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Summary. While there was an awareness of ancient Indian mathematics in the
West since the sixteenth century, historians discuss the Indian mathematical tradi-
tion only after the publication of the first translations by Colebrooke in 1817. Its
reception cannot be comprehended without accounting for the way new European
mathematics was shaped by Renaissance humanist writings. We show by means of
a case study on the algebraic solutions to a linear problem how the understanding
and appreciation of Indian mathematics was deeply influenced by humanist prej-
udice that all higher intellectual culture, in particular all science, had risen from
Greek soil.
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1 The context of Renaissance humanism

Western reception of ancient Indian mathematics during the nineteenth-
century is very much biased by the humanist tradition. Reflections and state-
ments of Western historians on Indian mathematics can only be fully under-
stood if this context is known and acknowledged.

During the Middle Ages mathematics was hardly practiced or appreciated
by the intellectual elite. The Middle Ages knew two traditions of mathemati-
cal practice. On the one hand, there was the scholarly tradition of arithmetic
theory, taught at universities as part of the quadrivium. The basic text on
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arithmetic, presented as one of the seven liberal arts, was Boethius’s De Insti-
tutione Arithmetica (Friedlein, 1867). The Boethian arithmetic strongly relies
on Nichomachus of Gerasa’s Arithmetica from the 2nd century (Robbins and
Karpinski, 1926). This basically qualitative arithmetic deals with properties
of numbers and ratios. All ratios have a name and operations or propositions
on ratios are expressed in a purely rhetorical form. The qualitative aspect
is well illustrated by the following proposition from Jordanus de Nemore’s
De elementis arithmetice artis (c. 1250, Book IX, proposition LXXI; Busard
1991, 199):

Datis superparticularibus vel multiplicibus superparticularibus multiplices
superparticulares et superpartientes et datis superpartientibus aut multipli-
cibus superpartientibus superpartientes et multiplices superpartientes pro-
creare.

A superparticular has the form n + 1
n and thus covers proportions such as

the common sesquialter (3/2) and sesquiter (4/3) proportions; a superpartient
proportion has the form m + n

n with m > 1 and includes proportions such
as 8/3. The proposition describes how to create multiple superparticular pro-
portions from a given one. As may be clear from this example treated in the
most extensive treatise of the period, arithmetic served little practical pur-
pose and was not applied outside monasteries and universities. It was intended
mainly for aesthetic and intellectual pursuit. During the eleventh century a
board game named Rhythmomachia was designed to meet with these aesthetic
aspirations. Originated as the subject of a competition on the knowledge of
Boethian arithmetic amongst cathedral schools in Germany (Borst 1987), the
game was played until the sixteenth century, when the arithmetic tradition
passed into oblivion. Despite its limited applicability, Boethian arithmetic
evolved into a specific kind of mathematics, typical for the European Mid-
dle Ages, and left its mark on early natural philosophy. Carl Boyer’s book
on the history of calculus demonstrates how fourteenth-century thinkers such
as Bradwardine and Richard Suiseth developed ideas on continuity and ac-
celeration within this framework which influenced the later development of
mathematics and natural philosophy (Boyer 1959, ch. 3).

A second tradition concerned arithmetical problem solving, of which
Alcuin’s Propositiones ad Acuendos Juvenes (Propositions for Sharpening
Youths) from the ninth century provides us with an extant witness. This
collection contains 53 problems of which many are repeated over and over
in medieval and Renaissance works. Translations are quite recent. Folkerts
(1978) translated Alcuin into German. Hadley provided an English transla-
tion, annotated by Singmaster (1992). As the title suggests, the problems
were to be used for educational purposes and to be read aloud, copied and
solved by students. Arithmetical problem solving became much more advanced
with the introduction of Arabic algebra through the Latin translations of al-
Khwārizmī’s Algebra by Robert of Chester (c. 1145), Gerard of Cremona (c.
1150) and Guglielmo de Lunis (c. 1215). With the possible exception of Jean
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de Murs’ Quadripartitum numerorum at the Sorbonne (1343, l’Huillier, 1990),
algebra was not practiced or even spoken about at universities for the follow-
ing three centuries. However, algebra flourished and continuously developed
within the vernacular tradition of abacus schools in fourteenth- and fifteenth-
century Italy. Algebra was not only a foreign invention by its Arabic origin,
it was also completely foreign to the scholarly tradition.

During the fifteenth century Italian humanists eagerly started collecting
editions of Greek mathematics. One of the most industrious was Cardinal
Bessarion who lived in Venice. By his death in 1472 he had accumulated over
five hundred Greek manuscripts (Rose, 1975, 44-46 and 90-109). Regiomon-
tanus, who had befriended Bessarion, began to study these Greek texts around
1463, including Diophantus’ Arithmetica. He reported his find of the six books
of the Arithmetica in a letter to Giovanni Bianchini (Curtze, 1902, 256-7). By
then he was well-acquainted with the Arabic algebra. He owned a copy of
the manuscript on algebra by al-Khwārizmī, possibly from his own pen (MS.
Plimpton 188). Highly receptive to influences between traditions, he immedi-
ately conjectured a relation. In his Oratio, a series of lectures at the University
of Padua in 1464, he introduced the idea that Arabic algebra descended from
Diophantus’ Arithmetica (Regiomontanus, 1537). This heralded the initiation
of a myth cultivated by humanists for centuries. Diophantus, first considered
to be the source of inspiration for Arabic algebra, became the alleged origin of
European algebra. Several humanist writers such as Ramus, chose to neglect or
reject the Arabic roots of Renaissance algebra altogether (Høyrup, 1998). As
a matter of fact, Diophantus had almost no impact on European mathemati-
cal practice before the late sixteenth century. Diophantus inspired authors on
algebra such as Stevin, Bombelli and Viète because by then symbolic algebra
was well established. By overrating the importance of Diophantus and down-
grading the achievements of Arabic algebra, humanist writers created a new
mythical identity of European mathematics. Suddenly Greek mathematics be-
came European mathematics. However, most Greek sources were unavailable
before the sixteenth century. In fact, Greek mathematics was more foreign to
the European mathematical practice than Arabic mathematics was; the lat-
ter was slowly but surely appropriated with the abacus tradition. Ironically,
the medieval qualitative arithmetic, which was a genuine European tradition,
became completely forgotten.

Only later, European historians learned about ancient Indian mathematics
and what they learned was strongly influenced by the humanist mathematical
tradition. We will now give a brief overview of the first assessments of Indian
algebra in the West.

2 The first descriptions of Indian algebra

In some sense Wallis’s Treatise on Algebra (1685) can be considered the first
serious historical investigation of the history of algebra. John Wallis was well-
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informed about Arabic writings through Vossius and was one of the first to at-
tribute correctly the name algebra to al-jābr in Kitāb f̄i al-jābr wa’l-muqābala.
He also pointed out the mistaken origin of algebra as Geber’s name, which
was a common misconception before the seventeenth century (Wallis 1685, 5).
Unprecedented, Wallis casts doubts on Diophantus’ contribution to modern
algebra. He even launched the idea that Arabic algebra may have originated
from India (Wallis 1685, 4):

However, it is not unlikely that the Arabs, who received from the Indians
the numeral figures (which the Greeks knew not), did from them also receive
the use of them, and many profound speculations concerning them, which
neither Latins nor Greeks know, till that now of late we have learned them
from thence. From the Indians also they might learn their algebra, rather
than from Diophantus.

So, while in the seventeenth century no Sanskrit mathematics had yet been
introduced into Europe, scholars by then were aware of the existence of Indian
algebra. Wallis’s view persisted in eighteenth-century historical studies, which
reiterated the influence from Indian mathematics. Pietro Cossali, who wrote
an extensive monograph on the history of algebra, concluded his discussion on
al-Khwārizmī’s Algebra with al-Khwārizmī “not having taken algebra from the
Greeks,... must have either invented it himself, or taken it from the Indians.
Of the two, the second appears to me the most probable”(Cossali 1779, I,
216-9). Hutton, who included a long entry on algebra in his Mathematical and
Philosophical Dictionary, wrote (Hutton 1795, I, 66):

But although Diophantus was the first author on algebra that we know of,
it was not from him, but from the Moors or Arabians that we received the
knowledge of algebra in Europe, as well as that of most other sciences. And
it is matter of dispute who were the first inventors of it; some ascribing the
invention to the Greeks, while others say that the Arabians had it from the
Persians, and these from the Indians.

In the early nineteenth century, the English orientalist Henry Thomas
Colebrooke, who previously published his Sanskrit Grammar (1805), un-
dertook the task of translating three classics of Indian mathematics, the
Brāhmasphut.asiddhānta of Brahmagupta (628) and the Līlāvatī and the
Bījagan. ita of Bhāskara II (1150) (Colebrooke 1817). At once European his-
torians had something to reflect upon. In a period when mathematics was
hardly practiced in Europe and in the Islam regions, there appeared to have
existed this Indian tradition in which algebraic problems were solved with
multiple unknowns, in which zero and negative quantities were accepted and
in which sophisticated methods were used to solve indeterminate methods.
In general, nineteenth-century historians showed an admiration for the Hindu
tradition. However, whenever explanations were required, scholars became di-
vided into two opposing camps, which we could call the believers and the
non-believers. Non-believers did not grant Indian mathematicians the status
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of original thought. Indian knowledge must have stemmed from the Greeks,
the cradle of Western mathematics, or even mathematics as such. The major
non-believer was Moritz Cantor who published an influential four-volume work
on the history of mathematics (1880-1908). Cantor (1894, II) takes every op-
portunity to point out the Greek influences on Hindu algebra. Some examples:
the Indians learned algebra through traces of algebra within Greek geometry
(“Spuren griechischer Algebra müssen mit griechischer Geometrie nach In-
dien gedrungen sein und werden sich dort nachweisen lassen”, Cantor 1894,
II, 562); Brahmagupta’s solution to quadratic equations has Greek origins
(“So glauben wir auch deutlich die griechische Auflösung der quadratischen
Gleichung, wie Heron, wie Diophant sie übte, in der mit ihr nicht bloss zufällig
übereinstimmenden Regel des Brahmagupta zu erkennen”, Cantor 1894, II,
584); or the Epanthema as discussed below.

The believers were not convinced by accidental resemblances between
Greek and Hindu solution methods and did not see why Indian mathematics
could not have been an independent development. In particular, Hankel (1874,
204) touches the sore spot when he writes:

That by humanist education deeply inculcated prejudice that all higher
intellectual culture in the Orient, in particular all science, is risen from
Greek soil and that the only mentally truly productive people have been the
Greek, makes it difficult for us to turn around the direction of influence for
one instant. (Das uns durch die humanistische Erziehung tief eingeprägte
Vorurtheil, dass alle höhere geistige Cultur im Orient, insbesondere alle
Wissenschaft aus griechischem Boden entsprungen und das einzige geistig
wahrhaft productive Volk das griechische gewezen sei, kann uns zwar einen
Augenblick geneigt machen, das Verhältniss umzukehren [my translation]).

Soon after Kern (1875) published the Sanskrit edition of the Āryabhat.īya
(AB), the French orientalist Léon Rodet was the first to provide a translation
in a Western language (1877, published in Rodet 1879). Rodet wrote several
articles and monographs on Indian mathematics and its relation with ear-
lier and later developments in the Arab and Western world, published in the
French Journal Asiatiques. He is the scholar who displays the most balanced
and subtle views on the relations between traditions. In particular, his ap-
praisal of Hindu and Arabic algebra as two independent traditions is still of
value today (see Heeffer 2007b for an assessment). He certainly was a believer.
Concerning Āryabhat.a’s inadequate approximation of the volume of a sphere
(prop. 7), he writes somewhat cynically that if Āryabhat.a got his knowledge
from the Greeks, then apparently he chose to ignore Archimedes (“Mais elle
a, pour l’histoire des mathématiques, d’autant plus de valeur, parce qu’elle
nous démonstre que si Āryabhat.a avait reçu quelque enseignement des Grecs,
il ignorait au moins les travaux d’Archimède”, Rodet 1879, 409).

George Thibaut who translated several Sanskrit works on astronomy, such
as Varāhamihira’s Pañcasiddhāntikā (1889), also wrote an article on Indian
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mathematics and astronomy in the Encylopedia of Indo-Aryan Research. Con-
cerning influences from Greek mathematics, he takes a middle position. In
discussing Hindu algebra he writes that “in all these correspondences does
Indian algebra surpass Diophantus” (“In allen diesen Beziehungen erhebt sich
die indische algebra erheblich über das von Diophant Geleistete” (Thibaut
1899, 73). As on the origins of Indian mathematics, he points out that Indian
algebra, especially indeterminate analysis, is closely intertwined with its as-
tronomy. As he argued on the Greek roots of Indian “scientific” astronomy,
his evaluation is that Indian mathematics is influenced by the Greeks through
astronomy. However, he adds that several arithmetical and algebraic methods
are truly Indian (Thibaut 1899, 76-8).

Despite the existence of several studies and opinions which should provide
sufficient counterbalance for Cantor’s position as a non-believer, his views
remained influential well into the twentieth century. We may say that the
“humanist prejudice” is still alive today. The myth that Greek mathematics is
our (Western) mathematics has become intertwined with our cultural identity
so strongly that it becomes difficult to understand intellectual achievements
within mathematics foreign to the Greek tradition.

We will now look in detail at an example that has been one of the main
arguments for the advocates of Greek influence. The example clearly shows
how historical investigation can be misled through prejudice.

3 A case study: the Bloom of Thymaridas

We have demonstrated elsewhere that if there is an influence between Indian
algebra and European arithmetic, it should be situated on the level of proto-
algebraic solution recipes, orally disseminated through riddles and recreational
problems (Heeffer, 2007a). One interesting example in this respect is a class
of determinate linear problems in which the partial sums are given and the
individual quantities are unknown. We found strong similarities in the rules
for solving this type of problem both in Hindu algebra and in Renaissance
arithmetic. These rules have a special interest for our discussion as we have
both a Greek and a Hindu tradition of their use. There has been a contro-
versy about the possible influence of Greek mathematics on Indian algebra,
as defended by Cantor and Kaye and disputed by Rodet. We will here shed
more light on the controversy and explain the dispute as a misunderstanding
of the rule. We will demonstrate in detail that the Greek and Indian versions
are in fact two different rules and that the alleged influence from Greece to
India is therefore highly disputable.

3.1 The original formulation in Hindu sources

The first Indian source for a formulation of this rule is from Āryabhat.a I, 499,
(AB, ii, 29; Clark 1930, 40) as follows:
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If you know the results obtained by subtracting successively from a sum
of quantities each one of these quantities set these results down separately.
Add them all together and divide by the number of terms less one. The
result will be the sum of all the quantities.

The rule is somewhat obscure and difficult to understand without exam-
ples, but some observations can be drawn from the formulation which are
central to our further discussion. Firstly, the rule is valid for any number of
quantities. It is not limited to two or three quantities. Secondly, the sum of
all the quantities is unknown and is provided by the rule. Furthermore, and
not evident from the rule, as cited above, is that the partial sums relate to
the total of all the quantities, except one. In modern symbolism the general
structure of the problem thus is as follows:

Suppose n amounts (a1, a2, ..., an) with unknown sum S and with the
partial sums (s1, s2, ..., sn) given, where si = S − ai, then

S =

n∑
i=1

si

n− 1
.

The rule and the problems it applies to should not be confused with a
similar problem in which the partial sums of two consecutive quantities are
given. For three numbers, the problems are evidently the same, but they di-
verge for more than three quantities. E.g., for five quantities the corresponding
equations are:

a1 + a2 + a3 + a4 = s1 a1 + a2 = s1

a1 + a3 + a4 + a5 = s2 a2 + a3 = s2

a1 + a2 + a4 + a5 = s3 and a3 + a4 = s3

a1 + a2 + a3 + a5 = s4 a4 + a5 = s4

a2 + a3 + a4 + a5 = s5 a5 + a1 = s5

Let us apply the rule to a simple problem (not discussed by Āryabhat.a) which
can be formulated symbolically as:

x1 + x2 = 13
x2 + x3 = 14
x1 + x3 = 15

Applying Āryabhat.a’s rule, the solution would be based on the rule for deriv-
ing the sum of all three unknown quantities as follows:

x1 + x2 + x3 =
13 + 14 + 15

3− 1
= 21.

This allows us to determine the value of the quantities by subtracting the
partial sums from the total with the solution (7, 6, 8). A commentator of the
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Āryabhat.iya, called Bhāskara I (written 629, not to be confused with Bhāskara
II), gives two examples of problems that can be solved with Āryabhat.a’s rule
with the partial sums (30, 36, 49, 50) and (28, 27, 26, 25, 24, 23, 21) (Shukla
and Sarma 1976, 307-308).

3.2 The derived problem in Hindu sources

From the ninth century we find a derived version of the previous problem
in Hindu sources. Mahāv̄ira gives an elaborate description of the rule in
the Gan. itasārasam. graha (GSS, stanza 233-5, Padmavathamma 2000, 357-9)
which we here reproduce:

The rule for arriving at [the value of the money contents of] a purse which
[when added to what is on hand with each of certain persons] becomes a
specified multiple [of the sum of what is on hand with the others]:
The quantities obtained by adding one to [each of the specified] multiple
numbers [in the problem and then] multiplying these sums with each other,
giving up in each case the sum relating to the particular specified multiple,
are to be reduced to their lowest terms by the removal of common factors.
[These reduced quantities are then] to be added. [Thereafter] the square
root [of this resulting sum] is to be obtained, from which one is [to be
subsequently] subtracted. Then the reduced quantities referred to above are
to be multiplied by [this] square root as diminished by one. Then these are
to be separately subtracted from the sum of those same reduced quantities.
Thus the moneys on hand with each [of the several persons] are arrived at.
These [quantities measuring the moneys on hand] have to be added to one
another, excluding from the addition in each case the value of the money
on the hand of one of the persons and the several sums so obtained are to
be written down separately. These are [then to be respectively] multiplied
by [the specified] multiple quantities [mentioned above]; from the several
products so obtained the [already found out] values of the moneys on hand
are [to be separately subtracted]. Then the [same] value of the money in
the purse is obtained [separately in relation to each of the several moneys
on hand].

The introductory sentence states that the rule is to be used for determining
the value of a purse. The rule is followed by a number of problems that begin
as “Four men saw on their way a purse containing money” (ibid. stanza 245 1

2 ,
367). This is the earliest instance, in our investigation of the sources, in which
the popular problem of men finding a purse is discussed. While problems
with the same structure and numerical values have been formulated before,
the context of men finding a purse seems to have originated in India before
850 AD. Formulations with the purse turn up in Arabic algebra with al-
Karkh̄i’s Fakhrī (c. 1050) and in the Miftāh al-mu`āmalāt of al-Tabari (c.
1075). Fibonacci has many variations of it in the Liber Abbaci (1202) and
after that it becomes the most common problem in western arithmetic until
the later sixteenth century. For an understanding of the rule, let us look at
its application to a given problem (GSS, stanza 236-7, pp. 360):
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Three merchants saw [dropped] on the way a purse [containing money]. One
[of them] said [to the others], “If I secure this purse, I shall become twice as
rich as both of you with your moneys on hand”. Then the second [of them]
said, “I shall become three times as rich”. Then the other, [the third], said,
“I shall become five times as rich”. What is the value of the money in the
purse, as also the money on hand [with each of the three merchants]?

We can represent the problem in symbolic equations as follows:

x + p = 2(y + z)
y + p = 3(x + z)
z + p = 5(x + y)

Let us apply the recipe of Mahāvira to this problem, step by step. By “adding
one to [each of the specified] multiple numbers” we have 3, 4 and 6. “Multi-
plying these sums with each other” we get 72. This has to be “reduced to their
lowest terms by the removal of common factors”. This least common multiple
is 12. The reduced quantities are then 4, 3 and 2 respectively. Adding these
together gives 9. From this the square root is 3. Then the reduced quantities
“are to be multiplied by the square root as diminished by one”, which is 2.
This leads to 8, 6 and 4. The money in hand for each of the merchants now
is the difference of these values with the sum of the reduced quantities, being
9. The solution thus is 1, 3 and 5. The rest of the rule is an elaborate way
to derive the value of the purse. Using the values in any one of the equa-
tions immediately leads to 15 for the value of the purse. Mahāv̄ira provides
no explanation or derivation of the rule. For a mathematical argument for the
validity of the rules see Heeffer (2007a).

3.3 The problem in Greek sources

3.3.1 The Bloom of Thymaridas

We know almost nothing about Thymaridas of Paros, but he is supposed to
have lived between 400 and 350 BC (Tannery 1887, 385-6). The only extant
witness is Iamblichus, in his comments on the Introduction to Arithmetic by
Nichomachus of Gerasa. The best known source for The Bloom of Thymaridas
is Heath’s classic on Greek mathematics. Heath (1921, 94) does not formu-
late the rule, he only observes that “the rule is very obscurely worded” and
writes out the equations. The text from Iamblichus was first published in
Holland with a Latin translation by Samuel Tennulius (1668) from the Paris
manuscript BNF Gr. 2093. A critical edition, based on multiple manuscripts
was published by Pistelli (1884). Nesselmann (1842, 233) quotes the Greek
text and the Latin translation from Tennulius, who translated the method as
florida sententia. We give here the our own literal translation from Pistelli
(1884, 62):
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From this we are also acquainted with the method of the Epanthema, passed
down to us by Thymaridas. Indeed, when a given quantity divides into
determined and unknown parts, and the unknown quantity is paired with
each of the others, so will the sum of these pairs, diminished by the sum
[of all the quantities] be equal to the unknown quantity in case of three
quantities. With four quantities it will be half of it, with five it will be a
third, with six, a fourth and so on.

The rule is not as obscure as considered by Heath. Let us extract the basic
elements of the rule, and compare these with the version of Āryabhat.a:

• The rule applies to any number of quantities, as does Āryabhat.a’s.
• The sum is given in the problem. The rule is described as the division of

a known quantity in determined and undetermined parts. In Aryabhat.a’s
rule the sum is what is looked for.

• The partial sums are the sums of the pairs of the unknown part with each
of the known quantities. In Āryabhat.a’s rule the partial sums include all
the numbers except one.

In short, this rule is different from Āryabhat.a’s in two important aspects.
Its intention is to find one unknown part of a determined quantity. Āryabhat.a’s
rule is meant for finding the sum of numbers of which the partial sums of all
minus one is given. Even in the case of three numbers, when the partial sums
are the same, the rules have different applications. To make it clear to the
modern eye, here is a symbolic version in the general case:

x + a1 + a2 + ... + an−1 = s
x + a1 = s1

x + a2 = s2

...
x + an−1 = sn−1


x =

n−1∑
i=1

si − s

n− 2

3.3.2 Diophantus

In the first book of the Arithmetica of Diophantus we find four instances of
the problem type. Problems 16 and 17 are of the original type as covered by
Āryabhat.a’s rule. Let us first look at problem 17 with four unknown quantities.
We use Ver Eecke (1926, 22) as the best translation of the Arithmetica:

Trouver quatre nombres qui, additionnés trois à trois, forment des nombres
proposés. Il faut toutefois que le tiers de la somme des quatre nombres
soit plus grand que chacun d’eux. Proposons donc que les trois nombres,
additionnés à la suite à partir du premier, forment 20 unités; que les trois
à partir du second forment 22 unités, que les trois à partir du troisième
forment 24 unités, et que les trois à partir du quatrième forment 27 unités”.

In modern symbolism, the problem reads as follows:
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a + b + c = 20
b + c + d = 22
a + c + d = 24
a + b + d = 27

Diophantus’s solution is not based on a proto-algebraic rule but has all the
characteristics of algebra. He uses the arithmos as an abstract quantity for
the unknown, to represent the sum of the four quantities (Ver Eecke 1926,
22):

Posons que la somme des quatre nombres est 1 arithme. Dès lors, si nous
retranchons les trois premiers nombres, c’est-à-dire 20 unités, de 1 arithme,
il nous restera, comme quatrième nombre, 1 arithme moins 20 unités. Pour
les mêmes raisons, le premier nombre sera 1 arithme moins 22 unités; lé
second sera 1 arithme moins 24 unités, et le troisième 1 arithme moins 27
unités. Il faut enfin que les quatre nombres additionnés deviennent égaux à
1 arithme. Mais, les quatre nombres additionnés forment 4 arithmes moins
93 unités; ce que nous égalons à 1 arithme, et l’arithme devient 31 unités.

If a+b+c+d = x, then the four numbers not included in the partial sums
are x−20, x−22, x−24, and x−27 respectively. Adding these four together
is equal to their sum or x, thus 4x − 93 = x and x = 31. This problem in
the Arithmetica is followed by problems 18 and 19, of a related type, but not
the one covered by Mahāv̄ira’s formulation. We show here only the symbolic
translation of problem 19:

a + b + c = d + 20
b + c + d = a + 30
a + c + d = b + 40
a + b + d = c + 50

The solution is similar to the previous problem but depends on the choice of
2x for the sum of the four numbers.

3.3.3 The extended rule from Iamblichus

Iamblichus extends the rule of Thymaridas to another problem type which
will become very popular during the next centuries. In modern symbolism
this amounts to the set of equations:

x + p = a(y + z) (1)
y + p = b(x + z) (2)
z + p = c(x + y) (3)

Iamblichus gives two examples of the problem. The first example can be for-
mulated symbolically as follows. Nesselmann (1842, 234-5) gives the literal
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German translation from the Greek. We will follow Nesselmann’s rather than
Heath’s reconstruction:

a + b = 2(c + d)
a + c = 3(b + d)
a + d = 4(b + c)

a + b + c + d = 5(b + c)

The problem is formulated in a way that reminds us of Diophantus: “Find four
numbers such that ...”. Although Diophantus’s Arithmetica has no problems
like this, problems 18 to 20 of the first book are variations on the original
epanthema problem. Iamblichus’s own variation is in some way analogous
to the versions of the Arithmetica and might be influenced by it. However,
while Diophantus’s solution is algebraic, this one depends on a proto-algebraic
rule. The fourth expression in the problem formulation is superfluous and is
recognized as such by Iamblichus, where he adds: “this follows directly from
the previous statements”. It is added to facilitate the application of the rule.
The procedure is explained by Iamblichus in three steps:

1) Set the sum of the four numbers equal to the number found by multiplying
the four factors together. Thus 2 . 3 . 4 . 5 = 120.
Iamblichus does not explain why this is necessary, but it can be demon-
strated in the following way: Completing the left side of the equations (1,
2, 3) to the sum of the four numbers we arrive at:

x + y + z + p = (a + 1)(y + z)
x + y + z + p = (b + 1)(x + z)
x + y + z + p = (c + 1)(x + y)

Therefore, the sum of the four integers must be divisible by (a+1), (b+1)
and (c+1). This can be represented by means of the least common multiple
s. Now Iamblichus does not use s but 2s for a reason that will become
apparent later. In the example the least common multiple is 60, therefore
2s is 120. So, let us suppose that x + y + z + p = 2s.

2) The sum of each pair can be found by taking a
a+1 , b

b+1 and c
c+1 from the

sum 2s respectively. This becomes apparent from

x + p = a(y + z)

(a + 1)(x + p) = a(x + y + z + p).

The three sums (x + p), (y + p) and (z + p) in the example become 80, 90
and 96.

3) Only now, Iamblichus refers to the use of the Epanthema rule. Indeed, we
have the partial sums (x + p), (y + p), (z + p) and we have the total sum
2s. The Epanthema therefore determines the common part p as follows:
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p =
(x + p) + (y + p) + (z + p)− 2s

2
or

p =
80 + 90 + 96− 120

2
= 73,

which leads to the other values as 7, 17 and 23. The reason why Iamblichus
used 2s instead of the least common multiple s, is that s would lead to
the non-integral solution:

p =
40 + 45 + 48− 60

2
= 36

1
2
.

In summary, we discern two important factors which are relevant for the
understanding of the controversy that follows.

1) Our only source for the Epanthema is Iamblichus. There are at least
six centuries between Thymaridas and the extant witness. In the ab-
sence of any written source we should consider Iamblichus’s discussion of
the method as a late interpretation of Pythagorean number theory. The
formulation of the rule with determined and unknown quantities suits
the context of third century Greek analysis better than it would fit in
Pythagorean number mysticism.

2) The extended problem, which has become known as the problem of men
finding a purse, is in itself quite different from the original problem to
which the Epanthema rule applies. The problem, devised by Iamblichus,
could be considered a variation such as several others in the Arithmetica
of Diophantus. Iamblichus gives the rules to reduce the problem to a
form in which the Epanthema can be used. This distinction is important
because many have wrongly identified the men-find-a-purse problem with
the Bloom of Thymaridas.

3.3.4 The controversy

We now come to the discussion on the relevance of the Epanthema method
and the controversy about the influences on and from Indian mathematics. As
there are two aspects of the discussion, we will deal with the issues separately.
Firstly, we address the historical question of the main source of the men-find-
a-purse problem. Secondly, we discuss the more philosophical question of the
relevance of the Bloom on the conceptual development of algebra.

3.3.4.1 The origin of linear problems of men finding a purse

Nesselmann (1842) restrains from comments on the Bloom of Thymaridas in
his Algebra of the Greeks. He treats the method with full respect for the extant
Greek text by Iamblichus. After Nesselmann, the problem was discussed, by
several scholars, in relation to Hindu algebra. Rodet (1879), in his French
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translation of the Āryabhat.a’s treatise, does not mention the Epanthema.
Rodet was no believer in the influence of Greek mathematics in Asia. We can
assume that he did not discuss the Epanthema because, in his point of view,
there simply is no relation to Āryabhat.a’s rule.

On the other hand, Cantor (II, 584), after discussing Āryabhat.a’s stanza
29, remarks, “We do not fear any disagreement, if in this problem and in the
Epanthema of the Thymaridas, we recognize a relation which is so close that a
coincidence is not imaginable” (“Wir fürchten keinen Widerspruch, wenn wir
in dieser Aufgabe und in dem Epantheme des Thymaridas so nahe Verwandte
erkenne, dass an einen Zufall nicht zu denken ist”). Citing Cantor and Heath,
Kaye (1927, 40, note 2) writes “The examples in the text are undoubtedly akin
to the ‘Epanthema’ ”. Tropfke (1980, 399) words it more sharply and considers
the formulation of Āryabhata’s stanza 29 “equivalent with the Epanthema of
Thymaridas”and states that the BM “contains problems of the same sort”.
However, in the original edition, Tropfke (1937, III, 42) is more prudent:
“Āryabhat.a bietet einige solcher Wortgleichungen, unter denen uns eine wegen
ihren Änlichkeit mit dem Epanthem des Thymaridas ausffält”. Apparently it is
Kurt Vogel, who edited the 1980 edition, who believes in a strong connection.

All the suppositions of the Greek influence are based solely on the alleged
resemblance of the problems. As shown above, Āryabhat.a’s rule is very dif-
ferent from the Epanthema. The argument that both are equivalent is plainly
false. The suggestion that the Epanthema provides evidence of an influence
of Greek mathematics on Hindu algebra has very little substance. Instead, it
seems that the argument is biased by normative beliefs about the superiority
of Greek culture. Let us now proceed to the second question on conceptual
influences.

3.3.4.2 A case of Pythagorean algebra?

This single problem, which became known to us through Iamblichus, six cen-
turies after Thymaridas, has convinced many that Greek algebra originated
with the Pythagoreans. After writing out the equations, Cantor (1894, I, 148)
concludes:

This is, as one can see, all rhetorical algebra, in which only the symbols
are missing in order to agree completely with the modern way of solving
equations, and specifically the expressions of the given and unknown quan-
tities was rightly emphasized. (Das ist, wie man sieht, volständig gesproch-
ene Algebra, welcher nur Symbole fehlen, um mit einer modernen Gle-
ichungsauflösung durchaus übereinzu-stimmen, und insbesondere ist mit
Recht auf die beiden Kunstausdrücke der gegebene und unbekannten Grösse
aufmerksam gemacht worden)

Heath’s interpretation is copied in many other works including Smith
(1925, 91), Cajori (59), van der Waerden (1988, 116), Flegg (1983, 205) and
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Kaplan (2001, 62). Cajori finds in the Thymaridas “investigations of subjects
which are really algebraic in their nature”. Van der Waerden goes as far as
to claim that “we see from this that the Pythagoreans, like the Babylonians,
occupied themselves with the solution of systems of equations with more than
one unknown”. Instead, Klein (1968, 36) sees in the problem an intent to “de-
termine special relations between numbers” and places it as “the counterparts
in the realm of ‘pure’ units of the computational problems proper to practical
logistic”. We agree with Klein’s interpretation. Even if Iamblichus’s depiction
of the problem from Thymaridas is faithful, the six centuries separating these
two mathematicians require an interpretation that accounts for two differ-
ent contexts. Pythagoreans were concerned with the properties of numbers
and with the relations between numbers. Lacking any further evidence, we
cannot attribute an algebraic interpretation to Pythagorean number theory.
On the other hand, in the context of the late Greek period of Diophantus
and Iamblichus, an algebraic reading is warranted. Thus, the Bloom is an old
number problem, revived and extended in an algebraic context.

4 Conclusion: the ground was everywhere wet

The humanist project of reviving ancient Greek science and mathematics
played a crucial role in the creation of an identity for the European intel-
lectual tradition. While Greek mathematics was hardly known or practiced
before the fifteenth century, humanist mathematicians identified themselves
with this tradition. When Regiomontanus declared that algebra was invented
by Diophantus, humanist writers rejected the Arabic roots of algebra, though
it was practiced and turned into an independent tradition for two centuries
in Italian cities such as Florence and Sienna. The newly created identity of
mathematics descending from ancient Greek thinkers blurred historical per-
ception. When Indian algebra and arithmetic was introduced into Europe, the
leading historians of the nineteenth-century could only see its alleged relation
with Greek mathematics. The Bloom of Thymaridas is an excellent illustra-
tion of distorted historical investigation. Not only was it wrongly inferred
that the Indian method for solving determined linear problems depended on
Iamblichus, historians forced a connection between third-century Greek anal-
ysis and Pythagorean number theory. The origin of the algebra of Diophantus
still needs an explanation, but it is very doubtful that it is to be found in
Pythagoras.

Apparently nineteenth-century historians found it difficult to accept that
mathematics is a human intellectual activity endeavored across cultures within
societies that needed and supported the achievements of mathematical prac-
tice. A true history of mathematics should take into account contributions
of all origins. Jens Høyrup, who studied the evolution and transmission of
mathematics between cultures, formulates it as follows (Høyrup 1993, 98):
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Diophantos would use the rhetorical algebra, the Chinese Nine Chapters
on Arithmetic would manipulate matrices, and the Liber abbaci would find
the answer by means of proportions We should hence not ask, as commonly
done, whether Diophantos (or the Greek arithmetical environment) was the
source of the Chinese or vice versa. There was no specific source: The ground
was everywhere wet.
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