a hidden non-
formal reasoning. Indeed, the only sensible formal rule behind them seems to lead inevitably to a 
set of unsound and even inconsistent conclusions. For instance, from the explananda Qa  and Ra  
and the generalizations ( )( )x Px Qx∀ ⊃ and ( )( )x Px Rx∀ ¬ ⊃ , (‡ ) enables one to generate both  
and . 

Pa
Pa¬

In the previous section, we have seen, however, that it is possible to design a formal logic for 
abduction that is just as rigourous as, say, Classical Logic. What is important about this logic is that 
it enables one to distinguish between sound and unsound applications of (‡ ). We have also seen 
that this distinction is contextual: even if abduction should be invalidated with respect to some of 
the premises, it may be validated with respect to others. Thus, where the generalizations are 
( )( )x Px Qx∀ ⊃ , ( )( )x Px Rx∀ ¬ ⊃  and ( )( )x Sx Rx∀ ⊃ , and the explananda are Qa  and Ra , 
abduction should be invalidated with respect to the first two premises (neither Pa  nor  should 
be abducible), but should be validated with respect to the third premise (  should be abducible). 
This is precisely what the logic LA

Pa¬
Sa

r allows for. 
Applied to Lavoisier’s premises, the logic LAr allows one to derive C1 from F1 and G1 as 

well as from F2 and G2. Moreover, as long as F3 is not added, the conclusion C1 is finally 
derivable from the premise set. It is only when the fact F3 is added (together with the generalization 
G3) that the inference to C1 is invalidated. (In an LAr-proof, this would be expressed by marking 
the line on which C1 is derived.) 

Some may still have problems with the fact that Lavoisier derived the conclusion before he 
knew all the results to which the experiment would lead. We have seen, however, that the inference 
to C1 was not a deductive one, and that it was not treated by Lavoisier as such. He remembered 
very well that the inference was provisional and he (literally) deleted it as soon as its negation was 
derived deductively. This is again as one would expect on the basis of LAr. Moreover, as I argued 
in Section 4, making provisional inferences is the only sensible way to proceed in cases where there 
is no positive test. 

What is important is that one remembers the conditions under which a provisional judgment 
should be revised. Abductive inferences should be considered as fallacious if, and only if, these 
conditions are not remembered. 
 
 
                                                 
1 The first logic in this family was designed by Diderik Batens around 1980 and was meant to interpret (possibly) 
inconsistent theories as consistently as possible. Later the notion of an adaptive logic was generalized in different ways 
(for instance, to capture ampliative forms of reasoning) and a whole variety of adaptive logics was designed—for an 
overview, see Batens (2007). 
2 The historical context of the example is discussed at length in Holmes (1985); I refer to this work for more details. 
3 As was known already by the Alchemists, liquid mercury can be converted into a red powder (called mercurius 
calcinatus per se) by heating it; by further heating this powder, the mercury can be recovered from it. The latter 
reduction can be done without the addition of charcoal which posed a problem for the phlogiston theory—see Holmes 
(1985). for more details. This was one of the reasons why Lavoisier, among others, was interested in the air that is 
released during the reduction from mercury oxide to mercury. 
4 The term “fixed air’’ was introduced by Stephen Hales to refer to ordinary air in a ‘fixed’ state. The present-day term 
is carbonic acid gas. 
5 This and the following notes were translated from French to English by Larry Holmes. I follow his translation. 
6 In modern terminology, nitrous air is nitrogen oxide. 
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7 The note was discovered by Larry Holmes. I follow his analysis of the note as presented on p. 47 of Holmes (1985). 
8 In recent years, abductive reasoning has gained an enormous interest in the domain of Artificial Intelligence. At this 
moment, a large number of systems is available for a variety of application contexts: diagnostic reasoning, text 
understanding, case-based reasoning, planning , .... For an interesting overview of AI-approaches to abduction, see 
Gabriele (2000). 
9 A formula A  is said to be compatible with a set of premises Γ  iff  AΓ ¬A
10 Even if A  follows abductively from a theoryT  and an explanandum , there need not exist any finite construction 
that establishes this. 

B

11 Roughly speaking, an ‘abductive conclusion’ A  is finally derivable from a theory T  if the requirements (1)-(5) are 
satisfied—see the next section for a precise definition of this notion. 
12 Primitive formulas are those that contain no logical symbols, except possibly for identity. 
13 The term “abnormality’’ refers to formulas that overrule the application of some desired inference rule—in our case 
the abduction scheme (‡ ). 
14 As is illustrated  in Meheus et al. (2006); the Reliability Strategy also guarantees that, if the antecedent of some 
generalization has been arbitrarily strengthened, only sensible explanations are abduced. 
15 The only rule that introduces non-empty conditions is RC. In other words, before RC is applied in a proof, the 
condition of every line will be ∅ . 
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