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1 Introduction

According to some of the advocates of computer-assisted mathematics, ”com-
puters [are] changing the way we do mathematics”. One significant such change
is the development of a new branch of mathematics that is characterized by its
method rather than by its subject, i.e., experimental mathematics. This new
domain is still expanding, witness the increasing number of publications on ex-
perimental mathematics, the foundation of a new journal called Experimental
Mathematics or the formation of new research groups like the Centre for exper-
imental and constructive mathematics.
But, provided the computer is changing mathematics, what exactly is the scope
of this change? In order to answer this question one needs to tackle a variety
of different but related epistemological questions. Is a “computer experiment”
nothing more than an old method in a new garment that can now be used by
any mathematician who knows how to use Maple, or is there more going on?
What exactly is a (computer) experiment in mathematics? Is it any different
from an experiment in say physics and does it differ in any fundamental way
from the way use was made of extensive computations in e.g. the work of Gauss
and Euler? What kind of knowledge can or should be obtained through exper-
imentation? How does one process and store the billions of computations and
does this result in a fundamentally new kind of tools? These kind of questions
are not new to the philosophical literature (see e.g. [1, 2, 17]). Rather than to
directly engage into these questions, the approach of this paper is to trace the
idea of “computer experiment” in mathematics in the last 60 years. By doing so
I want to study if and in what sense experimentation in mathematics has and is
changing since the rise of the computer. Such historically-oriented analysis can
help to attack the above epistemological questions.
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1.1 Experimentation as exploration: Derrick H. Lehmer’s
view on mathematics

Since the aim of this paper is to study the changes experimentation in mathe-
matics underwent in the era of digital computing, I assume that there is in fact
such a thing as an experiment in mathematics and that it existed long before the
invention of the computer. Viz. the notion of “experimentation” is used here
in the sense of the number theorist and computer pioneer Derrick H. Lehmer,
i.e., as the exploration of the universe of mathematics.1 Lehmer identifies two
“schools of thought” in mathematics [10]:

The most popular school now-a-days favors the extension of exist-
ing methods of proof to more general situations. This procedure
tends to weaken hypothesis rather than to strengthen conclusions.
It favors the proliferation of existence theorems and is psycholog-
ically comforting in that one is less likely to run across theorems
one cannot prove. Under this regime mathematics would become
an expanding universe of generality and abstraction, spreading out
over a multi-dimensional featureless landscape in which every stone
becomes a nugget by definition. Fortunately, there is a second school
of thought. This school favors exploration [m.i.] as a means of dis-
covery. [B]y more or less elaborate expeditions into the dark math-
ematical world one sometimes glimpses outlines of what appear to
be mountains and one tries to beat a new path. [N]ew methods,
not old ones are needed, but are wanting. Besides the frequent lack
of success, the exploration procedure has other difficulties. One of
these is distraction. One can find a small world of its own under
every overturned stone.

For Lehmer it is the possibility of exploration that opens up the path of “math-
ematics [as] an experimental science”, a view on mathematics that Lehmer had
herited from his father, Derrick N. Lehmer, also a number theorist. Derrick H.
Lehmer was also a computer pioneer. He was fond of these new machines and
emphasized their significance for mathematics on several occasions. To Lehmer
(D.H.), the computer was the perfect ally for the explorative-minded mathe-
matician.
The view that experimental mathematics, if once accepts it exists, involves ex-
ploration, does not necessarily mean that the “experimental” reduces to the
“explorative”. In order to explore one needs something to explore. Since, in
mathematics, one does not have the kind of physical world as one has in physics,
that which is to be explored not only needs to be made accessible in some or
the other way, it also needs to be generated. Indeed, to explore the universe
of mathematics also means to generate it. In this sense, experimentation as
exploration in mathematics involves at least two different kinds of actions: the
generation of the data to be explored and the exploration. Experimentation

1See [15] for more details on Lehmer’s views on mathematics.
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cannot be reduced to either one of both. It entails both.
It is not within the scope of this paper to provide arguments for the view on
experimentation in mathematics as exploration. However, it is important to
emphasize, first of all, that this definition of experimentation as exploration is
not intended as a once-and-for-all definition. Rather it is proposed here is a
working definition, a tool, which can be used to study this particular aspect of
mathematics. Secondly, this view is not exclusively connected to the develop-
ment of the computer. In fact, as is clear from Lehmer’s quote, mathematics
as an explorative science is just one of two schools of thought that co-exist.
The idea that there has been a second stream in the history of mathematics
where exploration rather than theorem-proving is the more important method
has been argued for before [7, 8]. In this sense, I disagree with Sorensen’s claim
that mathematical experiment has changed from number-crunching and fact-
gathering to explorative because of the existence of software like Maple: “[o]nly
with interactive experimentation and multi-purpose software [like Mathematica
or Maple] could mathematical experimentation make a transition from number-
crunching to exploration.” [17]. The case studies of this paper provide evidence
against the significance Sorensen attaches to Maple and Mathematica.

1.2 Human-computer interaction, internalization, time squeez-
ing

If there is one characteristic of computer-assisted experiments in mathematics
that separates it from mathematical experiments without computers, it is the
fact that such experiments involve interactions and communications between
a human mathematician and a digital computer. Hence, if one wants to un-
derstand computer experiments in mathematics, how they have evolved and
how they differ from mathematical experiments without computers, studying
changing mathematician-computer interactions is one good point to start from.
This is exactly what this paper aims at. Evidently, changes in such interactions
are strongly related to changes and advances in computer science and engi-
neering. This paper will trace down relevant changes in these interactions by
coupling them to a changing technology. I will consider four different cases of
computer experiments: the first case is about ENIAC, the first electronic and
programmable computer, announced to the public in 1946. The other three
cases are situated in the late 70s, the 80s and the 90s. The historical gap be-
tween case I and case II–IV allow to show the changes that have happened
during the history of digital computing more explicitly. I will first give a short
description of some relevant features of the cases , and will then evaluate some
of the characteristics of the mathematician-computer interactions by zooming
in on the location of and tools for storing and processing information during the
“experiments”. It will be shown that due to what I will call “time squeezing”
and “internalization”, the “experiment” is more and more becoming an activity
that is located in and during mathematican-computer interactions.
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2 Description of the four cases

2.1 Case I: The ENIAC experience

Any historically-rooted study of computer-assisted mathematics should at least
consider the mathematics done by and on ENIAC, the first electronic and pro-
grammable computer.2 This machine, whose (historical, philosophical and sci-
entific) significance is largely underestimated in the literature, has had a funda-
mental influence on the thinking of logicians, engineers and mathematicians (See
[6, 16]). Among the people who were involved with these machine are Haskell B.
Curry, the logician whose first name refers to a well-known functional program-
ming language, Derrick H. Lehmer, the number theorist, John von Neumann,
mathematician, logician and computer pioneer and Douglas Hartree, the father
of numerical analysis. The machine was the first electronic computer used for
an extensive number-theoretical computation and is most well-known for its nu-
merical modeling of a fission device for an H-bomb [13].
ENIAC’s speed was impressive for its time: it could add two numbers in 1/5000
of a second. It had however two major bottlenecks: its memory size and the
labor involved in programming the machine. The only way to provide extra
memory was through the external and analogue punched card mechanism, which
seriously slowed down the computational process. Unlike modern computers,
the ENIAC was not a stored-program computer. This meant that the program-
ming needed to be done externally and physically. Add to that the fact that
the machine was highly parallel and one understands Adèle Goldstine’s charac-
terization of the machine as a “son-of-a-bitch to program” [12]. Furthermore,
since there was only one ENIAC and one needed a security clearance to visit the
machine (because it was military) only few people had access to the machine.
I will mention one ENIAC computation here: the computation of exponents
modulo 2 by Lehmer and his wife Emma. This computation was intended as a
test of ENIAC’s mathematical possibilities.

The idea was to use it to compute a list of exponents e of 2 modulo a prime
p, i.e., the least value n such that 2n ≡ 1 mod p. Such exponents can be used
to compute exceptions to the converse of Fermat’s little theorem.
The set-up on ENIAC is interesting for several reasons. First of all, the main
algorithm for computing exponents is developed from the machine’s point of
view, viz. not the most elegant and fast one from the perspective of human
mathematicians, but the fastest one for the machine. Secondly, a truly parallel
prime sieve was wired on ENIAC hence allowing it to compute its own primes
rather than to feed such primes to the machine during computation. The sieve
“screened out” all numbers having a prime factor ≤ 47. This meant that there
was no guarantee that the numbers that passed that sieve were prime. In other
words, this is an early example of what one calls a probabilistic algorithm. In

2The programmability of ENIAC is not well-known. Note however that it contained ev-
erything one needs for computing the basic arithmetic functions, iteration and conditional
branching. Hence, in principle it could be programmed just as any modern computer can be
programmed.
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order to minimize the chance that a number passing the sieve was prime an
extra test was internalized into the machine, and, finally, all were checked by
hand at the end of the computation. Finally, it should be noted that ENIAC was
only used for he computation of the exponents, not for the computation of the
exceptions to Fermat’s little theorem. This was done by hand, which was still
a considerable labor [9]. The ultimate goal of the computation, the extension
of existing prime tables to be used by the exploratory minded number-theorist
was still a purely human work, far removed in time from the actual ENIAC
computation.

2.2 Case II: Mandelbrot and his set

As explained in the previous section, ENIAC was not a stored program com-
puter. Stored programming was the material condition needed to make possible
the development of intermediate languages between the programmer and the
computer, viz. the development of programming languages. In the 50s and
60s the first real high-level programming languages like LISP, FORTRAN and
Algol were developed. However, computers were still very expensive and hence
also computer time. This meant that the computer was not available to many
people. The development and commercialization in the late 60s of time-sharing
systems was the next big step forward. Also displays and printers were be-
coming more and more advanced. In the meantime computers had become
exponentially faster and were no longer slowed down by the analogue external
storage devices used with ENIAC. It is in this technological context that Benôıt
Mandelbrot “discovered” in 1980 the set that was later named after him, viz.,
the Mandelbrot set.
These “experiments” were done on the DEC-VAX-11/780 a stored program
computer with the OS VMS with GUI, graphic support and support for mul-
tiple programing languages. Mandelbrot could also “look” at visualizations on
the display and print them with a printer.
In the late 70s Mandelbrot had developed an interest in the theory of rational
maps of the complex plane. Based on his knowledge of the work by Fatou and
Julia he started to “play around” with quadratic Julia sets which are defined as
the boundary of the escapee sets of iterative maps:

z → z2 + c, c, z ∈ C

It was known through the work of Julia and Fatou that there exists a funda-
mental dichotomy for Julia sets: either a Julia set is connected or disconnected.
It was also know that for certain values c, any point z converges to a finite
stable cycle of size n. Mandelbrot aimed at classifying the connected Julia sets
according to the size of such cycles n. In order to do see he decided to use
another known fact: the prisoner set Pc for the map z → z2 + c is connected
iff. the orbit 0→ c2 → c2 + c→ . . . remains bounded. This was the motivation
behind his explorations of the map c → c2 + c which lies at the foundation of
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the Mandelbrot set M . Indeed:

M = {c ∈ C|c→ c2 → c2 + c→ . . . remains bounded}

The idea of exploring this set should be taken quite literally: the map was visu-
alized, printed, studied. The observations made led to new visualizations, blow
ups of a certain detail of the set for example, etc. These first explorations led
Mandelbrot to several important conjectures during the process of exploration.
Many of these conjectures have been proved in the meantime. To give just one
example recounted by Mandelbrot, in some of the first print-outs there seemed
to be specks of dirt, and it was thought which could have been easily explained
away as being caused by the quality of the Versatec printer. However, Mandel-
brot saw a certain symmetry in these specks and wanted to see a blow-up (which
meant writing a new program!) and saw that these were indeed not specks of
dirt but smaller“islands” as Mandelbrot calls them, whose shape is like that of
M . This observation ultimately resulted in the conjecture that M is connected,
proven by Douady and Hubbard in 1982.
Mandelbrot’s work on M can perhaps best be described as machine-aided,
human-directed explorations. The computer and its computational power is
used to render the Mandelbrot set observable: it generates the data needed,
orders them and displays them in a format that is humanly practical. In this
observational process, it is fundamental to point out that one picture is not
enough. As Mandelbrot explains When seeking new insights, I look, look, look
and play with many pictures (One picture is never enough).” [11]

2.3 Case III: Brady and Busy Beavers

Our next case study concerns what one would nowadays call a computer-assisted
proof, i.e., the proof that the Busy Beaver function for Turing machines with
4 states is 13. This result was established by Brady [5] in the early 80s and
by Kopp at around the same time. Evidently, the computer technology Brady
could rely on is comparable to that Mandelbrot could rely on.
The Busy Beaver problem as originally formulated by T. Radó, is the problem
to determine for any class of Turing machines TM(m, 2) with m states and 2
symbols the maximum number of 1s left on the tape by some T ∈ TM(m, 2) that
halts when started from a blank tape. Even though this problem is recursively
unsolvable in general, one can try to solve it for specific m. This is what Brady
did for values of m = 4. However, since the number of Turing machines with
m states is equal to (4m + 1)2m one needs to check no less than 6,975,758,441
machines for m = 4. This is why the computer is a necessary tool here. The
general idea of the proof is to decide the halting problem for all machines in a
given class when started with a blank tape, i.e., to exclude those machines that
end in an infinite loop. In every stage of a proof, the machines for which it is
not yet known whether or not they will halt are called the holdouts.
In order to tackle this problem, Brady was able first to reduce the 6,975,758,441
machines to only 5820 by way of tree normalization and backtracking (see [14]
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for more details). The resulting set of holdouts is further reduced by way of a
heuristic and experimental process of identification of different types of infinite
loops (through exploration of hundreds of printouts of the behavior of different
machines) and the automated detection of the several types of loops found. Each
Turing machine is “sent” through what one could call a flowchart of flowcharts.
I.e., a flowchart that is a composition of the different types of algorithms (which
could also be represented as flowcharts) developed for detecting the different
kind of loops. Several of the programs used in the process are “heuristic”.
For example, one of the main “filtering” procedures called BBFILT tentatively
classifies a machine in one of three classes. Brady described BBFILT as follows:
[I]t must be remembered that the filtering [BBFILT]was a heuristic technique
based upon experimental classification.
Besides the several different loop detecting programs (12 in total):

[m]ore than 18 other programs were written, for various housekeep-
ing purposes, simulating and displaying machine behavior, exploring
other reduction and filtering possibilities etc. In all, at least 53 files
were created and maintained for the project. Keeping track of what
resembled a large scientific experiment became a major task in itself

2.4 Case IV: Wolfram, Mathematica and “A new kind of
science”

The last case concerns Stephen Wolfram’s work on cellular automata. Roughly
speaking, his research can be divided into two periods of time. A first period
going from 1982-1988 in which Wolfram published his main results and ideas
on cellular automata (CA) and the period after 1988 when Mathematica, a spe-
cialized software package for scientific research comparable to Maple, was first
released. It was also around that time that Wolfram started to write on his A
new kind of Science, a voluminous book published in 2002 as [19].
For his earlier work in the 80s on CA Wolfram used several different computers
and programming languages and developed his own “software” for the special
needs of his research. His research on CA was published in the early 80s and
later published as the collection [18]. Similar to Mandelbrot, Wolfram estab-
lished several observational results of which some were proven later. One im-
portant result, based on thousands of runs of different CA, is the classification
of the behavior of CA into four classes of behavior. Wolfram’s observations also
led him to the formulation of interesting philosophical points of view, relating
his theoretical results to the physical world. For instance, the idea that the
complexity and randomness we see in nature can be explained from within the
framework of CA.
Interestingly, Wolfram had already found most of his basic results on CA before
the release of Mathematica. It were these results from computer science that lay
the foundation for the development of a more general theory described in A new
kind of science. It was also the extensive programming involved, that led him
to the development of Mathematica. Indeed, he first conceived of Mathematica
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because he needed it himself. On the website of Mathematica one finds the
following description:

[T]he visionary concept of Mathematica was to create once and for all
a single system that could handle all the various aspects of technical
computing – and beyond – in a coherent and unified way

The idea behind Mathematica is to offer a platform that integrates and cen-
tralizes the many different methods and techniques one needs for scientific com-
puting: visualizations, statistics, random generators, algebraic functions, etc
are all offered as one package. There is no need to lose time by writing your
own visualization algorithm, you merely have to know the right name for it in
Mathematica.
In 2002 Wolfram’s long awaited book was finally published. It presents his
results on CA into one coherent theory and extends this theory to problems
in physics, cognitive science, etc He also builds up an argument in favor of
his methodology of computer experimentation and visualization, criticizing the
traditional methods of mathematics.

3 Changing mathematician-computer interactions.
Evaluation of the cases

If we compare the four cases of Sec. 2, it becomes apparent that there is a world
of difference between the ENIAC “experiments” and Wolfram’s “experiments”.
In order to get a firmer grip on these changes in mathematical experimentation,
it is interesting to evaluate the processes of mathematician-computer interac-
tions for these different cases in relation to the location and the methods for
storing and processing information during the “experiment”.
Turning to ENIAC, it is interesting to point out that the actual machine com-
putations – the computation of exponents – are long computations that do not
involve what one could call “responsive interaction”. I.e., what one typically
has is that the ENIAC makes one very long computation and the mathemati-
cian awaits the result (although sometimes a human intervention is needed, for
instance, to reverse the punched cards). Once the result is there, the math-
ematician does the rest of the work and the exploration of the data can be
started. One could wonder in what way then the ENIAC computations dis-
cussed here are different from hand-made computations of exponent tables or
digits of π or e that were published before? First of all, there is the fact of the
speed of ENIAC – whereas it would normally take weeks to compute these first
2,000 digits, it now took about two days. The significance of that kind of “time
squeezing” should not be underestimated. Secondly, there is the fact that even
though there is just one long computation, this computation has many different
stages that are all internalized and centralized into the machine making up one
general program/flowchart. I.e., the machine is wired such as to “combine” and
“centralize” different kinds of computations into one long computation. This
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sequencing and combining of smaller algorithms into one would challenge many
a logician and computer scientists in the years to come, Haskell B. Curry be-
ing one of the first to think about the composition of programs [16]. Thirdly,
the algorithms underlying the computation are machine-adapted.The fact that
Lehmer chose to let the machine generate its own primes because of the speed
gained or his design of the “idiot” exponent routine are clear examples of that.
Finally, motivated in part by the slowness of the analogue punched card input,
one sees a steady replacement of storing large amounts of data which can be
used in the course of a computation by what one could call the “call-by-value”
method, the idea that the machine generates values when they are needed rather
than to look them up. This is a partial internalization and compression (space
squeezing) of data: instead of storing the data, the algorithm that generates
them is stored. However, when data are needed that are not easy to generate
with the machine, they are still stored externally to the machine. This slows
down the process of computing and also often implies the need for integrating
human action into the algorithm.
These features indicate that even though the ENIAC “experiments” are very
different from before, the experimental process – involving the generation and
exploration of data – is (relatively) one-dimensional and discontinuous, with
clearly separated and consecutive phases in time, distributed discontinuously
between the mathematician’s work and the computer’s work. The mathemati-
cian (in collaboration with one or more ENIAC programmers/engineers) trans-
lates a problem to the ENIAC, the ENIAC computes the different aspects of
the computation (sometimes interrupted by a human action to make the process
going) and then the mathematician can start to work on the data, processing
and exploring them. The “experiment” is (relatively) strictly separated into
computer phases and a human phases.
This is very different if one looks at mathematical computer-assisted experi-
ments in the 70s and beyond, when the computer technology has changed sig-
nificantly. To start with Mandelbrot’s early generations and explorations of
M , it is clear that a more advanced technology results in important changes
on the level of the processing and storage of data. First of all, contrary to
ENIAC, thousands of data are now stored internally into the computer, a ne-
cessity for the visualization of M . Also, whereas in the case of ENIAC the
amount of data outputted were still manageable for humans, these data now
need to be preprocessed before they are “delivered” to the human mathemati-
cian, they are ordered into a 2D surface to provide a finite approximation of
the visual representation of M . This creates a need for the development of
feasable visualization algorithms. The one used in the early explorations of
M is probably the encirclement algorithm which works through iterations on
internally stored data. It is also worth noting that Mandelbrot’s explorations
resulted in the use of concepts and a terminology that is directly inspired by
the visual appearance of M (like the use of “islands”) In this sense, the pictures
of M could be regarded as an interface between the mathematician and the
computer. These different features result in a changed interaction between the
mathematician and the computer and hence a changed way of “experimenta-
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tion”. Most importantly, it is now no longer the case that the computer makes
one long computation after which the mathematician takes over and does the
exploration. Rather one now has a whole series of interchanges between the
computer computing parts of M and representing them visually to the math-
ematician and the mathematician studying and exploring these visualizations,
formulating conjectures, finding proofs and translating his requests and ques-
tions back to the machine. Indeed, as Mandelbrot emphasized: “One picture
is never enough!” This process of back-and-forth computing and exploring de-
velops in time. These explorations and computations as a flow of information
between the mathematician and the computer, are squeezed into a “reasonable”
time frame. The exploration and generation of data are not strictly separated
into two phases, but are becoming part of the interaction, interfaced by the
visualizations and the programming. This results in an increased involvement
of the machine in and during the experimental process itself.The “experiment”
is now much more a mixing of exploration, computation, communication, inter-
action and interpretation.
The example of the Busy Beaver proof leads to a similar conclusion. However,
there is one fundamental difference with the Mandelbrot case: whereas in that
case, the machine only needed to do one thing – visualize approximations of
M – the computer now does many different things: it simulates and displays
machine behavior, it detects and explores the behavior of the different Turing
machines, etc. This results in what one could call a flowchart of flowcharts.
Also in this case, phases of computation and exploration are squeezed into the
process of the mathematician-computer interaction. However, the inspection
and exploration is now no longer strictly located with the human. Hence, the
mixing of exploration and computation is further increased. The result is a
highly continuous human-computer interaction, the exploratory activities now
being distributed between the two in the flow of time. The involvement of both
the computer and the mathematician during the process of experimentation in-
tertwines the human and the machine contribution to the proof which is “found”
in and during the interaction.
The case of Wolfram is in a certain sense very similar to and very different from
the Busy Beaver case. If one considers Wolfram’s work on CA from the 80s one
also sees that the computer is used for more than just the visualization of CA.
It is used in many different phases of the research on CA and for many different
things going from the simulation of CA to statistical analyses. There is one
important difference however: whereas in the Busy Beaver case, the computer
was used to prove a Busy Beaver case, Wolfram uses the computer for the de-
velopment of a theory of CA and ultimately another kind of science which is
characterized by a method of computer-assisted explorations.
Wolfram’s attempt to formulate a unified and integrated theory as one finds it
described in A new kind of science heavily relies on Mathematica. The parallel
between Mathematica as a software package that uses one “language” to deal
with several aspects of computing in a unified and coherent manner and the
idea of a single framework/language (that of CA) to unify and integrate the
various aspects of science (cognitive science, physics, biology, etc), is striking.
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This becomes the more striking when relating this to the proposal by Bailey
and Borwein of a “new kind of” mathematics, viz. experimental mathematics
presented in their two volumes [3, 4] and the extensive use they have each made
and make of Maple in their research.
In these software packages one sees an increased internalization of the methods
used by the mathematician into the machine: statistical analysis, methods of
symbolic algebra, simulation of computational models, visualization, etc are all
techniques that are turned into algorithms that can be called by their name and
need not be known. The mathematician now has a tool box without the need to
know the techniques and knowledge behind the tools. This affects the process
of mathematician-computer interaction and experimentation: first of all, the
time squeezing is further increased since one no longer needs to waste time in
developing and programming algorithms that allow to use these “tools”. This
results in faster interactions and a more direct interaction with the “(simulated)
object” or problem studied. I.e., the length of time during and after the gener-
ation of the object by the computer (for instance M) and its computer-assisted
inspection (for instance by zooming in and out) is becoming smaller and smaller,
the most extreme case being “real-time” explorations in which the computer is
completely hidden away. The wider accessibility and integration of algorithmic
tools ultimately leads to the possibility of formulating integrated and general
theories on the basis of computer-assisted experiments. Hence, the process of
time-squeezing and internalization that started with ENIAC and which is to
some extend still quite similar to “experimental” mathematics before the rise
of the computer, has resulted in a way of experimentation that is located more
and more in the mathematician-computer interaction, where the generation and
exploration of the “universe of mathematics” is more and more squeezed into a
mixed process of mathematician-computer interaction.

4 Discussion

As is clear from the case studies, one cannot claim, as Sorensen does [17], that
mathematical experimentation only became truly explorative once software like
Maple or Mathematica became available. Indeed, there is nothing fundamen-
tally new that explains a transition from fact-gathering or number-crunching
to “truly explorative” mathematics. Cases III and IV, evidently show that the
computer was already used for much more than mere number-crunching long
before the development of these packages. Furthermore, the point of view of
this paper is that experimental mathematics involves two different actions: the
generation of data (fact-gathering?) and the exploration of these data. Seen
from that perspective, there is no reason to assume that there was no explo-
ration before the development of Maple or even the development of the digital
computer.
It was shown here that if one goes from “experimentation” on ENIAC to software
like Mathematica, one cannot deny that there have been fundamental changes
in the interactions between the mathematician and the machine. Whereas with
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ENIAC the interaction is still highly discontinuous and linear, the (machine)
computation phase being strictly separated from the (human) phase, this in-
teraction becomes a mixed ensemble of computation and human and machine
explorations, the typical features of the more experimental sides of mathematics
like conjecturing or concept formation being mixed into the interaction happen-
ing at some interface. These changing interactions are considered here as one
way to characterize mathematical experiments in the era of digital computing.
Two major concepts have turned out very useful in this study of the impact and
significance of the computer for experimental mathematics: time squeezing and
internalization, two concepts that are rooted in the fundamental characteristic
of experimental mathematics on the computer: mathematician-computer inter-
actions. The fact that one only needs hardly a second nowadays to compute
something that would have taken weeks or months combined with the possibility
of a feasible computer-enhanced exploration as a consequence of an increased
internalization, are major advances in mathematics and their impact can and
should not be underestimated. It squeezes the universe of mathematic and its
exploration into a feasible amount of time.
Perhaps the computer is inspiring a steady return to what Lehmer called the
second school of thought in mathematics. However, if this is the case, this is
not because of the development of Maple and Mathematica, but rather because
of the ongoing process of time squeezing and internalization together with the
wider availability of the computer to the mathematician. The fact that this
possible return is accompanied by what one could call a “reinjection” of time
into mathematics turns a study of the impact of the computer on mathematics
into a true challenge not only for the historian but also for any philosopher of
mathematics who wants to study mathematics as a product of the human mind
(and not as absolute).
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