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Abstract

Scientists confronted with multiple explanatory hypotheses as a result
of their abductive inferences, generally want to reason further on the dif-
ferent hypotheses one by one. This paper presents a modal adaptive logic
MLAs that enables us to model abduction in such a way that the differ-
ent explanatory hypotheses can be derived individually. This modelling
is illustrated with a case study on the different hypotheses on the origin
of the Moon.
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1 Introduction

The aim of this paper is to present a new adaptive logic, called MLAs, that
enables us to model abductive reasoning processes. The goal of these processes is
to derive possible explanatory hypotheses (explanantia) for puzzling phenomena
(explananda). For that purpose, this logic contains, in addition to deductive
inference steps, defeasible reasoning steps based on an argumentation schema
known as Affirming the Consequent (combined with Universal Instantiation):

(∀α)(A(α) ⊃ B(α)), B(β)/A(β)

It is important to mention that by using this schema we restrict our field of
application in two ways. Firstly, we consider abduction only in a strict sense,
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which means that the conditional linking explananda and explanantia must be
given. In other words, the modelling of any sort of creative abduction – in which
the conditionals are created – is not within the scope of this paper.1 Secondly,
we opt for a predicate logic. This is so because we use a material implication
to model the relation between explanans and explanandum. As it is well known
that B ` A ⊃ B, a propositional logic would allow us to derive anything as a
hypothesis. In the predicative case, the use of the universal quantifier can avoid
this.2 Moreover, it raises no major problem for modelling real life situations, as
the case study illustrates.

Adaptive Logics This logic is constructed by means of the techniques of the
adaptive logics programme.3 The reasons why an adaptive logic is fit for this
job are threefold.

Firstly, it allows for a direct implementation of defeasible reasoning steps
(in casu applications of Affirming the Consequent). This makes it possible to
construct logical proofs that nicely integrate defeasible (in this case ampliative)
and deductive inferences. This corresponds to natural reasoning processes.

Secondly, the formal apparatus of an adaptive logic instructs exactly which
formulas would falsify a (defeasible) reasoning step. As these formulas are as-
sumed to be false (for as long as one cannot derive them), they are called ab-
normalities in the adaptive logic literature. So, if one or a combination of these
abnormalities is derived in a proof, it instructs in a formal way which defeasible
steps cannot be maintained. This possibility to defeat previous reasoning steps
mirrors nicely the dynamics that is found in actual human reasoning.

Thirdly, for all adaptive logics in standard format, as the presented logic
MLAs, there are generic proofs for most of the important metatheoretical prop-
erties (including soundness and completeness).4

The Problem of Multiple Explanatory Hypotheses This is not the first
attempt to explicate abductive reasoning by means of an adaptive logic and
this result draws on earlier attempts. However, these earlier attempts have not
completely dealt with the problem of multiple explanatory hypotheses.

To explain this problem, consider the following example. Suppose we have
to explain the puzzling fact Pa while our background knowledge contains both
(∀x)(Qx ⊃ Px) and (∀x)(Rx ⊃ Px). There are two roads that can be taken.
Firstly, we can construct a logic in which we can only derive the disjunction
(Qa ∨ Ra) and not the individual hypotheses Qa and Ra. This road, called
practical abduction5 and adequately modelled by the logics LAr and LAr

s,
6 is

1For a more elaborate discussion of creative abduction, see Schurz (2008a, p. 212–231).
2For example, compare ` B(β) ⊃ (A(β) ⊃ B(β)) with 6` B(β) ⊃ (∀α)(A(α) ⊃ B(α)).
3The general characteristics of adaptive logics will be explained in the next section. For a

systematic and thorough overview we refer to Batens (2007) or Batens (2011).
4An overview of these can be found in Batens (2007).
5According to the definition suggested in Meheus and Batens (2006, pp. 224–225) and

used in Lycke (2009).
6See Meheus and Batens (2006); Meheus (2007, 2010).

2



suitable for modelling situations in which one has to act on the basis of the
conclusions. For instance, in the emergency room, a doctor who finds out that
two causes can explain the examined symptoms, needs to take appropriate steps
based on the fact that they both can be the case.

Secondly, someone with a theoretical perspective (for instance, a scientist or
a detective) is interested in finding out which of the hypotheses is the actual
explanation. Therefore it is important that he can abduce the individual hy-
potheses Qa and Ra in order to examine them further one by one. Although
there exist adaptive logics that model this theoretical kind of abduction7, these
logics have a quite complex proof theory. This is because, on the one hand,
one has to be able to derive Qa and Ra separately, but on the other hand, one
has to prevent the derivation of their conjunction (Qa ∧ Ra), because it seems
counterintuitive to take the conjunction of two possible hypotheses as an ex-
planation. Moreover, if the two hypotheses are actually incompatible, it would
lead to explosion in a classical context.

Capturing Hypotheses as Logical Possibilities There is actually a more
elegant and natural way out of this problem by adding modalities to our lan-
guage and deriving the hypotheses ♦Qa and ♦Ra. As (♦Qa ∧ ♦Ra) does not
imply ♦(Qa ∧ Ra) in any standard modal logic, the conjunction problem is
automatically solved. This new approach, that will be our route, also nicely co-
incides with the common idea that hypotheses are possibilities. These features
make our logic MLAs (which stands for the Modal Logic for Abduction) very
suitable for the modelling of actual theoretical abductive reasoning processes as
the case study will illustrate.

Structure of the paper In the next section, we will first introduce the main
characteristics of an adaptive logic in standard format for readers not familiar
with the adaptive logics programme. The approach will be general and not
limited to abductive contexts. For a more systematic and detailed overview of
adaptive logics, we refer to Batens (2011, 2007, 2004). In the third section, we
return to our subject and provide the groundwork for our logic by stipulating the
deductive framework, i.e. the language schema and the non-defeasible reasoning
steps of our logic. The fourth section will introduce in an informal way the
defeasible part of our logic with examples that illustrate how this logic fulfills the
different desiderata of modelling abductive reasoning contexts. This informal
approach is chosen to give more insight in the functioning of our logic. A formal
presentation of our logic is presented in the fifth section, while in the sixth
section we will use this logic to model a more elaborate example taken from the
recent history of science.

7See, for instance, Lycke (2009) and another solution of Lycke (presented at an internal
meeting).
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2 General Characterization of Adaptive Logics

An adaptive logic in standard format is defined by a triple:

(i) A lower limit logic (henceforth LLL): a reflexive, transitive, monotonic
and compact logic that has a characteristic semantics.8

(ii) A set of abnormalities Ω: a set of LLL-contingent formulas characterized
by a logical form, or a union of such sets.9

(iii) An adaptive strategy.

The lower limit logic LLL specifies the stable part of the adaptive logic, any-
thing that follows from the premises by LLL will never be revoked. Apart from
that, it is also possible in an adaptive logic to derive defeasible consequences.
These are obtained by assuming that the elements of the set of abnormalities
are ‘as much as possible’ false. The adaptive strategy is needed to specify ‘as
much as possible’. This will become clear further on.

As stated before, a key advantage of adaptive logics is their dynamic proof
theory which mirrors human reasoning. This dynamics is possible because a line
in an adaptive proof has – next to a line number, a formula and a justification
– a fourth element, i.e. the condition. A condition is a finite subset of the set of
abnormalities and specifies which abnormalities need to be assumed to be false
for the formula on that line to be derivable.

The inference rules in an adaptive logic reduce to three generic rules. Where
Γ is the set of premises, Θ a finite subset of the set of abnormalities Ω, Dab(Θ)
the (classical) disjunction of the abnormalities in Θ, and where

A ∆

abbreviates that A occurs in the proof on the condition ∆, the inference rules
are given by the generic rules:

8Strictly speaking, the standard format for adaptive logics requests that a lower limit
logic contains in addition to the LLL-operators also the operators of CL (Classical Logic).
However, these operators have merely a technical role (in the generic meta-theory for adaptive
logics) and are not used in the applications that are presented in this paper. Hence, given the
introductory nature of this section, we will not go into further detail. In the logics presented
in this paper, this condition is implicitly assumed to be satisfied.

9A LLL-contingent formula is a formula that is not a theorem of LLL.
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PREM If A ∈ Γ:
...

...

A ∅

RU If A1, ..., An `LLL B: A1 ∆1

...
...

An ∆n

B ∆1 ∪ . . . ∪∆n

RC If A1, ..., An `LLL B ∨Dab(Θ) A1 ∆1

...
...

An ∆n

B ∆1 ∪ . . . ∪∆n ∪Θ

The premise rule PREM states that a premise may be introduced at any line
of a proof on the empty condition. The unconditional inference rule RU states
that, if A1, . . . , An `LLL B and A1, . . . , An occur in the proof on the conditions
∆1, . . . ,∆n, we may add B on the condition ∆1 ∪ . . . ∪ ∆n. The strength of
an adaptive logic comes with the third rule, the conditional inference rule RC,
which works analogously to RU, but introduces new conditions. So, it allows to
take defeasible steps based on the assumption that the abnormalities are false.
Several examples of how these rules are employed in actual proofs can be found
in section 4.

The only thing we still need is a criterion that defines when we consider a line
of the proof defeated. At first sight, it seems straightforward to mark10 lines of
which one of the elements of the condition is unconditionally11 derived from the
premises. But this strategy, called the simple strategy, has usually a serious flaw.
If it is possible to derive unconditionally a disjunction of abnormalities Dab(∆)
that is minimal, i.e. there is no ∆′ ⊂ ∆ such that Dab(∆′) is unconditionally
derived, the simple strategy would ignore this information. This is problematic
though because at least one of the disjuncts of the ignored disjunction has to
be true. Therefore, more advanced strategies have been developed. The best-
known of these are reliability and minimal abnormality. We can only use the
simple strategy in cases that

Γ `LLL Dab(∆) only if there is an A ∈ ∆ such that Γ `LLL A

with Dab(∆) any disjunction of abnormalities out of Ω. The strategy of an
adaptive logic in standard format is indicated by the superscript in the name of
the logic.

10Defeated lines in a proof are marked instead of deleted, because in general it is possible
that they later become unmarked in an extension of the proof.

11Unconditionally derived is to be understood as derived on the empty condition.
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3 The Deductive Frame

Formal Language Schema Let L be the standard predicative language of
CL with logical symbols ¬,⊃,∧,∨,≡,∀ and ∃. We will further use C, V, F and
W to refer respectively to the sets of individual constants, individual variables,
all (well-formed) formulas of L and the closed (well-formed) formulas of L.
LM , the language of our logic, is L extended with the modal operator �.

WM , the set of closed formulas of LM is the smallest set that satisfies the
following conditions:

1. if A ∈ W, then A, �A ∈ WM

2. if A ∈ WM , then ¬A ∈ WM

3. if A,B ∈ WM , then A ∧B,A ∨B,A ⊃ B,A ≡ B ∈ WM

It is important to notice that there are no occurrences of modal operators
within the scope of another modal operator or a quantifier. We further define
the set WΓ, the subset of WM , the elements of which can act as premises in our
logic, as:

WΓ = {�A | A ∈ W}

It is easily seen that WΓ ⊂ WM .

Lower Limit Logic The LLL will be the predicative version of D, restricted
by the language schema WM . D is characterized by a full axiomatization of
predicate CL together with two axioms, an inference rule and a definition:

K �(A ⊃ B) ⊃ (�A ⊃ �B)
D �A ⊃ ¬�¬A

NEC if ` A, then ` �A
♦df ♦A =df ¬�¬A

This logic is one of the weakest normal modal logics that exist and is obtained
by adding the D-axiom to the axiomatization of the better-known minimal
normal modal logic K.

The semantics for this logic can be expressed by a standard possible world
Kripke semantics where the accessibility relation R between possible worlds is
serial, i.e. for every world w in our model, there is at least one world w′ in our
model such that Rww′.

Intended Interpretation As indicated in the introduction, explanatory hy-
potheses – the results of abductive inferences – will be represented by formulas
of the form ♦A (A ∈ W). We will use formulas of the form �B to repre-
sent explananda, other observational data and relevant background knowledge.
Otherwise, this information would not be able to revoke hypotheses as, for in-
stance, A and ♦¬A are not contradictory. The reason why we choose D instead
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of K is that we assume that the explananda and background information are
consistent. This assumption is modelled by the D-axiom.12

4 Informal Presentation of MLAs

Abductive Contexts and the Set of Abnormalities In specifying our set
of abnormalities and the strategy, we have to check whether they allow us to
model abductive reasoning according to our expectations.

Apart from the fact that by means of this logic we should be able to derive
hypotheses according to the schema of Affirming the Consequent, we have to
make sure that we cannot derive – as a side effect – random hypotheses which
are not related to the explanandum. In addition, it is quite straightforward
to expect that a logic for hypothesis formation can handle contradictory hy-
potheses. Finally, as we pointed out in our introduction, it is a nice feature of
adaptive logics that they enable us to integrate defeasible and deductive steps.
Therefore, we can require that our logic can handle further predictions (based
on earlier derived hypotheses) and evidence or counterevidence for them in a
natural way.

Since the final form of the abnormalities is quite complex – although the idea
behind it is straightforward – we will first consider two more basic proposals
that are constitutive for the final form and show why they are unsufficient.
Obviously, only closed well-formed formulas can be an element of any set of
abnormalities. This will not be explicitly stated each time.

First proposal Ω1 This first proposal is a modal version of the set of abnor-
malities of the logic LAr

s.
13 In this and the further definitions, the metavariables

A and B represent (well-formed) formulas, α a variable and β a constant of the
language L.

Ω1 = {�((∀α)(A(α) ⊃ B(α)) ∧ (B(β) ∧ ¬A(β))) |
No predicate that occurs in B occurs in A}

This means that a derived hypothesis will be defeated if one shows explicitly
that the hypothesis cannot be the case. The second line in the definition is to
prevent self-explanatory hypotheses.

Simple Strategy For this logic we can use the simple strategy which
means, as stated before, that we will mark lines for which one of the elements of

12For instance, the premiseset {�¬Pa, �(∀x)Px} is a set modelling an inconsistent set of
background knowledge and observanda. However, in the logic K, this set would not be con-
sidered inconsistent, because we cannot derive anything from this set by Ex Falso Quodlibet.
To be able to do this, we need the D-axiom.

13As proposed in Meheus (2010).
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the condition is unconditionally derived. We can easily see that the condition
for use of the simple strategy, i.e.

Γ `LLL Dab(∆) only if there is an A ∈ ∆ such that Γ `LLL A,

is fulfilled here. Since all premises have the form �A, the only option to derive
a disjunction of abnormalities would be to apply addition, i.e. derive (�A∨�B)
from �A (or �B), because it is well-known that �(A ∨ B) 0 �A ∨ �B in any
standard modal logic.14

Contradictory hypotheses The following example shows us that this
logic allows us to derive hypotheses according to the schema of Affirming the
Consequent and is able to handle contradictory hypotheses without causing
explosion.

1 �(∀x)(Px ⊃ Qx) -;PREM ∅
2 �(∀x)(¬Px ⊃ Rx) -;PREM ∅
3 �Qa -;PREM ∅
4 �Ra -;PREM ∅
5 ♦Pa 1,3;RC {�((∀x)(Px ⊃ Qx) ∧ (Qa ∧ ¬Pa))}
6 ♦¬Pa 2,4;RC {�((∀x)(¬Px ⊃ Rx) ∧ (Ra ∧ ¬¬Pa))}
7 ♦Pa ∧ ♦¬Pa 5,6;RU {�((∀x)(Px ⊃ Qx) ∧ (Qa ∧ ¬Pa)),

�((∀x)(¬Px ⊃ Rx) ∧ (Ra ∧ ¬¬Pa))}

♦Pa and ♦¬Pa are both derivable hypotheses because the conditions on line
5-7 are not unconditionally derivable from the premise set. It is also interesting
to note that, because of the properties of the lower limit D, it is not possible to
derive from these premises that ♦(Pa∧¬Pa). The conjunction of two hypotheses
is never considered as a hypothesis itself, unless there is further background
information that links the two hypotheses in some way.

Predictions and Evidence Suppose that we can extend our premise set
with an additional implication.15 Then, we can continue our example to show
that our logic can handle further predictions and (counter)evidence for them in
a natural way:

8 �(∀x)(Px ⊃ Sx) -;PREM ∅
9 ♦Sa 5,8;RU {�((∀x)(Px ⊃ Qx) ∧ (Qa ∧ ¬Pa))}

With the extra implication we can derive the prediction ♦Sa. As long as
we don’t have any further information about this prediction (by, for instance,

14Strictly speaking, it is also possible to derive a disjunction from the premises by using
the K-axiom. For instance, �(A ⊃ B) ` ¬�A ∨ �B, but the first disjunct will always be a
possibility and can, hence, not be an abnormality.

15Strictly speaking, this is not what we actually do. What we actually do is start a new
proof with another premise set (the extended set). But it is easily seen that we can start this
new proof with exactly the same lines as the old proof. This way, it looks as if we extended
the old proof. This qualification needs to be considered each time we speak about “adding
premises” in this paper.
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observation), it remains a hypothesis derived on the same condition as ♦Pa.
If we would test this prediction, we would have two possibilities. On the one
hand, if the prediction turns out to be false, the premise �¬Sa could be added
to our premise set. In this case, we can subsequently derive �¬Pa, which would
falsify the hypothesis ♦Pa.

...
...

...
...

5 ♦Pa 1,3;RC {�((∀x)(Px ⊃ Qx) ∧ (Qa ∧ ¬Pa))} X12

...
...

...
...

10 �¬Sa PREM ∅
11 �¬Pa 8,10;RU ∅
12 �((∀x)(Px ⊃ Qx) ∧ (Qa ∧ ¬Pa)) 1,3,11;RU ∅

On the other hand, if the prediction turns out to be true, we could add the
premise �Sa but this extension of our premise set would not allow us to derive
�Pa. Since true predictions only corroborate the hypothesis and do not prove
it, while false predictions directly falsify the hypothesis, one can say that this
logic handles predictions in a Popperian way.16

Contradictions One way a logic of abduction can generate random hy-
potheses as a side effect, is by allowing to abduce contradictions. How this is
possible and how our logic prevents it is illustrated in the following example.

1 �Qa -;PREM ∅
2 �(∀x)((Px ∧ ¬Px) ⊃ Qx) -;RU ∅
3 ♦(Pa ∧ ¬Pa) 1,2;RC {�((∀x)((Px ∧ ¬Px) ⊃ Qx)∧ X4

(Qa ∧ ¬(Pa ∧ ¬Pa)))}
4 �((∀x)((Px ∧ ¬Px) ⊃ Qx)∧ 1;RU ∅

(Qa ∧ (¬Pa ∨ Pa)))

Tautologies Still, there are other ways to derive random hypotheses that
are not prevented by our first proposal for our set of abnormalities Ω1. For
instance, Ω1 does not prevent that random hypotheses can be derived from a
tautology.

1 �(Qa ∨ ¬Qa) -;RU ∅
2 �(∀x)(Px ⊃ (Qx ∨ ¬Qx)) -;RU ∅
3 ♦Pa 1,2;RC {�((∀x)(Px ⊃ (Qx ∨ ¬Qx))∧

((Qa ∨ ¬Qa) ∧ ¬Pa))}

Therefore, let us adjust the set of abnormalities to obtain the second proposal
Ω2.

16We have to remember we devised a logic for modelling abduction and the handling of
explanatory hypotheses, not a formal methodology of science. This logic has nothing to say
about confirmation of theories.
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Second proposal Ω2 No hypothesis can be abduced from a tautology if the
abnormalities have the following form:

Ω2 = {�((∀α)(A(α) ⊃ B(α)) ∧ (B(β) ∧ ¬A(β)))

∨�(∀α)B(α) |
No predicate that occurs in B occurs in A}

It is clear that we can keep using the simple strategy with this new set of
abnormalities. It is also easily seen that all examples above still hold. Each
time we can derive an abnormality of Ω1, we can derive the corresponding
abnormality of Ω2 by a simple application of addition. Finally, the problem
raised by the tautologies, as illustrated in the previous example, is solved in
an elegant way, because the form of the abnormalities makes sure that the
abnormality will always be a theorem in case the explanandum is a theorem.
So, nothing can be abduced from tautologies.

Most parsimonious explanantia Still, there is another way to derive
random hypotheses that cannot be prevented by Ω2. Consider, for instance, the
following proof.

1 �Ra -;PREM ∅
2 �(∀x)(Px ⊃ Rx) -;PREM ∅
3 �(∀x)((Px ∧Qx) ⊃ Rx) 2;RU ∅
4 ♦(Pa ∧Qa) 1,3;RC {�((∀x)((Px ∧Qx) ⊃ Rx)∧

(Ra ∧ ¬(Pa ∧Qa))) ∨�(∀x)Rx}
5 ♦Qa 4;RU {�((∀x)((Px ∧Qx) ⊃ Rx)∧

(Ra ∧ ¬(Pa ∧Qa))) ∨�(∀x)Rx}

The reason why we can derive the random hypothesis Qa, is the absence of a
mechanism to make sure that the abduced hypothesis is the most parsimonious
one and not the result of strengthening the antecedent of an implication. Before
defining the final and actual set of abnormalities that also prevents this way
of generating random hypotheses, we have to introduce a new notation to keep
things as perspicuous as possible.

Notation Suppose APCN (α) is the prenex conjunctive normal form of
A(α). This is the equivalent form of A(α) where all quantifiers are first moved
to the front of the expression and where, consequently, the remaining (quantifier-
free) expression is written in conjunctive normal form, i.e. as a conjunction of
disjunctions of literals.

APCN (α) = (Q1γ1) . . . (Qmγm)(A1(α) ∧ . . . ∧An(α))

and ` APCN (α) ≡ A(α)
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with m > 0,n > 1,Qi ∈ {∀,∃} for i 6 m, γi ∈ V for i 6 m, α ∈ V and Ai(α)
disjunctions of literals in F for i 6 n.

Then, we can introduce a new notation A−1
i (α) (1 6 i 6 n) so that we

have a way to take out all of the conjuncts of a formula (in PCN form) one
by one. In cases where the conjunction consists of only one conjunct (and
there is, obviously, no possibility to have a more parsimonious explanation),
the substitution with a random tautology will make sure that the condition for
parsimony, added in the next set of abnormalities, is satisfied trivially.

if n > 1 : A−1
i (α) =df (Q1γ1) . . . (Qmγm)(A1(α) ∧ . . . ∧Ai−1(α) ∧
Ai+1(α) ∧ . . . ∧An(α))

if n = 1 : A−1
1 (α) =df >

with > any tautology of the LLL.

Final proposal Ω With this notation we can write the logical form of the set
of abnormalities Ω of our logic MLAs.

Ω = {�((∀α)(A(α) ⊃ B(α)) ∧ (B(β) ∧ ¬A(β)))

∨�(∀α)B(α) ∨
n∨

i=1

�(∀α)(A−1
i (α) ⊃ B(α)) |

No predicate that occurs in B occurs in A}

This form might look complex, but its functioning is quite straightforward.
We actually constructed the disjunction of the three reasons why we stop con-
sidering A(β) as a good explanatory hypothesis for the phenomenon B(β), even
if we have (∀α)(A(α) ⊃ B(α)). The disjunction will make sure that the hypoth-
esis is rejected as soon as one of the following three is the case: (i) when ¬A(β)
is derived, (ii) when B(β) is a tautology (and obviously, does not need an ex-
planatory hypothesis) or (iii) when A(β) has a redundant part and is therefore
not an adequate explanatory hypothesis.

From now on, we will unambiguously shorten this logical form of the abnor-
malities as

!A(β) . B(β)

which could be read as “A(β) is not a valid hypothesis for B(β)”. For the same
reasons as stated at the description of Ω2, we can keep using the simple strategy
and all previous examples are still valid.

Example For instance, let’s have a look at how our new set of abnormal-
ities solves the previous problem. To make things more clear, the condition is
once written out fully.

1 �Ra -;PREM ∅
2 �(∀x)(Px ⊃ Rx) -;PREM ∅
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3 �(∀x)((Px ∧Qx) ⊃ Rx) 2;RU ∅
4 ♦(Pa ∧Qa) 1,3;RC {�((∀x)((Px ∧Qx) ⊃ Rx)∧

(Ra ∧ ¬(Pa ∧Qa))) ∨�(∀x)Rx
∨�(∀x)(Px ⊃ Rx)
∨�(∀x)(Qx ⊃ Rx)} X5

5 !(Pa ∧Qa) . Ra 2; RU ∅

5 Formal Presentation of MLAs

We can now present the logic MLAs in a formally precise way.17 As any
adaptive logic in standard format, the logic MLAs is characterized by the triple
of a lower limit logic, a set of abnormalities and an adaptive strategy. In this
case, the lower limit logic is D, the strategy is the simple strategy and the set of
abnormalities Ω is, relying on the previously introduced abbreviation, defined
by

Ω = {!A(β) . B(β) | No predicate that occurs in B occurs in A}

Proof Theory The proof theory is characterized by the three generic infer-
ence rules introduced in section 2 and the following definitions.

Definition 1 (Marking for the simple strategy). Line i with condition ∆
is marked for the simple strategy at stage s of a proof,18 if stage s contains a
line of which an A ∈ ∆ is the formula and ∅ the condition.

Definition 2. A formula A is derived from Γ at stage s of a proof iff A is the
formula of a line that is unmarked at stage s.

Definition 3. A formula A is finally derived from Γ at stage s of a proof iff A
is derived at line i, line i is not marked at stage s and line i remains unmarked
in every extension of the proof.19

Definition 4 (Final Derivability). For Γ ⊂ WΓ: Γ `MLAs A (A is finally
MLAs-derivable from Γ) iff A is finally derived in a MLAs-proof from Γ.

Semantics The semantics of an adaptive logic is obtained by a selection on
the models of the lower limit logic. With the simple strategy we consider, for
instance, only those models that verify the abnormalities that are derivable (by
means of the lower limit logic).

17This section is limited to what we need to present this specific logic. For a more general
formal presentation of adaptive logics in standard format, we refer to Batens (2011).

18A stage of a proof is a sequence of lines and a proof is a chain of stages. Every proof
starts off with the first stage which is an empty sequence. Each time a line is added to the
proof by applying one of the inference rules, the proof comes to its next stage, which is the
sequence of lines written so far extended with the new line.

19This definition is slightly different from the more general definition mentioned in Batens
(2011) because, using the simple strategy, it is not possible that a marked line becomes
unmarked at a later stage of a proof.
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Definition 5. A D-model M of the premise set Γ is simply all right iff {A ∈
Ω |M �D A} = {A ∈ Ω | Γ `D A}.

Definition 6 (Semantic Consequence). For Γ ⊂ WΓ: Γ �MLAs A (A is a
semantic consequence from Γ) iff A is verified by all simply all right models of
Γ.

The fact that MLAs is in standard format warrants that the following the-
orem holds:20

Theorem 1 (Soundness and Completeness). Γ `MLAs A iff Γ �MLAs A.

6 Case Study: The Origin of the Moon

In the first decades after the NASA was founded in 1958, lunar exploration was
one of its most prestigious goals. These efforts have led to the Apollo programme
that included 6 lunar landing missions between 1969 and 1972.

There was widespread expectation that the Apollo exploration of the
Moon would settle the question of its origin; this had been cited fre-
quently as one of the scientific goals of the Apollo program. (Wood,
1986, p. 18)

As history taught us, this goal was not achieved. Seen in retrospect, one of the
most important reasons for the lack of success was

. . . the concentration on three classical theories of lunar origin: (1)
Capture – capture of a planetesimal, formed elsewhere in the so-
lar system, into Earth’s orbit; (2) Fission – spontaneous ejection of
upper mantle material into a circumterrestrial swarm due to rota-
tional instability, probably during core formation; (3) Coaccretion
– formation of the Moon by accretion in a circumterrestrial nebula.
(Hartmann, 1986, p. 579)

The main reasons21 why these hypotheses were considered untenable can be
summed up as follows. Firstly, capture (H1) of a planetesimal can – according
to the laws of celestial mechanics – only occur if the original trajectory of this
planetesimal is within very limited constraints which include that this proto-
moon should have originated at about the same (radial) distance from the sun
and at about the same time as the Earth. But if they originated at the same
time at roughly the same spot in the circumsolar nebula, the moon should
have more or less the same chemical composition as the Earth. This is not the
case, because the moon hardly contains any iron, one of the heavier elements
in the solar system that is abundant in the core of the Earth. Secondly, fission

20For an overview of all meta-theoretic properties (and their proofs) of adaptive logics in
standard format, we refer to Batens (2007).

21As listed in, for instance, the review article of Wood (1986).
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(H2) cannot explain the depletion of volatile elements on the Moon’s surface (in
comparison with the Earth’s surface), neither can it account for the abnormally
high angular momentum of the Earth-Moon system (in comparison with other
planetary systems in our solar system). Finally, coaccretion (H3) – that was
until then the most supported hypothesis – can neither account for iron depletion
nor for the high angular momentum.

Coming to this point several scientists in the mid-seventies were trying to
figure out a new hypothesis. Soon, a fourth hypothesis was proposed inde-
pendently by Hartmann (1975) and Cameron and Ward (1976). We will now
focus on the thought process in Cameron and Ward’s paper. They started with
focussing on the angular momentum of the Earth-Moon system.

A key constraint on the origin of the Earth-Moon system is the
abnormally large value of the specific angular momentum of the
system, compared to that of the other planets in the solar system.
(p. 120)

Reasoning in terms of elementary dynamics of physical bodies – in which a
collision with another body can lead to an increase in angular momentum –
they abduced the following hypothesis.

This spin was presumably imparted by a collision with a major sec-
ondary body in the late stages of accumulation of the Earth, with the
secondary body adding its mass to the remainder of the proto-Earth.
(p. 120)

After determining the characteristics of such a second body – a body of roughly
the size of Mars, approaching at 11 km/s and hitting the Earth off center –
to account for the specific angular momentum, they could deductively reason
further what the consequences would be of such a giant impact. In short, a lot
of volatile elements would vaporize upon shock-unloading and a disk of debris
would be caught in the gravitational field of the Earth. After a while, the
heavier elements (including iron) would sink into the still very fluid young Earth,
while the lighter elements that remain in an elliptical trajectory around the
Earth would form after a certain amount of time the Moon by accretion. Thus,
deriving deductively further consequences of this hypothesis, they concluded
that “the Moon should thus be deficient in metallic iron and volatile elements...”
(p. 121) and that this hypothesis could at first sight account for all – previously
problematic – data.

Before we start to model our case study, it is important to note that we
are interested in the process of abduction or the heuristical process of forming
explanatory hypotheses, not in confirmation theory or (justificational) inference
to the best explanation.22 So, what we are modelling is the reasoning process

22In discerning abduction and IBE I follow the reasoning initiated by Hintikka (1999) and
elaborated by Schurz (2008a,b) that the distinction is to be found in their function and
context. Abduction is a strategical or heuristical process with minimal justificational value in
the context of discovery, while IBE is a justificational process (in the context of justification).
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of scientists confronted with counterevidence and looking for a new explanatory
hypothesis for the origin of the Moon.23 This is a different reasoning process
than confirmation processes, in which we try to decide whether we have sufficient
evidence to support a certain conclusion. This explains the more qualitative
nature of arguments in abductive reasoning versus the more quantitative nature
of these arguments in justification. We will further use the following notations:

m “the Moon”
Ox “x exists in its actual state”
Ax “x is part of a system with unusually high angular momentum”
Fx “x has an iron (Fe) core”
V x “x is mostly depleted from volatile elements”
Ix “x is the result of a collision with a secondary body”

Then we can model the relevant background knowledge of Cameron and Ward.
The domain of the variables is the set of all natural satellites of our solar system.

1 �Om -;PREM ∅
2 �¬Fm -;PREM ∅
3 �V m -;PREM ∅
4 �Am -;PREM ∅
5 �(∀x)(Ix ⊃ Ax) -;PREM ∅

From these premises they could derive their new hypothesis.

6 ♦Im 4,5;RC {!Im . Am}

Note that if they would have tried to come up with one of the old hypotheses
by considering one of the implications �(∀x)(Hix ⊃ Ox) as an extra premise24

and abducing the corresponding hypothesis ♦Him, these hypotheses would have
been defeated. But, as we can see in the following extension of our proof, our new
hypothesis ♦Im actually predicts all the known (and previously problematic)
data about the Moon.

7 �(∀x)(Ix ⊃ Ox) -;PREM ∅
8 �(∀x)(Ix ⊃ ¬Fx) -;PREM ∅
9 �(∀x)(Ix ⊃ V x) -;PREM ∅
10 ♦Om 6,7;RU {!Im . Am}
11 ♦¬Fm 6,8;RU {!Im . Am}
12 ♦V m 6,9;RU {!Im . Am}

23New hypotheses can be found both via creative or non-creative abductive processes. As
stated in the introduction, this logic does not model creative abductions, which would imply
that the conditional used by Cameron and Ward would have been created. Instead, the new
hypothesis found by Cameron and Ward is obtained by selecting an existing conditional in
their background knowledge (“Collisions have an impact on the angular momentum in systems
of physical bodies”) and using it to abduce a new hypothesis for the origin of the moon.

24Although these three hypotheses are not able to explain the origin of the Moon, some of
them are leading hypotheses for other natural satellites in our solar system. See, for instance,
Canup and Ward (2002).
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Since the new hypothesis is at first sight corroborated by the known data,
Cameron and Ward (and other scientists in the field) can now go on and try
to justify or prove that this new hypothesis is the actual explanation for the
origin of the moon. This also nicely illustrates that it is not possible to sharply
distinguish between the context of discovery and the context of justification.25

There is already in the initial phase of hypothesis formation a justificational
aspect present (which we labeled here “corroboration with the known data”).26

That this modelling of their thought process can be assumed to be accurate
follows from the reflection upon their own thought process that Cameron and
Ward state in their conclusions.

We wish to emphasize that this picture follows as a logical conse-
quence of the process needed to provide the angular momentum of
the Earth-Moon system. (p. 121)

This conclusion is almost correct, it only omits their abductive move: only if
we take the increased angular momentum as a result of a collision, all the other
characteristics follow as deductive consequences. Their essential consideration
was that collisions are a well-known cause of changes in parameters of dynamic
systems.

Together with the independently proposed article by Hartmann (1975),27

these papers have led to a new successful hypothesis about the origin of the
Moon, which has been adopted as the “giant impact hypothesis” (Hartmann,
1986). Increased interest in this problem led to the 1984 conference on the origin
of the Moon in Kona. At the conference it became clear that a “major shift
of confidence has occurred among lunar scientists” towards the giant impact
hypothesis (Wood, 1986, p. 47). At present, this hypothesis is still the most
favorable hypothesis amongst lunar scientists (Belbruno and Gott III, 2005, p.
1), although one is still looking for more conclusive evidence by modelling this
impact with computer simulations.

7 Conclusions and Open Problems

In this paper, we presented the logic MLAs that enables us to model abductive
reasoning processes of scientists. Scientists are in general interested in the actual
explanation of the puzzling phenomena they investigate. This means that in the
case of multiple explanatory hypotheses, scientists will further investigate the
different hypotheses one by one. The logic MLAs provides this possibility
by allowing to derive – in a defeasible way – the different hypotheses. The
logic MLAs is a decent formal logic in every possible way. Since the logic
is formulated in the standard format of adaptive logics, this logic has a proof
theory and a semantics that is sound and complete with respect to it.

25As discussed and argued in, among others, Aliseda (2006).
26For an elaborate discussion on justification in scientific discovery, see Nickles (1980).
27This paper mostly explains that such collisions in the initial stadia of our solar system

were not as uncommon as thought.
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While this logic is apt to model actual abductive processes in science – as
our case study points out – several extensions can still enrich this logic. An
interesting addition would be that the logic could also handle explananda that
are contradictory to our existing background knowledge. Another extension
that comes to mind is the ability to handle a structured or layered background
knowledge. Finally, there is still a lot of work to be done on the heuristics
behind abductive reasoning. Is there a pattern in how scientists find relevant
conditionals?
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