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1. INTRODUCTION

Kurt Gödel (1933) proved the formal correspondence between the intuitionistic truth of a formula
F and its classical provability via modal necessity: if F is derivable in a calculus for intuitionistic
logic, a translation of F such that each of its subformulas is prefixed by a necessity operator can
be derived in the modal language S4. The inverse implication was established few years later by
McKinsey and Tarski (1948). The logical equivalence between the notion of necessity from
Normal Modal Logics and intuitionistic provability is nonetheless problematic: the appropriate
semantics for ~F in S4 cannot be in general identified with a provability predicate that ranges
existentially over variables (x,y) in view of the non-constructive character of the existential
quantifier (in an arithmetical model one needs an explicit version of the reflection principle
Proof(n,F) 6 F, such that it holds explicitly for each natural number n, cf. Artemov (2001)). To
analyse further this problem, it is appropriate to extend the comparison between necessity and
constructive provability in the framework of formal languages for dependent derivations, as in
the case of Natural Deduction Calculi (NDC) and Dependent Type Theories (DTT). Where
derivability holds under assumptions, Necessitation and Modus Ponens being both allowed rules,
the following inference rule becomes unsound (see Hakli, Negri, (ms.)):

' | A
——— (1)
' | ~A

The same problem can be formulated with a simple argument in modal logic itself:

Suppose we want to show X e Y in some modal axiom system by deriving Y from X. So we add X to our

axioms. Say, to make things both concrete and intuitive, that X is “it is raining” and Y  is “it is necessarily

raining”. Since X has been added to the axiom list the necessitation rule applies, and from X we conclude X,

that is Y. Then the deduction theorem would allow us to conclude that if it is raining, it is necessarily raining.

This does not seem right – nothing would ever be contingent. On the other hand, if we are working in the

modal logic K, and we want to see what happens if we strengthen it to T by adding all instances of the scheme

X e X, we certainly want the necessitation rule to apply to these instances. Things are not simple. (Fitting,

2007).
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This shows that the notion of dependent derivation requires an appropriate extension on the
interpretation of modalities. In forms of contextual reasoning, this is translated in terms of
appropriate operations of entering and exiting a context (respectively, making an discharging an
assumption). The first approach to this kind of dynamics for dependent derivations has been
explored by McCarty (1993) and Buvac et al. (1995) as a logic of contexts. Along the very same
lines, a dynamics for assumptions is possible by extending modalities for the provability predicate
defined in a constructive dependent language. The aim of the research developed in this direction
is threefold:
1. to formulate a logical language providing appropriate interpretations of modalities for a
constructive notion of provability under assumptions; 
2. to extend such a language by describing an appropriate dynamics on contexts;
3. to give intuitive explanations for the involved necessitation and possibility operators for
rational agents. 

In the present paper, I shall provide the basic steps towards such an analysis in the setting of
a modal type-theoretical language. I will start in section 2 by considering an already existing
formulation of a natural deduction language with modalities, and use it as a starting point for
introducing in section 3 the basics of a type-theoretical interpretation of modalities. In both cases,
appropriate rules for the dynamics on modal formulas in contexts shall be provided and an
interpretation of modal operators in terms of epistemic states is formulated. In the conclusions,
I shall mention the desirable extensions of this language and an appropriate case study.

2. A NATURAL DEDUCTION ANALYSIS

The formulation of dependent languages, since Gentzen's Natural Deduction Calculi, has
provided a more realistic formalization of reasoning processes. Recent approaches to epistemic
logic have stressed the dynamic nature of reasoning (for an overview, see Gochet, Gribomont
(2006)), and the interpretation of a dynamic on contextual reasoning is essential to model the
rational behaviour of agents embedded in real environments. Such contextual dynamics requires
an appropriate description of epistemic states that distinguishes between the notion of justified
knowledge and that of assumed contents. The corresponding formal explanation can be given in
terms of an agent-based, epistemic notion of information to describe propositional contents for
contextual reasoning (see Primiero (2007)). An extension to modalities of such a framework is
a very appropriate formal instrument to make such a language stronger and to derive a number
of its properties (see Primiero (forthcoming)). Let us first consider the extension to modalities that
can be obtained in Natural Deduction Calculi (see e.g. Simpson (1994)), in order to have an
appropriate starting point for our type-theoretical formulation.

Let us consider a simple Natural Deduction system expressing the derivability of a formula J
depending on the assumptions A1,..., An, with the basic intuitionistic restriction on sequents that
the consequent is always a single formula. The contextual dynamics is obtained by extending the
standard language with modal operators and appropriate operations on the set of assumptions. In
the following of this paper capital Greek letters ', ), ... are used as meta-variables for sets of
antecedents in the sequents; meta-variables J1, ..., Jn stand for the derived judgement in the
consequent of the sequents; capital Latin letters A, B, ... are schematic letters for propositions;
usual logical connectives are used. Along with the standard axioms of Intuitionistic Logic,
modalities for a language KTB can be introduced as follows:
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M1 ~(A e B) e (~A e ~B)
M2 (~A & �B) e �(A & B)

introducing respectively Distribution for ~ with respect to implication, and for � with respect to
conjunction. To extend these to a stronger axiomatization such as S4, one needs the following two
further axioms:

M3 ~A e ~ ~A
M4 ~(A e �B) e (�A e �B)

Whereas M3 is the standard axiom for iteration of ~, axiom M4 says that the possibility operator
is attached to the antecedent of a proved implication whose consequent is a possibility formula.
The behaviour of modal operators can be explained in terms of introduction rules (for which here
the formulation given in Bellin, de Paiva, Ritter (2001) is presented), along with Modus Ponens
and Necessitation Rules. The Box-Rule and the Diamond-Rule are formulated as follows :

' | J ', J1 | J2

——— (Box-Rule) ———— (Diamond-Rule)
~' | ~J ~', �J1 | �J2

The Box-Rule builds-in the substitution procedure for assumptions, and it works also as a right-
introduction rule. Whereas in the rule presented in equation (1) necessitation applies only to the
consequent, in the present formulation of the Box-Rule the necessitation of the conclusion is
dependent on the necessitation (verification) of the antecedents. Correspondingly, the Diamond-
Rule preserves the meaning of non-substituted assumptions and it works also as right-introduction
rule: non verified antecedents imply possibility for the conclusions. Distribution of necessity over
conjuncts holds as in any intuitionistic modal logic. Distribution of possibility is debatable (cf.
Wijesekera (1990)): the �-operator expresses possibility in a context, for which inconsistency is
allowed, which in turn means that �z e z does not hold; in some versions (see Mendler, de Paiva
(2005)) monotonicity on inconsistent states and the rule of Ex Falso Quodlibet are allowed.

In order to formulate the dynamics for contexts of assumptions, the standard language of our
Natural Deduction calculus is extended by means of an operation sign 7 to interpret operations
on antecedents as actions for “becoming informed” (see Primiero (forthcoming)). This operator
is here defined by means of syntactic rules; semantically, it can be seen as a new accessibility
relation on possible knowledge states. This allows to have a calculus in which one defines a set
of operations on the antecedents. The natural interpretation for deduction becomes now the
following: 

Definition
A deduction formula of the form '7) | J says that provided the information contained
in the antecedents ' is true under the related extension with ), one knows/receives the
information that the consequent J is true.

The role of the dynamics affecting the epistemic value of the conclusion J is easily shown by the
structural rules determining the behaviour of modal operators ~,� in assumptions ' and ) (to
account respectively for verified and assumed formulas). Intuitionistic definitions of introduction
and elimination rules of connectives are defined in a standard way for consequents of the
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sequents; applications of the Diamond-rule on the antecedents represent a special class of
structural rules, intended as operations on information states. We define three different types of
such rules:

' |J
—————— (Information Weakening)
~'7�) | �J

It corresponds to extensions of informational states: if J is derivable from the set of assumptions
', then by verifying the information in ' updated with the information in (becoming informed
of) ), one is informed of the content of J (which means that the alethic value of J remains
dependent on the verification of the contents in )). 

', J1, J2 | J
————————— (Information Contraction)
~'7(�J1 = �J2) | �J

It corresponds to restriction of informational states: if J is derivable from the set of assumptions
' and from the judgements J1, J2, then by verifying the information in ' updated with the
information that (becoming informed) J1, J2 are identical, one is informed of the content of J,
which means that the alethic value of J remains dependent on the verification of the identity
between J1, J2. 

', J1, ) ,J2 | J
—————————— (Information Interchange)
~'7�J2, ~) 7�J1 | �J

It corresponds to a variation on the order of syntactic data in an informational state by substituting
items in different repositories ' and ), provided that for any Ji in ' each Ji-1 has been formulated
(it is therefore essentially meant to restrict the interchange on dependent data).

Provided that all the operations defined for the Natural Deduction Calculi are intuitionistically
definable for formulas of a constructive Dependent Type-Theory, we now proceed in showing the
definition of equivalent dynamic modal operations in Constructive Type Theory.

3. AN INTERPRETATION OF MODALITIES FOR CONSTRUCTIVE TYPE THEORY

Fitting (2007) analyses the problem of dependent derivability by giving a new interpretation of
the notion of assumption based on the following distinction:
1. Global Assumptions: formulas that the agent assumes in every model or state of his knowledge
base (premises and axioms);
2. Local Assumptions: formulas that the agent assumes at a given state of his knowledge process
to update her global assumptions.
Given such a distinction, the previous dynamic explanation of derivability reduces to an account
of derivations from a set of global assumptions updated with a set of local ones. An agent
assuming globally the contents contained in ' and updating with local assumptions contained in
) performs the epistemic operations of becoming informed at some world/time of the contents
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contained in the new set of local assumptions. The modal operators are now needed in order to
express the appropriate epistemic nature of assumptions, in terms of the global/local distinction.
The use of the necessitation operator corresponds to global assumptions, or proved contents used
in contexts; the possibility operator explains the use of local assumptions, i.e. propositional
contents assumed without being proved (see also Primiero (forthcoming2) for the notion of
epistemic possibility in a constructive philosophy of logic).

In this new setting, the justification in terms of the deduction theorem holds only for the boxed
formulas (global assumptions and verified local ones). The obtained derivability relation cannot
be a truth-relation, because it is not preserved under the implication A | ~A (whenever A is true
there may be an accessible possible world in which ~A is false). On the other hand, the inference
relation holds between judgements preserving knowledge of propositional contents: indeed, when
A is known to be true, then A is necessarily true. This holds in the constructivist tradition: a
judgement “A is true” is evident if proposition A has a proof/is known (Martin-Löf, (1996)). By
extension, reasoning under assumptions consists in saying that the conclusion is known whenever
the assumptions are known, which in turn means to prove the assumed contents and turn them
into proper premises. If one assumes to know that A is true and to have a proof of it, it would
seem that one is entitled to derive the conclusion A: such knowability relation is closer to a form
of reasoning in which the underlying concept is validity rather than truth, because the assumption
concerns the provability of A, not its truth.

The translation to a type-theoretical language is given by assumptions formulated as
expressions of the context type, each assigning a type to distinct variables. Judgements are
formulas of the form ' | a:A, meaning that a is a proof A assuming formulas in ' to be verified.
For such an expression the corresponding type-theoretical formulation is (')a:A. The standard
language of Constructive Type Theory (see Primiero (2008) for an introduction) can be extended
with the use of modalities to express the epistemic value on the messages contained in the
contexts. Their intuitive meaning can be given as follows:

(~xi:Ai)a:A = being proved content Ai, proposition A is known to be true;
(�xi:Ai)a:A = receiving information Ai, a construction ‘a’ holds which makes proposition
A true.

The dynamic rules that determine the behaviour of modal formulas within contexts shall be the
exact counterparts of the ones previously introduced in natural deduction style:

Information Weakening: (~'7�)) �J
Information Contraction: (~'7�x1=�x2:Ai ) �J
Information Interchange: ((~'7�xi:Ai), (~)7�xj:Aj ) �J

The typing rules for modalities are the obvious ones:

(~')a:A   ( ')b:B
———————— (Box-Rule)
(~')b:B

(~')a:A   (�))b:B   (~' 7�B)c:C
—————————————— (Diamond Rule)
(�')c:C
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The formulation of a complete calculus shall spell out the properties of these rules and the result
in terms of a comparison with Normal Modal Logics.

4. FURTHER EXTENSIONS

The first basic extension of this language is in terms of multi-modalities for expressing multi-
agent settings. This will allow to express appropriate formulas for distributed knowledge,
including the epistemic weakening offered by the possibility operator. This analysis can be
compared with the known results for common knowledge presented for example in Artemov
(2006) and Capretta (2007). Another possible extension is represented by the use of formulas
corresponding to multi-conclusion modal intuitionistic sequents as introduced in de Paiva, Pereira
(2005). By such extension one would be able to describe multi-agent knowledge processes that
have multiple resulting knowledge states. The main application for our type-theoretical language
shall be devoted to the phenomenon of information cascades, situations in which each agent
performs epistemic actions based on other agent’s knowledge, ignoring private messages. To this
aim one further requires the interpretation of various meta-theoretical notions such as the one of
trust and trusted nets.
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