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Abstract 
 

Mathematics education benefits from an integration of the history of mathematics within 
the mathematics curriculum. We provide three basic arguments for such integration. The 
first is epistemological and addresses a contextual view on mathematical knowledge. The 
second concerns the phylogenic aspects of  the development of mathematics. Conceptual 
difficulties with teaching children mathematics often correspond with historical periods 
of conceptual crisis in mathematics. A third, historical argument, draws on the vast 
repository of experience in mathematics education. We provide examples for each of 
these arguments from the history of algebra. 

Introduction 
 

[Most] problem situations occur in growing mathematical theories, where growing 
concepts are the vehicles of progress, where the most exciting  developments come from 
exploring the boundary regions of concepts, from stretching them, and from 
differentiating formerly undifferentiated concepts. In these growing theories intuition is 
inexperienced, it stumbles and errs. There is no theory which has not passed through such 
a period of growth; moreover, this period is the most exciting from the historical point of 
view and should be the most important from the teaching point of view. 

 
Imre Lakatos in Proofs and Refutations, (1976) p. 140. 

 
In this paper we argue for the integration of the history of mathematics in mathematics education. 
Our motive for the study of the emergence of symbolic algebra is mainly epistemological. How are 
concepts formed in mathematics? Which factors influence or change the meaning of concepts? Is 
there an internal logic and order in the development of mathematical concepts? What is the role of 
symbolism in mathematical knowledge? How did the exposition of algebraic knowledge evolve in 
textbooks? The answers to these questions have an impact on mathematics education. As we 
considered the history of mathematics as an empirical basis for epistemology so it is also a relevant 
for the teaching of mathematics. 
 
On first sight, arguing for the use of the history of mathematics may seem to be a redundant task. 
Official education plan for secondary education often define the role of the history of mathematics 
explicitly. One example from Belgium:2 
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Mathematics education is necessarily connected with other disciplines. Mathematics itself has 
developed through centuries in close connection with prevailing opinions and problems. Today, 
certain historical contexts still provide useful starting points to approach specific mathematical 
concepts and educational topics. The historical context shall therefore be integrated in our 
education plan. 

 
However, when looking for concrete guidelines of how to integrate the history of mathematics, the 
examples offered by the plan are disappointing. We only find generalities such as “an approach with 
examples from architecture and painting can illustrate the role of mathematics in the development 
of certain art forms” (ibid. p. 11) and “assignments can be given to research historical facts, such as 
an internet search for mathematicians, important mathematical theorems, mathematical illustrations 
and applications” (ibid. p. 28). The history of mathematics is forced into an illustrative role. History 
delivers the pictures for lighting up dreary textbooks, to force a connection with other disciplines, 
and to keep students busy between other assignments. An integrated view on mathematics 
education in which the history of mathematics has a methodological relevance is absent.  
We provide three basic arguments for the integration of the history of mathematics in mathematics 
education. The first is philosophical and addresses the epistemological status of mathematics. 
Mathematics is often wrongly considered as the outstanding example of a discipline providing 
absolute knowledge. The history of mathematics offers an excellent opportunity to impart a 
contextual approach to knowledge. The second we call the phylogenetic argument. Our conceptual 
study gave us an insight in the way algebraic concepts emerged and evolved through history. We 
believe this to be relevant for education. Periods of conceptual difficulties in history point to 
intrinsic epistemological difficulties with certain concepts. Such concepts require special attention 
in education. But possibly also the way concepts were established in history has its relevance for the 
method and order in which these concepts are taught to children. The third is a historical argument. 
The history of mathematics is at the same time a history of mathematics education. People have 
taught and learned mathematics since over 3000 years. A pluralism of historical frameworks and 
methods enriches the quality of education. 

The philosophical argument 3 

A contextual approach to rationality 
The adolescent’s notion of rationality often encompasses the epistemological view of mathematics 
as knowledge which offers absolute certainty. He probably has heard of a geometry in which the 
parallel postulate does not hold, but most likely believes that Euclidian geometry is the “real one”. 
We can assume that he is not familiar with Gödel’s theorems and undecidability. It is further 
unlikely that he has been taught about the existence of inconsistent arithmetic that performs finite 
calculations as correct as traditional arithmetic. These findings provide strong arguments against the 

                                                                                                                                                                  
2  Cited from the education plan of the first two years of secondary school used by Catholic schools in 

Belgium(2002), p. 29. However, the education plans of other schools and other countries employ very 
similar formulations: “Wiskundevorming staat niet los van die van de andere vakken. Wiskunde zelf is 
doorheen eeuwen ontwikkeld precies in samenhang met de opvattingen en de problemen van die tijd. Een 
aantal historische contexten bieden ook vandaag nog een zinvolle instap om bepaalde wiskundeproblemen 
en leeronderdelen aan te pakken. Daarom zal die historische context geïntegreerd worden in de aanpak”. 
Other representative descriptions are Calinger, 1996 and Fauvel and van Maanen, 2000 

3  For a more extensive argumentation, see Heeffer (2006b).  



  

  

view that mathematics offers absolute truth. The static and unalterable mode of presentation of 
concepts in the mathematics curriculum, rather than  lack of knowledge, contributes to this 
misconception. Mathematical concepts, even the most elementary ones, have changed completely 
and repeatedly over time. Major contributions to the development of mathematics have been 
possible only because of significant revisions and expansions of the scope and contents of the 
objects of mathematics. Yet, we do not find this reflected in class room teaching. While the room 
for integrating philosophy in mathematics education is very limited, an emphasis on the 
understanding of mathematical concepts is a necessary condition for a philosophical discourse about 
mathematics. The conceptual history of mathematics provides ample material for such focus and 
leads to a better understanding of mathematics and our knowledge of mathematics. We will argue 
for the integration of the history of mathematics within the mathematics curriculum, as a way to 
teach students about the evolution and context-dependency of human knowledge. Such a view 
agrees with the contextual approach to rationality as proposed by Batens (2004). We will draw 
some examples from the history of algebra. In line with Lakatos (1976) and Kitcher (1984) such 
example is motivated by the epistemological relevance of the history of mathematics. 

Absolute certainty in mathematics? 
 
Gentleman, that 1 0ie + = is surely true, but it is absolutely paradoxical; we cannot understand 
it, and we don’t know what it means, but we have proved it, and therefore we know it must be 
the truth. 

 
This well-known quote by Benjamin Peirce, after proving Euler’s identity in a lecture, reflects the 
predominant view of mathematicians before 1930, when mathematical truth equaled provability.4 
When Gödel proved that there are true statements in any consistent formal system that cannot be 
proved within that system, truth became peremptory decoupled of provability.  
However, Peirce seems to imply something stronger: proving things in mathematics leads us to the 
truth. This goes beyond an epistemological view point and is a metaphysical statement about 
existence of mathematical objects and their truth, independent of human knowledge. The great 
mathematician Hardy formulates it more strongly (Hardy 1929): 

 
It seems to me that no philosophy can possibly be sympathetic to a mathematician which does 
not admit, in one manner or another, the immutable and unconditional validity of mathematical 
truth. Mathematical theorems are true or false; their truth or falsity is absolute and independent 
of our knowledge of them. In some sense, mathematical truth is part of objective reality. 

 
Such statements are more than innocent metaphysical reflections open for discussion. They hide 
implicit values about the way mathematics develops and have important consequences for the 
education and research of mathematics. An objective reality implies the fixed and timeless nature of 
mathematical concepts. The history of mathematics provides evidence of the contrary. 
Mathematical concepts, even the most elementary ones, such as the concept of number, 
continuously change over time. The objects signified by the ancient Greek concept of arithmos 
differ from that of ‘number’ by Renaissance mathematicians, which in turn differs from our current 
view. One could object that not mathematics but our understanding of mathematical reality changes. 
However, Jacob Klein’s landmark study (1934-6) precisely focuses on the ontological shift in the 
number concept. In Greek arithmetic ‘one’ was not a number, later it was. After that, the root of two 
                                                 
4  Quoted in Kasner and Newman, 1940. 



  

  

was accepted as a number and by the end of the sixteenth century the root of minus fifteen became a 
number.  
Another implicit value hidden in the predominant view is the superiority of modern ideas over past 
ones, and possibly of Western concepts over non-Western ones. Again, the history of mathematics 
shows that mathematics always adapted to the needs of society. Mathematics was born in the fertile 
crescent, extending to the belt from North Africa to Asia, where wild seeds were large enough and 
mammals capable of employable domestication.5 Modern algebra fertilized in the mercantile 
context of merchants and craftsman of Renaissance Italy. Several important figures in the 
development of symbolic algebra wrote also on bookkeeping, as well as on algebra often in one and 
the same volume.6 If we accept that double-entry bookkeeping emerged in the fifteenth century as a 
result of the expanding commercial structures of sedentary merchant in Renaissance Italy, why not 
considering symbolic algebra within the same context? Ideas should be interpreted within the 
historical context in which they emerged and perhaps their superiority is dependent on the degree in 
which they were adapted to the needs of society.  
Finally, the idea of an objective reality of mathematical concepts evades the reality of conceptual 
problems in mathematics. Time and again there have been serious crises in the conceptual 
foundations of mathematics.7 There have been inconsistent theories, such as the early use of 
analysis, and set theory which have existed for several decades. It is precisely in times of crisis and 
conceptual difficulties that new ideas emerge and breakthroughs are made. According to Lakatos 
(1967, 140) such periods are “the most exciting from the historical point of view and should be the 
most important from the teaching point of view”. This brings us to our second argument. 

The phylogenetic argument 
The philosophical argument addresses the mode of presentation in of mathematics education as the 
absolute and eternal truth. Mathematics education is all too much focused on the presentation of the 
achievements, the established theories. But, as we have argued, new theories or new topics in 
mathematics are often preceded by a period of conceptual crisis, even inconsistencies. Sixteenth-
century algebra, seventeenth-century calculus and eighteenth-century function theory are some 
examples. Piaget and Garcia (1983) argue that the psychogenesis of concept development in 
children and adolescents may learn us about the development of concepts in the history of the 
mathematical sciences. We have critically assessed their approach in chapter 2. The phylogenetic 
argument goes in the reverse direction. The emergence and development of concepts in 
mathematics may provide us with insights into the way mathematical concepts are acquired by 
individuals in education. The phylogenetic argument advocates the use of history of mathematics in 
mathematics education from periods of conceptual disarray. History of mathematics has a double 
function in this respect. One addresses the teacher, the other, the student. One acts on a meta level, 
the other on the object level. We will discuss these two functions separately. 

                                                 
5  For an eye-opening study on the relation between these coincidental factors and the development of culture 

and thus mathematics see the excellent work of Jared Diamond (1996). 
6  Between 1494 and 1586: Luca Pacioli, Grammateus, Valentin Mennher, Elcius Mellema, Nicolas Petri and 

Simon Stevin. 
7  An important case study on crisis in mathematics is Carl Boyer (1959), The History of the Calculus and Its 

Conceptual Development. As the title suggests Boyer concentrates on the conceptual difficulties in 
developing the modern ideas of the calculus. 



  

  

On the meta level 
The conceptual history of mathematics allows teachers to understand why certain concepts are 
difficult for students to understand. It has taken the geometers and natural philosophers centuries to 
get a grasp on the concept of continuity in mathematics which suggests that the concept is 
challenging for adolescents as well. The study of the conceptual development of mathematical 
concepts will serve the teacher to relate the students’ difficulties in understanding with conceptual 
difficulties in the history of mathematics. Placing the students’ recurring errors and mistakes in 
mathematical practice within the broader context of conceptual development raises teaching to the 
epistemological level. Mistakes can be expected when there are intrinsic conceptual difficulties with 
the methods for solving the problem.  
Let us look at an example related to the history of symbolic algebra: negative solutions of algebraic 
problems. We have elsewhere argued against the interpretation of negative solutions of two 
accounts on the history of subject by Sesiano (1985) and Gericke (1996) (Heeffer 2006b). Algebraic 
practice of solving linear problems has lead repeatedly to situations in which one arrives at “a 
negative value”. Before the sixteenth century, such solutions were consistently called ‘absurd’ or 
‘impossible’. The abacus master, convinced of the correctness of his algebraic derivations, could 
interpret the negative value in some contexts as a debt. This does not imply that he accepted the 
solution as a negative value. At the contrary, by interpreting the solution as a debt, he removed the 
negative. Only from the beginning of the sixteenth century do we see the first step towards negative 
values, in the form of algebraic terms affected by a negative sign. The fact that negative solutions 
were considered absurd for several centuries of algebraic practice is of significance to the teaching 
of algebra. Being aware that negative solutions formed a conceptual barrier for the Renaissance 
habit of mind, prepares teachers for potential difficulties in the teaching of the concept.  
 
Antoine Arnauld, who wrote an important philosophical work known as The Logic of Port-Royal 
(Arnauld, 1662), also published a Geometry (Arnauld, 1667). In the book he includes an example of 
symbolic rules that he considers to be against our basic intuitions on magnitudes and proportions. 
His reasoning goes as follows. Suppose we have two numbers, a larger and a smaller one. The 
proportion of the larger to the smaller one should evidently be larger than the proportion of the 
smaller to the larger one. But if we use 1 as the larger number and – 1 as the smaller one this would 
lead to  
 

1 1
1 1

−
>

−
 

 
which is against the rules of algebra. Witnessing the multiple instances in which this discussion 
turns up during the seventeenth century, the clash between symbolic reasoning and classic 
proportion theory, taught within the quadrivium, was experienced as problematic. Also Leibniz 
found it important enough to write an article about (Leibniz, 1712, 167). He acknowledges the 
problem as a genuine one, but states that the division should be performed as a symbolic 
calculation, the same way as we do with imaginary numbers. Indeed, when blindly applying the 
rules of signs there is no problem at all. When dividing a positive number by a negative one, the 
result is negative, and dividing a negative number by a positive one, the result is also negative. 
Therefore   
 

1 1
1 1

−
=

−
 



  

  

 
The discussion was not closed by Leibniz. Several eighteenth-century authors return to the question. 
E.g. Rolle (1690, 14-22), Newton (1707, 3), Maclaurin (1748, 6-7) and d’Alembert (1751-81).  
 
As it was a source of controversy and discussion in the seventeenth and eighteenth century, it 
should come as no surprise that it raises questions and difficulties in the classroom. A conceptual 
history of mathematics can prepare teachers for such difficulties and show them that such questions 
must be taken seriously. It may show also that certain didactic approaches have their potential trap 
falls. The use of the number line in teaching negative numbers is in direct conflict with d’Alembert 
who argues that most of the difficulties with Arnauld’s identity arise from viewing negative 
numbers as smaller than zero (Diderot and d’Alembert 1780, XXII, 289). Furthermore, we have 
elsewhere demonstrated that the negation sign was introduced within an algebraic context that 
functioned as a precondition for the acceptance of negative numbers (Heeffer 2006a). Current 
education plans in Belgium prescribe the introduction of negative numbers in the first year of 
secondary education, separate from algebra.8 Knowing the historical context of the introduction of 
the negation sign, would teachers and decision makers in education account for the conceptual 
chronology? 

On the object level 
Those involved with the daily teaching of mathematics can generally be convinced of the relevance 
of the history of mathematics on the epistemological level. However, it is difficult to persuade them 
of the importance of integrating the history of mathematics in mathematics education. Two 
arguments are commonly used against such a proposal. Firstly, the curriculum is overloaded and no 
subject matter can be added. Secondly, teachers are afraid of confusing students. If these historical 
discussions were perplexing for philosophers such as Arnauld and Leibniz, why trying to teach 
these to students? It is strenuous enough to teach students the proper meaning of mathematical 
concepts, why bother with the historical difficulties of arriving at these concepts. Let us address 
these two concerns. Firstly, we are not arguing to add the history of mathematics to the mathematics 
curriculum. Instead we advocate an integrated approach in which the history of mathematics is 
employed for explaining certain concepts. In as far as concepts are approached in mathematical 
school books, the explanation is limited to definitions, symbols and formulas. Secondly, an 
explanation of conceptual difficulties does not need to confuse students. In the same way that 
conceptual difficulties were overcome in history can the historical discussions clarify students’ 
difficulties in classroom practice.  

Three thousand years of mathematics education 
Every attempt to explain mathematical theorems or procedures contributes to mathematics 
education. Mathematics education is as old as mathematics itself. This long experience in teaching 
and explaining mathematics can be brought to use in twenty first-century mathematics education in 
two ways.  
 
Every reflection on the epistemology of mathematics or the nature of mathematical methods has its 
direct consequences on mathematics education. Chapter nine of the fourth book of La logique, ou, 

                                                 
8  Tellingly, the teaching of addition of negative numbers is no longer allowed in basic education in Belgium. 

Negative numbers can only be used in “concrete situations”. The examples provided are the floors of a 
building and temperature.   



  

  

L'art de penser (Arnauld and Nicole, 1662; 1996, 306-12) deals with methods in the Art of thinking. 
Arnauld lists six basic mistakes made by geometers in explaining their discipline: 
 

1. to be more concerned with certainty than with obviousness and more trying to convince that 
to enlighten the mind 

2. proving things that do not need a proof 
3. proving by the impossible (i.e. by contradiction) 
4. demonstrations drawn by too elaborate ways 
5. ignoring the true order of nature 
6. failing to make use of divisions and partitions 

 
With the exception of the last, each of these principles touches the foundations of the mathematical 
method. At the same time, these are the basic questions about the methodology of mathematics 
education. Let us look at the fifth only. Arnauld, having written a basic Geometry himself (Arnauld, 
1667), stresses the importance of following a natural order of explanation. An exposition should 
start from the simplest and most general concepts moving to the more complex and particular ones. 
He criticizes Euclid’s Elements for failing to follow such basic principle and provides several 
examples of concepts introduced in the wrong order.9 Indeed, the order of explanation from the 
Euclidean axiomatic method may not be the best order to teach geometry to children. Also, different 
axiomatizations lead to different approaches in teaching geometry. van der Waerden, who received 
great recognition as a pedagogue of mathematics, wrote an elementary geometry accounting for 
historical developments as well as different axiomatizations (van der Waerden, 1937). He rejects 
the axiomatization of Hilbert (1899) and adopts one based on congruence axioms because of its 
didactic superiority. Undoubtedly, the order in which concepts are explained have important 
didactic consequences. Through its ontogenesis, history of mathematics itself proposes one order of 
explanation, but the history of mathematics education provides many alternatives.  
  
Another argument for drawing material from the history of teaching mathematics is that of the 
plurality of methods. Mathematics in secondary education is taught at heterogeneous groups. They 
can broadly be divided into the strong, the weak and the average. The best students will usually be 
able to master the material taught by any method, so this group is neglected. Methods directed to 
students with serious difficulties are often not adequate for others, hence is neither this group the 
focus of attention. Mathematics education is therefore methodologically directed towards the 
average student. An approach to improve on such situation, which has found some recognition 
during the past years, is to employ a plurality of methods. A new concept, method or theorem, 
explained in multiple ways is more likely to reach a broader range of students. Evidently, there are 
more differentiations between students than in our threefold, somewhat cynical, characterization. 
Some students have difficulties with purely symbolic accounts of mathematics. Others are weak in 
spatial representations. Still others need numerical examples to be able to grasp abstract relations 

                                                 
9  Arnauld and Nicole (1996, 306-12): “Les éléments d’Euclide sont tout pleins de ce défaut. Après avoir 

traité de l’étendue dans les quatre premiers livres, il traite généralement des proportions de toutes sortes de 
grandeurs dans le cinquième. Il reprend l’étendue dans le sixième, et traite des nombres dans les septième, 
huitième et neuvième, pour recommencer au dixième à parler de l’étendue. Voilà pour le désordre général; 
mais il est rempli d’une infinité d'autres particuliers. Il commence le premier livre par la construction 
d'un triangle équilatère; et vingt-deux propositions après, il donne le moyen général de faire tout triangle 
de trois lignes droites données, pourvu que les deux soient plus grandes qu’une seule; ce qui emporte la 
construction particulière d’un triangle équilatère sur une ligne donnée”. 



  

  

and functions. Teaching concepts by a plurality of methods levels out these difficulties. The history 
of mathematics provides a vast repository of alternative cases, representations and methods. 
Previous chapters contain many examples of alternative methods to the strictly symbolic approach 
of teaching algebra. For example, for the quadratic equation we discussed several alternative 
approaches: the Babylonian cut-and-paste method (Høyrup 2002), the Arabic proof of completing 
the square (Rosen 1831) and the Hindu methods. We could add the discussion of multiple roots to 
the quadratic equation and the Arabic system of five rules for quadratic equations as useful material 
for further elaboration. Similar comments can be made for the concept of equations and the role of 
multiple unknowns. Luis Radford (1995, 1996, 1997) has demonstrated how material from the 
abacus tradition can contribute to a better didactic understanding of the use of multiple unknowns. 
We further maintain that the inventiveness of the abacus masters in solving difficult arithmetical 
problems can successfully be applied in teaching and practicing algebraic problem solving. 
Allowing students to compare their own approach and problem solution methods with alternative 
ones from the abacus tradition can induce interesting results. The thousands of word problems to be 
found in the existing corpus of algebra textbooks and manuscripts provide ample opportunities to 
enrich and empower the teaching of algebra and illustrate the plurality of methods and the dynamics 
of concepts in mathematics.  
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