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Abstract

Although we are all familiar with discussions, spelling out their dy-
namics in a precise way involves many tough logical problems. This pa-
per reports on a set of logical tools that are useful in this respect. Some
concern the arguments produced in a discussion, possibly as a result of
interventions of different participants, and the many forms of explicit and
implicit agreement that are required to understand what is going on. Oth-
ers concern the changing positions of participants. Nearly all of the tools
are adaptive logics.

1 Aim of this Paper

We all regularly participate in discussions. Discussions vary widely in a number
of respects: the number of people participating, the intensity of the interaction,
the distribution of competence over the group, the more or less democratic orga-
nization, the more or less organized procedure, etc. Moreover, some discussions
aim at solving a specific problem, others aim at taking group decisions, still
others serve aims that are best described in psychological terms—from friendly
entertainment to the ‘one man up’ show. Most of us are familiar with this
variety of discussions, either as participants or as observers. Moreover, when
participating or observing, most of us have the idea to understand what is going
on, at least if the discussion is a rational one.

Nevertheless, the logical reconstruction of the dynamics of discussions in-
volves many hard problems. The origin of these difficulties is that discussions
are affected by several forms of dynamics. One set of problems is related to
the fact that, in order to explicate what goes on in a discussion, one has to
‘combine’ interventions by different participants in rather sophisticated ways.
Even if two or more participants contradict each other at some point, they may
agree on others and, more importantly, some of their claims may jointly form
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an argument for a statement, and be felt as such by all present. This means
that some arguments are produced in a discussion, and affect the outcome (or
an intermediate outcome) of a discussion, without being explicitly present in
the interventions of any separate participant. Likewise, several forms of explicit
and implicit agreement play a central role in discussions. This may obtain even
in case any two participants contradict each other in some respects.

Very different problems concern the explication of the position of a partic-
ipant after this position was changed. If the participants are rational and the
discussion is useful, it is likely that at least some participants will change their
position. The set of interventions made by such participants are likely to be
inconsistent. This means that their latest position does not contain all they
affirmed before. However, changing one’s position at some point does not en-
tail changing it at all points. So, a participant’s last intervention should be
combined with those consequences of previous interventions that may be con-
sistently combined with it. To do so is a task that is far from trivial. This is
especially so because, as we shall see, we need to retain consequences of previous
interventions, and not the interventions themselves.

A further complication is that some participants may be confused, and con-
tradict themselves within a single intervention. This does not mean that the
whole intervention has to be discarded; maybe the participant contradicted him-
self or herself only at a specific point. And things may get even more difficult:
a dialetheist participant may explicitly defend an inconsistent position.

At this point I have to make an important remark on the involved dynamics.
First and foremost, several forms of dynamics occur in the discussion itself—
arguments are produced by the interplay between participants, and participants
revise their position as a consequence of such arguments. A different dynamics
concerns the interpretation of the discussion. This is most easily understood by
considering a non-participating observer of the discussion that tries to under-
stand what is going on. The reasoning process of this observer will be dynamic
in that conclusions drawn at some point will have to be revised later. This ap-
plies with respect to forms of agreement, with respect to arguments that derive
from the interventions of separate participants (that do not necessarily agree
in other respects) and with respect to the changing positions of participants.
For (efficient) participants, the matter is even more complex: they have not
only to understand what is going on, they also have to change their position in
view of the arguments produced and to defend the result. Explicating people’s
reasoning processes is supposed to be a task of logic. In trying to carry out this
task for a discussion, a logician will be bound to apply methods that allow for
dynamic interpretations.

In this paper, I shall report on a variety of logics that handle some of the
aforementioned features. I shall refer to available materials that are apparently
useful. Where these fall short, I shall refer to new results, either by myself or by
other members of the Ghent Centre. We shall see that the available materials
may be characterized in terms of adaptive logics—even where monotonic logics
were available, a more adequate analysis was made possible by devising adaptive
logics from them—and that the new results straightforwardly concern adaptive
logics. This might be expected. The central aim is the explication of dynamic
reasoning processes, and adaptive logics have dynamic proof theories that may
be invoked to this end.

This paper does not aim at completeness. Nevertheless, I hope to convince
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the reader that the instruments presented enable one to analyse important and
central dynamic features of discussions, and I hope to convince the reader that
the approach is on the right track, or at least on a track that seems to lead in
the right direction.

In Section 2, I shall briefly recall some basics of adaptive logics. Section 3
discusses Jaśkowski’s D2 and Meheus’ adaptive extension of it. The Rescher–
Manor consequence relations and their extension by Meheus’ idea are discussed
in Section 4. Section 5 is devoted to the difficult problem of the changing
positions of participants in discussions. The dynamic proof theories of all these
logics cannot be presented here, but an example is presented in Section 6.

2 Adaptive Logics and Dynamic Proof Theories

Adaptive logics and their dynamic proof theories are, first and foremost, a means
to obtain a formally precise grasp on consequence relations that are (in general)
undecidable and for which there is (in general) no positive test.

For all logics, the set of consequences depends on the set of premises. In proof
theoretical terms, the dependence is realized, for non-dynamic proof theories,
by a fixed set of rules (that characterizes the logic). Adaptive logics are different
in that it even depends on the premises whether a specific application of a rule
is or is not correct.

The effect is realized by defining an adaptive logic AL in terms of a lower
limit logic LLL, an upper limit logic ULL that is an extension of LLL, and an
adaptive strategy. The lower limit logic provides logical presuppositions that
are unquestionable. The upper limit logic defines normality : the suppositions
of ULL are taken to hold unless the set of premises prevents so. An adaptive
logic interprets a set of premises “as normally as possible”—that is, as much
as possible in agreement with its upper limit logic. Because the phrase “as
normally as possible” is not unambiguous, a strategy is required to select a
precise interpretation of the phrase.

Before proceeding to a more precise characterization, let us consider two
examples. If a theory 〈Γ,CL〉, in which Γ is the set of non-logical axioms and
CL is Classical Logic, turns out to be inconsistent, we shall usually want to
interpret it as consistently as possible. So, although the inconsistency of Γ
forces us to give up CL in order to reason from Γ, we shall nevertheless want
to interpret Γ as much as possible in accordance with CL. Typically, CL is the
upper limit logic in this case—it defines normality. The lower limit logic will
be a suitable paraconsistent logic, and the adaptive strategy will specify what
it means to interpret Γ as normally as possible. Adaptive logics of this kind are
called corrective. Γ was originally intended to be interpreted in terms of CL,
but, as this turns out impossible, we want to interpret it as much as possible in
terms of CL.

Next consider the case in which we have to reason from a set of data Γ and
a set of expectancies ∆. The reliability of the expectancies is obviously weaker
than those of the data: where data and expectancies conflict, the latter are
given up. If all expectancies are considered to have the same reliability, the
set of premises may be formalized as Γ ∪ {♦A | A ∈ ∆}. If we close this set
by, say the modal logic T,1 we do not obtain the desired result: whenever B is

1The choice of T is justified with respect to the required adaptive logic—see [7].
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CL-derivable from the from the data and expectancies, and not from the data
alone, at best ♦B will be T-derivable from Γ ∪ {♦A | A ∈ ∆}.2 This clearly is
not what we want. We want to interpret {♦A | A ∈ ∆} ‘as normally as possible’:
we want the expectancies to be true whenever the premises allow so. In other
words, we want to interpret {♦A | A ∈ ∆} as much as possible in agreement
with Triv, which validates ♦A ⊃ A.

I now present a more precise characterization of adaptive logics. Let me start
with the semantics. For any set of premises Γ, there is a set of LLL-models of
Γ. From these, the adaptive strategy selects the models that are as normally
as possible. The AL-consequences of Γ are the formulas verified by all selected
models—see [1] for a first implementation of this idea.

In proof theoretic terms, an adaptive logic has two kinds of rules. The
unconditional rules are those of the lower limit logic LLL. The conditional
rules are those rules of the upper limit logic ULL that are not validated by
LLL. Whenever a conditional rule is applied, a condition (a set of formulas) is
attached to the derived formula. If an unconditional rule is applied to derive B
from A1, . . . , An, then the union the conditions of A1, . . . , An are all attached to
B. If a conditional rule is applied, the condition of B is the union the conditions
of A1, . . . , An and of a further set of formulas—we shall see all this at work in
Section 6.3 The adaptive strategy determines which formulas are marked, and
a marked formula is considered as not derived. Whether a formula is marked
depends on its condition and on the set of formulas that occur in the proof.

To see the full import of the dynamics of the proofs, I need to make explicit
a feature that is implicit in the previous paragraph. Which formulas occur
in the proof obviously depends in the stage of the proof. Marks may come
and go as the proof proceeds to a subsequent stage. And this of course leads
to several questions. The proof theory should connect derivability to semantic
consequence. Obviously, derivability at a stage cannot be complete with respect
to the semantics. However, it is possible to define “final derivability” and prove
it (sound and) complete with respect to the semantics. But there is another
question as well: How is a proof at a stage (of A from Γ) related to semantic
consequence (to Γ � A)? The answer is quite interesting. Subsequent stages
of a proof gradually reveal the meaning of the premises—see [2] for a precise
formulation of the claim and for the argumentation. As the proof proceeds,
one obtains (in general) a better estimate (and never a worse one) of the final
consequences of the premises. In other words, the proof theory enables one to
define a notion of final derivability that is sound and complete with respect
to the semantics, and, from a computational point of view, provides a sensible
means to approximate final derivability.4

A peculiar feature of adaptive logics is that, to a normal set of premises,
they assign the same consequence set as the upper limit logic. While this may
sound impressive, the most important application contexts of adaptive logics
obviously concern abnormal sets of premises.

2I say “at best” because two different members of ∆ may be required to CL-derive B.
3A somewhat different terminology will be used there because it helps to make things pre-

cise. Conditions will be attached to lines of the proof and lines will be marked or unmarked—
see below in the text.

4The propositional fragment (and many other fragments) are decidable. Even when a
fragment is not decidable, there may be certain criteria that enable one to conclude from a
specific dynamic proof of A from Γ that A is finally derivable from Γ.
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3 Jaśkowski’s D2 and Meheus’ AJ

The underlying idea of Jaśkowski’s paraconsistent logics relates directly to
discussions—see [12] and earlier papers in Polish. Jaśkowski noted that par-
ticipants in discussions may contradict each other, and hence that the set of
interventions cannot be handled by CL. The backbone of his approach is to
define a paraconsistent logic from a modal logic. The most popular case is D2,
defined as follows—where Γ♦ = {♦A | A ∈ Γ}.

Γ `D2 A =df Γ♦ `S5 ♦A

For present purposes, the important feature of Jaśkowski’s approach is that
it provides a way to handle statements made in discussions in terms of S5.
Γ♦ `S5 ♦A denotes that A has been stated in the discussion, i.e., that it follows
from the position of at least one participant. Γ♦ `S5 �A denotes that A is CL-
derivable from the position of each participant—remark that this is a special
case of (a very strong form of) agreement.

Incidentally, if some member of Γ is inconsistent, CnS5(Γ♦) is trivial.5 In
the previous paragraphs, I implicitly supposed that each member of Γ represents
the position of some participant—the conjunction of all statements made by a
participant. Of course, nothing prevents one from reinterpreting the members of
Γ as interventions—each member of Γ is then the conjunction of the statements
made by a participant during one intervention. The advantage of this interpre-
tation is that triviality does not ensue when some participant changes his or
her position between interventions. The price to pay is double. First, the inter-
ventions of a participant become disconnected. So, if A is CL-derivable from
a participant’s intervention, and A ⊃ B is CL-derivable from a different inter-
vention of the same participant, then it is very well possible that Γ♦ 0S5 ♦B.
Next, Γ♦ `S5 �A now denotes an even stronger (and hardly useful) form of
agreement: that A is CL-derivable from each intervention of each participant.
To prevent inconsistent interventions from leading to triviality, Γ may be inter-
preted as the set of statements made in interventions of participants. The price
goes up accordingly. So, let us return to the interpretation according to which
each member of Γ corresponds to a participant’s position.

In [13], Joke Meheus extends Jaśkowski’s approach. Her idea is to introduce
the consistent core of Γ♦. Statements derivable from the position of some par-
ticipant may be said to be (at least) implicitly affirmed during the discussion.
The consistent core of Γ♦ comprises those statements that are at least implicitly
affirmed and are moreover compatible with the position of all participants—see
[6] for two logics of compatibility.

The consistent core may be seen as the statements that all participants
agree about in the discussion. “Agreement” is here meant in a weaker (and
more useful) sense than the one expressed by Γ♦ `S5 �A. Some people may
complain that, if A belongs to the consistent core but is not derivable from a
participant’s position, then one cannot be absolutely certain that the participant
agrees with it. This is correct, but rather immaterial. We are not trying to
analyse the beliefs or convictions of the participants, but their positions in the
discussion. For example, participants may very well defend a position they do
not subscribe to. They may do so because they want or need to play the role

5CnL(Γ) = {A | Γ `L A} as expected.

5



of the advocatus diaboli, or for some other reason. So, a participant’s position
depends only on what the participant states during his or her interventions.
In the light of this, it is sensible to say that any participant implicitly agrees
with any statement derivable from another participant’s position, unless (and
until) this statement has been (implicitly or explicitly) contradicted (by at least
some participant).6 Of course, one may refrain from contradicting a statement
because one considers it unimportant or irrelevant (not worth disagreeing with).
As far as one’s position in the discussion is concerned, one still agrees with it.7

Remark that some disagreements may be connected. A simple example is
where one participant affirms p, another q, and a third ∼p ∨ ∼q. Although no
two participants contradict each other, their statements are jointly incompatible.
And indeed, ♦p, ♦q, ♦(∼p∨∼q) `S5 (♦p∧♦∼p)∨(♦q∧♦∼q). In the predicative
case disagreements are expressed by formulas of the form ∃(♦A∧♦∼A) in which
“∃” abbreviates a sequence of existential quantifiers (in some preferred order)
of an existential quantifier over any individual variable free in A. Where ∆ is
a finite set, let Dab(∆) abbreviate

∨
{∃(♦A ∧ ♦∼A) | A ∈ ∆}. Moreover, let

Fp be the set of primitive formulas (sentential letters and primitive predicative
formulas including identities).

Definition 1 Dab(∆) is a minimal Dab-consequence of Γ♦ iff ∆ ⊂ Fp, Γ♦ `S5

Dab(∆), and there is no Θ ⊂ ∆ such that Γ♦ `S5 Dab(Θ) .

If Dab(∆) is a minimal Dab-consequence of Γ♦, all A ∈ ∆ will be called unre-
liable: there is disagreement about at least one of them and it is not determined
which one.

Definition 2 U(Γ) =df

⋃
{∆ | Dab(∆) is a minimal Dab-consequence of Γ♦}.

The abnormal part of a S5-model8 is defined as follows:9

Definition 3 Abp(M) = {A ∈ Fp | M |= ∃(♦A ∧ ♦∼A)} .

Meheus’ logic AJ is semantically defined as follows.

Definition 4 M is an AJ-model of Γ♦ iff M is an S5-model of Γ♦ and Abp(M) ⊆
U(Γ).

Definition 5 Γ♦ �AJ A iff all AJ-models of Γ♦ verify A.

It is easily seen that, expressed in terms of the intended application con-
text, AJ extends S5 in that the statements agreed about is extended to the
consistent core, and hence that the consistent core is joined to the position of

6If the number of participants is small, all of them may be expected to take a stand on
any statement made during the discussion. If more participants are involved, one may at
best expect nodding or yea-saying, and no participant or observer is able to observe the thus
expressed stands of all participants.

7A more thorough analysis may reveal the distinction between agreement and irrelevance,
but if the statement is indeed irrelevant, it would not have much import for the outcome of
the discussion anyway.

8I mean a predicative model that allows for ♦a = b ∧ ♦∼a = b. See [6] or [13] for details.
9I shall need several kinds of abnormal parts of models and sets of premises. They will be

distinguished by superscripts and subscripts the choice of which is obvious from the context.
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all participants. Thus Γ♦ �AJ �A iff A belongs to the consistent core of Γ♦. If
Γ♦ �AJ ♦B and Γ♦ �AJ �A, then Γ♦ �AJ ♦(A ∧B).

Obviously, AJ is not intended to replace S5 with respect to the present
application. Γ♦ �S5 �A and Γ♦ �AJ �A denote distinct forms of agreement,
both of which are sensible. Similarly, Γ♦ �S5 ♦A and Γ♦ �AJ ♦A denote
two distinct ways in which A may be affirmed in the discussion, and both are
sensible. The AJ-versions denote (at least) implicit agreement and (at least)
implicit affirmation. In the presence of Γ♦ 2S5 �A, Γ♦ �AJ �A denotes implicit
agreement in the strict sense. Similarly for implicit affirmation in the strict
sense. As we shall see in the next section, there are further sensible forms
of implicit agreement and implicit affirmation. All of these are essential for
understanding the typical dynamics that characterizes discussions.

AJ is an ampliative adaptive logic: it upgrades some possibilities to ne-
cessities, and hence allows for consequences that go beyond the standard of
deductive inference—S5 in the present context. Of course, one may define an
inconsistency-adaptive logic from AJ, but this is not essential for our present
enterprise.

4 Rescher–Manor Consequence Relations

The underlying idea of the Rescher–Manor consequence relations is that incon-
sistent sets of sentences are divided into maximal consistent subsets—henceforth
MCS—and that what ‘follows’ from the inconsistent set is defined in terms of the
classical consequences of (a selection of) the MCS. Some consequence relations
were implicitly present already in [14], and were articulated in [17]. Extensions
and applications appeared in [15], [16], and elsewhere. Later, further conse-
quence relations were defined within the same approach. Some of these are
called “prioritized” because they depend on non-logical preferences. The non-
prioritized ones are called “flat”. A survey and comparative study is presented
in [10] and [11]. In the present section I concentrate on the flat consequence
relations.

That these consequence relations are characterized in terms of adaptive logics
was first shown in [4]. There, they are characterized in terms of inconsistency-
adaptive logics. Direct dynamic proofs (that proceed directly in terms of CL)
are presented in [9]. In [5], it is shown that the Rescher–Manor consequence
relations may also be characterized in terms of adaptive logics that have S5
as their lower limit logic.10 Given the relation with Jaśkowski’s approach, one
naturally comes to the question whether the flat Rescher–Manor consequence
relations are relevant for the analysis of discussions. The answer to this question
is definitely positive. This answers provokes two further questions: (i) Is it
possible to extend the flat Rescher–Manor consequence relations by the trick
Joke Meheus applied to obtain AJ? (ii) Are the so obtained results useful
for the understanding of the dynamics of discussions? Again, the answers to
both questions are positive. Remark, however, that, unlike what is the case
for extending S5 to AJ, we are here superimposing an adaptive logic on top of
another adaptive logic.

In the remaining part of this section, I shall first define the flat Rescher–
Manor consequence relations. Next, I shall present their characterizations in

10See [3] for some difficult problems about the relation between both characterizations.
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terms of adaptive logics that have S5 as their lower limit logic. Finally, I shall
consider their extensions obtained by introducing Meheus’ consistent core—that
is, by upgrading a specific and justifiable selection of possibilities to necessities.

∆ is a MCS of the set of formulas Γ iff (i) ∆ ⊆ Γ, (ii) ∆ 6`CL ⊥, and (iii) for
all A ∈ Γ − ∆, ∆ ∪ {A} `CL ⊥. Members of Γ that belong to all MCS of Γ
are called free members of Γ. The largest MCS of Γ are those the cardinality of
which is not smaller than the cardinality of any other MCS of Γ. The definitions
of the flat consequence relations are as follows:

Definition 6 Γ `Free A iff A is a CL-consequence of the free members of Γ.

Definition 7 Γ `Strong A iff A is a CL-consequence of all MCS of Γ.

Definition 8 Γ `Weak A iff A is a CL-consequence of some MCS of Γ.

Definition 9 Γ `C-Based A iff A is a CL-consequence of all largest MCS of Γ.

Definition 10 Γ `Argued A iff A is a CL-consequence of some MCS of Γ and
∼A is not a CL-consequence of any MCS of Γ.

The S5-models that verify all consistent members of Γ♦ will be called the
C-models of Γ♦. These may themselves be characterized as minimally abnormal
models:

Definition 11 Abc
Γ(M) = {A | A ∈ Γ; M 6|= ♦A}

Definition 12 An S5-model M is a C-model of Γ♦ iff there is no S5-model
M ′ such that Abc

Γ(M ′) ⊂ Abc
Γ(M).

Where W is the set of closed formulas (wffs) of the non-modal language, a
world w of a model will be said to verify ∆ ⊆ W iff V (A,w) = 1 for all A ∈ ∆.
The minimally abnormal worlds with respect to Γ are defined as follows:

Definition 13 AbΓ(w) = {A ∈ Γ | w does not verify A} .

Definition 14 A world w of a S5-model M is minimally abnormal with respect
to Γ iff no world w′ of any S5-model M ′ is such that AbΓ(w′) ⊂ AbΓ(w).

Definition 15 A C-model M of Γ♦ is a MA-model of Γ♦ iff all worlds of M
are minimally abnormal with respect to Γ.

From the MA-models of Γ♦ we define the RM-models of Γ♦ in terms of
their abnormal parts with respect to the possibility of conjunctions of premises:

Definition 16 Ab∧Γ(M) = {{A1, . . . , An} | n > 1; A1, . . . , An ∈ Γ; M 6|= ♦(A1∧
. . . ∧An)} .

Definition 17 M is a RM-model of Γ♦ iff it is a MA-model of Γ♦ and there
is no MA-model M ′ of Γ♦ such that Ab∧Γ(M ′) ⊂ Ab∧Γ(M) .

Definition 18 Γ♦ �RM A iff all RM-models of Γ♦ verify A.

The following theorems are proved in [5]:
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Theorem 1 Γ `Weak A iff Γ♦ |=RM ♦A.

Theorem 2 Γ `Argued A iff Γ♦ |=RM ♦A and Γ♦ 6|=RM ♦∼A.

Theorem 3 Γ `Strong A iff Γ♦ |=RM �A.

The two other consequence relations require special treatment. The C-based
consequence relation is most easily incorporated by introducing a special (but
simple) modality �Γ (where Γ ⊂ W). Let #(w, Γ) be the cardinality of the set
of members of Γ verified by w, and let w ∈ m(Γ) iff there is no w′ ∈ W such
that #(w′, Γ) > #(w, Γ). Extend the S5-semantics with the clause:

V (�ΓA,w) = 1 iff V (A,w′) = 1 for all w′ ∈ m(Γ)

Theorem 4 Γ `C-based A iff Γ♦ |=RM �ΓA .

For the Free consequence relation, we need a different selection of the models.
First we define the abnormal part of Γ as the set of non-free members of Γ:

Definition 19 AbF (Γ) = {A | A ∈ Γ; for some B1, . . . , Bn ∈ Γ : B1, . . . , Bn 6`CL

⊥ and A,B1, . . . , Bn `CL ⊥}

Next, we define the abnormal part of the models with respect to the necessity
of members of Γ:

Definition 20 Ab�
Γ (M) = {A | A ∈ Γ; M 6|= �A}

Definition 21 M is a F-model of Γ♦ iff M is a C-model of Γ♦ and Ab�
Γ (M) =

AbF (Γ).

And I repeat from [5]:

Theorem 5 Γ `Free A iff Γ♦ |=F �A.

So, I have defined all Rescher–Manor consequence relations in terms adaptive
logics that have S5 as their lower limit logic. The next step is to present
the promised extensions. The most important motivation for them lies in the
fact that they enable one to spell out implicit agreements. Precisely these are
revealed by the consistent core. Suppose that one participant states p ∧ q,
another participant states ∼p, and no further participant makes any claims
about either p or q. As there is disagreement about p, we are unable to tell
which stand on p is taken by a participant that does not explicitly make a
statement about it. However, as q was affirmed, and no participant denied it, q
will count as an implicit agreement for all.

Not all consequences of statements made during the discussion will enter the
consistent core. For example, p∨r is a CL-consequence of the first participant’s
statement, and no participant explicitly denied it. But if p ∨ r did belong to
the consistent core, it should be concluded that r belongs to the position of the
second participant because this participant stated ∼p. Such a conclusion would
obviously be foolish, as r might be any statement whatsoever.

Implicit agreements are far more important for understanding the dynamics
of a discussion than explicit agreements. This is the more so as the implicit
agreements among all participants enter all of their positions, whereas implicit
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agreements between (overlapping and varying) groups of participants enter the
positions of the members of these groups.

The idea underlying the following proposals is that one should not concen-
trate on implicit agreements, but on explicit disagreements, that disagreements
may be ‘connected’, and that one should express these connections in terms of
the simplest formulas that cause the disagreements.

To characterize the extensions, we need U(Γ) and Abp(M) from Section 3,
together with the following two definitions.

Definition 22 M is a RM?-model of Γ♦ iff it is a RM-model of Γ♦ and
Abp(M) ⊆ U(Γ) .

Definition 23 M is a F?-model of Γ♦ iff it is a F-model of Γ♦ and Abp(M) ⊆
U(Γ) .

The extended Rescher–Manor consequence relations are then characterized
as follows.11

Definition 24 Γ `Weak? A iff Γ♦ |=RM? ♦A .

Definition 25 Γ `Strong? A iff Γ♦ |=RM? �A .

Definition 26 Γ `C-based? A iff Γ♦ |=RM? �ΓA .

Definition 27 Γ `Free? A iff Γ♦ |=F? �A .

The extensions are best understood by concentrating first on the Strong?-
consequence relation. A Strong consequence of Γ is one explicitly agreed upon
by all (overlapping) consistent parties (groups of participants the positions of
which are compatible) in the discussion—the consequence is CL-derivable from
the statements made by each such party. A further Strong? consequence of Γ is
one that is implicitly agreed upon by all consistent parties. Free consequences
represent a very different explicit agreement. They are the CL-consequences of
the interventions of those participants that do not contradict anyone—some of
these participants may be wise, others diplomatic, still others may lack a clear
view. The Free? extend the Free consequences by including the consistent core.
A Weak consequence is one is affirmed by some consistent party—CL-derivable
from statements made by that party—but may be denied by another consistent
party. Unlike what one may expect, the Weak? consequence relation extends
the Weak one. If some consistent party affirms A but does not affirm some B
that belongs to the consistent core, then A ∧ B is a Weak? consequence. So,
even where consistent parties contradict each other, their implicit positions are
extended with the statements that are affirmed by some and denied by none.
The C -based? consequences extend the C-Based consequences in a similar way.
This basically means that the content of the majority position comprises the
consistent core, which is obviously desirable.

11I do not consider an extension of the Argued consequence relation because adding the
consistent core to each position does not warrant an extension of that consequence relation.
Incidentally, it seems to me that the purpose served by the Argued consequence is much better
served by the Strong? consequence relation.
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5 Changing Positions

Before, I have supposed that the positions of participants are stable. This is
clearly an idealization. As arguments are presented in the discussion, is is likely
that participants change their positions, especially if the discussion is a rational
one.

In this section, I discuss those changing positions. It should be stressed,
however, that, by allowing for changing positions of participants, one arrives
at the true dynamics of a discussion. As positions chance, the arguments and
agreements have to be updated. The most sensible approach to that problem
is that one updates the arguments and agreements after any intervention of a
participant. After each intervention, the position of the intervening participant
is updated and the arguments and agreements are settled in accordance with
the mechanisms described in previous sections. So, I shall restrict my attention
to the changing positions of participants.

The set of interventions of a participant may be represented by a sequence
of sets of statements:

Σ = 〈Γ1, . . . , Γn〉

Γ1 represents the participant’s first intervention, etc. As stated in Section 1, I
presuppose that any participant intends to defend a consistent position, but do
not rule out that some interventions are inconsistent due to confusion.

In [18], Liza Verhoeven has studied the use of the prioritized Rescher–Manor
consequence relations with respect to the present problem. The result is neg-
ative: none of those consequence relations is able to adequately characterize a
participant’s changing position. The basic reason for this is that the changing
position of a participant can only be understood in terms of the consequences
of the participant’s interventions, not in terms of the statements that were ex-
plicitly made. So, we need to look for a new approach. The underlying idea is
that a participant’s position depends, first and foremost on his or her last inter-
vention Γn. As this may be consistent, we have extract ‘the consistent part’ of
it. Let the result be C(Γn). Next, we add the consequences of the next to last
intervention that are compatible with C(Γn). And so on.

I shall briefly sketch two approaches to this problem. I consider the first
one, forthcoming in [8], as the most promising, but the related research is not
completely finished. So, I merely present an outline. Next, I shall describe the
second road.

Suppose that C(Γ) is the (or the suitable) consistent part of CnL(Γ), in which
L is some suitable logic. As Γ may be inconsistent, L better be paraconsistent.
As we supposed that the participant was defending a consistent position, CnL(Γ)
will have to constitute an interpretation of Γ that is ‘as consistently as possible’.
In other words, L will have to be an inconsistency-adaptive logic. Once all this
is available, the most sensible reconstruction of a participant’s position (after
his or her n-th intervention) is clearly as follows:

C(Γ1 ∪ . . . ∪ Γn) ∪ C(Γ2 ∪ . . . ∪ Γn) ∪ . . . ∪ C(Γn)

This definition proceeds in terms of C(Γ). The idea that the position con-
tains only those L-consequences of the next to last intervention that are com-
patible with C(Γn) is realized indirectly, viz. because the consistent part of the
last two interventions taken together, C(Γn−1 ∪ Γn), is defined in such a way
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that it is compatible with the consistent part of the last intervention, C(Γn).
This approach seems the right one. The problem is to offer a suitable definition
of C(Γ). At present, the apparently best solution to this problem is not proved
adequate.

The second approach12 is a halfway house between the previous approach
and prioritized Rescher–Manor consequence relations. It takes the Feys–von
Wright modal logic T as its lower limit logic, its extension with the axiom
♦A ⊃ A (hence Triv) as its upper limit logic, and follows either the Reliability
strategy or the Minimal Abnormality strategy—I chose the Reliability strategy
for the present paper.

First, the sequence of interventions

Σ = 〈Γ1, . . . , Γn〉

is turned in modal terms as follows

Σ♦ = {♦n−i+1A | A ∈ Γi (1 ≤ i ≤ n)}

in which ♦n−i+1A is A preceded by n − i + 1 diamonds—thus ♦1A = ♦A,
♦2A = ♦♦A, etc.

Let Fa be the set of atoms (primitive open and closed formulas and their
negations). Let Dabi(∆) denote the disjunction

∨
{∃(♦iA ∧ ¬A) | A ∈ ∆}.

We shall say that Dabi(∆) is a Dabi-consequence of Σ iff all T-models of Σ
verify Dabi(∆). A Dabi-consequence Dabi(∆) of Σ will be called minimal iff
(i) ∆ ⊆ Fa and (ii) there is no ∆′ ⊂ ∆ such that Dabi(∆′) is a Dabi-consequence
of Σ.

Definition 28 U i(Σ) =
⋃
{∆ | Dabn−i+1(∆) is a minimal Dabn−i+1-conse-

quence of Σ}

Remark that U1(Σ) depends only on Γn, U2(Σ) depends on Γn−1 ∪ Γn, etc.
Given these sets of unreliable formulas with respect to Σ♦, we now turn to the
abnormal parts of the models.

Definition 29 Abi(M) =df {A ∈ Fa | vM (∃(♦n−i+1A ∧ ¬A), w0) = 1}

Where M0
Σ is the set of all T-models of Σ♦, we stepwise define models that

are reliable with respect to the different layers of abnormalities in the obvious
way:

Mi+1
Σ = {M ∈Mi

Σ | Abi+1(M) ⊇ U i+1(Σ)}
and call Mn

Σ the AT-models of Σ♦. Finally, we define:

Definition 30 Σ♦ �AT A iff all M ∈Mn
Σ verify A.

It seems useful to present a simple propositional example at this point.
Where

Σ = 〈{∼s}, {p ∧ r, s}, {∼p, q}〉
the reader can easily verify that all models in M3

Σ verify ∼p, q, r, as well as
s, as desired. The example illustrates that AT is a halfway house between the
Rescher–Manor consequence relations and an approach that proceeds in terms of
consequences of the interventions. Thus, the fact that p∧ r ∈ Γ2 is contradicted
by ∼p ∈ Γ3 does not prevent r from being derivable.

12This approach is studied in [7] in the context of diagnosis.
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6 An Example of a Dynamic Proof Theory

To illustrate dynamic proof theories, I shall briefly spell out the one for AT. I
present the rules and the marking definition, as well as a simple example of a
proof, but skip the whole metatheory. Here are the (generic) rules:

PREM If A ∈ Σ♦, then one may add a line consisting of
(i) the appropriate line number,
(ii) A,
(iii) “−”,
(iv) “PREM”, and
(v) ∅.

RU If B1, . . . , Bm `T A and B1, . . . , Bm occur in the proof with the con-
ditions ∆1

j1
, . . . ∆m

jm
respectively, then one may add a line consisting

of
(i) the appropriate line number,
(ii) A,
(iii) the line numbers of the Bi,
(iv) “RU”, and
(v) (∆1 ∪ . . . ∪∆m)max(j1,...,jm).

RC If B1, . . . , Bm `T A ∨ Dabk(Θ) and B1, . . . , Bm occur in the proof
with the conditions ∆1

j1
, . . . ∆m

jm
respectively, then one may add a line

consisting of
(i) the appropriate line number,
(ii) A,
(iii) the line numbers of the Bi,
(iv) “RC”, and
(v) (Θ ∪∆1 ∪ . . . ∪∆m)max(k,j1,...,jm).

Remark that the fifth element of a line (unless this element is ∅) receives
a unique index i that refers to some set Γn−i+1 ∪ . . . ∪ Γn. The meaning of
this index is that the formula (second element of the line) is derivable from the
premises provided the members of that fifth element are reliable at level i, viz.
are not members of U i(Σ). As (at the predicative level) U i(Σ) is undecidable,
the marking definition (below) proceeds in terms of sets of formulas that are
unreliable at stage s of the proof, U i

s(Σ). These sets are defined in the same
way as the U i(Σ), but from the Dabn−i+1-formulas that are derived in the proof
with a condition that has an index lower than i, and are minimal at stage s.

The marking definition for Reliability is as follows:

Definition 31 Line i is marked at stage s iff, where ∆j is its fifth element,
∆j ∩ U j

s (Σ) 6= ∅.

A is finally AT-derived on line i at a stage s of a proof from Σ♦ iff line i is
not marked at stage s, and any extension of the proof in which line i is marked,
may be further extended in such a way that line i is unmarked. A is finally
AT-derivable from Σ♦ iff A is finally AT-derived at a stage of a proof from Σ♦.
As we are only interested in the non-modal formulas that are finally derivable
from Σ♦, I define:

Definition 32 Where A ∈ W, Σ♦ `AT A iff A is finally derivable from Σ♦.
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I now present a simple dynamic proof from the propositional Σ♦:

〈{♦♦♦∼s}, {♦♦(p ∧ r),♦♦s}, {♦∼p, ♦q}〉

As, at the propositional level, AT is decidable, the dynamics could have been
avoided. This is obviously not possible at the predicative level. Still, the propo-
sitional example nicely illustrates the matter. The boxed “13” at the end of
line 8 indicates that line 8 is marked in view line 13. Similarly for other boxed
numbers.

1 ♦∼p PREM ∅
2 ♦q PREM ∅
3 ♦♦(p ∧ r) PREM ∅
4 ♦♦s PREM ∅
5 ♦♦♦∼s PREM ∅
6 ∼p 1 RC {∼p}1
7 q 2 RC {q}1
8 p ∧ r 3 RC {p, r}2 13

9 p 8 RU {p, r}2 13

10 r 8 RU {p, r}2 13

11 ♦♦p 3 RU ∅
12 ♦♦r 3 RU ∅
13 ♦♦p ∧ ∼p 6, 11 RU {∼p}1
14 r 12 RU {r}2
15 s 4 RU {s}2

The reader can easily check each of the following. If p were derived from line
11, it would receive the condition {p}2 and hence would be marked in view of
line 13. The formula ♦∼p ∧ p can only be derived on the condition {p}2, and
hence ∼p 6∈ U1(Σ). Of course, one may derive ♦♦♦∼p∧p on the condition {p}2,
and hence ∼p ∈ U3(Σ), but this has no effect on line 6. Lines 6, 7, 14, and 15
will not be marked in any extension of the proof and hence are finally derived.

7 Open Problems

It is astonishing that, even if we rely on the relatively unknown dynamic proof
theories, we are just at the beginning of developing the tools for analysing
discussions. There seem to be four urgent tasks in this respect. The first is to
articulate the approach in terms of the consistent part of sets that are closed
by some paraconsistent logic. This will provide a more adequate analysis of
changing positions. The next task is to remove the idealizing presuppositions
of the logics presented in previous sections. A third task consists in devising a
set of heuristic rules to speed up the dynamic proofs (at the predicative level)
and perhaps even to develop computer implementations. Finally, one should dig
deeper into the dynamics of discussions. More particularly, one should study
the ways in which agreement may be reached, the relative import of implicit
and explicit forms of agreement, and the relation between, on the one hand,
the reasons for a participant to change his or her position and, on the other
hand, the effect of those reasons on the outcome of the discussion—Who wins
or looses? Which decision results from the available agreements?
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The aim of the present paper was mainly to attract attention to an available
line of research and to illustrate the dynamic proof procedure. People interested
should study the papers referred to.13
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