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Abstract

The transition from a theory that turned out trivial to a consistent
replacement need not proceed in terms of inconsistencies, which are nega-
tion gluts. Logics that tolerate gluts or gaps (or both) with respect to
any logical symbol may serve as the lower limit for adaptive logics that
assign a minimally abnormal consequence set to a given premise set. The
same obtains for logics that tolerate a combination of kinds of gluts and
gaps. This result runs counter to the obsession with inconsistency that
classical logicians and paraconsistent logicians share.

All such basic logics will be systematically reviewed, some variants
will be outlined, and the claim will be argued for. While those logics
tolerate gluts and gaps with respect to logical symbols, ambiguity logic
tolerates ambiguities in non-logical symbols. Moreover, forms of toler-
ance may be combined, with zero logic as an extreme.

In the baffling plethora of corrective adaptive logics (roads from triv-
ial theories to consistent replacements), adaptive zero logic turns out
theoretically interesting as well as practically useful. On the one hand
all meaning becomes contingent, depending on the premise set. On the
other hand, precisely adaptive zero logic provides one with an excellent
analyzing instrument. For example it enables one to figure out which
corrective adaptive logics lead, for a specific trivial theory, to a suitable
and interesting minimally abnormal consequence set.

1 Introduction

Inconsistency-adaptive logics were devised for a specific purpose. Consider
a theory T = (I', CL), in which T is a set of non-logical axioms and CL is
Classical Logic. From the fact that the second element of T' is CL we know that
the theory is or was meant and believed to be consistent. Suppose, however,
that an inconsistency is derived from I'; whence T is trivial. Suppose moreover
that 7' is an actual historical theory, that it was considered respectable in view
of its nice applications, and that the removal of the triviality is not obvious.
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In this case, one will want to reason from T in view of applications and also
in order to find a consistent alternative to 7. What one will want to reason
from is T in its full richness, except for the pernicious consequences of its
inconsistency—see already [9]. This entity will obviously be inconsistent, but it
will be as consistent as possible and hence not trivial.! Inconsistency-adaptive
logics offer a minimally inconsistent ‘interpretation’ of theories in that they
localize and isolate the inconsistencies within their consequence set. From this
‘interpretation’; one will later try to remove the inconsistencies.

Already in [13] I complained that both classical logicians and paraconsistent
logicians are obsessed by inconsistency. The former take inconsistency, on the
one hand, as beyond the limit of coherent thinking and, on the other hand,
as the criterion of all correct derivation (I' - A iff I' U {—A} is inconsistent).
Paraconsistent logicians see only one remedy for avoiding triviality: allowing
for true inconsistencies. Whenever a theory turns out to have no CL-models,
both kinds of logicians analyse the situation as follows: for some formula A,
the theory requires that both A and —A are true.

This analysis, which classical logicians and paraconsistent logicians agree
upon, is mistaken because very different approaches are possible. This is a first
reason to read this paper. I shall show in Section 3 that many premise sets
that have no CL-models have not only paraconsistent models but other models
as well. Paraconsistent models leave room for inconsistencies, which may be
considered as negation gluts—a precise definition follows in Section 3. Other
non-classical models leave room for negation gaps, or for other kinds of gluts
or gaps.

Rephrased in terms of logics, there are logics that are exactly like CL,
except in that they leave room for gluts or gaps (or both) with respect to a
logical symbol. Moreover, every combination of (zero or more) kinds of gluts
and (zero or more) kinds of gaps characterizes a similar logic. I mean this
literally. Even the combination of all kinds of gluts and gaps defines a logic,
which will be called CLo. It is a terrifyingly weak logic, but nevertheless a logic.
Each logic that leaves room for gluts or gaps, however weak the logic be, may
function as the lower limit logic of an adaptive logic. Each such adaptive logic
offers a minimally abnormal interpretation for some premise sets. For people
not familiar with adaptive logics: the lower limit logic leaves room for certain
kinds of abnormalities and the adaptive logic (set theoretically) minimizes the
number of abnormalities that are considered as true.

Apart from all this, each of these adaptive logics has a number of variants
and some of them may be combined along different combination schemata.

The adaptive logic CLo™ is interesting for theoretical reasons and this
is a second reason to read this paper. Although no logical symbol has any
meaning in the lower limit logic CLo, CLo™ delivers a minimally abnormal
interpretation of a premise set—of each premise set actually. So this means that
meaning of all logical symbols is contingent in CLo™. To be more precise, the
meaning of the logical symbols depends on the premise set, on the sentences
that make it up—the precise meaning of the sentences becomes known by
applying the adaptive logic.

LIf even this entity were trivial, T cannot have been meant as consistent.



While CLo assigns no meaning to any logical symbol, it leaves the non-
logical symbols unaffected. Not all logics, however, do so. An example is
ambiguity logic, which will be presented in Section 5. According to ambiguity
logic different occurrences of the same non-logical symbol may have different
meanings. Again, adaptive ambiguity logic minimizes ambiguities.

This leads to the fascinating adaptive zero logic, CL@™, which is a third
reason to read this paper. The lower limit logic leaves room for all considered
abnormalities: all kinds of gluts and gaps and non-logical symbols of which
the different occurrences have different meanings. According to the lower limit
logic, no formula is derivable from any premise set—mnot even the premises
themselves.? Adaptive zero logic minimizes the abnormalities. The relation
with a formal hermeneutics is striking.

For all adaptive logics mentioned so far, the following holds. If a premise
set I' has CL-models, which comes to saying that it is consistent, then the
adaptive logics assign to I' exactly the same consequence set as CL. The
fascinating part, however, concerns the case where I" has no CL-models. When
that obtains, the considered adaptive logics fall into two categories with respect
to a given I'. Adaptive logics of the first (possibly empty) category assign the
trivial consequence set to I', just as CL does. These logics are not suitable
for application to I' (in view of the aim described in the first paragraph of this
section). The logics in the second category assign to I' a non-trivial consequence
set. These sets are minimally abnormal ‘interpretations’ of I and are, for nearly
every I', different from each other.

When this situation first became known, it was felt to cause a puzzle: How
could one possibly justify the choice for one or a few adaptive logics from
this plethora?” There may be extra-logical reasons to opt for one or more
abnormalities. Also, adaptive logics that assign the trivial consequence set to
I' are not suitable for I'. Yet, for most I' a large number of adaptive logics
will not be ruled out by these considerations. A related puzzle is that CLQ™
may be theoretically interesting but seems rather pointless from a practical
point of view. Indeed, to most premise sets, CLQ™ assigns only a few adaptive
consequences, most of them disjuncts, sometimes very long disjuncts. So CLQ™
assigns in a sense a minimally abnormal ‘interpretation’ to premise sets, but
this interpretation is mostly a very weak one—the example proof from I'y in
Section 4 illustrates this.

These two puzzles were solved and that is a fourth reason to continue read-
ing. We shall see that CL@" offers an analysis that provides an overview of
the consequences that are delivered by the different adaptive logics considered
in this paper. Such an overview is obviously extremely useful, were it only be-
cause it informs us what we are choosing from. Moreover, CLO™ serves other
purposes as well. (i) In a sense, which will be specified below, it informs one
about the consequences of the different choices. Some choices require only one
kind of abnormalities (ambiguities or a kind of gluts or a kind of gaps); on
some choices the set of ambiguities is numerically or set theoretically smaller
than on others; some choices involve a stronger consequence set than others;

2This is an extreme logic, but still a logic: it assigns a unique consequence set of every
premise set. It is extreme in assigning the same consequence set, viz. (), to every premise set.



some choices cause certain key formulas (selected by extra-logical preferences)
to belong to the consequence set; and so on. (ii) CL()™ is also the ideal environ-
ment for conjectures. The advantage of conjectures is that they are introduced
in a defeasible way—conjectures cannot cause triviality—and with a certain
priority—some conjectures have precedence over others. In principle a conjec-
ture concerns a single abnormality. However, one may introduce an infinity of
conjectures of the same logical form, viz. the form of a specific abnormality.
Proceeding thus one obtains the same effect as by opting for a richer adaptive
logic, except that the latter option may result in triviality while conjectures
don’t, irrespective of their number.

A fifth reason for reading this paper concerns a side effect. The paper
implicitly presents a method to turn indeterministic semantic systems into
deterministic ones in such a way that the two semantic systems are strongly
equivalent (validate the same inferences). The idea was first applied in [11], but
the many applications in the present paper will readily reveal the underlying
method.

Making this paper self-contained from a technical point of view would re-
quire too many pages. For this reason, I shall make the paper self-contained
in informal terms. This will suit most readers because they will understand
the paper without wading through all the technicalities. Those who want to
understand the latter are referred to [17] or to the survey section of one of
the recent papers on adaptive logics, for example [18, 19, 20, 21, 24, 25, 27].
An aim of adaptive logicians is to characterize all defeasible reasoning by an
adaptive logic, possibly under a translation. All logics in the present paper are
corrective—roughly: weaker then CL—while other adaptive logics are amplia-
tive.

2 Some Preliminaries

Let L4 be the language schema of CL, with S the set of sentential letters, P the
set of predicative letters or rank r for any r € {1,2,...}, C the set of individual
constants, and V the set of individual variables. Let Lg be obtained from
L, by adding, for every logical symbol, a ‘checked’ variant: =,V, ..., 3,=. The
checked symbols occur in all considered logics and the logics are defined in such
a way that a checked symbol has always the meaning that the standard symbol
has in CL. From now on the checked symbols will be called classical symbols.
Premise sets and conclusions will always be formulas of L4, but the classical
symbols will very often facilitate technicalities. A simplistic illustration is that,
however defective the standard symbols that occur in A and B, a model that
verifies A A =B verifies A and falsifies B.

When describing semantic systems (and only there) I shall use pseudo-
languages Lo—giving them all the same name is harmless for present purposes.
A model M = (D,v), in which D is a set (the domain), will be described in
terms of the language Lo which is just like £g except that it also has a set
of pseudo-constants which has the same cardinality as D. 1 write “pseudo-
constants” and “pseudo-language” because their set of pseudo-constants may be
uncountable whereas the symbols of a language are required to be denumerable.



Describing an uncountable model in terms of a pseudo-language is not worse
than any other description; the description needs anyway to quantify over the
members of the uncountable domain.

The sets of the open and closed formulas of the three languages will be
called Fg, Fg, and Fo. The sets of the closed formulas of the three languages
will be called Wy, Wg, and Wp.3

Where L is a logic and T' a set of formulas, Cny,(I') = {A | T+ A}. The
relevant language will always be clear from the context.

For future reference I list an axiom system and a semantics for CL in a style
that will be most useful in Section 3. The expressions I' ¢y, A and Fop, A are
defined as usual for L.

ADl AD(BDA)

AD2 (A>D(BD>C)D((ADB)D(ADC())
A>3 (A>DB)DA)DA

ANl (AAB)D A

AN2 (AANB)DB

AN AD(BD(AAB))

Avl A>(AVB)

Av2 BD>(AVB)

Av3 (ADC)D>((BDC)D((AvB)D> ()
A=1 (A=B)D>(ADB)

A=2 (A=B)D>(BDA)

A=3 (ADB)D((BD>A)D(A=DB))

A-1 (AD-A)D-A

A-2 AD(-ADDB)

AY  VaA(a) D A(B)

A3 A(B) D FaA(a)

A=l a=a

A=2 o =§5 (A(a) D A(B))

MP  From A and A D B to derive B

RV  To derive - A D VaB(«a) from - A D B(f), provided /5 does not occur
in either A or B(«).

R3  To derive - 3aA(a) D B from = A(B) D B, provided /5 does not occur
in either A(«) or B.

The semantics proceeds in terms of L». The assignment maps the members
of We (rather than sentential letters only) on {0,1}—this has only an effect
for the semantic systems in Section 3. Where M = (D,v) is a model, the
assignment function v is defined by:*

C1 v: Wo — {0, 1}
C2 v:CUO = D (where D = {v(a) |a € CUO})
C3 v:P" = (D)

3To avoid complications, well-formedness is defined in such a way that no classical symbol
occurs within the scope of a standard symbol.

4By the restriction in C2, the couple (D, v) is not a CL-model if D # {v(a) | o € CUO}.
In C3, p(D") is the power set of the r-th Cartesian product of D.



The valuation function vp: Weo — {0, 1} determined by M is defined by:

Cs where A € S, vy (A) =1iff v(4) =1
cpr UM(ﬂ' ay...ap) =1iff (v(ag),...,v(ar)) € v(n")

C=  wnlo=F) = 1 iff o(a) = v(§)

C- Mm(mA) =1iff vy (A) =0

Co M(ADB)=1iff vpr(A) =0o0r vy(B)=1

CA UM(A/\ B)=1iff vy (A) =1 and vy (B) =1

Cv M(AV B)=1iff vp(A) =1orvy(B)=1

C= (AEB)—IIH ’UM(A)Z’UM(B)

OV war(YaA(a)) = Liff {un(A(B) | B € CUO) = {1}
C3 v (BaA(a)) =1if 1 € {oy(A(B)) | €CUO}

M- A (M verifies A) iff vps(A) = 1. The expressions I' For, A and Feor A
are defined as usual for W;,.
An adaptive logic, AL, in standard format is a triple:

1. A lower limit logic LLL: roughly a compact Tarski logic that has a
characteristic semantics and contains CL (in terms of the classical logical
symbols).

2. A set of abnormalities §): a set of LLL-contingent formulas, characterized
by a (possibly restricted) logical form F; or a union of such sets.®

3. An adaptive strategy: Reliability or Minimal Abnormality.

The lower limit logic delineates the non-defeasible part of the adaptive logic;
what follows from the premises by LLL will never be revoked. Abnormalities
are supposed to be false, ‘unless and until proven otherwise’. Strategies are
ways to cope with derivable Dab-formulas (classical disjunctions of abnormali-
ties). I shall mainly consider Minimal Abnormality in this paper, offering the
definitions for Reliability without much discussion. The upper limit logic ULL
(in the present paper always CL) is obtained by extending LLL with an axiom
that declares all abnormalities false (i.e. engender triviality).

In expressions like Dab(A), A is a finite subset of 2 and Dab(A) is the clas-
sical disjunction of the members of A. If Dab(A) is a Dab-consequence of T'; it
is minimal iff T' ¥rrr Dab(A’) for any A" € A. Where Dab(A1), Dab(As),
are the minimal Dab-consequences of I, ®(I") is the set of minimal choice sets
of ¥ = {A1, A, ... }—every choice set contains an element of each A,.

The lines of an annotated AL-proof have four elements: a line number, a
formula, a justification (at most referring to preceding lines) and a condition.
Where

A A

5A logical form may be identified with a metalinguistic expression. The set {A A B |
A, B € Ws} is defined in terms of an unrestricted logical form, whereas {AAB | A,B € S} is
defined in terms of a restricted logical form—A and B should be sentential letters. That  is
characterized by a logical form warrants that the adaptive logic is a formal logic. Compare to
the formula preferential systems from [6]. Incidentally, all formula preferential systems were
characterized by adaptive logics under a translation, whereas the converse characterization
seems impossible.




abbreviates that A occurs in the proof as the formula of a line that has A as
its condition, the (generic) inference rules are:

PREM IfAel:

RU If Al,...,An FLLL B: A1 Al
An  Ap

B AJU...UA,

RC If Al, ey An }_LLL B \7 Dab(@) A1 Al

B AjU...UA,UB

Every application of a rule brings a proof to its next stage. While the
rules are determined by the lower limit logic and the set of abnormalities, the
strategy determines which lines are marked at a stage. The formula of a line
that is marked at stage s is considered as not derived at s.

Where Dab(Ay), ..., Dab(A,) are the minimal Dab-formulas that occur in
stage s of a proof from I", ®4(T") is the set of minimal choice sets of {Aq,..., A, }
and Us(T') = A1U...UA,,. Where A is derived on the condition A at line [, line
1 is unmarked for Minimal Abnormality at stage s iff (i) there is a ¢ € ®4(T")
for which o N A = @ and (ii) for every ¢ € ®4(I"), there is a line at which A
is derived on a condition © for which ¢ N © = (). The marking definition for
Reliability is much simpler. Where A is derived on the condition A at line [,
line [ is marked for Reliability iff U,(T') U A # (.

A formula A is derived at stage s of a proof from I iff it is the formula of a
line that is unmarked at s. As marks may come and go, one also wants a stable
notion of derivability, which is called final derivability. A is finally derived from
I at line [ of a stage s iff (i) A is the second element of [, (ii) [ is unmarked at
s, and (iii) every extension of s in which [ is marked may be further extended
in such a way that line / is unmarked.® T' Fayp, A (A is finally AL-derivable
from I') iff A is finally derived on a line of a proof from T'.

The (adequate) semantics for an adaptive logic is obtained as follows. A
LLL-model M of T" is minimally abnormal iff no LLL-model of I" verifies set-
theoretically less abnormalities than M. Where the adaptive logic AL™ has
Minimal Abnormality as its strategy, I' Fap= A iff A is verified by all minimally
abnormal models of T'. Let U(T") be the set of all abnormalities that are verified
by a minimal abnormal model of I A LLL-model M of I is reliable iff it
verifies no other abnormalities than those in U(I'). Where the adaptive logic
AL" has Reliability as its strategy, I' Farr A iff A is verified by all reliable
models of T'.

6See [19] for an attractive game-theoretic interpretation of this definition.
7U(T") is usually defined without referring to minimal abnormal models, as may be seen
for example from [17]. Here, however, I try to be as concise as possible.



3 Not Only Inconsistency-Adaptive Logics

The CL-clause for negation may be seen as consisting of the consistency re-
quirement
if UM(A) =1 then U]VI(ﬁA) =0

which rules out negation gluts—for some A, both A and —A are true—and the
(negation-)completeness requirement

if vpr(A) =0 then vy (—A4) =1

which rules out negation gaps—for some A, both A and —A are false. Both
classical logicians and paraconsistent logicians concentrate only on negation
gluts. Classical logicians identify the triviality of a theory with the presence
of negation gluts, whereas paraconsistent logicians stress that some theories
display negation gluts without being trivial.

Consider the set {p, ~——p}. According to the paraconsistent logic® CLuN,
this set has three kinds of models: (i) those in which p, —p, and ———p are
true and ——p is false, (ii) those in which p, =—p, and ———p are true and —p is
false, and (iii) those in which p, —p, =—p, and ———p are all true. If, however,
negation gaps are logically possible, then models of {p, ~——p} will verify p as
well as —=——p and falsify —p as well as =—p. So the premise set has models
with negation gluts (and without negation gaps) and it also has models with
negation gaps and without negation gluts.

The logic which is a ‘counterpart’ of CLulN but leaves room for negation
gaps rather than negation gluts will be called CLalN—it is just like CL except
that it tolerates gaps with respect to megation. Its indeterministic seman-
tics is obviously obtained by dropping the negation-completeness requirement
from the CL-semantics. Its deterministic semantics and axiomatization will be
spelled out below. Please check: all CLaN-models of {—p,q D p,~q D p,r D p}
verify =p, —p, ©¢q, ©—¢q, and —r; some verify —r whereas others falsify it.

Consider a theory T that had CL as its underlying logic but turns out to
be trivial. Suppose moreover that T has CLalN-models and hence that one
may remove its triviality by replacing the underlying logic CL by CLaN. The
result, call it 77, is a negation-incomplete theory. By the same reasoning as for
inconsistent theories, T is too weak in comparison to what T was intended to
be. Indeed, CLaNN invalidates all rules that depend on negation-completeness,
whereas a number of applications of those rules may very well be unproblematic
in view of the premises. So what we need this time is ‘I in its full richness, ex-
cept for the pernicious consequences of its negation-incompleteness’—compare
Section 1. In other words we want to interpret the negation-incomplete T” as
negation-complete as possible; we want to minimize the negation gaps. To do
so, we go adaptive.

Going adaptive requires, according to the standard format, a lower limit
logic, a set of abnormalities, and a strategy. The lower limit logic is obviously

8CLuN is defined below in the text, axiomatically as well as semantically. For now, take
the example in the text at face value: CLulN is a paraconsistent logic that validates neither
direction of Double Negation.



CLaN and the strategy is Minimal Abnormality or Reliability. What is the
set of abnormalities? Clearly we want AV = A to be true unless the premises
require it to be false. However, the set of abnormalities should comprise the
formulas that will be considered as false unless the premises require them to
be true. The presence of the classical logical symbols enables one to express
this: the abnormalities will be the formulas of the form =(AV —A).

If we need to use classical logical symbols anyway, there is a more transpar-
ent way to characterize the abnormalities. Consider a CLalN-model in which
both A and —A are false. Instead of saying that the model verifies =(AV —A),
we may just as well say that it verifies A A =—A. In CLaN, the standard
conjunction has the same meaning as the classical conjunction. To use the
classical conjunction in the present context will prove very handy in the sequel
of this section.

The formula <A A <= A nicely expresses what we mean by an abnormality
in the present context: A is false in the model and —A is also false in it. And
there is another suggestive reading: the model verifies <A but falsifies —A.
This clearly expresses a negation gap: the classical negation of A is verified
but the standard negation of A is not. So the standard negation displays a gap.
Of course, abnormalities have to be existentially closed for the predicative level.
So we define Q = {I(AA=—-A) | A € F.}.

It is instructive to check what becomes of the CLuN-abnormalities if the
same transformation is applied to them. In earlier papers, the set of CLulN-
abnormalities was defined as Q = {3(A A —A) | A € Fs}. It is just as good to
define it as Q = {I(==A A -A) | A € F,}. The form of these abnormalities
clearly indicates a negation glut. Applied to models: the model falsifies the
classical negation of A but nevertheless verifies the standard negation.

Let me reassure the suspicious reader that one obtains the same logics
CLuN" and CLuN" if one defines Q = {3(==AA-A) | A € F,}. For example
whenever a model verifies 3(%=A A =A) for some A, it verifies 3(A A —A) for
the same A; and wvice versa. Whenever the first formula is derivable from a
premise set for an A, so is the second formula for that A; and vice versa. The
original formulation has the advantage that abnormalities are expressed in the
standard language. What is attractive about the reformulation, however, is
that it gives us a unified way to characterize negation gluts and negation gaps
and that this characterization is transparent. Moreover, this approach may be
generalized to all logical symbols.

Consider another example, the premise set {p,q,—(p A q)}. At first sight,
handling this set seems to require a logic that leaves room for inconsistencies
(negation gluts). But consider a logic that rules out negation gaps but not
conjunction gaps: if the classical conjunction of A and B is true, their standard
conjunction may nevertheless be false. So the abnormalities will have the form
3((AA B)A=(AA B)). Some such models verify p and ¢, and hence also p A g,
but falsify p A g, in which case they verify =(p A q) as well as (as there are no
negation gaps) —(p A ¢). In other words, the premise set {p,q,~(p A q)} does
not require paraconsistent models. It has just as well models in logics that
leave room for conjunction gaps, even in those that forbid all other gluts and

gaps.



Some premise sets are even more amusing, for example {p, r, ~gV-r, (pAr) D
q}, which has no CL-models. It has models if one leaves room for negation
gluts, but also if one leaves room for conjunction gaps, or for disjunction gluts,
or for implication gluts. In general, for every gap or glut with respect to any
logical symbol, there are premise sets that have no CL-models but have models
in the logic that tolerates just such gluts or gaps.

I claimed that classical logicians and paraconsistent logicians are obsessed
by negation gluts. There is an easy historical explanation for this: all gluts and
gaps surface as inconsistencies if CL is applied to the premise set. Thus, if CL
is applied to {p, ~——p}, one obtains the inconsistencies p A —=p and —p A ——p
(as well as all others of course). Similarly if CL is applied to {p,q,—~(p A q)}.
The situation is the same for any other glut or gap: an inconsistency surfaces
when one applies CL.

That all gluts and gaps surface as inconsistencies makes it understandable
why there was and is ample interest in paraconsistent logics, but much less
in logics that display other kinds of gluts or gaps. Nevertheless, it seems to
me that it is a mistake to concentrate on consistency only. Remember that
the plot behind inconsistency-adaptive logics was to localize and isolate the
problems displayed by a theory or premise set and to do so in order to remove
those problems. Inconsistency-adaptive logics always identify disjunctions of
inconsistencies as the problems. Suppose one chooses a logic L that leaves room
for other kinds of gluts or gaps and that one applies an adaptive logic that has
L as its lower limit. Other formulas may then be identified as the problems
and often there is some choice, as in the case of {p,r,—~qV -, (p A q) D q}.
Although Dab-formulas will be derivable for every choice, the Dab-formulas will
be different. So different problems have to be resolved if one wants to regain
consistency, whence different consistent alternatives are suggested. From a
purely logical point of view, it is sensible to consider all possibilities. Some
choices of gluts or gaps may cause less ‘problems’ than others or may cause
problems that are easier to solve. Moreover, there may be extra-logical reasons
to prefer certain consistent alternatives over others.

I shall now describe the basic logics that leave room for gluts or gaps in
comparison to CL. Combinations of different kinds of gluts or gaps will be
considered thereafter, but it is easier to mention the combination of gluts and
gaps of the same kind from the very beginning.

Let us devise the basic logics in a systematic way. All clauses of the CL-
semantics concern a ‘basic form’: schematic letters for sentences, primitive
predicative expressions, and the forms characterized by a metalinguistic for-
mula that contains precisely one logical symbol, identity included. Each of
these clauses may be split into two implicative clauses. For formulas A of the
considered basic form, one implicative clause states that vy (A) = 1 if a certain
condition obtains, the other that vy (A) = 0 if another condition obtains.

A logic L tolerates gluts with respect to a basic form A iff there are L-
models M such that vpr(A) = 1 for a formula A of the form A while other
properties of M are sufficient for vps(A) = 0 according to the CL-semantics.
A logic L tolerates gaps with respect to a basic form iff the same obtains with
vpm(A) =1 and vps(A) = 0 exchanged.

10



Consider first gluts for a particular logical form A. Each of the logics de-
scribed below leaves room for a single kind of gluts and for no gaps. The
indeterministic semantics is obtained by removing from the CL-semantics the
implicative clause that has vy (A) = 0 as its implicatum. In order to illustrate
the naming scheme, I shall list all glut variants, including gluts for sentential
letters and for primitive predicative expressions.” In view of what precedes,
the names of the logics are self-explanatory, except perhaps the use of “M”
for material implication—I need the “I” for identity—and the use of “X”, the
second letter of “existential’—I need the “E” for equivalence.

logic removed implicative clause

CLuS | where A€ S, if v(A) =0 then vy (A) =0

CLuP | if (v(a1),...,v(a)) ¢ v(7") then vpr(n"ay ... ap) =0
CLul | if v(a) # v(B) then vy (a=p8) =0

CLuN | if vpr(A) =1 then vy (-A4) =0

CLuM | if vpr(A) =1 and vpr(B) =0, then vp(AD B) =0
CLuC | if vpr(A) =0 or vy (B) =0, then vy (AAB) =0
CLuD | if vpr(A) =0 and vp(B) =0, then vy (AV B) =0
CLuE | if vpr(A) # vp(B), then vy (A= B) =0

CLuU | if {vpm(A(B)) | B € CUO} # {1}, then vy (VaA(a)) =
CLuX | if 1 ¢ {vpm(A(B)) | B € CUO}, then vy (FaA(a)) = ()

Each of these logics has a deterministic semantics. In it, the logical term
tolerating gluts is characterized by a clause of the form ”vp(A) = 1 iff [con-
dition]”. The condition is obtained from the CL-semantics by disjoining the
condition of the standard clause with the correct reference to the assignment
value: “v(A) =17 for the right A. T again list all the logics.

logic replacing clause

CLuS | where Ae S, vpy(A)=1iff v(A)=1orv(4)=1
CLuP | vy(n"oq...qp) =1iff

(w(a),...,v(ap)) €v(m”) or v(n"ay ... ) =1

CLul | vy(a=p8)=1iff v(a) =v(B) or v(a=p5)=1

CLuN | vy (mA) =1iff vy (A) =0o0r v(-A4) =1

CLuM | vy (AD B) =11iff (vp(A)=0o0r vy(B)=1)orv(ADB) =1
CLuC | vy (AAB)=1iff (vy(A) =1and vy (B)=1) or v(AAB) =
CLuD | vy (AvB)=1iff vy (A)=1orwvy(B)=1orv(AV B) =
CLuE |vy(A=DB)=1if vy (A)=vy(B)orv(A=B)=1

CLuU UM(VaA
)| BeCUO} ={1} or v(VaA(a)) =
CLuX UM(HaA )=1iff

1e{vm(A(B)) | B €CUO} or v(FaA(a)) =

All other clauses of the CL-semantics are obviously retained.

The indeterministic semantics defines the same logic as the deterministic
semantics. I skip the long but transparent proof that, for every model M of
one semantics, there is a model of the other semantics that verifies exactly the
same formulas as M.

9These cause trouble on which I shall comment later in the text.
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Nearly all glut-logics have nice adequate axiomatizations in Wy. For CLuC,
for example, it is sufficient to remove from the axiom system of CL the axioms
AAL and AA2, and to attach to A=2 the restriction that A(a) be a primitive
formula of Ws. However, as the reader will have seen, this way of proceeding
gets us into trouble when we come to implication gluts,'® whether separate or
in combination with other gluts and gaps.

A different road is possible, and it is instructive. Consider the axiom system
of CL, replace in every axiom and rule every standard symbol by the corre-
sponding classical symbol, and attach to axiom schema A=2 the restriction
that A does not contain standard logical symbols (but only classical symbols).
Call this axiom system CLC.'"' Next add, for every logical symbol, the axiom
that gives the standard symbol the same meaning as the classical symbol—
example: A = S A. So all standard symbols have their CL-meaning in CLC.
To obtain an axiomatic system that leaves room for gluts with respect to a
specific logical form A, remove the relevant equivalence and replace it by a
glut-tolerating implication. I do not list all of them as they are all similar.
Gluts with respect to sentential letters and primitive predicative formulas will
be commented upon below.

logic axiom
CLul |a=fD>a=§
CLuN | “A 5 -4

CLuX | JaA(a) D 3aA(a)

So the matter is utterly simple. As the standard symbol may display gluts,
the formula containing the standard symbol is logically implied by the formula
containing the corresponding classical symbol, but not wvice versa.

Note the direct relation between the implicative glut-tolerating axiom and
the relevant retained clause in the indeterministic semantics. Just as CLul
contains the axiom o = § D a = 8 and not its converse, the indeterministic
CLul-semantics contains the clause “if v(a) = v(8) then vy (o = 8) = 17.
Note that the antecedent of the clause, v(a) = v(f), is the semantic definition
of the antecedent of the axiom, a = S.

As T promised, I now comment on the logics CLuS and CLuP. No ax-
iomatic system for CLuS is mentioned in the previous paragraphs. There is
no need to do so, as it is obvious from the deterministic semantics that CLuS
is identical to CL. So I shall never refer to it again by the name CLuS.

For CLuP the matter is more complicated. Again, no axiomatic system
for it is presented in the previous paragraphs. CLuP has decent axiomati-
zations, but its peculiarities are incompatible with CLC. To see this, it is
sufficient to realize that vy (7" ... a;) may be 1 because v(n" ;... ;) =1,
even if (v(aq),...,v(a,)) ¢ v(7"). So if v(ay) = v(B), it is possible that

107f the implication is not classical, the resulting axiom system does not correctly define
the other logical symbols.

1 This is an axiom system for CL. The restriction on A=2 causes no weakening because
one may derive the original version of A=2 for all formulas that do not contain standard
logical symbols..

12



oy (" Bag . .. a.) = 0 whereas vy (7 s ... ) = 1. Tt follows that classical
identity does not have the right meaning because Replacement of Identicals is
invalid. In other words, CLuP is an odd logic that does not extend CLC. No
adaptive logic in standard format can be built on CLuP.!?

We are done with the basic logics for gluts and move on to logics in which
one kind of gaps is logically possible. All these logics will have a lower case
“a”, referring to the possibility of gaps, where their glut-counterparts have a
lower case “u”. By now, I suppose that the reader understood the plot and skip
most of the logics. Comments on gaps for sentential letters and for primitive
predicative expressions follow below.

logic removed implicative clause

CLaS | where A€ S, if v(A) =1 then vy (A) =1

CLaP | if (v(a1),...,v(a)) € v(n") then vy (7" ... o) =1
CLal | if v(a) = v(B) then vy (a=p5) =1

CLaN | if vpr(A) = 0 then vy (—A) =1

C.LaX if.l € {vm(A(B)) | B € CUO}, then vy (3aA(w)) =1

Each of these logics has a deterministic semantics, which requires a clause
of the form ”wvpr(A) = 1 iff [condition]”. This clause is obtained from the CL-
semantics by conjoining the condition of the standard clause with the correct
reference to the assignment value: “v(A) =1".

logic replacing clause

CLaS | where A€ S, vy (A) =1iff v(4d) =1and v(4) =1
CLaP | vy (7"aq ...cn) = 1iff

(w(aa),...,v(ay)) € v(n”) and v(7"y ... ) =1
CLal | vy(a=p)=1iff v(a)=v(p) and v(a=0) =1
CLaN | vp(—A) =1iff vp(A) =0 and v(—A) =1

CLaX | vp(G0A(a)) = 1 iff
1e{vm(A(B)) | €CUO} and v(FaA(a)) =1

As for the glut-variants, all other clauses of the CL-semantics are retained.

The way in which gluts and gaps are realized is fully transparent. In the case
of gluts, the classical condition is sufficient but not necessary for vy (A) = 1;
in the case of gaps, the classical condition is necessary but not sufficient for
vpm(A) = 1. So in both cases we may restore an equivalence by taking the
‘arbitrary’ missing element from the assignment. By doing so, the model (in
the strict sense) determines the valuation function.

For the axiomatization, I shall again follow the road taken for the glut-
allowing logics. Here are the axioms.

12The attentive reader may have remarked that variants for CLuS and CLuP may be
devised in which one explicitly distinguishes between the classical meaning of sentential
letters and predicates, denoted for example as p and Pa, and the standard meaning of such
entities, denoted by p and Pa. On the semantics, p = p and Pa D Pa are valid, but not the
converse of the latter. I shall not pursue this road here in view of the result from Section 5.

13



logic axiom
CLal |a=f8D>a=p
CLaN | A D =A

CLaX | JaA(a) D 3aA(a)

Again, the matter is utterly simple. As the standard symbol may display
gaps (and no gluts), the formula containing the classical symbol is logically
implied by the formula containing the corresponding standard symbol, but
not wvice versa. Again, all logical symbols for which no gaps are permitted
are characterized by an axiom stating that a formula containing the standard
symbol is classically equivalent to the corresponding expression containing the
classical symbol.

Some will find the classical contraposition of the axioms more transparent,
for example <« = 8 D =« = § for CLal. This also illustrates the direct
connection between the axiom and the corresponding retained clause of the
indeterministic semantics.

I still have to comment upon CLaS and CLaP. No axiomatic system for
CLaS is provided above, and rightly so as it is obvious from the deterministic
semantics that CLaS is identical to CL. So I shall no more use the name
CLaS.

The logic CLaP is identical to CLuP and displays the same oddities. I
shall not refer to it in the sequel because this logic cannot function as the lower
limit of an adaptive logic in standard format.

Let us now move to the case where gluts and gaps for the same logical form
are combined. The names of the logics contain a lower case “0” to indicate
that both gluts and gaps are possible. For the indeterministic semantics, one
removes both the clause preventing gluts and the clause preventing gaps. This
means that one removes the CL-clause altogether.

logic removed implicative clauses
CLoS | where A € S, if v(A) =0 then vy (A) =0
where A € S, if v(A) =1 then vy (A) =1
CLoP | if (v(a1),...,v(ar)) ¢ v(n") then vpy(7"ay ... ) =0
if (v(an),...,v(ap)) € v(n") then vy (770 ... ) =1
CLol | if v(a) # v(B) then vp(a =) =0
if v(a) =v(B) then vy (a=6) =1
CLoN | if vps(A) =1 then vy (—mA) =0
A) =0 then vp(-A4) =1

if Um

CLoX | if 1 ¢ {va(A(B)) | B €CUOY, then vy (3ad(a)) = 0
if 1 € {vm(A(B)) | B € CUO}, then vy (FaA(a)) =1

The deterministic semantics is also simple: the value of composing entities
play no role whatsoever.
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logic replacing clause

CLoS | where A € S, vp(A) = v(A)
CLoP | vy (" ...ap) =v(m"aq ... )
CLol | vy(a=p)=v(a=p)

CLoN | vy (—A) = v(—A)

CLoX | va(3aA(a)) = v(3aA(a))

The way to obtain the axiomatic system corresponds closely to the indeter-
ministic semantics: one removes the axiom concerning the symbol, for example
a =0 =a = for CLol. As a result, the standard identity does not occur
in any axiom of CLol, while all other standard symbols are identified with
their classical counterparts. The logic CLoS is again identical to CL, whereas
CLoP is the same logic as CLuP and CLaP.

Incidentally, many of the logics from this section and from the next are
extensions of CL. In many of those logics, some standard symbols have the
same meaning as the corresponding CL-symbols and other CL-symbols may be
defined. This is fairly obvious for most of the logics. Slightly unexpected might
be that ~A =4 A D —A defines classical negation within CLaN, CLaNs,
and other logics in which implication gluts as well as negation gluts are logical
falsehoods—in those logics A D =A+ A D SA.

It is obviously possible to formulate logics that tolerate a combination
of gluts and gaps for different symbols. We may form names for such log-
ics by combining the qualifications that appear in the already used names.
Thus negation gluts, negation gaps, and implication gaps are logically possi-
ble in CLoNaM. To obtain, for example, the indeterministic semantics of
CLoNaM, remove both implicative clauses on negation, as it was done for
CLoN, and moreover remove the clause that prevents implication gaps. To
obtain the deterministic semantics, one starts, for example, from the semantics
for CLoN and replaces the implication clause by the implication clause from
the CLaM-semantics. Similarly for the axiomatic systems.

There are logics that tolerate any combination of gluts and gaps. Among
them, there is a logic that tolerates all kinds of gluts and gaps. Let us call it
CLo. In this logic, no standard symbol is given a meaning. So if I' C W,
then Cncro(I') N W, = T'.13 All this will seem of little interest, unless one
remembers the reason to consider all these logics, which is to let them function
as the lower limit of an adaptive logic. So let us have a look at the adaptive
logics.

As announced, I shall disregard the logics that (attempt to) display gluts
or gaps with respect to sentential letters or primitive predicative expressions.
For the other logics, the matter is simple. I have already described the lower
limits. To obtain adaptive logics in standard format, we need to combine those
with either Reliability or Minimal Abnormality as well as with the right set of

BBIn CL infinitely (but denumerably) many logical symbols can be defined. These too
have obviously no meaning in CLo as described above. Nothing unexpected and nothing
interesting seems to happen if some or all of those symbols are added to £s. Where changes
are required, they are as expected.
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abnormalities. So all I have to describe are the sets of abnormalities and it was
outlined before in which way these are obtained. Typically, every kind of gluts
or gaps requires a specific set of abnormalities. Let us first look at gluts.

LLL set of abnormalities €2

CLul | {3(ca=Aa=8)]a,feCUV}
CLuN | {3(==AA-A) | Ac F}

CLuM | {3(=(AD> B)A(AD B))| A, B € F.}

CLuX {3(=3aA(a) AJaA(a)) | A e F.}

And here are the adaptive logics allowing for one kind of gaps.

LLL set of abnormalities )

CLal | {3(a=BAxa=08)|a,BeCUV}
CLaN | {3(=AA=-A) | Ac F.}

CLaM | {3(AD> B)A=(ADB))| A Be F,}

CLaX | {3(3aA(a) A =Fad(a)) | A € F.)

If the lower limit logic leaves room for gluts as well as gaps with respect to
the same logical symbol, the appropriate set of abnormalities is the union of
two sets of abnormalities: that of the corresponding logic tolerating gluts and
that of the corresponding logic tolerating gaps. Thus the appropriate set of
abnormalities for CLol is Q = {3(=a = BAa=8)|a,B € CUVIU{F(a =
BA=a =) |«a,B € CUV} and the appropriate set of abnormalities for CLoX
is {3(=FaA(a) AJaA(a)) | A€ FYU{IBaA(a) A =FaA(a)) | A€ F.}.

Handling logics that combine gluts or gaps for different logical symbols
is just as easy. The appropriate set of abnormalities is the union of the sets
that contain those gluts and gaps. Thus the appropriate set of abnormalities for
CLoNaM is Q = {3(==A4A-A) | A € F,JU{I(=AA=-A) | A € FIU{3((AD
B)A=(ADB))| A,B e Fs}.

The appropriate set of abnormalities for CLo is obviously the union of all
sets of abnormalities mentioned (explicitly or implicitly) in the two preceding
tables. Incidentally, one may also use this union as the set of abnormalities
of all corrective adaptive logics considered so far in this section. Some CLo-
abnormalities are logically impossible for certain lower limit logics, but these
have no effect on the adaptive logic anyway.'4

Let me summarize. In this section, the basic logics for handling gluts and
gaps with respect to one logical symbol were defined, together with all logics
that combine those gluts and gaps. For each of these logics, there is an ‘appro-
priate set’ of abnormalities. Combining such a logic with the appropriate set of
abnormalities and with the Reliability or Minimal Abnormality strategy results
in an adaptive logic in standard format. Note that CLuN™ and CLuN" are
such adaptive logics. There are many more and in view of the obvious naming

M Consider the adaptive logic CLoC™ and let B be an implication glut. So I' FcLoc =B
for all I". Tt follows that I' Foroc AV Dab(A) iff T Foroc AV Dab(A) V B.
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schema, it is at once clear what is meant by CLal”, CLoNaM™, or CLo".
These logics may be used as such, but may also serve other functions, as we
shall see in the next section.

4 Variants and Combinations

This section contains further comments on the adaptive logics presented in the
previous section. Three topics will be considered: (i) variants of the lower limit
logics, (ii) choosing among the adaptive logics from the previous section for
handling a given premise set, and (iii) combining the adaptive logics. Some of
the comments remain sketchy because to describe them in more detail seems
pointless. Either the matter is obvious, or the elaboration does not seem to
engender any really new features.

The first topic concerns variants on the glut-logics and gap-logics. Three
kinds of variants will be briefly considered. A first type concerns the rule
of Replacement of Identicals. With the obvious exception of CL, no logic
presented in the previous section validates this rule. However, all those logics
have variants that validate Replacement of Identicals and leave the meaning of
all other logical symbols unchanged. Several ways to do so are applied in [23]
and in [48].15

A very different kind of enrichment is related to the reduction of complex
expressions containing gappy or glutty symbols to simpler such expressions.
The paraconsistent logic CLulN, for example, may be extended to CLulNs
by adding double negation, de Morgan properties, and other axioms or rules
that drive negations inside.'® It can be shown that CLuNs is maximally
paraconsistent (no paraconsistent logics are strictly stronger than CLuNs and
strictly weaker than CL). Exactly the same axioms or rules cause a similar
effect if one extends CLalN or CLoN. It is not difficult to find similar axiom
schemas, and semantic clauses, for other logical symbols. Take implication.
Among the obvious candidates, in which I use at once classical logical symbols
for the sake of generality, are such equivalences as ((AV B) D C) = ((A D
C)A(BD(O)),(ANB)DC)=((ADC)V (B D()), and so on. There is no
need to spell all this out here.

The third kind of variants is analogous to the enrichment discussed in Sec-
tion 5 of [21]. Where for example CLuN is the lower limit, the idea is to con-
sider not only (i) (pV ¢) A—=(pV ¢) as an abnormality, but also (ii) p A —=(pV q)
and (iii) ¢ A =(p V q). A premise set may CLulN-entail (i) but neither (ii) nor
(iii); and it may CLuN-entail (ii) but not (iii), or vice versa. The insight leads
to a combined adaptive logic that drastically enriches CLulN™ consequence
sets. Technically, we need a ‘specifying part’ relation (p and g are specifying
parts of p V ¢). This can easily be adjusted for other gluts or gaps. Where,

15The central point of the last paper is that all those logics can be faithfully embedded in
CL, a fact which has dramatic consequences for the application of partial decision methods.

16CLuNs is, under sundry names, the most popular paraconsistent logic. To the best of
my knowledge, the propositional version appears first in [42]. Further useful references to
studies of CLuNs and of its fragments are [1, 2, 3, 8, 23, 28, 31, 32, 33, 34, 35, 36, 39, 43].
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for example, the lower limit logic is CLuM, p D g will be a specifying part of
(pAT)Dq.

Let us move to the second topic: choosing among the adaptive logics from
the previous section for handling a given premise set. I have commented upon
this choice in the previous section. Here, my main aim is to show that the
CLo™-proofs may help one to pick the right choice. Let us consider a simple
example: T'y = {p,r,—qV —r,(p Ar) D q,~pV s}. I introduce the classical
symbols step by step in order to make the proof fully transparent.

1 p Premise 0
2 r Premise 0
3 —qV-or Premise 1]
4 (pAr)Dgq Premise )
5 -—pVs Premise 1]
6 —qV-r 3; RC {5(=gV —r)A (—qV-r)} v
7 =-r 2; RC {==r A -} Ve
8 g 6, 7; RU {=(=gV —r) A (~qV —r),==r A-r} 10
9 -—pVs 5; RC {=(-pVs)A(-pVs)}
10 =-p I; RC {==p A -p}
11 s 9,10; RU {=(-pVs)A(-pVs), " pA-p}
12 pAr 1, 2; RC {pAr)A=s(pAr)} v
13 (pAr)Dq 4 RC {(=((pAT) D) AllpAT) D q)} Vi
4 q 12,13; RU - {=((pAr) D) A((pAT) D q),
(pAr)A=(pAr)} Ve
15 =gq 8; RC {=(—=qV =r) A (=g V =), ==r A -,
==q A —q} v
16 (S((pAr) D) AllpAT) D)V (PAT)AS(pAT)V
(5(=q V =r) A(=gV =r)) V (551 A =r) V(55 A —q)

14,15, RD 0

The proof is constructed in such a way that a single abnormality is added to
the condition of every line at which RC is applied. These abnormalities are
a disjunction glut at lines 6 and 9, a negation glut at lines 7, 10 and 15, a
conjunction gap at line 12, and an implication glut at line 13. At line 16 I use
the derived rule RD.

The example proof provides us with an analysis of the situation. It reveals
which gluts and gaps have to be ruled out, globally or locally, in order to obtain
certain consequences. By choosing a lower limit which is stronger than CLo
together with the associated set of abnormalities one obtains a stronger final
consequence set. The Dab-formula 16 is obtained because the occurrence of
q and ¢ triggers RD. The Dab-formula indicates which gluts and gaps are
unavoidable. So it indicates which lower limit logics are not viable choices.

The above CLo™-proof is easily transformed to a proof in terms of any of
the stronger adaptive logics referred to in the previous paragraph. To illustrate
this, and to illustrate at once the point from the previous paragraph, consider
first the familiar adaptive logic CLulN™. The difference between the CLo™-
proof and the CLuN™-proof is simply that all abnormalities that are not
CLuN™-abnormalities are removed from the conditions of the lines and hence
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also from the only Dab-formula derived in the proof. Here is the so obtained
proof.

1 p Premise 0

2 7 Premise U

3 —qV-or Premise ]

4 (pAr)Dyg Premise 0

5 -—pVs Premise 0

6 —qV-r 3: RU 0

7T Sor 2; RC {==r A —r} 1o
8 g 6, 7; RU {==r A-r} V16
9 -—pVs 5: RU 0

10 =—p 1; RC {==p A -p}

11 s 9,10; RU  {==pA —p}

12 pAr 1,2; RU U

13 (pAT)Dgq 4; RU 0

14 q 12, 13; RU 0

15 =g 8; RC {==r A-r,~=qA-qt v
16 (=>rA-r)V(55¢A-g) 14,15, RD 0

It is useful to compare the present proof with the preceding one. To maximally
retain the parallelism, I did not remove the lines at which classical disjunction
and classical implication are introduced. These are useless but cause no harm.
Apart from the announced deletion of certain formulas from the conditions
and the Dab-formula, the only change is that RC is replaced by RU where
the inference step does not depend on a CLuN"™-abnormality. Note that the
occurrence of a classical contradiction still leads to the Dab-formula 16.

There is a gain in the last example proof in comparison to the CLo™-proof:
q is finally derivable. It is easy enough to choose an adaptive logic from the
previous section that provides us with the opposite gain: that —q as well as
=g are finally derivable. Moreover, the CLo™-proof shows us the way. One
possibility is to allow only for conjunction gaps, in other words, to choose the
adaptive logic CLaC™. The proof then goes as follows.

1 P Premise 0
2 7 Premise 0
3 —qV-or Premise 0
4 (pAr)Dyg Premise 0
5 -—pVs Premise 0
6 —qV-r 3; RU 0
7 == 2; RU 0
8  —g 6, :RU 0
9 —pVs 5; RU 0
10 =—p 1; RU 0
11 s 9,10; RU 0
12 pAr 1, 2; RC {(pAr)A=(pAr) v1'©
13 (pAT)Dyg 4; RU 0
14 q 12,13; RU  {(pAr)A=s(pAr)} '°
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15 =gq 8; RU 0
16 (pAr)As(pAr) 14,15 RD 0

Nearly the same effect is obtained by choosing CLuM™, which allows only for
implication gluts. In that proof, =((p Ar) D ¢) A ((p Ar) D q) is the formula
of line 16 and the singleton comprising this formula is the condition of lines 13
and 14, whence these lines are marked.

What happens if one chooses the adaptive logic CLalN™? All conditions
become empty, so ¢ and =¢q are derived unconditionally. While transforming
the CLo™-proof, the formula of line 16 is turned into the empty string. What
this means is that we have to delete the line because RD cannot be applied.
Moreover, as we derived a classical inconsistency, ¢ and =¢, and we derived it
on the empty condition, we obtain triviality. In other words CLaN"™ is not
a suitable adaptive logic for the present premise set in view of the projected
goal, which is to obtain a minimally abnormal ‘interpretation’ of I';.

In the CLulN"™-proof, ¢ is unconditionally derived. This is also the case if
one chooses the logic CLuD™, which tolerates disjunction gluts only. More-
over, the CLo™-proof reveals that this is a secure choice. Indeed, allowing for
disjunction gluts causes =g not to be a final consequence of the premise set. So
this avoids triviality.

By now the reader should be convinced that CLo™-proofs offer an instru-
ment for obtaining minimally abnormal interpretations of premise sets.!” If
no Dab-formulas are derived in the CLo™-proof, the premise set is apparently
normal.'® If that is so, its interpretation in terms of CL is normal. If Dab-
formulas are derived, a minimally abnormal interpretation of the premises is
obtained if the premise set is closed under an adaptive logic from the previous
section that fulfils two properties: (i) no Dab-formula derived by RD is turned
into the empty string, and (ii) every otherwise derived Dab-formula counts at
least one disjunct that is an abnormality of the chosen logic.'® Recall that
some of the lower limit logics combine different gluts and gaps. The matter
is completely straightforward. We can read off the minimally abnormal inter-
pretations from the CLo™-proof. In sum, constructing proofs in CLo™ (or
CLo0") offers an analysis that allows one to decide which adaptive logics from
the previous section may be applied to handle a given premise set, and which
may not because they assign a trivial consequence set to the premise set. The
analysis also reveals which adaptive logics offer a richer consequence set than
others.

The logic CLo™ is interesting in itself for a theoretical reason. Indeed,
in this logic, the meaning of all standard logical symbols is contingent: the
meaning of an occurrence of a standard symbol—no other symbol should occur
in the premises or in the (main) conclusion—depends fully on the premise set.

17Not all of them, of course, because there are variants of the lower limit logics—they
were briefly surveyed in the text of the present section. Yet, whatever the number of (kinds
of) gluts and gaps they tolerate, the logics from Section 3 do not spread abnormalities but
maximally isolate them—this property of CLulN was already discussed in [9].

181 write “apparently” because the judgement concerns only the present stage of the CLo™-
proof.

191f these conditions are not fulfilled, the premise set is trivial according to the chosen
adaptive logic.
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To put it in a pompous way: CLo™ provides one with a formal hermeneutics—
but see Section 6 for a more impressive result in this respect.

The story does not end here. Until now I have considered logics from the
previous section and have illustrated the way in which they lead to different
non-trivial but inconsistent ‘interpretations’ of an inconsistent theory. How-
ever, the logics from the previous section may, in a specific sense, also be
combined. I shall illustrate that this leads to further non-trivial but inconsis-
tent ‘interpretations’ of an inconsistent theory. This approach requires some
clarification before we start.

Consider the premise set I's = {p,r,(pV q) D s,(pVt) D -r,(pAr) D
=8, (p A s) D t}. I shall not write out the CLo™-proof, but if one writes it
out, one readily sees that I's can be interpreted non-trivially by allowing for
disjunction gaps as well as for conjunction gaps. The CLo™-proof moreover
reveals that it may be interesting to first eliminate the disjunction gaps and
next the conjunction gaps, something which typically may be realized by a
combined adaptive logic. The question is what this combined logic precisely
looks like.

The simplest combination, Cncpacn(Cncrap=(I'2)), does not have the
desired effect—I skip a technical detail on superpositions because it is irrel-
evant for the point I want to make. One the one hand, every conjunction
of members of Cncrap=(I'2) is itself a member of that set because the stan-
dard conjunction behaves like the classical conjunction in CLaD. So clos-
ing Cncrap=(I'2) under CLaC™ does not add any conjunctions. On the
other hand, the standard disjunction behaves like the classical disjunction
in CLaC. This means that if A € T and hence A € Cncrap~(I'2), then
AV B € CneLacm(Cncrapn (I'2)) for every B. This may very well cause triv-
iality. The reader may easily verify this by reinterpreting the subsequent proof
from I'y as a proof for Cneracn (Cnorap=(I'2)).2°

What we need is rather obvious. We want to superimpose two simple adap-
tive logics that leave room for disjunction gaps as well as for conjunction gaps,
but we want first to minimize the set of disjunction gaps and only thereafter
the set of conjunction gaps. So, following the naming scheme from the previ-
ous section, we first need an adaptive logic composed of the lower limit logic
CLaDaC, the set of abnormalities Q = {3((AV B)A=(AV B)) | A, B € F.}),
comprising the disjunction gaps, and say Minimal Abnormality. One might
call this logic CLaDaC/,—the subscript refers to the kind of abnormalities
that is minimized (here disjunction gaps). Next, we want to close the conse-
quence set of this logic by an adaptive logic composed of the lower limit logic
CLaDaC, the set of abnormalities Q = {3((AA B)A=(AAB)) | A, B € F,},
comprising the conjunction gaps, and Minimal Abnormality. One might call
this logic CLaDaC/..

Let us move to a proof from I's in this combined logic. All logical symbols
have their classical meaning with the exception of disjunction and conjunction.
The reader should be informed that, in this specific combined logic, the first

20The disjunction p V t is CLaC-derivable from p and hence is derivable on the empty
condition in the so reinterpreted proof. But then so are both r and —r, whence triviality
results.
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round of marking proceeds in terms of the minimal Dab-formulas that have
disjunction gaps as their disjuncts and are derived on the empty condition,
whereas the second round proceeds in terms of the minimal Dab-formulas that
have conjunction gaps as their disjuncts and are derived at an unmarked line
the condition of which may contain disjunction gaps but no conjunction gaps.
I try to make the proof more transparent for the reader by first deriving the
required disjunctions, applying CLaDaC,, and only thereafter deriving the
required conjunctions by applying CLaDaC!,. The distinction between the
two conditional rules is self-explanatory.

1 p Premise 1]

2 r Premise 0

3 (pvgDs Premise ()

4 (pvit)D-r Premise

5 (pAr)D-s Premise

6 (pAs)Dt Premise 0

7 pVg 1; RC1 {eVa AslpVa)}

8 s 3, RU {(pVa)A=pVa)}

9 pvVt 1; RC1 {(pVit)As(pVi)} Ve
10 —-r 4,9;RU  {(pVt)A=(pVi)} Ve
11 (pVt)A=(pVvi) 2,10;RD 0

12 pAr 1,2, RC2 {(pAr)A=(pAr)} i
13 —s 5 12; RU {(pAr)A=(pAr)} v
14 (pAr)A=s(pAr) 813, RD {(pVg A=(pVa}

15 pAs 1,8 RC2 {(pVag)A=(pVa),pAs)A=(pAs)}

16 ¢ 6, 15, RU  {(pVq) A=(pVaq),(pAs)A=(pAs)}

On line 14, the general form of rule RD is applied. The set of consequences of
the combined logic can be ‘summarized’ as {p,r,s,t,=(p Ar),=(pV t)}. Note
that I write classical negation in the abnormalities in the proof to be coherent
with the rest of this paper, but that the standard negation has the same mean-
ing. The same result cannot be obtained by any of the logics described in the
previous section.?!

There may be specific logical or extra-logical reasons to prefer a combined
adaptive logic or another of the aforementioned logics to obtain a minimally
abnormal ‘interpretation’ of I's; or there may be reasons to consider the ‘in-
terpretation’ as a sensible alternative. As mentioned before, such reasons may
become apparent in view of a CLo"™-proof from I's. The choices considered for
I'; were extended with the choice of an order in which the abnormalities are
minimized.

The upper limit logic of all simple adaptive logics presented in this paper
is CL. So these logics, and all the combined adaptive logics built from them,
assign the same consequence set as CL to all premise sets that have CL-models.
While this is an interesting feature in itself, the interest of the diversity of the
logics lies with premise sets that have no CL-models.

211ine 14 witnesses that (pAr) A=(pAr))V ((pV q) A=(pV q)) is derivable on the empty
condition from I';. With respect to the superposition, it shows that (p Ar) A=(pAr)isaa
final CLaDaC7,-consequence of I'.

22



5 Ambiguity-Adaptive Logics

In [46], Guido Vanackere presented the first ambiguity-adaptive logic. The
underlying idea is simple but ingenious. The inconsistency of a text may de-
rive from the ambiguity of its non-logical symbols. To take these possible
ambiguities into account, one indexes all occurrences of non-logical symbols.
This roughly means that every occurrence receives a different superscript and
that symbols with a different index are considered as different. An ambiguity-
adaptive logic interprets a set of premises as unambiguous as possible. It pre-
supposes that two non-logical symbols that differ only in their index have the
same meaning unless and until proven otherwise.

While the idea is simple and attractive, elaborating the technical details
requires hard work. Most published papers on ambiguity-adaptive logics evade
some unsolved problems. There is a reason why the matter is confusing. The
languages underlying ambiguity-adaptive logics may serve diverse, unexpected,
and attractive purposes. All purposes require a monotonic logic that is close
to CL, but many purposes demand that the logic deviate from CL in one or
other detail, and each purpose requires a different deviation. I now spell out a
systematic and sensible variant of ambiguity logic.

In the language L, the sets of schematic letters?? for non-logical symbols
are S, C, V, and P" (for each rank r € N). Let us replace each of these sets
with a set of indexed letters: S = SU{\' | A € S;i € N}, and similarly for
¢!, V!, and P!, The resulting sets are obviously denumerable. From these
sets we define a language LI, with F! as its set of formulas and W/ as its set
of closed formulas. The language £! is exactly as one expects, except that the
quantifiers still range over the variables of Ls. The reason for this convention
will be explained later on.

Next, we define a logic CLI over this language. The logic is almost identical
to CL, except for the way in which quantified formulas are handled. To phrase
the semantics, we need to add an indexed set O of pseudo-constants, which is
defined from O in the same way as C! is defined from C. The resulting pseudo-
language Lé has VV(I9 as its set of closed formulas. A CLI-model M = (D, v),
in which D is a set and v is an assignment function. The function v is like for
CL, except that it now interprets the indexed sets.

Cl1 v: W} —{0,1}
C2 v:CfuO! - D (where D= {v(a) |acClUO})
C3 v: Pl — (D)

The valuation function vy: W, — {0,1} determined by M is defined by the
following clauses: C—, CD, CA, CV, and C= from the CL-semantics plus:

CST  where A € 8%, vy (A) = 1iff v(A4) =1
CPl where 7" € Pl and oy ..., € CTU O,

opm (o . oap) = 1 (v(ag), ..., v(ay)) € v(7")
C= where o, 3 € CTUO!, vpr(a = B) = 1iff v(a) = v(B)

22The name “letter” is slightly misleading. Most schematic letters are actually strings
composed from a finite sequence of symbols.
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ovl oy (VaA(adr, .. ain)) = 1iff {vp(A(B,...,B87)) | B € CUO} =

{1}
C3I' vy (FaA(ahr, ... o)) =1iff 1 € {vp (A(B™,...,B5")) | BECUO}

M IF A iff vy (A) =1, which defines Fcpy A as well as T Ecpr A.

The clauses CV and C3 deserve some clarification. Note that the quantifiers
range over a variable o and that the a% are indexed occurrences of this variable
in A. Thus M I+ Vz(Plaz! D Q'2?) holds iff M I Pla! D Q'a? holds for all
a € CUQO. Similarly, M I 3z(Plzt A Q'2?) holds iff M IF Pla! A Q*a? holds
for some o € CUO.

The behaviour of the quantifiers causes a connection between variables that
differ only from each other in their index, because the same quantifiers bind
them all. The quantifiers also connect indexed variables to the constants with
the same indices. Thus, among the semantic consequences of Va(Px! D Q'z?)
are Pla' D Q'a? as well as P'b! D Q'b?, but not, for example, Ptal D Q'b?
or Pla' D Q'a3. It will become clear later that this peculiar logic is tailored
in order to suit the ambiguity-adaptive logic of which it is the lower limit.

To spell out an axiomatic system for CLI is left as an easy exercise for the
reader. Hint: take the CL-axiomatization from Section 2, letting the metavari-
ables range over indexed entities; next adjust AV to VaA(a®,... ,ai)) D
A(B%, ..., B), and adjust A3, RV, and R3 similarly.

The idea of (non-adaptive) ambiguity logics is that, where I' C Wy and
A e Ws, I'F Aiff a certain translation of A is a CLI-consequence of a certain
translation of I'. The presumably unexpected handling of the quantifiers will
be easier understood after I presented the translation. Let T'T be obtained from
I' by adding superscripted indices from an I C N to all non-logical symbols in
I in such a way that every index occurs at most once. Next, let A* be obtained
from A by adding superscripted indices from N — I to all non-logical symbols in
A in such a way that every index occurs at most once.2? The ambiguity logic
CLA, defined over the language L, is defined by

I'Fepa Aiff TF Fopp AF.

In order to define CLA, we need only a certain fragment of CLI. For every
premise set I' and conclusion A, T'T U {A*} is a set of members of W! that
has a very specific property: all non-logical symbols are indexed and no two
occurrences of the same non-logical symbol have the same index. One of the
effects of this is that there are no I' C W, and A € W, for which I'f oy Af,
whereas there obviously are I' C W! and A € W for which I' Fcr1 A, for
example p' A ¢ Forr p'.

At this point, the handling of the quantifiers should be more transparent. If
no quantifiers occur in I' or A, we have I' ¥cp,a A. For example, p A ¢ “crLa P
because p' Ag? ¥cr1 p*>—in some CLI-models v(p!) = v(¢?) = 1 and v(p?) = 0.
Also p FcoLa p because p! ¥crr p?. However, if the quantifiers ranged over
the indexed variables, we would have Vzz = x A ¢ FoLa Vo = x as well as

230ther ways of indexing are equally adequate. As explained below in the text, every two
occurrences of the same symbol in I' U {A} should have different indices and no individual
variable should have the same index as an individual constant.

24



Vez =z bFoLa Vo = z because Vz! 2! = 2t A ¢% Ecrr Va3 22 = 23 as well as
q

Vol z! = 2! Eopp Vad 22 = 23.2¢ But then quantified statements would behave
oddly, because they would form classical exceptions in the ambiguity logic.

Let us take a closer look at this. The point is actually related to theorems
of logic. Thus ¥cra pV —p because ¥cr1 p* V —p?. In general, CLA does not
have any theorems at the propositional level. Note that the absence of theorems
derives from the translation, not from CLI, which obviously has all the right
theorems, for example Fcrr ptV —p'. When one moves to the predicative level,
CL-theorems turn out to be non-theorems of CLA. For example ¥cpa a = a
because Ecrr a! = a? and Fcra VePx O Pa because ¥ory Ve Plz? D P3a*—
even if the quantifiers ranged over the indexed variables, we would still have
Feorr V22 Plz? O P3a* because P! and P? are different schematic letters for
predicates. However, if the quantifiers ranged over indexed variables, we would
have Fepa Vo x = x because Ferp Va! 2! = z'—note that V! 2! = 22 is not a
closed formula. So this would reintroduce logical theorems at a unique specific
point, which would be an anomaly.

The reader may think that another approach is equally sensible: to let
the quantifiers range over indexed variables while multiplying the quantifiers
where this is necessary to obtain closed formulas. Thus the translation of
Vo = x would be, for example, Va'V2? ! = 22. This, however, would not
work. Indeed, from this formula, one might first obtain Va2 a' = 22 and next
a' = b?, which would blur the difference between two very different formulas,
Vrzr = z and VzVyx = y. Moreover, even this kind of translation would
introduce some theorems. Thus Fcpa VzVyzr = y D Vexax = x would be
translated by the true statement Fcpy Vo'vy? 2! = y? D Vadvat 23 = 24,

Actually, letting the quantifiers range over the original variables causes
no trouble, as the CLI-semantics reveals. Indeed, there are CLI-models that
verify Vo 2! = 22, and there are that do not, just as we want it. So¥cpa Vrz =
x. Similarly Vx 2 = = FcrLa Vrx = = because Vzz' = 22 Fcorp Ve = o2,
Moreover, that the quantifiers range over the non-indexed variables in CLI
guarantees that all indexed occurrences of the same variable are instantiated
at the same time. This will turn out essential for the adaptive logic that will
have CLA as its lower limit.

The logic CLA is intriguing. Nothing is valid in it, nothing is derivable
from any premise set. Post-modernists should be pleased. Sensible people,
however, will regard CLA as a lower limit logic, and will try to minimize
abnormalities. They will admit that some texts (or premise sets) force one to
consider non-logical terms as ambiguous,?® but they will also stress that each
non-logical term has to be considered as unambiguous “unless and until proven
otherwise”. In other words, they will go adaptive.

It is not difficult to see what going adaptive comes to. The lower limit logic
will be CLI and the strategy either Reliability or Minimal Abnormality. We
need a set of abnormalities containing three kinds of formulas: ambiguities per-
taining respectively to sentential letters, to individual constants and variables,

24Do not think something is wrong here before you read the next two paragraphs.
25The texts force one to do so if one supposes that the logical symbols have their usual
meaning and this is unique and stable.
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and to predicative letters. In order to save some space in the example proofs, I
shall introduce abbreviations for each of these kinds of abnormalities. Ambigu-
ities for sentential letters have the form —(A* = A7), with A € S and i,j € N.26
These will be abbreviated as A%7, for example p°® abbreviates —(p® = p®). Am-
biguities for individual constants and variables will have the form 3- o’ = o,
with o € CUV and 4,7 € N. These will be abbreviated as a’7, for example
a%7 abbreviates —a% = a7 and 2*® abbreviates 3z—2* = 28. Finally, ambigu-
ities for predicative letters have the form 3-(7‘ay...q, = 7y ... a,), with
7€ P’ i,j €N, and a; ...a, € V. These will be abbreviated as 7*7a ... oy,
for example, where P € P!, P31 abbreviates 3z—(P3z! = P52z') and, where
R € P3, R?*8a'2'b? abbreviates Jz—(R%a'2z'b? = R¥a'21b?).%7

The meaning of the abnormalities requires hardly any clarification: different
occurrences of a symbol have different meanings. The matter is straightforward
for sentential letters, individual constants and individual variables. There is
a difference, however. Occurrences of the same constant may have different
denotations. So it is possible that ~a' = a2, —a' = @>, and —a? = a3, and
so on for any number of occurrences of the same constant. The matter is
different for propositional letters. As there are (on the present approach) only
two truth-values, 0 and 1, the occurrence of p', p? and p® necessarily leads to
pt = p?, to p® = p!, or to p? = p?. The case of predicative letters is slightly
more sophisticated. If both P'a? and —P3a? hold true, the object denoted
by a? belongs to the extension of P! but not to that of P3. In other words,
P! and P3 differ in extension with respect to the object denoted by a?. If
moreover both Pla* and —P3a* hold true, there is a further ambiguity: P!
and P? also differ in extension with respect to the object denoted by a*. This is
the reason why abnormalities pertaining to predicates require a more complex
abbreviation than the other abnormalities.

It is time to identify the set of related abnormalities. I shall do this in
terms of the introduced abbreviations: Q = {A™ | A € S;i,j € N;i # j}
U{a®d |aeCUV;i,j eNyi#jU{nay...ap | T €P5i,jEN;ay...ap €
CT U Vi # j}. When reading this, remember that all logical symbols have
their classical meaning. The adaptive logics CLI™ and CLI" are now fully
defined.

In terms of CLI™, we define the logic CLA™:

I'Fepam AT Fopm A,

and similarly for CLA". I write the superscripts of CLA™ and CLA' in a
different type to indicate that these logics are not themselves adaptive logics
in standard format, but are characterized in terms of such logics.

Let us consider some example proofs. The set I's = {Vz(Pz D Qx), Pa} is
normal. So the CLA™-consequence set (and CLA'-consequence set) of I's is

261f the intention is to combine ambiguity logics with logics from Sections 3 or 4, the
abnormalities are better phrased with the help of classical logical symbols.

27The use of ambiguities in the variables is illustrated by Jz—=(Plz? = P3z?) FcoLr
(22 = 2%) v Jz—=(Pla? = P322?). Incidentally, -(p' = p?) and —(p?> = p') are of-
ficially considered as different (but equivalent) abnormalities. Similarly p!''? and p?! are
officially seen as abbreviations of different formulas. Both decisions are obviously purely
conventional.
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identical to its CL-consequence set, as the reader expected. Here is an example
proof for I's Fopar Qa. This is translated for example by Va(Plz? D Q3x%),
P5a6 FCLI"’ Q7a8.

1 Vz(P'z? > Q32*) Prem 0

2  P%S Prem 0

3 Pla? > Q3%a* 1; RU U

4 Pla? 2; RC {P15q% a%6}

5 Q3 3,4; RU {P¥%ab a?%}

6 Q7a8 5; RC {P1~5a6’ a6 Q3<7a4 a? 8}

As {Va(P'z? > Q32*), P5a®} is normal with respect to CLI™, no Dab-formula
is derivable from it, whence no line is marked in any extension of the proof.

Some readers may find the proof a bit fast. Here is the trick, applied to
the transition from 2 to 4. In the slower proof fragment displayed below, the
condition of line 2.1 is the negation of the formula of that line. So the line
results from the CLI-theorem (P%a% = P'a%) Vv —(P%a® = Pa%). Similarly for
line 2.3, which results from the CLI-theorem a? = a% v —a? = .

2 PSS Prem 0

2.1 P°aS=Pla® RC {P15a5}

2.2 PlaS 2,2.1; RU  {P15a45}

2.3 a®>=ab RC {a*®}

4  Plg? 2.2, 2.3; RU {P5a° a?6}

If predicative expressions are ambiguous, the ambiguity can lie with a pred-
icate, an individual constant, or a variable. This often leads to a disjunction
of such abnormalities. For example Pla?, ~P3a* Fcopr ~a? = a* vV =(Pla* =
P3a*). This will be illustrated in the next example proof.

It is instructive to consider a further example: I'y = {Vz(Pz D Qz), Pa,
=Qa, Pb}. Tts translation is, for example, {Va(Pz? D Q3z%), P%a®, ~Q7a8,
P10}, Let us check wether 'y Fopam Qa and T'y Foram Qb. As the indices
1-10 occur in the translation of I'y, the indexed conclusions will be, for example,
Q" a'? and Q''b'? respectively.

1 Vz(P'z? D Q3z%) Prem 0
2 P%S Prem 0
3 -Q7ad Prem 0
4 Po%1o Prem 0
5 Pla?> Q3% 1; RU 0
6 Pla? 2 RC  {PY%aC a0} s
7 Q3% 5, 6; RU {P!5a% a*6 1o
8 Qa2 7: RC (P15, 26, Q3 11g, 412} 10
9 -Q3%? 3; RC {Q"3a8,a®} V1o
10 P*aSva?%vQ™3a®Vva®* 7,9, RD 0

Besides 10, many other Dab-formulas are CLI-derivable from the premises. For
any suitable i and j, Q%a’ is derivable from Q3a? on the condition {P!%a® a?6,
Q%*ia* a*J} and =Q%a’ is derivable from ~Q7a® on the condition {Q"a®, a®7}.
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So the disjunction of members of both conditions is CLI-derivable on the empty
condition. This entails that the line at which Q*!a'? is derived will ultimately
be and remain marked in any proof from I'y; Q''a!'? is not a final CLI™-
consequence of {P'?a% a?% Q3%ia* a*7} and T'y Fcora» Qa.

The situation is obviously very different for Q''6'2. Let us have a look at
the continuation of the previous proof.

11 P 5> @Q%* 1; RU 0

12 P 4; RC {P19p10, p>10}

13 @3t 11, 12; RU {P9!0 p210}

14 Q11b12 13; RC {P1~9b107 b2-107 Q3<11b4’ b4-12}

None of these lines will be marked in any extension of the proof. The reason
is that the conditions of the lines contain only abnormalities that explicitly
mention b, whereas no such abnormality is CLI-derivable from {Vz(P'z? D
Q3z%), P5a®,—Q7a®, PPb'0}. So Q'1b!? is a final CLI-consequence of the trans-
lated premise set and I'y Fepam Q0.

Some readers may wonder why the proofs contain no examples of abnormal-
ities that pertain to variables. This is partly a matter of style. For example,
the lines 11-14 of the last proof may just as well be replaced by the following
lines in which I also proceed a bit faster.

11 VCL‘(PQ.%'IO B Q11m12) 1; RC {PI‘Q.TQ,LCQ'IO,Q3'11$4,$4'12}
12 P9b10 ) Q11b12 11: RU {P1-9x2 $2~10 Q3~11x4 I4'12}
13 Q11b12 4. 12: RU {P1-9x2 x2-10 Q3-11x4 1‘4'12}

In other cases, for example in order to establish Vz(Px D Qx),Vz(Qz D
Rz) FeLam Vo (Pxz D Rx), abnormalities pertaining to variables are unavoid-
able, unless of course when dummy constants would be introduced.

Before leaving the matter, two points are worth some attention. The first
concerns my promise to clarify the translation, the second concerns variants
for the present ambiguity-adaptive logics.

The translation is actually a simple matter. When describing it, I required
(in footnote 23) that no two occurrences of the same symbol receive the same
index and that no individual constant receives the same index as an individ-
ual variable. The first requirement is obvious. That two occurrences of the
same symbol receive the same index amounts to declaring them to have the
same meaning. If ambiguities may be around, there is no logical justification
for doing so. The second requirement may be easily explained. Consider the
premise set {Va Pz, —Pa} and note that Pa is derivable from the first premise.
If, for example, the first premise is translated as Y P'z?, then P'a? is a CLI-
consequence of it. So there either is an ambiguity in P or there is an ambiguity
in a. But suppose that the premise set were translated as {Vz P'z!, =P?al}—
this translation fulfils the first requirement but not the second. As Plal is
a CLI-consequence of this, so is the abnormality P'2a!. But this is obvi-
ously mistaken because it locates the ambiguity definitely in P, neglecting the
possible ambiguity in a.

It is instructive to return for a moment to I'y and to describe the abnor-
mality of the premise set in non-technical terms with reference to CLA™. The
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Dab-formula derived at line 10 of the proof teaches us that there is an ambigu-
ity in P, in @, or in a. It is also possible to derive in the proof the Dab-formula
P5a2? v 226 v Q%72 v 2412, which teaches us that there is an ambiguity in
P, in @, or in x. An important insight is that both statements are rather
rudimentary. They locate a connected ambiguity, but tell one nothing about
the effects of the ambiguities. A more fine-grained analysis goes in terms of
derivable and non-derivable formulas. On the one hand, the connected ambi-
guity prevents Qa from being derivable. The ambiguity resides either in the
P that occurs in the formulas from which Qa would be derivable, or in the @
that occurs in those formulas, viz. in Va(Px O Q) and in Qa itself, or the
ambiguity resides in the a that occurs in Qa and in the formulas from which
it would follow, viz. Pa.?® On the other hand, the connected ambiguity does
not prevent the derivability of Qb. So even if the ambiguity resides in P or
in @, this does not prevent the derivability of Qb from Pb and Vz(Pz D Qx);
these occurrences of P and @ are taken to be unambiguous. Note also that the
connected ambiguities have no effect on the derivability of Pa V Ra from Pa.
Even if the ambiguity resides in P, the occurrences of P in Pa and in PaV Ra
have the same meaning. Note also that, for a similar reason, =Qa A Qb is a
final consequence of I'y. So the Dab-formulas that are CLI-derivable from I'f
indicate connected ambiguities in non-logical symbols. However, which couples
of occurrences of those symbols have a different meaning is only revealed by a
careful study of the final derivability relation.

Let us now move to variants. Actually, CLI and similar logics contain a very
rich potential—see for example [14, 22] for applications that have nothing to
do with ambiguity-adaptive logic. However, also the ambiguity-adaptive logics
deserve further attention. A striking point concerns ambiguities in sentential
letters. As we have seen before, if there are three occurrences of the same
sentential letter, at least two of them ‘have the same meaning’. This is so
because having the same meaning is expressed by equivalence, equivalence is
truth-functional, and there are only two truth values. However, it is obvious
that the same sentential letter (or the same sentence in a natural language)
may be used with more than two different meanings. This suggests that one
tries to dig deeper into meaning. The meaning of a linguistic entity may be
seen as composed from different elements. Some bunches of such elements
may actually be realistic, in that they occur in statements made in terms of
the language, whereas other bunches do not. Moreover, it is well-known that
speakers often want to express something close to, but slightly different from, a
given realistic bunch and still use the same word or phrase. An approach that
may enable one to dig deeper into meaning is available along these lines. Some
work has been done on it. I cannot report on it here, but address the reader
to some relevant papers: [29, 30, 44].

Before leaving the matter, an important proviso should be mentioned. Much
so-called ambiguity arises from the fact that many predicates are vague. Vague-

28 A similar comment applies to the second aforementioned Dab-formula. Actually, the
ambiguity in x cannot be separated from the one in a. If the joint truth of Pa, Pa D Qa,
and —Qa is not caused by an ambiguity in P or in @, then it is caused by an ambiguity in a.
If that is so, there also is bound to be an ambiguity in z because Pa D Qa is derived from
Vz(Pz D Q).
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ness obviously cannot be adequately handled by means of CLA, pace [45]. See
[49] for a decent proposal to upgrade fuzzy logics adaptively.

6 Adaptive Zero Logic

In the previous sections, we met two extremely weak logics. The first was
CLo, in which no standard logical symbol has any specific meaning. We have
seen that A € W, is CLo-derivable from a premise set ' C W, iff A € T.
The second, even weaker logic, was CLA, in which different occurrences of a
non-logical symbol may have different meanings. Recall that no A € Wy is
CLA-derivable from any premise set I' C W;. It is not difficult to combine the
weaknesses of both logics. I shall call the result CL§), in words zero logic. In
zero logic, logical symbols have no meaning whereas the meaning of non-logical
symbols may vary by the occurrence. While zero logic in itself is utterly useless,
it may function as the lower limit of a very useful adaptive logic. The idea of
zero logic was first presented in [12]. The paper is clumsy at several points and
uses terminology that has now been replaced.

Defining CL0 is easy. For the semantics, replace all standard logical symbols
in the CLI-semantics by their classical counterparts and do not add anything
for the standard logical symbols. Let this logic be called CL@I. For its axiom-
atization, replace the standard logical symbols in the axiom system of CLI by
their classical counterparts (and do not add anything for the standard logical
symbols). From CL{I, define CL{ by

I'Ferg Aiff T Fopgr A,

in which { and  are as in Section 5. The logic CL{) is useless in itself. It is also
odd. Even the difference between logical and non-logical symbols is blurred.
To be more precise, the difference is obviously neat in the metalanguage, but
nothing within the logic reveals it. This is really the logic that suits the post-
modernist. It also shows that post-modernism, in its extreme form, is not
viable. If, in a text, any occurrence of any symbol can have whatever meaning,
then nothing sensible can be said about the text. I consider it plausible that
CL{ is the logic present in our brains before we start to learn our mother
tongue. Only as this learning proceeds, we start connecting words to entities
in the world (things, actions, processes) or to representations of such entities,
and we start connecting logical symbols to operations. In doing so, we are
forced to turn the connection into a probabilistic and contextual one.

The most straightforward adaptive logics that have CL{I as their lower
limit logic combine it with Reliability or Minimal abnormality and with a spe-
cific set of abnormalities. This set is the union of two subsets: (i) the set
containing all formulas that express gluts and gaps (as mentioned in the table
at the end of Section 3), and (ii) the abnormalities of CLI™, duly phrased in
terms of classical logical symbols. This gives us CLOI™ and CLOI". From
these we define

I Fepgm A iff IT Fopgm AF.

and similarly for CL{'".
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Pushed by a referee, I include a (terribly simple) example proof, viz. one
for pt A q?,p® D 1% Fepgrm 7°. Let a abbreviate (p! A ¢%) A 5(p! A ¢?) and let
B abbreviate (p3 D rt) A =(p? D r).

1 ptAg? Premise 0

2 plAg? 1; RC {a}

3 pt 2; RU {a}

4 p? Dt Premise 0

5 pPort 4; RC {5}

6 p'Or° 4; RC {8,073, ¢*°}
70 3,6, RU  {a,3,p"%,¢"}

As the premise set is normal, no Dab-formula is derivable. So all formulas
in the proof are finally derived and hence p A ¢,p D r Fgpgm 7. It is more
important to comment on the use of adaptive zero logic.

Every symbol, logical or non-logical, has a contingent meaning in CLOI™.
This means that the meaning of a specific occurrence of a symbol will depend
on the premises. Of course, there are presuppositions, laid down by the abnor-
malities.?? Thus logical symbols are supposed to have their classical meaning,
unless and until proven otherwise. Different occurrences of non-logical terms
are supposed to have the same meaning, unless and until proven otherwise—the
fact that our logic is defined within a language schema causes these meanings
to be left unspecified.

If applied to abnormal premise sets, CLOI™ is a marvellous instrument of
analysis. It locates each and every possible explanation of the abnormality—
but see the next to last paragraph of this section. The idea here is as explained
in Section 4, except that the present analysis is richer: ambiguities in the
non-logical terms are also considered. The analysis will give rise to different
abnormal but non-trivial theories, obtained by blaming one kind of abnormal-
ity rather than another, or by blaming the abnormalities in a certain order
(combined adaptive logics).

If applied to a normal premise set, CLOI™ delivers the CL-consequence set.
This is fully the merit of the adaptivity of the logic, because the lower limit logic
does not assign any meaning to any symbol. The lower limit logic prescribes
literally nothing about any symbol. In CL@", the meaning of symbols is in a
sense an empirical matter.

The last statements from the previous paragraph should be qualified. It
obviously makes a difference which precise set of abnormalities is selected, be-
cause this defines the normal interpretation of the symbols. A first choice that
underlies CLOI™ is that the upper limit logic is CL. Some will want to replace
this by a different ‘standard of deduction’. Next, the selected abnormalities
are the plain ones, bare gluts and bare gaps for the logical symbols and plain
ambiguity for the non-logical symbols. For the logical symbols, this may be
modified into many variants, including those from combined logics.

By all means, the present results suggest a skeleton for a formal approach
to the interpretation of texts. What should be added to the skeleton CLOI™

29The abnormalities are presumed to be false. By delineating their set, we specify which
formulas are considered to be false unless and until proven otherwise.
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is basically a set of suitable suppositions about the meaning of non-logical
symbols. Next, contextual features should be taken into account. This is
not the place to expand upon the topic, but it seemed worth pointing out
this possible line of research. The reader will also note the connection with
argumentation. Most contributions to that domain are on the non-formal side
and close to natural language. CL@I™ provides an approach on the formal side
and close to formal languages. It seems to me that both approaches may work
towards each other—see (the old) [10] for some first ideas on the matter.

7 Conjectures

When (a variant of) zero logic was first discovered, the fascinating properties of
this logic were at once noted. Yet, there was a puzzle. For many premise sets,
formulas are only derivable at a stage on a rather complex condition. Moreover,
often the set of derivable Dab-formulas is very large. An effect of this is that
many premise sets have only rather complex disjunctions as final consequences.
So while zero logic is interesting from a theoretical point of view, it seemed not
very suitable for practical purposes. There was a similar puzzle in connection
with the manifold of adaptive logics described in the previous sections. How
might one justify a choice for one of the logics in connection with a specific
premise set?

Those puzzles have meanwhile been resolved. Although zero logic may not
be very interesting in itself, it forms an excellent instrument of analysis and
thus contributes to the justification of a choice from the manifold of stronger
corrective adaptive logics.?" I stated this explicitly for the logics from Section
3. The logics from Section 4 may be easily involved in the comparison. At the
worst they require that a separate column of conditions and marks is added
to the proofs. Aside from its relevance to justifying choices of logics, however,
zero logic has a further practical use.

Logics like CLQ™ provide an outstanding environment for applying conjec-
tures of the kind considered in [16, 18]. In one possible approach the T-modality
¢ is interpreted as plausible. Thus (A states that A is plausible, QOB states
that A is plausibly plausible, which is weaker than plausible simpliciter, etc.
Let ¢ abbreviate a sequence of i diamonds, whence, for each i, O*C states
that C has a certain degree of plausibility, which is lower as ¢ is larger. The
adaptive logic handling plausibilities will have T as its lower limit; its set of
abnormalities comprises the formulas of the form ¢*A A=A in which A € W; is
a primitive (or atomic) formula. Note that (*A Fp AV (0?A A =A). So in the
adaptive proofs A is derivable from (?A on the condition {0?A A =A}. This
adaptive logic takes care that the more plausible formulas are (provisionally
and defeasibly) turned into truths before the less plausible ones.

One may have definite views on the plausibility of certain formulas from
the outset. One may also form (or modify) such views as one studies the
premise set (without the formulas expressing plausibility). Given a premise
set, one first writes out a CLOI™-proof from it. In doing so, the attention

30 Justification does not require uniqueness; several alternatives may be equally justified.
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should be focussed on presumably interesting potential consequences. The
CLQI™-proof will reveal the connection between potential conclusions and sets
of abnormalities. In view of one’s preferences for deriving certain conclusions,
the connected abnormalities may be studied further. The relevant questions will
be which conclusions depend on the abnormalities (have the abnormalities in
their condition) and in which minimal Dab-formulas the abnormalities occur.
The procedures described in [15, 47] will prove useful in this respect. Once
sufficient insight is gained, some abnormalities (or their negations) may be
stated to have a certain plausibility. These new premises will have defeasible
effects.

The choices may be organized around an enrichment of the lower limit logic.
This effect is obtained when the logical form that characterizes a certain set of
abnormalities, say disjunction gaps, is declared logically impossible. This was
described in previous sections. The choices may also be made in a piecemeal
way, as is typical for the approach in terms of conjectures. Both ways of
proceeding may also be combined.

Actually, the combination itself may be looked upon in two different ways.
One may strengthen the logic by ruling out several kinds of gluts and gaps or by
ruling out ambiguities altogether, and next introduce conjectures in a defeasible
way. However, one may also proceed in a fully defeasible way. For example,
instead of ruling out implication gluts by introducing the axiom schema (A D
B) 5 (A D B) in the lower limit logic, one may extend the premises with the
set {O'V((A D B) D (AD B)) | A B € F,} for a chosen i—the members of
the set will function as defeasible new premises.

Obviously, what one obtains at best in the end is a minimally abnormal
interpretation of the premise set. The usual next step is the transition to
a normal premise set. Often a partial execution of the first step will provide
sufficient insights to move on to the second step. In the documented cases from
the history of the sciences, whether mathematical or empirical, replacements for
inconsistent theories were most often obtained by a few well-directed changes.
Perhaps an ambiguity was resolved and a non-logical axiom was restricted.

8 Strength of Paraconsistency and Ambiguity

I have argued that each of the logics considered in this paper leads, with respect
to some premise sets, to a different minimally abnormal ‘interpretation’. Obvi-
ously, most of the logics trivialize some premise sets that have no CL-models.
Consider all logics from Sections 3 and 4. Whether the logic is adaptive or not,
the consequence set of {p, —p} is trivial unless negation is paraconsistent. In
this sense paraconsistency has a special status: strictly paraconsistent logics—
those for which there is no A such that A, —A F B for all B—have models for
all subsets of W.

Ambiguity logics share the strength of paraconsistent logics. Every I' C W,
even if it has no CL-models, has CLA-models.?! Some paraconsistent logics
may even be defined in terms of ambiguity logics—I have shown in [14] that this

310bviously not every I' € W! has CLI-models.
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holds for LP from [38, 40] and it is not impossible that a similar result holds for
all paraconsistent logics. Note that this is a technical point. A philosophical
point is that, even if all paraconsistent logics can be characterized in terms
of ambiguity logics, the interpretation of both types of logics is nevertheless
different. The question as to the precise meaning of negation should not be
confused with the question whether ambiguities occur in non-logical symbols.
In this respect, the philosophical tenet of David Lewis in [37] is mistaken.
That a given text (or premise set) may be interpreted both ways is altogether
a different matter.

What should be concluded from the strength of paraconsistency and am-
biguity? Not much as I see it. These approaches offer a road to a maximally
non-trivial interpretation of every premise set. However, if another logic pro-
vides also such a road for a given premise set, the latter road may be just as
sensible. All the logic needs to do is offer a way for handling a theory 7" once
it turned out to be CL-trivial. Which maximally non-trivial interpretation of
T will turn out most interesting will always depend on non-logical considera-
tions. As early as 1964, Nicholas Rescher remarked in [41, p. 37]: “And while
the recognition of ambiguity does fall within the province of logic, its resolution
is inevitably an extralogical matter.” This holds for every cause of triviality.
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