
Pooling Modalities and Pointwise Intersection:

Semantics, Expressivity, and Applications

Abstract

We study classical modal logics with pooling modalities, i.e. unary modal
operators that allow one to express properties of sets obtained by the pointwise
intersection of neighbourhoods. We discuss salient properties of these modal-
ities, situate the logics in the broader area of modal logics (with a particular
focus on relational semantics), establish key properties concerning their expres-
sive power, and discuss their application to epistemic/doxastic logic, the logic
of evidence-based belief, deontic logic, and logics of agency and ability.
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1 Introduction

Neighbourhood models are a well-established tool to study generalizations and vari-
ants of relational semantics and non-normal modal logics.1 They have been suc-
cessfully applied to i.a. the dynamics of evidence and beliefs [66], the logic of abil-
ity [14, 51], conflict-tolerant deontic logic [28], and the analysis of (descriptive or
normative) conditionals [15, 42]. The generalization from relational semantics to
neighbourhood semantics allows one to invalidate certain schemata that are prob-
lematic for a given interpretation of the modal operator �, but also to include other
schemata that would trivialize any normal modal logic.2 Apart from giving us more
logical options, neighbourhood models can also be used as a purely technical tool
in order to prove completeness or incompleteness with respect to other semantics.3

Finally, neighbourhood models bear very close links to topological models [44, 64]
and to subset spaces [47].4

A neighbourhood collection N (w) for a unary modality � generalizes the idea of
a set X of accessible worlds (from a given world w, by a relation R) that is familiar

1Scott [58] and Montague [46] are often seen as the inventors of neighbourhood models; Chellas
[16] and Segerberg [59] are usually cited as the main figures in their development.

2Examples are the axioms �⊥ and �(ϕ ∨ ψ) → (�ϕ ∧ �ψ), which have been studied in the
context of deontic reasoning, cf. [67], and the axiom (�(ϕ∨ψ)∧¬�ϕ)→ �ψ that is considered for
logics of agency, cf. [45].

3One prototypical example of a completeness proof via neighbourhood semantics is [42]. In [32],
neighbourhood semantics are used to prove the incompleteness of Elgesem’s modal logic of agency
[20].

4We refer to [50] for a critical introduction to the many forms, uses and advantages of neigh-
bourhood semantics.
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from relational semantics to a set of accessible sets X1, X2, . . . of worlds, called the
neighbourhoods of w. On one specific interpretation of the modal operator, �ϕ is
true iff some neighbourhood X of w is identical to the truth set of ϕ.5 Extensions
of propositional classical logic with a modal operator � of this type are standardly
called classical modal logics following [16] and include normal modal logics as a
special case.

Just as for relational semantics, one can study classical modal logics that are the
result of imposing certain relations on the neighbourhood functions, or of treating
some neighbourhood functions as defined from others. In particular, the standard
operations of non-deterministic choice, sequential composition, and iteration from
PDL [36] have been generalized to various types of neighbourhood semantics and
formal languages, cf. [54, 63]. In [33, 34], operations on monotonic neighbourhood
models are studied from an abstract, algebraic viewpoint, giving rise to highly generic
completeness results.6 However, notwithstanding these important achievements, the
counterpart of intersections of accessibility relations for neighbourhood semantics is
largely unknown.

The current paper fills this gap by introducing and studying the notion of point-
wise intersection. Let us explain this concept by means of a simple example – exact
details will be provided in subsequent sections. Suppose that N1(w) and N2(w) are
two neighbourhood collections, representing the beliefs of agent 1, resp. agent 2 at
the world w. Let N1(w) = {X,Y } and N2(w) = {Z}, where each of X, Y , and
Z are sets of possible worlds. Then the pointwise intersection of N1(w) and N2(w)
is defined as the set X of all sets V ∩ U , where V ∈ N1(w) and U ∈ N2(w). In
particular,

N1(w) eN2(w) = {X ∩ Z, Y ∩ Z}

Pointwise intersection is however not just limited to binary (or finite) combina-
tions of distinct sets of neighbourhoods: one may also intersect the members of one
neighbourhood collection, or use several members of one neighbourhood collection
in combination with members of other neighbourhood collections, in forming a new
neighbourhood. Continuing with our example, we have:

N1(w) eN1(w) = {X ∩X,Y ∩ Y,X ∩ Y } = {X,Y,X ∩ Y }

and

N1(w)eN1(w)eN2(w) = {X∩X∩Z, Y ∩Y ∩Z,X∩Y ∩Z} = {X∩Z, Y ∩Z,X∩Y ∩Z}

More generally, given any function M that specifies, for each neighbourhood
function Ni in the original model, how many members of Ni(w) should go in the
intersection for the world w, we can define a unique new neighbourhood function
NM . This new neighbourhood function can then be used to interpret a corresponding
classical modal operator �M .

5We refer to Section 2 for all definitions of these concepts. We discuss the alternative, “mono-
tonic” interpretation of � in Section 4.3.

6A neighbourhood model is monotonic if and only if at every world, the set of neighbourhoods
is closed under supersets. See also Section 2.
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We call operators of the type �M pooling modalities, as they allow us to express
information that would be obtained if certain pieces of information or attributes –
whether doxastic, evidential, agentive, deontic, or other – are pooled, i.e. combined
by means of intersection.

After introducing pooling modalities and their semantics in general and exact
terms, we will establish three claims in this paper. First, the operation of pointwise
intersection generalizes the intersection of accessibility relations in the exact same
way that neighbourhood models generalize relational models. Second and relatedly,
pooling modalities add considerable expressive power to the basic (multi)modal lan-
guage, allowing us to express various properties of neighbourhood models. Third,
pooling modalities have natural interpretations and applications, ranging from “im-
plicit belief of an agent”, over “distributed evidence among a group of agents” and
“norms entailed by a code or legal system”, to “coalitional ability”.

In the companion paper [4], we prove that notwithstanding their expressive power,
many of the resulting logics are well-behaved, i.e. they have an elegant and unified
sound and strongly complete axiomatization, they enjoy the finite model property,
and they are decidable. Taken as a whole, these two papers are meant to provide
a solid foundation for further research on applications of pooling modalities, their
metatheory, and related formal languages.7

This paper is structured as follows. In Section 2 we recall some basics of neigh-
bourhood semantics and classical modal logics. Section 3 spells out the exact def-
inition of pointwise intersection as an operation on neighbourhood models, and in-
troduces various formal languages that feature pooling modalities. In Section 4 we
investigate the relation between pooling modalities and intersection in relational se-
mantics in detail, and situate our formalism in the landscape of classical modal logics
more generally. The expressive power of formal languages with pooling modalities
is discussed in Section 5. In Section 6, finally, we argue for the philosophical use of
pooling modalities, discussing a range of (potential) applications and relating them
to the formal work of earlier sections. Readers who are predominantly interested in
those applications may well skip Sections 4 and 5 on a first reading, but return to
them after reading Section 6. Section 7 concludes with a list of open problems.

2 Neighbourhood Models: a Quick Rehearsal

To set the stage for our contribution, we recall the basics of neighbourhood semantics,
fixing notation and terminology along the way. Readers who are familiar with [50]

7In [50, Section 3.3], the idea of pointwise intersection and pooling modalities is introduced (us-
ing different terms) as a generalization of distributed belief, but no formal results about the ensuing
logics are given. In [68], Van De Putte and Klein established completeness results for fragments of
some of the logics that are studied in the current paper. The main differences between [68] and the
present paper are: (a) [68] only concerns pointwise intersections of distinct neighbourhoods, hence,
not of a single neighbourhood with itself or more complex combinations with certain neighbour-
hoods being used more than once; as a result, (b) [68] does not discuss operations of “arbitrary
intersection”. Also, (c) in the present paper, we include the universal modality, and (d) consider the
monotonic semantic clause (cf. Section 4.3). Finally, (e) [68] is only concerned with axiomatizations
and completeness, whereas here we include results on expressivity, give a more elaborate discussion
of applications, and (in [4]) establish the finite model property and decidability of the logics in
question.
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can skip this section.

Basic Languages We start by introducing two formal languages. Fix a countable
set I = {1, 2, . . .} of indexes8 and a countable set P = {p1, p2, . . .} of propositional
variables. Where p ranges over P and i over I, the language L is given by the
following Backus-Naur form (BNF):

ϕ := p | ⊥ | ¬ϕ | ϕ ∨ ϕ | �iϕ.

The classical connectives ∧,→,↔ and the constant > are defined according to
the well-known classical logic schemata. In the remainder of this paper, ϕ,ψ, . . . are
used as metavariables for formulas, and Γ,∆, . . . as metavariables for sets of such
formulas. Conjunction (

∧
) and disjunction (

∨
) over finite sets ∆ are defined in the

standard way.9

For the sake of expressive power and in order to characterize specific frame condi-
tions it is common to extend L with a universal modality [∀], cf. [31]. The resulting
language L[∀] is given by the BNF:

ϕ := p | ⊥ | ¬ϕ | ϕ ∨ ϕ | �iϕ | [∀]ϕ.

We use [∃] to denote the dual of [∀]. In the remainder, we refer to L and L[∀] as the
two basic languages that will be enriched with pooling modalities in Section 3.

Frames and Models A frame – is a tuple that specifies a non-empty set of
possible worlds W and, for each index i ∈ I and w ∈W , a corresponding set Ni(w)
of subsets of W , called the neighbourhoods of i at w. We will use the term
neighbourhood set (for i) to refer to the set Ni(w). Depending on the application,
Ni(w) may e.g. denote the beliefs that agent i holds at w, the permissions that are
granted in view of normative system i at w, or the propositions one can guarantee
given the resource i at w.

To interpret L[∀], we extend frames to models (Definition 1) and give semantic
clauses for each of the components of L[∀] (Definition 2):

Definition 1 A model M is a triple 〈W, 〈Ni〉i∈I , V 〉, where (i) W 6= ∅ is the do-
main of M, (ii) for every i ∈ I, Ni : W → ℘(℘(W )) is a neighbourhood function
for i, and (iii) V : P→ ℘(W ) is a valuation function .

Definition 2 Where M = 〈W, 〈Ni〉i∈I , V 〉 is a model and w ∈W :

0. M, w 6|= ⊥

1. M, w |= ϕ iff w ∈ V (ϕ) for all ϕ ∈ P

2. M, w |= ¬ϕ iff M, w 6|= ϕ

8Depending on the specific application, indexes may be interpreted in various ways: they may
refer to agents whose beliefs, evidence, or abilities we want to model; to legal or moral codes
implying certain obligations or permissions; or to resources enabling a given agent to guarantee
certain states of affairs.

9If ∆ = ∅, then
∨

∆ =df > and
∧

∆ =df ⊥.
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Figure 1: A representation of the model in Example 1. N1(w) consists of the grey
sets, N2(w) of the dashed set.

3. M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ

4. M, w |= �iϕ iff ‖ϕ‖M ∈ Ni(w)

5. M, w |= [∀]ϕ iff M, w′ |= ϕ for all w′ ∈W .

where ‖ϕ‖M = {w ∈W |M, w |= ϕ}.

Validity(
 ϕ) and semantic consequence (Γ 
 ϕ) are defined in the standard way,
viz. as truth, resp. truth-preservation at all worlds in all models.

The semantics just presented captures the so-called exact reading of the modal
operators �i: for �iϕ to be true at w, the exact truth set of ϕ has to be in the
neighbourhood of i at w. This is often contrasted with a weaker reading where �iϕ
is true iff some neighbourhood of i at w is a (perhaps proper) subset of ‖ϕ‖M. We
will discuss this weaker reading in more detail in Section 4.3.

Example 1 Consider a model M = 〈W, 〈Ni〉i∈I , V 〉 with W = {w, v, u}, N1(w) =
{w, v}, {v, u}, and N2(w) = {w, u}, and V (p) = {w, v}, V (q) = {v, u}. In this model,
�1p, �1q, and �2(¬p∨¬q) are all true at w, [∀](p∨ q) is true at each world. Figure
1 gives a graphic representation of this model.

Frame Conditions As the above example illustrates, the semantics and logic
characterized by the class of all models is very weak. Note that �1(p∧ q), �1(p∨ q),
and �1> are false at w in this model. These facts illustrate the failure of three well-
known properties of logics characterized by relational semantics, viz. aggregation,
monotony, and necessitation.10 For L, the class of all neighbourhood models gives us
the weakest modal logic that satisfies the principle of replacement of equivalents
(RE):

if 
 ϕ↔ ψ, then �iϕ→ �iψ

To characterize the weakest logic in L[∀], we need to add all axioms of S5 for [∀]
and replace (RE) with the axiom of replacement of global equivalents (RGE):11

10See Table 1 where those properties are specified.
11Note that, by necessitation for [∀], 
 ϕ ↔ ψ entails 
 [∀](ϕ ↔ ψ). So from 
 ϕ ↔ ψ we can

derive 
 �iϕ↔ �iψ using (RGE).
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(Ni) �i> W ∈ Ni(w)
(Pi) ¬�i⊥ ∅ 6∈ Ni(w)
(Ti) �iϕ→ ϕ for all X ∈ Ni(w), w ∈ X
(Mi) �i(ϕ ∧ ψ)→ (�iϕ ∧�iψ) Ni(w) = (Ni(w))↑

(Ci) (�iϕ ∧�iψ)→ �i(ϕ ∧ ψ) Ni(w) is closed under finite intersections
(Ui) �iϕ→ [∀]�iϕ Ni(w) = Ni(w

′) for all w,w′ ∈W

Table 1: Modal axioms and corresponding frame conditions.

[∀](ϕ↔ ψ)→ (�iϕ→ �iψ)

Having applications to doxastic logic, deontic logic, or the logic of ability in
mind, one may require various additional properties of the logic. Such properties are
to be had if we impose additional frame conditions, i.e., conditions on the frames
underlying our models. Frame conditions can also be motivated in terms of the
interpretation of the models. For instance, if we interpret the members of a neigh-
bourhood as “those states of affairs the agent can guarantee, independently of any
other agent”, then it is common to require the neighbourhood sets to be closed under
supersets.

Table 1 lists some standard axiom schemata and frame conditions that character-
ize them. Here and in the remainder, X ↑ denotes the closure of X under supersets.12

The quantification over w in the conditions on the neighbourhood functions is uni-
versal; e.g. the condition for (N) reads that for all w ∈ W , W ∈ Ni(w). Note
that, for the last condition in this table, we need the universal modality in order to
obtain a characteristic axiom. When some operator �i satisfies (Mi), we say it is
monotonic.

Augmented models, supplementation As mentioned in the introduction, neigh-
bourhood models are a generalization of relational models for modal logic. More
specifically, if we use the standard semantic clause for � for relational models, and
the exact semantic clause for neighbourhood models, then the class of relational
models is modally equivalent to the class of neighbourhood models that are “aug-
mented”.13 In the present context, the latter notion can be defined as follows:

Definition 3 Let D be a set and X ⊆ ℘(D). X is augmented iff (i) X = X ↑ (i.e.,
X is closed under supersets), (ii) W ∈ X , and (iii) X = e∞X (i.e., X is closed
under arbitrary intersections). A model M = 〈W, 〈Ni〉i∈I , V 〉 is augmented iff for
all w ∈W and all i ∈ I, Ni(w) is augmented.

A model is called monotonic iff for all i ∈ I, for all w ∈W , Ni(w) is closed under
supersets. The following well-known notion is useful in the study of monotonic
models:

12Formally, where X ⊆ ℘(D) for some domain D: X ↑ = {Y ⊆ D | X ⊆ Y for some X ∈ X}.
13This result dates back to [16]; see [50, Theorem 2.21] for a recent proof and discussion with the

notation we use.
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Definition 4 Let M = 〈W, 〈Ni〉i∈I , V 〉 be a model. The supplementation of M,

M↑, is the triple 〈W, 〈N ↑i 〉i∈I , V 〉, where, for all w ∈ W , N ↑i (w) is the closure of
Ni(w) under supersets.

3 Pointwise Intersection and Pooling Modalities

In this section, we enrich the basic languages with pooling modalities. In order
to interpret them, we need to introduce the notion of pointwise intersection in full
generality. After that, we will discuss some key validities and invalidities of the
resulting logics.

Semantics of Pooling Modalities Consider again Example 1 as depicted in
Figure 1. Here, the neighbourhood for index 1 contains ‖p‖ and ‖q‖, and the neigh-
bourhood for index 2 contains ‖¬(p∧ q)‖. Suppose we interpret �iϕ as “i has some
piece of evidence that indicates that ϕ is the case”. Under this reading, aggregation
is not valid: having pieces of evidence, each for various propositions, does not entail
having a single piece of evidence for the conjunction of those propositions. However,
in the example, there is some sense in which agent 1 has information that contradicts
the information of agent 2. That is, if we would combine the various propositions
for which 1 has evidence, then we would obtain information that contradicts 2’s ev-
idence. Claims like these can be made exact by introducing the notion of pointwise
intersection, and expressed in a formal language by pooling modalities.

Let us start with the former:

Definition 5 Let D be a set, let X ,Y ⊆ ℘(℘(D)), and let k ∈ N.

1. X eY = {X ∩ Y | X ∈ X , Y ∈ Y} is the pointwise intersection of X and Y.
2. ekX = {X1 ∩ . . . ∩Xk | X1, . . . , Xk ∈ X} is the pointwise k-intersection of
X with itself.

3. e∞X = {
⋂
Y | Y ⊆ X} is the pointwise arbitrary intersection of X with

itself.

In order to talk about pointwise intersections of neighbourhood sets, we first need
a means to denote the indexes i ∈ I that are being combined, and the number of
neighbourhoods in each such Ni(w) that go into the intersection. This requires some
additional notation.

Definition 6 Pooling profiles are functions of the type M : I → N ∪ {∞}, where
(i) for only finitely many i ∈ I, M(i) 6= 0 and (ii) for at least one i ∈ I, M(i) > 0.
M∞ denotes the set of all pooling profiles. Mf ⊂ M∞ is the set of all finitary
pooling profiles, i.e. pooling profiles of the type M : I → N.
Where M ∈M∞, I(M) =df {i ∈ I |M(i) 6= 0}.

When writing about pooling profiles, we will often switch from functional to a
simplified relational notation, writing every pooling profile as a finite set of pairs
(i, k) for k ∈ N+ ∪ {∞}, thus omitting all pairs (j, 0). Note that with such notation,
every pooling profile is a finite set.
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L∞ ϕ := p | ⊥ | ¬ϕ | ϕ ∨ ϕ | �Mϕ where p ∈ P and M ∈M∞
L
[∀]
∞ ϕ := p | ⊥ | ¬ϕ | ϕ ∨ ϕ | �Mϕ | [∀]ϕ where p ∈ P and M ∈M∞

Lf ϕ := p | ⊥ | ¬ϕ | ϕ ∨ ϕ | �Mϕ where p ∈ P and M ∈Mf

L
[∀]
f ϕ := p | ⊥ | ¬ϕ | ϕ ∨ ϕ | �Mϕ | [∀]ϕ where p ∈ P and M ∈Mf

Table 2: Languages with pooling modalities.

Intuitively, a pooling profile M indicates, for each i ∈ I, the number of sets
X ∈ Ni(w) that we can use in order to obtain a member Y of the neighbour-
hood set NM (w). The symbol ∞ can be read as “arbitrarily many”. So e.g., that
X ∈ N{(1,∞)}(w) means that X is the result of intersecting an arbitrary number of
members of N1(w); that Y ∈ N{(1,2),(2,∞)}(w) means that Y can be obtained by
intersecting 2 members of N1(w) with an arbitrary number of members of N2(w).14

Definition 7 Let M = 〈W, 〈Ni〉i∈I , V 〉 be a neighbourhood model and let M ∈M∞,
with I(M) = {i1, . . . , in}. The neighbourhood function NM is defined as follows:
for every w ∈W ,

NM (w) = (eM(i1)Ni1(w)) e . . . e (eM(in)Nin(w))

Since we will often have to refer to specific (relatively small) pooling profiles in
examples, we will use a simplified “multiset” notation for them: e.g. {1, 1, 2∞, 3}
denotes the pooling profile M for which M(1) = 2, M(2) = ∞, M(3) = 1, and
M(i) = 0 for all i ∈ I \ {1, 2, 3}. When such sets occur in subscripts we will also
omit set brackets whenever this causes no confusion.

Example 2 Consider again Example 1 from the previous section (Figure 1). In this
model, {w} ∈ N1,2(w), {u} ∈ N1,1,(w), and ∅ ∈ N1,1,2(w).

We are now in a position to define the logics that play central stage in this paper.

The formal languages L∞ and L
[∀]
∞ are obtained by replacing �i (i ∈ I) with �M

(M ∈M∞) in L, resp. L[∀]. In a similar fashion we obtain Lf and L
[∀]
f , where instead

of M∞ we use Mf . Table 2 gives the BNFs of each of these languages.
These languages are interpreted in the exact same way as before (cf. Definition

2), except that we use the following semantic clause for the pooling modalities �M :

Definition 8 Where M = 〈W, 〈Ni〉i∈I , V 〉 is a neighbourhood model, M ∈M∞, and
w ∈W ,

M, w |= �Mϕ iff ‖ϕ‖M ∈ NM (w).

Returning to Example 1, we have that M, w |= �1,2(p∧¬q), M, w |= �1,1(p∧ q),
M, w |= �1,1,2⊥, and M, w |= �1∞,2∞⊥. The latter formula expresses that there is

14“Arbitrary” should be interpreted here in the strongest possible sense, corresponding to the
third item of Definition 5.
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conflicting information among the group of agents {1, 2}. In contrast, the evidence
of agent 1 alone is consistent, and M, w |= ¬�1∞⊥.

It can be easily observed that for the border case where a pooling profile M
coincides with a single index i, i.e. M = (i, 1), this semantic clause is conservative
with respect to the original semantic clause for �i:

Fact 1 Let M ∈ M∞ and i ∈ I be such that I(M) = i and M(i) = 1. Then, for all
models M = 〈W, 〈Ni〉i∈I , V 〉 and all w ∈W : M, w |= �Mϕ iff M, w |= �iϕ.

In view of this fact, the languages with pooling modalities are a conservative
extension of the corresponding languages with only single-indexed operators.

Logical Properties of Pooling Modalities To illustrate the above notions and
give the reader a feeling of the behavior of pooling modalities, let us go over a few
validities and invalidities of this semantics. First, given the well-known correspon-
dence between intersecting sets of worlds and classical conjunction, pooling distinct
propositions – whether across different indexes, or within a single index – gives us the
conjunction of those propositions for the associated pooling profile. The following
three validities illustrate this:


 (�1p ∧�2q)→ �1,2(p ∧ q) (1)


 (�1p ∧�1r)→ �1,1(p ∧ r) (2)


 (�1p ∧�2q ∧�1r)→ �1,1,2(p ∧ q ∧ r) (3)

Note that in the consequents of (2) and (3), the multiset notation allows us to
represent the sources of pooled information in a very perspicuous way. Conversely,
one may ask whether the pooled information that ϕ given a pooling profile M always
entails that ϕ is already attributable to some index i ∈ I(M). This is not the case: it
may be that only by using information that is distributed among the various indexes,
or by combining distinct neighbourhoods for a single index, we can arrive at ϕ. So
e.g.

6
 �1,2p→ (�1p ∨�2p) (4)

6
 �1,1p→ �1p (5)

The invalidity of the implication in (4) is well-known from the literature on inter-
section modalities in relational semantics, cf. [22]. (5) shows that, in the context of
neighbourhood models (since neighbourhoods need not be closed under intersection),
the implication also fails in the special case with only one index .

One may also consider the converse of (4). According to the standard account of
distributed belief on relational models, whenever ϕ is believed by some G, then ϕ is
also distributed belief for every supergroup H ⊃ G. Crucially, the analogue of this
implication fails for the weaker, non-normal notions of pooled information that we
study here:
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6
 �1p→ �1,2p (6)

To see why the implication in (6) is invalid, consider a model M with world w
in which the neighbourhood for index 2 is empty, i.e., N2 = ∅, yet ‖p‖ 6= ∅. Then
by Definition 7, also N1,2(w) = ∅ and hence there is no ϕ such that �1,2ϕ holds
at w in M. So here already we see that, by abandoning the assumption that every
agent must have at least some belief, the associated modalities for distributed belief
behave differently. But even if we assume non-emptiness of the neighbourhoods,
the implication in (6) may still fail. That is, suppose that N1(w) = {‖p‖M} and
N2(w) = {‖q‖M}. Then the only element of N1,2(w) is ‖p ∧ q‖M, which may be
distinct from both ‖p‖ and ‖q‖. So in such a case, �1p holds whereas �1,2p fails.

More restricted versions of the implication in (6) do however obtain. First, if
we just “enlarge” a pooling profile by adding more occurrences of a given index
i ∈ I(M), then we obtain at least as much pooled information:


 �1,2(p ∨ r)→ �1,1,2(p ∨ r) (7)

This follows immediately from the fact that, in our definition of pointwise inter-
section, we do not require the intersected sets to be distinct. So e.g. whereX ∈ N1(w)
and Y ∈ N2(w), we have X ∩X ∩ Y = X ∩ Y ∈ N1,1,2(w).

Second, in case we add a new index i, for which we know that Ni(w) contains
some proposition ϕ that includes the original proposition ψ, then ψ is preserved
when moving to the larger pooling profile. In other words, it suffices for that i to
have some (possibly redundant) information that includes all ϕ-worlds, in order to
ensure that the group including i also has the pooled information that ψ. Examples
of associated validities are:


 (�1p ∧�2>)→ �1,2p (8)

and


 (�1,1,2(¬p ∧ q) ∧�3q)→ �1,1,2,3(¬p ∧ q) (9)

Finally, note that the total set W can only be obtained by intersecting some sets
X1, . . . , Xn when those Xi are themselves equal to W . As an immediate result, we
obtain the following restricted variants of (4), resp. (5):


 �1,2> → �1> (10)


 �1,1> → �1> (11)

This completes our brief survey of some salient properties of pooling modalities.
A thorough investigation of the set of all such validities – by means of a sound and
strongly complete axiomatization – is provided in the companion paper [4].
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4 Relational Semantics as a Special Case

In this section, we show that pointwise intersection of neighbourhood functions is
a generalization of the intersection of accessibility relations. In fact, there are two
ways in which normal modal logics with intersection modalities can be captured in
terms of pooling modalities:

(a) Over augmented neighbourhood models, pointwise intersection corresponds ex-
actly to the intersection of the accessibility relations in the corresponding re-
lational (Section 4.1).

(b) Normal modal logics with intersection modalities are a fragment of the pooling
logics characterized by the class of monotonic models (Section 4.2).

Claim (a) was already mentioned in [50] for languages without a universal modal-
ity; there, the proof is left to the reader.15 Claim (b) is new. Whereas neither of
these claims come totally unexpected, it is useful to spell them out in exact detail,
also for subsequent sections.

In Section 4.3 we consider the monotonic semantic clause for the modal operators
�M and show that, using this clause, we obtain a logic that is equivalent to the
logic of monotonic models – thus generalizing a well-known result for mono-modal
neighbourhood semantics.

4.1 Augmented Neighbourhood Models

Let G denote the set of all finite, non-empty subsets of I. In the remainder we will
slightly abuse notation, using G as a variable for both, sets of agents, and pooling
profiles, where in the latter case we stipulate that G = {(i, 1) | i ∈ G} ∪ {(j, 0) |
j 6∈ G}. We focus here on the formal language L

[∀]
G obtained by adding [∀] and all

operators �G for G ∈ G to classical propositional logic. Analogous observations can
be made for the language without these operators.

A first thing to note is that, when interpreted over augmented neighbourhood

models, L
[∀]
G is as expressive as the full language L

[∀]
∞ . That is, since the neighbour-

hoods of an augmented model are already closed under arbitrary intersection, all
distinctions between a given pooling profile M and the underlying set of indexes
I(M) are lost:

Fact 2 Let M be an augmented neighbourhood model and let w be a member of the

domain of M. Then, for all M ∈ M∞ and ϕ ∈ L
[∀]
∞ , the following holds: M, w |=

�Mϕ iff M, w |= �I(M)ϕ.

Recall that a relational model S is just like a neighbourhood model, with each

Ni replaced by a relation Ri ⊆ W ×W . The semantic clauses for L
[∀]
G , interpreted

over relational models, are the same as for neighbourhood models, except for the
modal operators of the type �G:

Definition 9 Let S = 〈W, 〈Ri〉i∈I , V 〉 be a relational model. Where G ∈ G, let
RG =

⋂
i∈GRi. Where w ∈W and G ∈ G:

15See [50, Section 3.3, Exercise 73].
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S, w |= �Gϕ iff S, w′ |= ϕ for all w′ ∈ RG(w).

In order to establish a correspondence between augmented neighbourhood models
and relational models, we define transformations from one to the other.16 Where
N : W → ℘(℘(W )) is a neighbourhood function, let RN ⊆ W ×W be defined by
putting RN (w) =

⋂
N (w) for all w ∈ W . Conversely, for any accessibility relation

R ⊆ W × W , let NR(w) = {X ⊆ W | R(w) ⊆ X}. In the remainder, we will
use the term standard transformations to refer to both transformations. Where
M is a neighbourhood model, we use SM to denote the relational model that is
obtained from M using the standard transformation; conversely, MS denotes the
neighbourhood model obtained from S by the standard transformation. We now
show that the standard transformations preserve validity in the richer languages
that feature pooling modalities.

Lemma 3 Let S = 〈W, 〈Ri〉i∈I , V 〉 be a relational model. Then, for all w ∈W ,

ei∈GNRi
(w) = {X ⊆W | RG(w) ⊆ X}

Proof. (⊆) Suppose X ∈ ei∈GNRi(w). So there is a set {Yi | i ∈ G, Yi ∈ NRi(w)}
such that

⋂
i∈G Yi = X. Since each NRi

is obtained from Ri by the standard
transformation, it follows that for all i ∈ G, Yi ⊇ Ri(w). Hence, X =

⋂
i∈G Yi ⊇⋂

Ri(w) = RG(w).
(⊇) Suppose that RG(w) ⊆ X. So

⋂
i∈GRi(w) ⊆ X. For all i ∈ G, let Yi =

Ri(w)∪X. Note that
⋂

i∈G Yi = (
⋂

i∈GRi(w))∪X = X. Since each NRi is obtained
from Ri by the standard transformation, it follows that each Yi ∈ NRi(w). Hence,
X =

⋂
i∈G Yi ∈ ei∈GNRi

(w).

Theorem 1 Let S be a relational model with domain W . Then MS is an augmented

neighbourhood model. Moreover, S and MS are L
[∀]
G -equivalent: for all w ∈ W and

all ϕ ∈ L
[∀]
G , S, w |= ϕ iff MS, w |= ϕ.

Proof. By an induction on the complexity of ϕ. We only consider the case where
ϕ = �Gψ. Here we have: S, w |= ϕ iff [by Definition 9]RG(w) ⊆ ‖ψ‖S iff [by Lemma
3] ‖ψ‖S ∈ ei∈GNRi

(w) iff [by the induction hypothesis] ‖ψ‖MS ∈ ei∈GNRi
(w) iff

[by Definition 2] MS, w |= ϕ.

Lemma 4 Let M = 〈W, 〈Ni〉i∈I , V 〉 be an augmented neighbourhood model. Then,
for all w ∈W ,

NG(w) = {X ⊆W |
⋂
i∈G
RNi

(w) ⊆ X}

Proof. (⊆) Suppose X ∈ NG(w). Hence there is a set {Yi | i ∈ G, Yi ∈ Ni(w)}
such that

⋂
Yi = X. Note that by the standard transformation, for every i ∈ G,

RNi(w) ⊆ Yi. Consequently,
⋂

i∈GRNi(w) ⊆ X.
(⊇) Suppose that

⋂
i∈GRNi

(w) ⊆ X. For every i ∈ G, let Yi = RNi
(w)∪X. Note

that, since each Ni is augmented, each Yi ∈ Ni(w). Moreover, by the supposition,
X =

⋂
i∈G Yi. Hence, X ∈ ei∈GNi(w) = NG(w).

16This transformation dates back at least to [16, Theorem 7.9].
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Theorem 2 Let M be an augmented neighbourhood model with domain W . Then

SM is a relational model. Moreover, M and SM are L
[∀]
G -equivalent: for all w ∈W

and all ϕ ∈ L
[∀]
G , M, w |= ϕ iff SM, w |= ϕ.

Proof. Analogous to the proof of Theorem 1, but relying on Lemma 4.
Taken together, Theorems 1 and 2 imply:

Corollary 1 For all ϕ ∈ L
[∀]
G , ϕ is valid on the class of all relational models iff ϕ is

valid on the class of all augmented neighbourhood models.

4.2 Normal Modal Logics as Fragments of Pooling Logics

In view of the preceding, one can characterize normal modal logics with intersec-
tion modalities by means of neighbourhood semantics with pooling modalities, by
restricting the class of models. In this section, we show that the same can already
be done within the broader class of monotonic models, by using the full expressive

power of the language L
[∀]
∞ .17

This requires some preparation. Where G ∈ G, let G∞ = {(i,∞) | i ∈ G} ∪
{(i, 0) | i 6∈ G}. Note that G∞ ∈M∞. We define the translation function tr : L

[∀]
G →

L
[∀]
∞ as follows:

tr(ϕ) = ϕ for all ϕ ∈ P
tr(¬ϕ) = ¬tr(ϕ)
tr(ϕ ∨ ψ) = tr(ϕ) ∨ tr(ψ)
tr([∀]ϕ) = [∀]tr(ϕ)
tr(�Gϕ) =

∨
∅⊂H⊆G�H∞tr(ϕ) ∨ [∀]tr(ϕ)

With every monotonic (multi-neighbourhood) model, we can associate a (multi-
agent) relational model, by putting Ri(w) =

⋂
(Ni(w) ∪ {W}) for all worlds w.

With infinitary pooling modalities at our disposal, we can express all properties of
that relational model that could be expressed by the corresponding normal modal
operators, as we now show.

Definition 10 Let M = 〈W, 〈Ni〉i∈I , V 〉 be a monotonic model. The unit-augmen-
tation of M is the model M∩ = 〈W, 〈N∩i 〉i∈I , V 〉, where for every i ∈ I and every
w ∈ W , N∩i (w) is the closure of Ni(w) ∪ {W} under arbitrary intersections, i.e.,
N∩i (w) = e∞(Ni(w) ∪ {W}).

Note that the unit-augmentation of a given monotonic model M is an augmented
model. The following is an immediate consequence of the definition of the neigh-
bourhoods N∩i :18

17Without [∀], one can obtain similar results for the intermediate class of models that are mono-
tonic and where, for every w ∈W and all i ∈ I, W ∈ Ni(w). Here the translation consists merely in
replacing each G with G∞, and hence [∀] is not required. The lemmas and theorems of this section
can be rephrased in terms of such unit-monotonic models, for this simpler translation.

18Note the similarity between Fact 2 and Fact 5: both basically state that if neighbourhoods are
already closed under arbitrary intersections, there is no difference between multisets and the sets
of indexes from which they are built up.
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Fact 5 Let M = 〈W, 〈Ni〉i∈I , V 〉 be a monotonic model and let M∩ = 〈W, 〈N∩i 〉i∈I , V 〉
be its unit-augmentation. Let G ⊆ I be non-empty and finite and let w ∈ W . If for
all i ∈ G, Ni(w) 6= ∅, then ei∈GN∩i (w) = NG∞(w).

Theorem 3 Let M be a monotonic model. For all w in the domain of M and for

all ϕ ∈ L
[∀]
G : M∩, w |= ϕ iff M, w |= tr(ϕ).

Proof. By an induction on the complexity of ϕ. The inductive base (ϕ ∈ P) and the
induction step for the connectives and [∀] are safely left to the reader. So let ϕ = �Gψ
and let w ∈ W , where W is the domain of M. Let H = {i ∈ G | Ni(w) 6= ∅}. Note
that for all τ , whenever M, w |= [∀]τ , then M, w |= �Hτ since M is monotonic (?).

Case 1: H 6= ∅. Note that ei∈HN∩i (w) = ei∈GN∩i (w) (†). Hence, M∩, w |= ϕ

iff [by the semantic clause] ‖ψ‖M∩ ∈ ei∈GN∩i (w) iff [by (†)] ‖ψ‖M∩ ∈ ei∈HN∩i (w)
iff [by the induction hypothesis] ‖tr(ψ)‖M ∈ ei∈HN∩i (w) iff [by Fact 5] ‖tr(ψ)‖M ∈
NH∞(w) iff [by the semantic clause and our choice of H, and by (?)] M, w |=∨
∅⊂H′⊆G�H′tr(ψ) ∨ [∀]tr(ψ) iff M, w |= tr(ϕ).

Case 2: H = ∅. Then N∩G(w) = {W} and, for all G′ ⊆ G with G′ 6= ∅
and all τ , M, w 6|= �G′τ (‡). Hence, M∩, w |= �Gψ iff ‖ψ‖M∩

= W iff [by
the induction hypothesis] ‖tr(ψ)‖M = W iff M, w |= [∀]tr(ψ) iff [by (‡)] M, w |=∨
∅⊂G′⊆G�G′tr(ψ) ∨ [∀]tr(ψ) iff M, w |= tr(ϕ).

Lemma 6 If M is augmented, then for all ϕ ∈ L
[∀]
G : M |= ϕ iff M |= tr(ϕ).

Proof. By an induction on the complexity of ϕ. Again we should only worry about
the case ϕ = �Gψ. Here we can rely on the fact that, if M is augmented, then it
validates (i) �Gψ ↔ �G∞ψ and (ii) �G∞ψ ↔ (�G∞ψ ∨ [∀]ψ).

Theorem 4 For all ϕ ∈ L
[∀]
G , ϕ is valid on the class of all relational models iff tr(ϕ)

is valid on the class of all monotonic models.

Proof. (⇒) Suppose there is a monotonic M and a w in its domain such that
M, w 6|= tr(ϕ). By Theorem 3, M∩, w 6|= ϕ. Note that M∩ is augmented. By
Theorem 2, SM∩ , w 6|= ϕ. Hence, ϕ is not valid on the class of all relational models.

(⇐) Suppose there is a relational model S and a world w in its domain such that
S, w 6|= ϕ. Note that MS is augmented and hence also monotonic. By Theorem 1,
MS, w 6|= ϕ. By Lemma 6, MS, w 6|= tr(ϕ). Hence tr(ϕ) is not valid on the class of
all monotonic models.

4.3 The Monotonic Semantic Clause

As noted in the introduction, we focus in this paper on the exact semantic clause
for the operators �M : �Mϕ holds at w iff the exact truth set of ϕ is a member
of the neighbourhood NM (w). There is, however, a well-known connection between
monotonic neighbourhood models and a different semantic clause, viz. the monotonic
semantic clause. In this section we show how this connection generalizes to pointwise
intersection and pooling modalities.

For the sake of convenience, let us introduce a new symbol |=m for truth at a
world in a model according to the monotonic clause. This notion is defined in the
same way as |=, except that we replace the semantic clause for � with the following:
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Definition 11 Let M = 〈W, 〈Ni〉i∈I , V 〉 be a model, w ∈W , and ϕ ∈ L
[∀]
∞ . Then

M, w |=m �Mϕ iff there is an X ∈ NM (w) such that X ⊆ ‖ϕ‖M.

It has been argued that a focus on monotonic neighbourhood models – or equiva-
lently, using the monotonic semantic clause – allows for a smoother model theory [50].
In contrast, at the level of the semantic consequence relation, the exact reading offers
a perspective that is strictly more general, since one can characterize that semantic
consequence relation simply by imposing the frame condition of monotony. We will
now show how this generalizes to languages that feature pooling modalities.

In the remainder, we use N ↑M to refer to the neighbourhood function for the
pooling profile M , in the supplemented model M↑ (cf. Definition 4). That is,

N ↑M = {
⋂

i∈I(M)Xi | Xi ∈ eM(i)N ↑i (w)}. The following lemma states that, essen-

tially, it makes no difference whether we (a) first close all neighbourhood sets under
supersets, and afterwards apply pointwise intersection, or (b) first apply pointwise
intersection to a given tuple of neighbourhood sets, and only afterwards close the
resulting neighbourhood set under supersets.

Lemma 7 Let M ∈ M∞ and let M = 〈W, 〈Ni〉i∈I , V 〉 be given. Then N ↑M (w) =
(NM (w))↑.

Proof. (⊆) Suppose that Y ∈ {
⋂

i∈I(M)Xi | Xi ∈ eM(i)N ↑i (w)}. So for ev-

ery i ∈ I(M), for every k ∈ {1, . . . ,M(i)}, there is an Xk
i ∈ N

↑
i (w) such that⋂

k∈{1,...,M(i)}X
k
i = Xi, and

⋂
i∈I(M)Xi = Y . For every such k, i, let Zk

i ∈ Ni(w) be

such that Zk
i ⊆ Xk

i . It follows that Zi =
⋂

k∈{1,...,M(i)} Z
k
i ∈ eM(i)Ni(w) and hence

Z =
⋂

i∈I(M) Zi ∈ {
⋂

i∈I(M)Xi | Xi ∈ eM(i)Ni(w)}. Moreover, Z ⊆ Y and hence

Y ∈ {
⋂

i∈I(M)Xi | Xi ∈ eM(i)Ni(w)}↑.
(⊇) Suppose that Y ∈ {

⋂
i∈I(M)Xi | Xi ∈ eM(i)Ni(w)}↑. So there is an X ∈

{
⋂

i∈I(M)Xi | Xi ∈ eM(i)Ni(w)} such that X ⊆ Y . So for all i ∈ I(M), for all k ∈
{1, . . . ,M(i)}, there is an Xk

i ∈ Ni(w) such that each Xi =
⋂

k∈{1,...,M(i)}X
k
i and⋂

i∈I(M)Xi ⊆ Y . For all i ∈ I(M) and all k ∈ {1, . . . ,M(i)}, let Y k
i = Y ∪Xk

i . Then

in view of the preceding, each Y k
i ∈ N

↑
i (w). Also, Y =

⋂
i∈I(M),k∈{1,...,M(i)} Y

k
i .

Hence, Y ∈ {
⋂

i∈I(M)Xi | Xi ∈ eM(i)N ↑i (w)}.
By a standard induction on the complexity of formulas, we obtain:

Corollary 2 Where M = 〈W, 〈Ni〉i∈I , V 〉 is a model, w ∈ W , and ϕ ∈ L
[∀]
∞ :

M, w |=m ϕ iff M↑, w |= ϕ.

Hence, the logic obtained by using the monotonic semantic clause for �M is just
the same as the logic of the restricted class of models in which the neighbourhood
sets are closed under supersets. In [4], this insight is put to work in the completeness
proof for monotonic modal logics with pooling modalities.

Of course, this does not take away that there are other, independent reasons for
working with the monotonic clause: e.g. when the neighbourhoods are also used to
define other operators in a given formal language. A prominent example is Evi-
dence Logic (cf. Section 6), in which the monotonic clause is used to interpret an
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operator expressing evidence, but the neighbourhoods are also used to interpret
evidence-based belief (in terms of maximal non-empty intersections of exact pieces
of evidence). Having the neighbourhood sets closed under supersets in this setting
would ruin the logic of belief, in the sense that inconsistent evidence would always
result in having only tautological beliefs.

It should be noted here that there is a yet different characterization of monotonic
modal logics, viz. in terms of multirelational semantics [26,27]. Over multirelational
models, intersection of the accessibility relations corresponds to pointwise intersec-
tion of neighbourhood sets.19 In sum, monotonic models (using the exact semantic
clause), arbitrary models (using the monotonic semantic clause), and multirelational
models (using the multi-relational semantic clause) can all be used to interpret the
same logic of pooling modalities.

5 Expressivity

In this section we map out the expressive power of the various formal languages
introduced so far. We first show that, for the six formal languages considered in this
paper, proper inclusion of the languages also entails a proper difference in expressive
power at the level of models. We then consider one specific condition on models
under which all pooled information is expressible in the languages without pooling
modalities, linking this to existing work in epistemic logic on the so-called principle
of “full communication”. Finally, we move to the level of frames, showing that also
there, pooling modalities yield a surplus in expressive power.

5.1 Expressivity at the Level of Models

Let a pointed model be a couple M, w, where w is a member of the domain W of
M. Following a customary practice in modal logic, one may identify the expressive
power of a language with the distinctions it can make among pointed models. In
order to apply this criterion, we specify first what it means that two pointed models
are indistinguishable from the viewpoint of a given formal language T.

Definition 12 Let T ∈ {L,L[∀],Lf ,L
[∀]
f ,L∞,L

[∀]
∞ }. Let M = 〈W, 〈Ni〉i∈I , V 〉 and

M′ = 〈W ′, 〈N ′i 〉i∈I , V ′〉 be models and let w ∈ W , w′ ∈ W ′. Then (M, w) ≡T

(M′, w′) iff for all ϕ ∈ T, M, w |= ϕ iff M′, w′ |= ϕ.

Where T,T′ are formal languages, we write T ≤ T′ to indicate that T′ is at least
as expressive as T. That is: T ≤ T′ iff, for all (M, w) and (M, w): if (M,w) ≡T′

(M ′, w′), then (M,w) ≡T (M ′, w′). If the converse fails, we say that T′ is strictly
more expressive than T, formally: T < T′.

The expressivity relations between the six languages considered in this paper are
summarized by the following theorem:

Theorem 5 For all T,T′ ∈ {L,L[∀],Lf ,L
[∀]
f ,L∞,L

[∀]
∞ }: T ≤ T′ iff T ⊆ T′.

19Spelling out this claim in full generality and proving it is somewhat tedious but can be safely
left to the reader.
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Figure 2: Two pointed models (M, w) and (M′, w′) that are L∞-equivalent but
not L[∀]-equivalent. The dashed set denotes the agent’s (only) neighborhood at all
worlds.

Obviously, if T ⊆ T′, then T ≤ T′. It order to show the converse, it suffices to
observe three basic facts.

Fact 8 L[∀] 6≤ L∞.

Let us illustrate this fact by means of a simple example for I = {1}. Let M =
〈W, 〈Ni〉i∈I , V 〉 with W = {w, v}, N1(w) = N1(v) = {{w}}, V (p) = {w}, and
V (q) = ∅. Let M′ = 〈W ′, 〈N ′i 〉i∈I , V ′〉 with W ′ = {w′, v′, u′}, N ′1(w′) = N ′1(v′) =
N ′1(u′) = {w′}, V (p) = {w′}, and V (q) = {u′}. These two models are depicted
in Figure 2. It can easily be verified by an induction that (M, w) ≡L∞ (M′, w′).
However, M, w |= [∀]¬q, whereas M′, w′ |= [∃]q.

In the context of non-normal modal logics – which allow us to model i.a. agents
having inconsistent information or normative systems that issue incompatible norms
–, the universal modality is particularly useful, in that it allows us to express that
two or more propositions are jointly compatible. For instance, using a non-normal
modality �1 we may express that agent 1 has evidence for p by �1p, and that this
same agent has evidence for q (�1q). The existential modality then allows us to
express that moreover, these pieces of evidence are jointly compatible: [∃](p ∧ q).
In Section 6 we will consider other ways in which [∃] can be put to work when
characterizing (multi-agent) logics for evidence and beliefs.

Fact 9 Lf 6≤ L[∀].

As argued in Section 4, pointwise intersection provides a conservative general-
ization of the intersection of accessibility relations in relational semantics. It is a
well-known fact that, for relational semantics, adding intersection modalities makes
for a strict increase in expressive power. As a corollary, within the class of aug-
mented models, one can already find models that are distinguishable only by means
of (finitary) pooling modalities.20

In the general class of neighbourhood models, we can also illustrate the expressive
power of finitary pooling modalities by two single-agent models. That is, let M =

20In fact, the mentioned pooling profiles M are even more specific, since they correspond to
regular sets, i.e., M(i) = 1 for all i ∈ I(M).
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Figure 3: Two pointed models (M, w) and (M′, w′) that are L[∀]-equivalent but not
Lf -equivalent.

〈W,N1, V 〉 with W = {w, v}, N1(w) = {w},N1(v) = {v}, and V (p) = ∅ for all
p ∈ P. Let M′ = 〈W ′,N ′1, V ′〉 with W ′ = {w′, v′, u′}, N ′1(w′) = N ′1(v′) = N ′1(u′) =
{{w′, v′}, {v′, u′}}. These two pointed models are depicted in Figure 3. Note that
none of the neighbourhoods in these models correspond to the truth set of some
formula. Relying on this insight, it can easily be verified that M, w ≡L[∀] M′, w′. In
the first model, �1,1⊥ holds, whereas in the second it fails.21

Fact 10 L∞ 6≤ L
[∀]
f .

The step from finitary pooling modalities to arbitrary pooling modalities is eas-
ily made, conceptually speaking. However, it again results in a strict increase in
expressive power. To see why, consider the single-index example given by Figure
4. Here, N1(w) consists of only one set, i.e. the unit W . In contrast, for every
w′i ∈W ′, N ′1(w′i) contains W ′ and, in addition, an infinite series of ever smaller sets
Xn = W ′ \ {w′1, . . . , w′n}. Since there is no proposition that distinguishes any of the

worlds w′i, the Xi do not correspond to the truth set of any formula in L
[∀]
f . The same

holds for all sets
⋂

i≤kXi for k ∈ N+. Relying on this observation one can easily
show that (M, w) ≡

L
[∀]
f

(M′, w′1). However, M, w 6|= �1∞⊥ but, since
⋂

i∈NXi = ∅,
M′, w′1 |= �1∞⊥.

It is no coincidence that the model M′ in Figure 4 has an infinite domain. That
is, suppose M has finite domain W . Then there can be at most k = |℘(W )| many
different subsets of W . Hence any intersection of a set of subsets of W can be
rewritten as an intersection of k subsets of W . So, letting Mk = {(i, k) | M(i) =
∞} ∪ {(j, l) |M(j) = l 6=∞}, it follows that M, w |= �Mϕ iff M, w |= �Mk

ϕ for all

ϕ ∈ L
[∀]
∞ . So whatever can be expressed about finite models using formulas in L∞

(L
[∀]
∞ ) can also be expressed using formulas in Lf (L

[∀]
f ). Consequently:

Fact 11 Suppose that M and M′ are finite. The each of the following hold:

1. (M, w) ≡L∞ (M′, w′) iff (M, w) ≡Lf
(M′, w′)

2. (M, w) ≡
L

[∀]
∞

(M′, w′) iff (M, w) ≡
L

[∀]
f

(M′, w′).

21The same observations can be made about the supplementation of M and M, obtained by
closing their respective neighbourhood sets under supersets.
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Figure 4: Two pointed models (M, w1) and (M′, w′1) that are L
[∀]
f -equivalent, but

not L∞-equivalent.

5.2 Differentiability and Full Communication

In the preceding we saw that pooling modalities add expressive power to L and L[∀].
In metaphoric terms, the pooled information ϕ – say, the beliefs of different agents
– may sometimes stay “under the radar”, since it is not witnessed by any individual
pieces ψ1, ψ2, . . . of information that, when combined, yield ϕ. In the present section,
we delineate a specific class of models in which such witnesses are always available,
and show that for this class, L and L[∀] are as expressive as their extensions with
pooling modalities. Next, we show that such models also satisfy a principle that is
well-known from the study of normal doxastic and epistemic logics.

Let us start by defining the notion of differentiability, cf. [3, 25,56].22

Definition 13 M = 〈W, 〈Ni〉i∈I , V 〉 is T-differentiable iff for every w ∈ W , for
every i ∈ I, and for every X ∈ Ni(w), there is a ϕ ∈ T such that X = ‖ϕ‖M.

Intuitively, that M is T-differentiable means that every neighbourhood (of every
world w, for every index i) in the model can be “named” by some formula in T.

Theorem 6 Suppose that M and M′ are both finite and L[∀]-differentiable. If (M, w) ≡L[∀]

(M′, w′), then (M, w) ≡
L

[∀]
∞

(M′, w′).

Proof. Suppose that M and M′, with respective finite domains W and W ′, are both
L[∀]-differentiable and (M, w) ≡L[∀] (M′, w′). We first prove the following:

(†1) for all v ∈W , there is a v′ ∈W ′ such that (M, v) ≡L[∀] (M′, v′)

(†2) for all v′ ∈W ′, there is a v ∈W such that (M, v) ≡L[∀] (M′, v′)

To see why (†1) holds, assume for contradiction that v ∈W but, for no v′ ∈W ′,
v ≡L[∀] v′. So for all v′ ∈ W ′, some ψv′ ∈ L[∀] is true at v′ in M′, but false

22We borrow terminology from [3], but relativize our definition to the underlying language. In
other papers, differentiable models are called “locally distinguishing” (with respect to a multi-agent
epistemic language), cf. [25, 56].
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v in M. It follows that the conjunction
∧

v′∈W ′ ¬ψv′ is true at v in M and hence,
M, w |= [∃]

∧
v′∈W ′ ¬ψv′ . However, in view of the preceding, M′, w′ |= [∀]

∨
v′∈W ′ ψv′ .

This contradicts the supposition that (M, w) ≡L[∀] (M′, w′). The proof for (†2) is
entirely analogous. Let us denote the conjunction of (†1) and (†2) by (†).

We prove by induction that, for all v, v′ ∈ W × W ′ with v ≡L[∀] v′, for all

ϕ ∈ L
[∀]
∞ , M, v |= ϕ iff M′, v′ |= ϕ. The base case (ϕ ∈ P) and the induction step for

the connectives are trivial. For ϕ = [∀]ψ, we have that M, v |= ϕ iff for all u ∈ W ,
M, u |= ψ iff [by the induction hypothesis and (†)] for all u′ ∈ W ′, M′, u′ |= ψ iff
M′, v′ |= ϕ.

For ϕ = �Mψ, note first that by induction hypothesis (IH) and the induction
step for the classical connectives and [∀]:

for all τ ∈ L[∀],M, v |= [∀](τ ↔ ψ) iff M′, v′ |= [∀](τ ↔ ψ)

Assume now that M, v |= �Mψ for some v ∈ W and that v ≡L[∀] v′. By the
semantic clause for �M , for every i ∈ I(M), there must be a (finite) set Xi ⊆ Ni(v),
such that

⋂
i∈I(M)

⋂
Xi = ‖ψ‖M. Since M is L[∀]-differentiable, for every i ∈ I(M),

for every X ∈ Xi, there is a τX ∈ L[∀] such that X = ‖τX‖M. Hence, for every such
X, M, v |= �iτX . Note that⋂

i∈I(M)

⋂
Xi =

⋂
i∈I(M)

⋂
X∈Xi

‖τX‖M

Let τ =
∧

i∈I(M)

∧
X∈Xi

τX . So we have:

‖τ‖M = ‖ψ‖M

It follows that M, v |= [∀](τ ↔ ψ) and hence also M′, v′ |= [∀](τ ↔ ψ) (?).
By the supposition that v ≡L[∀] v′, for every τX (with X ∈ Xi, i ∈ I(M)),

M′, v′ |= �iτX . Consequently, M′, v′ |= �Mτ . By (?), M′, v′ |= �Mψ. The proof
for the other half of the equivalence is entirely analogous.

Let us briefly return to one of the potential applications of pooling modalities,
i.e. the specification of non-normal logics for distributed information of agents and
groups of agents. In this context, the principle of full communication [25, 56, 69]
roughly says that ϕ can be a piece of group knowledge only if there is some way
the agents in G would be able to arrive at the knowledge that ϕ by communicating
each of their individual pieces of knowledge. One plausible formal explication of this
principle reads:23

(FC) for all ϕ ∈ L[∀]: if M, w |= �G∞ϕ, then {ψ ∈ L[∀] | M, w |= �iψ for some i ∈
G} 
 ϕ

A first thing to note is that (FC) fails on the class of all models. That is because
(FC) fails on relational semantics for distributed knowledge, and more generally,
on any relational semantics that interprets �G∞ by referring to the intersection of
the relations Ri that correspond to �i [25, 56, 69]. The failure of (FC) for pooling

23Over monotonic models, the convere of (FC) is always valid; for arbitrary models it may fail.
Obvious ways to vary on (FC) concern the language in which the ψ’s are contained. We choose L[∀]

here for the sake of generality and simplicity.
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modalities over (augmented) neighbourhood models follows from these known results
as a corollary, in light of Section 4.1.

In [56], an overview of increasingly weak sufficient conditions for (FC) is given.
Most of these conditions cannot easily be generalized to neighbourhood semantics,
as they rely on the consistency of the agent-relative information sets KSi = {ψ ∈
L[∀] | M, w |= �iψ}. One exception is the condition of differentiability relative to
L[∀].

Theorem 7 If M is finite and L[∀]-differentiable, then (FC) holds for all w in the
domain of M.

Proof. Suppose the antecedent holds and M, w |= �G∞ϕ for some ϕ ∈ L[∀]. Since
W is finite, there are X1, . . . , Xn and i1, . . . , in ∈ G such that each Xj ∈ Nij (w) and

X1∩ . . .∩Xn = ‖ϕ‖M. Since M is differentiable, for each Xj there is a ψj ∈ L[∀] such
that Xj = ‖ψj‖M and hence M, w |= �ijψj . It follows that ‖

∧
1≤j≤n ψj‖ = ‖ϕ‖

and hence ‖
∧

1≤j≤n ψj → ϕ‖M = W . Hence, for all j ∈ {1, . . . , n}, ‖ψj‖M =

‖ψj ∧ (
∧

1≤j≤n ψj → ϕ)‖M. It follows that, for all j ∈ {1, . . . , n},

M, w |= �ij (ψj ∧ (
∧

1≤j≤n

ψj → ϕ))

For all j ∈ {1, . . . , n}, let τj = ψj ∧ (
∧

1≤j≤n ψj → ϕ). We have: {τj | j ∈
{1, . . . , n}} 
 ϕ and for every j ∈ {1, . . . , n}, M, w |= �ijτj . Hence (FC) holds for
w in M.

In conclusion, the class of finite, L[∀]-differentiable models constitutes a proper
subclass of the class of all models, over which pooling modalities add no expressive
power and full communication is valid.

5.3 Expressivity at the Level of Frames

Beside studying the expressive power of various formal languages at the level of
models, one may also compare their expressive power in terms of frames. Let us
first fix terminology. A pointed frame is a pair (F, w), where F is a frame and w
is a member of the domain of F. Where W is the domain of F, F, w |= ϕ iff for all
valuations V : W → ℘(P), 〈F, V 〉, w |= ϕ.

We say that ϕ ∈ L
[∀]
∞ characterizes the frame condition (C) iff the following

equivalence holds, for all pointed frames (F, w):

F, w |= ϕ iff (F, w) satisfies (C)

In other words, (F, w) does not satisfy the given frame condition if and only if
one can find a valuation V over F such that, given V , ϕ is false at w. For the sake of
convenience we will state our results in terms of pointed frames, since the conditions
we consider typically refer to neighbourhood sets of a given world. One can however
easily derive corollaries that apply to frames more generally. In particular, if ϕ
characterizes the frame condition (C), then it follows that ϕ is valid on a frame F iff
condition (C) holds at every world in F.24

24Following standard terminology, ϕ is valid on F iff for all w in the domain of F and all valuations
V over F, 〈F, V 〉, w |= ϕ.
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We give two relatively simple examples to show that, also from the perspective
of frames, pooling modalities give us more expressive power.

Theorem 8 Let F = 〈W, 〈Ni〉i∈I〉 be a frame and let w ∈ W . Then N2(w) ⊆
N1(w) e N1(w) iff F, w |= �2p → �1,1p. Moreover, this frame condition cannot be
characterized within L[∀].

Proof. The proof of the first part of this theorem is safely left to the reader. For the
second part, assume for contradiction that the frame condition can be characterized
by a formula ϕ ∈ L[∀]. Let I = {1, 2}, F = 〈W, 〈Ni〉i∈I〉 with W = {w, v}, N1(w) =
N1(v) = ∅, and N2(w) = N2(v) = {{w}}. Note that the pointed frame (F, w)
does not satisfy the mentioned frame condition. Let V : W → ℘(P) be such that
M, w 6|= ¬ϕ, where M = 〈W, 〈Ni〉i∈I , V 〉.

Let now M′ = 〈W ′, 〈N ′i 〉i∈I , V ′〉, where W ′ = {w′, v′1, v′2}, N ′1(w′) = N ′1(v′1) =
N ′1(v′2) = {{w′, v′1}, {w′, v′2}}, N ′2(w′) = N ′2(v′1) = N ′2(v′2) = {{w′}}, and V ′(w′) =
V (w), V ′(v′1) = V ′(v′2) = V (v). Then one can show by an induction that (M, w) ≡L[∀]

(M′, w′) and hence M′, w′ |= ¬ϕ. (For the induction step with ϕ = �1ψ, observe
that neither {w′, v′1}, nor {w′, v′2} are definable in the model M′.) Note however
that N ′2(w′) = N ′1(w′) eN ′1(w′), contradicting the fact that ϕ expresses this frame
condition.

Theorem 9 Let F = 〈W, 〈Ni〉i∈I〉 be a frame and let w ∈ W . Then N2(w) ⊆
e∞N1(w) iff F, w |= �2p → �1∞p. Moreover, this frame condition cannot be char-

acterized within L
[∀]
f .

Proof. Again, proving that the frame condition corresponds to the mentioned formula

is left to the reader. To show that it cannot be characterized within L
[∀]
f , let I and

M be as in the proof of Theorem 8. Let M′ = 〈W ′, 〈N ′i 〉i∈I , V ′〉 where W ′ = {w′i |
i ∈ N} ∪ {v′}, N ′1(x) = {W ′ \ {w′1, . . . , w′n} | n ∈ {1, 2, . . .}} for all x ∈ W ′, and
N ′2(x) = {{v′}} for all x ∈ W ′. V ′ just treats each of the w′i as copies of w and v′

as a copy of v. It can be easily verified that (a) no X ∈ N ′1(w′1) is definable and (b)
{v′} ∈ e∞N ′1(w′1). From (b) it follows that F′ = 〈W ′, 〈N ′i 〉i∈I〉 satisfies the frame
condition of concern. Relying on (a) we can prove that (M′, w′1) ≡

L
[∀]
f

(M, w) — a

contradiction.
Theorems 8 and 9 concern frame conditions that are relatively uncommon, though

perhaps useful from the viewpoint of certain applications. After these warm-ups, we
turn to a frame condition that is often discussed, i.e. closure under intersections.
First, it is well-known that

(�p ∧�q)→ �(p ∧ q)

is characteristic for closure of the neighbourhood set under finite intersections — see
e.g. [50, Lemma 2.20]. In contrast, there is no formula in L[∀], or, for that matter,

in L
[∀]
f , that characterizes closure under arbitrary intersections. Here, infinitary

pooling modalities turn out to yield a strict gain in expressive power, compared to the
language with only finitary pooling modalities. Likewise, only with infinitary pooling
modalities can one express that the intersection of all members of a neighbourhood
is non-empty.
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. . .
y

Figure 5: The two frames F and F+ in the proof of Theorem 10.

Theorem 10 Let F = 〈W, 〈Ni〉i∈I〉 be a frame and let w ∈ W . Then each of the
following hold:

1. Ni(w) is closed under arbitrary intersections iff F, w |= �i∞p→ �ip
2.

⋂
Ni(w) 6= ∅ iff F, w |= �i∞p→ [∃]p.

Moreover, neither of these frame conditions can be characterized by formulas within

L
[∀]
f .

Proof. Ad 1. Again, proving the positive claim is left to the reader. Although the
negative claim for the language without �i∞ modality is perhaps not too surprising,
proving it requires some work. We provide a counterexample with I = {1} and we
omit the subscript when referring to the neighbourhoods for index 1. Our coun-
terexample uses constant neighbourhood functions, and neighbourhood sets that are
closed under finite intersections. As a result, for every k ∈ N, �1kϕ is equivalent to
�1 in the models we construct below. Hence, it suffices to focus on the basic modal
language L[∀] with a single operator �1.

Assume for contradiction that there is some ϕ ∈ L[∀] that characterizes closure
under arbitrary intersections. Let W = N and W+ = N ∪ {y}. Let, for all n ∈ N,
Xn = W \ {0, . . . , n} and X+

n = W+ \ {0, . . . , n}. Let N = {Xn | n ∈ N} and
N+ = {X+

n | n ∈ N} ∪ {{y}}. Let F = 〈W,N〉 and F+ = 〈W+,N+〉. These two
frames are depicted in Figure 5.

Note that N is not closed under arbitrary intersection, since it does not contain
∅, while

⋂
N = ∅. By our assumption, there is a valuation V on W and a v ∈ W

such that 〈F, V 〉, v |= ¬ϕ. In the remainder, let M = 〈F, V 〉. So we have:

Fact 12 M, v |= ¬ϕ.

We define the valuation V + : W+ → ℘(P) that extends V , as follows. First,
for all w ∈ W , we let V +(w) = V (w). We define V +(y) inductively. Pick an
enumeration p1, p2, . . . of P. As induction base let ρ0 = > and ∆0 = ∅. Trivially,
there are infinitely many w ∈ W such that M, w |= ρ0. For the induction step
assume that ρi−1 and ∆i−1 have already been defined, and there are infinitely many

23



w ∈ W such that M, w |= ρi−1. If there are infinitely many worlds w such that
M, w |= ρi−1∧pi, set ρi = ρi−1∧pi and ∆i = ∆i−1∪{pi}. Note that if, on the other
hand, there are only finitely many worlds w ∈ W such that M, w |= ρi−1 ∧ pi, then
there are infinitely many worlds w ∈ W such that M, w |= ρi−1 ∧ ¬pi. In the latter
case, set ρi = ρi−1 ∧ ¬pi and ∆i = ∆i−1. Finally, let V +(y) = ∆0 ∪∆1 ∪ . . ..

Let M+ = 〈W+,N+, V +〉. Note that N+ is closed under arbitrary intersections.
with

⋂
X∈X+ = {y} for any infinite X+ ⊆ N+. To arrive at a contradiction we prove

that, for all worlds w ∈W , (M, w) ≡L[∀] (M+, w). This is Lemma 17 below; we first
need a few other lemmata in preparation.

Lemma 13 For every n, k ∈ N, there is a w ∈ Xn such that M+, w |= ρk.

Proof. Let n, k ∈ N. By our construction, there are infinitely many w ∈ W such
that M, w |= ρk. Since V + agrees with V on all these w, and since ρk is just a
truth-functional compound of propositional variables, there are also infinitely many
w ∈ W such that M+, w |= ρk. Since there are only finitely many w ∈ W \Xn, it
follows that there is at least one (in fact, there are infinitely many) w ∈ Xn such
that M+, w |= ρk.

Lemma 14 For every finite set ∆ of propositional variables, for every n ∈ N: there
is a w ∈ Xn such that, V +(w) ∩∆ = V +(y) ∩∆.

Proof. Let ∆ be a finite set of propositional variables. Pick a k ∈ N such that all
variables from ∆ occur in ρk. Let n be arbitrary. By the preceding lemma, there
is a w ∈ Xn such that M+, w |= ρk. Note that also M+, y |= ρk. In view of the
construction of ρk, this means that V +(w) ∩∆ = V +(y) ∩∆.

Lemma 15 For every n ∈ N and ψ ∈ L[∀]: if, for all w ∈ Xn, M+, w |= ψ, then
M+, y |= ψ.

Proof. Suppose the antecedent holds. Since we work with constant neighbourhood
functions, every formula of the form �τ is either false everywhere or true everywhere
in M+. Hence, every such formula is either equivalent to p∨¬p or to p∧¬p in M+.
The same applies mutatis mutandis to formulas of the form [∀]τ . As a result, there
must be a truth-functional combination of propositional variables, say ψ′, for which
‖ψ′‖M+

= ‖ψ‖M+

. Let ∆ be the (finite) set of variables that occur in ψ′. Note that
the truth value of ψ′ at any world w ∈W+ is a function of V +(w) ∩∆. By Lemma
14, there is a w ∈ Xn such that V +(w)∩∆ = V +(y)∩∆. Consequently, M+, y |= ψ′

and hence M+, y |= ψ.

Corollary 3 For every n ∈ N and ψ ∈ L[∀]: if M+, y |= ψ, then there is a w ∈ Xn

such that M+, w |= ψ.

Corollary 4 For every ψ ∈ L[∀]: if M+, y |= ψ, then there is a w ∈ W such that
M+, w |= ψ.

Lemma 16 For every ψ ∈ L[∀], each of the following hold:

1. M, w |= �ψ iff there is an n ∈ N such that Xn = ‖ψ‖M

2. M+, w |= �ψ iff there is an n ∈ N such that X+
n = ‖ψ‖M+
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Proof. Item (1.) is immediate in view of the definition of N . For item (2.) it suffices

to prove that there is no ψ ∈ L
[∀]
f such that ‖ψ‖M+

= {y}. So assume there is one

such ψ. Then M+, y |= ψ. By Corollary 4, there is a w ∈ W such that M+, w |= ψ.

But then w ∈ ‖ψ‖M+

— a contradiction, since w 6= y.

Lemma 17 For all w ∈W and all ψ ∈ L
[∀]
f , each of the following hold:

(i) M, w |= ψ iff M+, w |= ψ

(ii) ‖ψ‖M = ‖ψ‖M+ ∩W
(iii) for all n ∈ N, Xn = ‖ψ‖M iff X+

n = ‖ψ‖M+

Proof. (i) and (ii) are easily seen to be equivalent. We prove (i)/(ii) and (iii) by a
simultaneous induction on the complexity of ψ. The base case (ψ ∈ P) for (i)/(ii) is
immediate in view of the construction. For (iii), we start with right to left. Suppose

X+
n = ‖ψ‖M+

. Then X+
n ∩W = ‖ψ‖M+ ∩W . Since Xn = X+

n ∩W and by (ii),
Xn = ‖ψ‖M. For left to right, suppose that Xn = ‖ψ‖M. So for all w ∈ Xn,
M, w |= ψ. By (i), for all w ∈ Xn, M+, w |= ψ. By Lemma 15, M+, y |= ψ. By (ii),

‖ψ‖M+ ∩W = ‖ψ‖M = Xn. Hence, X+
n = Xn ∪ {y} = ‖ψ‖M+

.
For the induction step for (i)/(ii), we only need to consider formulas of the form

�1ψ (cf. our remark at the outset of the proof of Theorem 10). We have: M, w |=
�1ψ iff [by Lemma 16.1] there is some n ∈ N such that Xn = ‖ψ‖M iff [by the

induction hypothesis, item (iii)] there is some n ∈ N such that X+
n = ‖ψ‖M+

iff [by
Lemma 16.2] M+, w |= �1ψ.

For (iii), we reason just as for the base case, relying on the fact that (i)/(ii) was
already proven for ψ.

By Fact 12 and Lemma 17.(i), M+, v |= ¬ϕ, contradicting the assumption that ϕ
is characteristic for closure under arbitrary intersections. This completes our proof
of item 1 of Theorem 10.

Ad 2. The positive claim is again safely left to the reader. The negative claim
follows from our proof for item 1 of Theorem 10: in the above construction,

⋂
N = ∅,

whereas
⋂
N+ = {y}.

6 Applications

In this section, we outline a number of (potential) applications for pooling modali-
ties. In doing so we pursue three aims. The first is to demonstrate that pointwise
intersection occurs within a wide range of applications in philosophical logic. Second,
we show that specific such applications call for certain conditions on models and the
corresponding logics. These conditions then reoccur in the more technical companion
paper [4], where we present a general technique for obtaining sound and complete
axiomatizations that is modular with respect to those conditions. Our third aim,
finally, is to identify a number of technical problems and open ends raised by the
mentioned applications.

25



6.1 Distributed, Non-normal Informational Attitudes

Syntactically, the distributed knowledge of a group of agents G can be circumscribed
as the knowledge that would be obtained if some third agent combined the individual
knowledge of all group members G and closed the resulting information under logi-
cal consequence [1]. Semantically, distributed knowledge is usually interpreted over
multi-agent epistemic models, in terms of the intersection of the epistemic equiva-
lence relations ∼i (i ∈ G). Analogously, one can study distributed beliefs and other
types of distributed information across groups following either a syntactic or semantic
characterization.

A small warning is in place here though. As Gerbrandy [24] shows, the syntac-
tic and semantic readings do not always coincide. This incidentally relates to our
discussion of the principle of Full Communication in Section 5.2, where we identify
a condition, finiteness in combination with L[∀]-differentiability, under which both
readings are equivalent. One interesting alley for further research is to see whether
there are other sufficient conditions for this equivalence, e.g. by generalizing the no-
tion of tightness and epistemic saturation from [56] to non-normal modal logics and
neighbourhood models.

In what follows, we adopt the semantically driven view, following the seminal [22].
As shown in Section 4.1, pointwise intersection generalizes the semantic view to cases
where informational attitudes are non-normal (cf. Theorem 1). Let us point out a
number of applications for which this is useful.

Knowability and Subset Spaces In an attempt to model the interaction between
knowledge and (alethic) possibility, logics of knowability assume a picture of potential
knowledge where either obtaining information or drawing logical inferences from it
may come at a price. A prominent example of the former view are subset space
logics [8, 10,19,49]. These represent informational situations with a neighbourhood,
i.e. a family of subsets, each indicating information the agent could have, were she
to invest the appropriate amount of effort.

With potential knowledge and belief cashed out in terms of neighbourhood sys-
tems, their aggregation in terms of group or distributed knowledge and belief natu-
rally invokes pointwise intersections in neighbourhood systems, as for instance spelled
out in [5], see also [71]. This in turn allows one to express what groups may come
to know, through joint efforts of their members.

Non-normal Doxastic Logics Turning to doxastic logic, there are a number of
distinct motivations for weakening the underlying logic of belief to a non-normal one.

First, abandoning the assumption that knowledge is negatively introspective,
Stalnaker [61] proposes a combined epistemic-doxastic logic where belief is inter-
preted as the mental component of knowledge. While this weakening of the classical
axiomatizaion preserves normality of knowledge and belief, further weakenings do
not. Positive introspection, for instance, has been heavily criticised on philosophical
grounds. Correspondingly, Klein et al. propose two logics that weaken Stalnaker’s
framework further by also omitting positive introspection [40]. It turns out that this
renders belief a non-normal modality: belief is closed under weakening but not under
intersection, i.e. the agent can believe ϕ and ψ without believing ϕ ∧ ψ.
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Other philosophically motivated weakenings of classic epistemic logic bear an even
closer connection to non-normal modal logics. The fragmentation theory of knowl-
edge, for instance, holds that closure under conjunction or consistency requirements
only apply within certain domains of knowledge, but not across those domains [37].
Correspondingly, knowledge and belief are represented by neighbourhood systems
that need not satisfy (Ci) or ¬�i∞⊥.

Another recent strand of literature makes a distinction between explicit beliefs
of an agent and its potential beliefs and background knowledge, following [21]. On
this picture, explicit beliefs are usually not closed under conjunction or under weak-
ening (though they are closed under replacement of equivalents). They can hence be
studied in terms of neighbourhood systems, as shown in [6].

Evidence Logics Tightly related to the subset space approach, evidence logics
draw a fine grained picture that not only includes the agents’ belief, but also the
evidence this belief is based upon. First proposed by Van Benthem and Pacuit [66],
the main component of evidence logic is a neighbourhood of the agent’s available
evidence. Only weak requirements are made on this evidence, as it is usually neither
assumed truthful nor jointly consistent, let alone closed under intersection. Belief, in
these logics, is a derived attitude that is obtained from the agent’s available evidence
by considering the maximal non-empty intersections of evidence sets. Exact details
differ, see for instance [7,66] and also the discussion on monotonic vs. exact readings
on evidence modalities in Section 4.3.

In this context, pooling modalities and pointwise intersection are again just
around the corner. In fact, they literally show up in a proposal by van Benthem
and Pacuit to model the fact that ‘agents can also “pool” their evidence creating a
new evidential states by combining their evidence’ [66, pp. 88-89].

Note however that, strictu sensu, pooling modalities cannot express evidence-
based belief as the latter specifically refers to non-empty intersections only, and also
employs the ⊆ relation on these non-emtpy intersections. There may however be a
way around that difficulty. Baltag et al. [7] show that one can capture a specific
Evidence Logic by combining three relatively simple ingredients: a universal modal-
ity [∀], an operator Eb for basic factive evidence, and an operator E for combined
factive evidence, i.e. for any finite intersection of basic factive evidence. Baltag et
al. show evidence for ϕ and evidence-based belief in ϕ to be definable in this lan-
guage by [∃]Ebϕ and [∀]¬E¬Eϕ respectively. Analogously, distributed evidence and
belief based on distributed evidence can then be defined by [∃]Eb

Gϕ and [∀]¬EG¬EGϕ
respectively.

These are but some examples of non-normal logics for informational attitudes of
agents. In all these logics, hence, one may investigate the logical behavior of dis-
tributed information within a group, generalizing the mentioned work on distributed
knowledge and belief. Moreover, when an agent’s informational attitude is not as-
sumed to be closed under aggregation, pooling modalities may also be used to reason
about implicit beliefs or knowability in the limit of a single agent, i.e. those propo-
sitions that follow from a (finite or arbitrary) aggregation of their information.

Issues and Open Questions: A first task is to provide axiomatizations of the resulting
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logics with pooling modalities. In line with standard properties of knowledge and
belief, the modalities to be pooled will often satisfy axiom (Mi), also known as weak-
ening or inheritance. In some of the cases outlined above, additional conditions will
be in place such as axiom (Ti) also known as factivity for knowledge and knowabil-
ity, or binary consistency for belief (cf. [40]). In [4], we provide axiomatizations for
logics that include any combination of the mentioned axioms, leading to a counter-
part of the axiomatization of normal distributed belief provided in [22] (cf. Section
4). For other axioms (e.g. those concerning positive and negative introspection), the
question of a sound and complete characterization remains open.

A related open task concerns a multi-agent version of evidence logic. Going
multi-agent triggers a number of conceptual and formal issues. In evidence based
frameworks, different types of distributed beliefs become definable. For instance,
one may first determine individual belief sets and then derive the corresponding
distributed belief. Alternatively, one may first combine the agents’ available evidence
into the group’s evidence and, from there, calculate the corresponding group belief.
While these two notions of distributed belief will, in general, not coincide, their exact
relationship remains to be determined.

6.2 Deontic Reasoning

Neighbourhood semantics have been used in deontic logic to model the interaction of
various norms, for instance in (non-explosive) conflict-tolerant normative reasoning
[28,29], or in agents forming plans to meet their various obligations [39,43]. Here, �iϕ
can, e.g., be taken to mean that there is at least one norm in the normative system
Si that makes ϕ obligatory; the presence of two conflicting norms can then account
for the truth of a deontic conflict of the type �iϕ∧�i¬ϕ. Within our richer setting,
we can express such things as Si being conflict-free (¬�i∞⊥) or Si being conflict-
free (exactly) up to level n (¬�in⊥ and �in+1⊥ ∧ ¬�in⊥ respectively). The former
property plays an important role, for instance, in determining which obligations shall
be translated into goals adopted by the agent [39].

In this context, pointwise intersection across distinct indexes can be interpreted
as the piecemeal aggregation of norms from possibly different normative systems. A
formula such as �1,2p then expresses that there are two norms, one in S1, the other
in S2, such that obeying both requires the truth of p. With a universal modality in
the language one can moreover express that these norms are mutually compatible,
as witnessed by [∃]p.

An altogether different application of pooling modalities consists in reading the
indices as reasons for one’s obligations. On this view, �rϕ expresses that r is a
reason for ϕ to be obligatory, and one can then aggregate reasons alongside with
obligations: �rϕ ∧ �r′ψ yields �r,r′(ϕ ∧ ψ). As argued in [23, 48], reasons play an
important, but often neglected role in our normative reasoning. A thorough logical
investigation of their interaction and aggregation in deontic logic (at the level of the
object language) is still lacking.

Issues and Open Questions: Also in deontic logic, a standard task is to identify sound
and complete axiomatizations given various frame conditions. Notably, this can be
quite different from the corresponding problem in doxastic logic, as the two validate
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very distinct logical principles. In some deontic approach, the neighbourhood set
corresponding to a normative source S consists of all those X ⊆W that are exactly
the set of all worlds satisfying some norm n issued by S. As S may not have issued
any norm that is equivalent to >, the set W of all worlds need not be contained in
this neighbourhood, i.e. (Ni) may be violated. Conversely, a neighbourhood set may
contain ∅, violating (Pi), e.g. if a general norms issued by S is not satisfiable in the
present situation (cf. [39]).

Lastly, in a different but related approach, neighbourhood sets may be taken to
collect all sets of legal or permitted worlds with respect to some set of norms [57].
In this interpretation, neighbourhood sets are downward closed (i.e. closed under
taking subsets), as the property of not containing illegal worlds is.

6.3 Coalitional Agency, Ability, and Forcing Powers in Games

Modal logics of agency have a venerable history, dating back to the middle ages.25

More recently, agency operators were proposed as a necessary complement of deontic
operators in the analysis of rights and normative positions [60]. In these systems,
�iϕ can be read as “i brings it about that ϕ”, or “i is the agent of ϕ”. With
the coming of age of STIT logic, the logic of “sees to it that”-locutions, it has
been noticed that multiagent logics of agency bear strong links with various game-
theoretic notions [55, 62] (see [65] for an overview) and in particular with coalition
logic, which can express the powers of coalitions in game forms [30,52].

Neighbourhood semantics provide a very general framework for interpreting logics
of agency, cf. [45]. In such semantics, X ∈ Ni(w) is usually interpreted as: “X is
a state of affairs brought about by i at w”, or X is a state of affairs, that i could
bring about at w. Various logics of agency differ in the exact viewpoint taken and,
hence, in the additional assumption imposed on neighbourhood functions. Horty’s
famous “Chellas STIT” operator, for instance, assumes a border case perspective
where actions are taken to produce instantaneous effects, different actions taken at
world w are assumed compatible and the effect of actions is modelled as closed under
weakening. At the formal level, this corresponds to the validity of (Ti), (Mi), and
(Ci). This, however, is but one conceptualization of agency. Other perspectives such
as Broersen’s XSTIT [11, 12] depict actions as partially determining the transition
from a current state to some next state, hence invalidating (Ti). Likewise, the
“deliberative STIT” operator from [9] invalidates (Ni) and (Mi).

In logics of abilities or strategic powers, X ∈ Ni(w) can be interpreted as the
agent having some available action that brings about X. Here, (Ci) need not hold,
as an agent’s option to choose between various possible actions does not imply that
she can execute several of these simultaneously. Moreover, logics of exact strategic
abilities invalidate (Ni) and (Mi). In [62] such logics are shown to be instrumental
for defining notions of equivalence between games.

When working in multiagent settings, pooling modalities are a good candidate for
talking about both, group agency and group abilities. For instance, the compatibility
of actions postulate of game or coalition logics (cf. [53, 55]) is expressible as ¬�G⊥.
Hence, an adequate understanding of group abilities is tightly connected to the study

25See [9, Section 1D] for an overview of this history before 1990; [9] itself remains a key reference
for the logic of agency.
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of pooling modalities. Incidentally, this relates to logics of abilities and existing
semantics for group STIT, which can be phrased in terms of the intersection of
equivalence relations, cf. [18].

Issues and Open Questions: A first issue, again, is to provide sound and complete
axiomatizations of pooling modalities the correspond to specific versions of agency
and ability. Independence of agency and related independence conditions from game
logic add additional complexity here, as philosophically motivated desiderata that
may require the expressive power of pooling modalities.

A second issue is related to decidability: can we find a suitable, sufficiently strong
logic of collective agency that captures some notion of free, independent agency, yet
is still decidable, in contrast to group STIT? As shown in [13], Pauly’s Coalition
Logic [51] is a decidable fragment of a particular STIT logic for groups introduced
in [38]. So there may well be other such decidable fragments that are complete with
respect to certain pictures of group agency.

A third topic concerns enriched pictures of (group) agency and ability. First,
Elgesem [20] and more recently McNamara [45] argued that we often distinguish
between the states of affairs ϕ a given agent brings about, and a “basic proposition”
ψ by means of which ϕ was brought about. The resulting dyadic neighbourhood
functions raise a number of questions, for instance whether pointwise intersection
should concern only the antecedents, only the consequents or both. Second, Alechina
and co-workers [2] put forward a picture of group ability that not only depicts the
agents involved, but also the resources these agents need to invest in order to bring
about a certain state. Besides classic group actions, pooling modalities may then also
be used to track the strategic abilities of groups that redistribute resources among
their members to achieve certain outcomes.

7 Summary and Outlook

In this paper, we have argued that pooling modalities provide a highly expressive and
well-behaved extension of the standard multi-index language interpreted over neigh-
bourhood models. We showed that they moreover have a wide range of applications,
gave a number of foundational results and introduced useful notation and termi-
nology. Having already hinted at different applications and the specific issues they
raise, we end this paper with an overview of more general open problems concerning
pointwise intersection and pooling modalities.

1. Building on Section 4.2, can we further enrich the modal language with oper-
ators that talk about the supplementation of a given neighbourhood model?
Note that such a language would allow us to describe the properties of the
relational model that corresponds to the augmentation of an arbitrary neigh-
bourhood model, and combine the expressive power of both the exact and the
monotonic semantics for classical modal logics.

2. Bisimulation is a standard vehicle for analyzing modal equivalence and ex-
pressivity of the modal language. For classical modal logics, similar charac-
terizations of modal equivalence have been investigated in recent work [35].
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A natural question, hence, is for a suitable characterization of modal equiv-
alence in languages with pooling modalities (cf. Section 5.1). Relatedly, one

may investigate the possibility of a standard translation from L
[∀]
∞ or one of

its sublanguages into first-order logic, again following [35]. Such translations
are known to generate numerous important results such as compactness and
enumerability.

3. It is well-known that classical modal logics can be embedded into normal modal
logics. In particular, monotonic operators can be represented by a combination
of two normal modal operators; for the embedding of arbitrary classical modal
operators, three normal modalities are required [41]. Similarly, one may ask
whether logics featuring pooling modalities can be embedded in normal modal
logics, using intersection modalities. While this has been done for the specific
case of coalition logic (which is a fragment of group STIT, cf. [13]), a more
general recipe for such embeddings is still lacking.

4. Many of the applications presented call for a dynamic perspective. In the case
of evidence and at the level of a single agent, dynamic operations in terms of
adding or retracting pieces of evidence were already studied in [66]. A first
question, here, is how such operations can be generalized to the multi-agent
case. However, going multi-agent also opens the possibility of formalizing and
axiomatizing interactive operations, where e.g. one agent shares its evidence
with other agents, or two agents “merge” their evidence. Here pooling modal-
ities may be particularly useful, in that they allow to reduce inter-agent forms
of sharing information, in line with existing work on resolution operations and
operators of distributed knowledge [1].

Analogous observations can be made about sharing or exchanging norms (cf.
Section 6.2). Finally, also logics of abilities may have use for dynamic opera-
tions. For instance, agents may delegate their powers or abilities to others, as
happens frequently in institutional settings and in certain voting scenarios [17].
From a formal perspective, delegation from agent i to agent j may be under-
stood as a dynamic operation, where the resulting powers of j coincide with
the original powers of the group {i, j}.
Importantly, dynamic operations such as the ones mentioned have formal con-
nections to products of neighborhood systems in a similar way that product
models of dynamic epistemic logic can be seen as a special type of product
model [70]. Also here, the exact relationship remains to be worked out.

5. Finally, as mentioned in the introduction, pointwise intersections is just one
prototypical example of combinatorics over neighbourhood sets. As such, it is
a member of a larger family alongside, for instance, operations motivated by
PDL’s non-deterministic choice or sequential composition [54, 63]. It remains
to be seen how the latter combine with pointwise intersection. Relatedly, one
may also generalize pointwise intersection to other boolean operations of union
and negation, and investigate the expressivity and logical properties of ensuing
systems.
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