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Abstract. Brown (1991a,b, 2004, 2008) argues that thought experiments (TE)
in science cannot be arguments and cannot even be represented by arguments. He
rest his case on examples of TEs which proceed through a contradiction to reach
a positive resolution (Brown calls such TEs “platonic”). This, supposedly, makes it
impossible to represent them as arguments for logical reasons: there is no logic that
can adequately model such phenomena. (Brown further argues that this being the
case, “platonic” TEs provide us with irreducible insight into the abstract realm of
laws of nature). I argue against this approach by describing how “platonic” TEs
can be modeled within the logical framework of adaptive proofs for prioritized
consequence operations. To show how this mundane apparatus works, I use it to
reconstruct one of the key examples used by Brown, Galileo’s TE involving falling
bodies.
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1. Philosophical Motivations

Empiricism about thought experiments (TEs), especially as they occur
in the history of science, is the view that TEs are nothing but “ordinary
argumentation that is disguised in a vivid pictorial or narrative form”
(Norton, 2004b, 45). This view, represented for instance by (Norton,
1996; Norton, 2004a; Norton, 2004b), is rejected by (Brown, 1991a;
Brown, 1991b; Brown, 2004; Brown, 2008), who embraces the opposite
view dubbed Platonism about TEs and insists that TEs provide us
with insight into the abstract realm of laws of nature, resulting in what
he calls “a priori (though still fallible) knowledge of nature” (Brown,
2008).

Brown’s argumentative strategy can be summarized as follows:

− He argues that there are TEs which cannot be reconstructed as
arguments and nevertheless provide us with new information.

− It is rather uncontroversial that such TEs are not empirical obser-
vations.
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− He suggests that the only way they can provide new information
while being neither arguments nor empirical observations is if they
are acts of perceiving the abstract realm of laws of nature (and
because he postulates the existence of such a realm, his view is
called ‘platonism’).

While the last move is debatable, I will not discuss it in this paper.
Instead, I will focus on the first step and argue that the argument can
be blocked already at that step.

Brown rests his case for his first claim on the existence of what
he calls “platonic” TEs. Those are TEs which not only perform a
destructive task by motivating the rejection of one of the initially ac-
cepted beliefs, but also lead to the correct resolution of the encountered
anomaly. Brown claims that if such arguments could be constructed
as arguments, there would be a logic which would capture the infer-
ences involved. By contraposition, he suggests that since there is no
logic which can handle the dynamics of platonic TEs, they cannot be
interpreted as arguments.

While the move from the claim that TEs cannot be represented by
arguments to platonism about the laws of physics might seem hasty,
Brown has a point in saying that so far no formalized reconstruction of
platonic TEs does justice to their dynamics. How exactly can we start
a TE, reach a contradiction and yet, within one and the same TE, end
up with a more or less acceptable conclusion, all the time using a single
sensible logical framework?

The goal of this paper is to describe a formal logical framework
within which the thought-experimental moves that Brown finds es-
sential for his argument can be modeled. Thus, the intention is to
undermine his approach to TEs by answering the logical challenge he
posed.

2. Galileo on falling bodies

A classical example of what Brown calls “platonic” TEs is Galileo’s
celebrated TE concerned with the speed of falling bodies of different
weights. Suppose you’re working within the Aristotelian framework.
Then, the difference in speed between two freely falling bodies is pro-
portional to the difference in their weight. Imagine a heavy cannon ball
l and a really tiny musket ball made of the same material s falling from
a certain fixed height.

According to the Aristotelian assumption, l will be falling faster than
s. Imagine you join l and s together: since s is slower than l, it will slow
l down, so the speed of l+s (let’s denote the operation of joining bodies
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by the addition symbol) will be lower than the speed of l. On the other
hand, l + s is heavier than l itself, and that being the case, l + s has
to fall faster than l on its own. So, we have a contradiction (given the
assumption that one thing cannot fall simultaneously slower and faster
than another). This is the destructive part of the TE. Further consider-
ations (variously reconstructed by different interpreters like (Schrenk,
2004), (Brown, 1991a), or (Gendler, 1998)) lead to the conclusion that
in fact, those bodies have to be falling at the same rate.

(Brown, 1991a, 77-78) argues:

There have been no new empirical data [. . . ] the transition from
the old to the new theory [. . . ] is not readily explained in terms of
empirical input unless there is new empirical input. Galileo’s new
theory is not logically deduced from old data. Nor is it any kind of
logical truth. A second way of making new discoveries [. . . ] is by
deducing them from old data. Norton holds such a view when he
claims that a thought experiment is really an argument. [. . . Will
this view] account for those [thought experiments] I call platonic? I
think not. The premisses of such an argument could include all the
data that went into Aristotle’s theory. [emphasis mine, RU] From
this Galileo derived a contradiction (So far, so good; we have a
straightforward argument which satisfies Norton’s account.) But
can we derive Galileo’s theory that all bodies fall at the same
rate from these same premises? Well, in one sense, yes, since we
can derive anything from a contradiction; but this hardly seems
fair. What’s more, whatever we can derive from these premisses is
immediately questionable since, on the basis of the contradiction, we
now consider our belief in the premisses rightly to be undermined.

3. Straightforward reconstructions of Galileo’s TE

Norton doesn’t explicitly address Brown’s logical concern (how can
the dynamic aspect of platonic TEs be modeled by logical means?).
In general, he doesn’t seem to pay too much attention to logical de-
tails. He thinks that familiar logics (he doesn’t really specify which
those are) will suffice. To support this view, he gives what he calls an
“evolutionary argument”:

I think there are some reasons to believe that no new, exotic logic is
called for. In outlining the general notion of logic above, I recalled
the evolutionary character of the logic literature in recent times.
New inferential practices create new niches and new logics evolve
to fill them. Now the activity of thought experimenting in science
was identified and discussed prominently a century ago by Mach
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(1906) and thought experiments have been used in science actively
for many centuries more. So logicians and philosophers interested
in science have had ample opportunity to identify any new logic
that may be introduced by thought experimentation in science. So
my presumption is that any such logic has already been identified,
in so far as it would be of use in the generation and justification
of scientific results. I do not expect thought experiments to require
logics not already in the standard repertoire. This is, of course, not
a decisive argument. Perhaps the logicians have just been lazy or
blind. It does suggest, however, that it will prove difficult to extract
a new logic from thought experiments of relevance to their scientific
outcomes – else it would already have been done! (Norton, 2004b,
54-55)

To gain some perspective on this argument, consider the following
“evolutionary” argument. Norton, among other things, works on phi-
losophy of relativity. Now, relativity theory has been around, pretty
much, since the time when Mach wrote about TEs. So philosophers
interested in science have had ample opportunity to identify and solve
any philosophical issue that may be introduced by relativity theory.
So, in this field, any philosophically interesting claim has already been
made and any philosophically interesting argument has been given,
and Norton’s work in philosophy or relativity is redundant. Unless, of
course, philosophers of science since the discovery of relativity theory
have just been lazy or blind.

In fact, Norton’s reconstruction of Galileo’s TE (Norton, 1996, 341-3)
is logically quite straightforward. To obtain the destructive part of the
argument, he identifies all the assumptions needed to derive a contra-
diction from the Aristotelian assumption, takes them as assumptions
of the argument, uses the Aristotelian assumption for reductio, and
derives a contradiction. Then, he adds one more assumption (that the
speed of falling bodies depends only on their weights) and argues that
the claim that the objects fall with the same speed follows.1 Next, he

1 Initially, it might be unclear why this is supposed to constitute an addition:
the Aristotelian assumption entails it. To see why, let’s take a look at a very
simplified representation. Say ‘W (x)’ and ‘S(x)’ stand for the weight and speed
of x respectively. Then, the assumption that the speed depends only on weight is

[DepOn] ¬∃x,y[W (x) = W (y) ∧ S(x) 6= S(y)]

and the Aristotelian assumption reads

[Ar] ∀x, y [W (x) > W (y) ≡ S(x) > S(y)]

Suppose [DepOn] fails while [Ar] holds. So for some a, b: W (a) = W (b) but S(a) 6=
S(b). Then, either S(a) > S(b) or S(b) > S(a). In the first case, by [Ar], W (a) >
W (b). In the second case, by [Ar], W (b) > W (a). Either way we contradict the
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explains that this additional assumption actually was not acceptable
in the original context of the thought experiment, and concludes that
“this final step now looks more like a clumsy fudge or a stumble than
a leap into the Platonic world of laws.” (Norton, 1996, 345)

Another construal of the Galilean argument has been given by Gra-
ham Priest.2 The argument starts with the assumption that either A
will be falling down faster than b, or b will be falling down faster than
A, or they will be falling with the same speed. Then, two reductio
arguments are employed to exclude the first two options, thus leaving
us with the only remaining solution.

4. Weak points of straightforward reconstructions

Whether we are to take the straightforward reconstructions of the sort
mentioned above to be successful clearly depends on what we want
them to accomplish.

Sure, important chunks of processes in those TEs behave like those
straightforward arguments. But given our current motivations, we need
to measure their success against the challenge posed by Brown. For him,
the Galilean TE starts with the initial acceptance of the Aristotelian as-
sumption (see quote on p. 3), proceeds through an actual contradiction
and reaches the resolution.

The Aristotelian assumption is neither accepted unconditionally (if
it were, it could not be overthrown by further considerations), nor
is it assumed without genuine acceptance, merely for reductio (for
Galileo’s Aristotelian opponent really accepts it). It rather seems that
the assumption is accepted defeasibly, so that its acceptance is open to
revision (and in fact, being revised during the process).

These aspects are not modeled by Norton’s set-up in which the
Aristotelian claim is merely assumed for reductio, the obtained con-
tradiction does not collide with the agent’s initial beliefs and further
steps towards the final conclusion are just taken to be clumsy.3

assumption that W (a) = W (b). But one has to remember that the assumption is
added to the set of initial premises minus the Aristotelian assumption. And indeed,
[DepOn] is weaker than [Ar].

2 In a verbal discussion following my talk at the Logic, Reasoning Rationality
2010 conference organized by Ghent University in Belgium.

3 Observe that in Norton’s reconstruction some heavy-lifting is done by the choice
of what is taken as a mere assumption and what is taken as a reductio assumption
of the proof. (Schrenk, 2004) reconstructs the destructive argument in more detail
than Norton, and suggests that logically speaking, it does not unambiguously lead
to the rejection of the Aristotelian assumption (the rejection of any of the premises
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Norton’s description, instead of a single formally reconstructed argu-
ment, involves the interplay of a few arguments best described in meta-
language rather than modeled in a formal system (see below). Moreover,
Norton merely uses the Aristotelian assumption for reductio without
representing its initial defeasible acceptance by the Aristotelian. By giv-
ing an account which does not employ a single formally reconstructed
argument and does not model defeasible acceptance, Norton already
makes an unnecessary concession to Brown.

Another option is to stay classical, but instead of formally recon-
structing the TE, to tell a story in meta-language from an external
perspective. This would involve saying that at different times people
involved used slightly different assumptions which they revised for good
reasons. While this approach makes it look more like a single argument,
it does not really explain the logical mechanism underlying the revi-
sions. In this sense, this strategy fails to answer Brown’s challenge,
who asked about the underlying logic. To satisfy this requirement, I
take it, a formalized reconstruction satisfying all of the above described
desiderata has to be provided.

If we want to be able to formally reconstruct a TE as a single
argument, something else than classical logic is needed. Of course, one
is free to insist that apart from the classical reconstructions there is
no interesting story to be told and to deny the need to model other
aspects of the rational processes in question formally. This however
means that one is not playing the same game as Brown anymore. He
demands a unifying formal account which captures also some aspects
which straightforward reconstructions fail to capture. While claiming
that this challenge doesn’t have to be met is one way to respond, it is
unlikely to push the debate forward. The question whether there are
sensible logical systems which capture what Brown requires them to
capture still remains.

Brown’s qualms aside, reconstructing TEs in physics as arguments
has some independent virtues. TEs can err (for a few nice examples, see
(Norton, 2004b)) and the error can stem from what we tacitly accept
in the TE. Formalization allows us to see all the assumptions involved,
and this makes it easier to assess them.

5. What to do?

(Gendler, 1998) emphasizes that logically speaking, there are at least
four non-trivial ways out for the Aristotelian, when faced with the

employed in the argument would suffice, if one were guided only by the desire to
avoid contradiction).
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destructive part of Galileo’s TE, and that for the right outcome a
certain prior preference on the premises involved is needed.4 Gendler’s
reconstruction involves such a preference and belief revision. It is quite
natural, but it’s described informally and the request for a logic which
underlies the reasoning involved still has to be answered.

Thus, it would be useful to have a formal logic with proof theory
which adequately represents reasoning of the “platonic” sort. What
desiderata should it satisfy? The system should be able to keep track
of preferences between premises involved, because the lack of prioritiza-
tion seems to be the key shortcoming of the logic employed in straight-
forward reconstructions. It also should be able to model the rejection
of the least entrenched assumptions upon encountering a contradiction,
without running into logical triviality. Finally, after encountering a
contradiction and rejecting one of the premises, without the logical
explosion, the system should allow one to use the remaining premises
in a sensible manner to derive the resolution.

I will argue that prioritized adaptive logics with their proof theory
satisfy these requirements. First, I will explain what adaptive logics and
prioritized adaptive logics are. Then, I will use a prioritized adaptive
logic to reconstruct the destructive part of Galileo’s TE. Next, I will
show that there is an assumption that allows one to derive, without
any “clumsy fudges and stumbling,” that the two objects involved in
the TE will be falling at the same rate.5 Both the destructive and
the constructive processes will be modeled within one and the same
argument, governed by one formal logical system.

On the approach proposed in this paper, the adaptive formal frame-
work will be argued to be a convenient tool for capturing how TEs (to
borrow a phrase from Kuhn) “assist in the elimination of prior confusion
by forcing the scientist to recognize contradictions that had been inher-
ent in his way of thinking from the start” even though “the elimination
of existing confusion does not seem to demand additional empirical
data” (Kuhn, 1977, 242). The philosophical upshot will be that Brown’s
argument that some sort of platonic insight must be involved because
logic can’t handle further arguments once a contradiction is derived,
fails.

4 She also has a fascinating epistemological story to tell about how the preference
is discovered (Gendler, 2004; Gendler, 2007), but those issues are too far from my
current concern.

5 It is enough to assume that if the two objects involved are made of the same
material and are approximately of the same shape then the lighter one will not fall
faster than the heavier one (this assumption is weaker than any of the assumptions
suggested by Norton or Gendler).
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6. A simple adaptive logic

Adaptive logics with their dynamic proofs are quite complicated an-
imals. Before I move to dynamic proofs for prioritized consequence
relations, let us take a look at an adaptive system devised to handle
some simple arguments about expectancies.

Adaptive logics are so called because they adapt themselves to the
premises they are applied to: the applicability of some rules or steps
depends on the premises and on what conclusions have been derived
at a given stage of a proof.6 Roughly speaking, while reasoning adap-
tively we use rules of two simpler logics (called the ‘lower limit logic,’
LLL and the ‘upper limit logic,’ ULL, ULL being a strengthening
of LLL). The specific rules of the stronger logic are applied in proofs
conditionally upon the normal behavior of certain formulas (that is,
upon the falsehood of formulas whose truth is to be avoided if possible
– they’re often called abnormalities), and if further in the proof it turns
out that those formulas do not behave normally, steps depending on
their normal behavior are retracted. Given a ULL and LLL, different
choices of sets of abnormalities lead to different adaptive logics.

This is all very general and hand-wavy, but examples which I will
soon give should make it clear how various adaptive logics fit this
general profile. A mathematically precise and general definition of the
so-called standard format of adaptive logics is available (Batens, 2007).7

However, since it involves various technicalities not needed for current
considerations, I will avoid this level of detail and rather use examples
to allow the reader to understand enough of the formal systems to
grasp their applicability to the philosophical issue at hand. The stan-
dard format also provides adaptive logics with a unified model theory:
once an adaptive logic falls under the standard format, it has an array
of meta-theoretic properties (like soundness and completeness). Since,
however, I am not interested in model theory in this paper, such issues
will be ignored. What will matter is the description of the consequence
operation, the corresponding proof theory and the applicability of the
logic to the philosophical problems we are interested in.

The fact that in an adaptive proof some steps can become retracted
once new information is derived allows for the representation of ar-
guments which may be doubly (externally and internally) dynamic.

6 Some basic papers about adaptive logics are (Batens, 1995; Batens, 2004;
Batens, 2007). For more references, see the website of the Centre for Logic and Phi-
losophy of Science at Ghent University, http://logica.ugent.be/centrum/writings/.

7 There are adaptive logics that do not fit the standard format, but the working
(and confirmed by numerous cases) hypothesis of Ghent research group is that all
adaptive logics are equivalent to adaptive logics in the standard format.
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Externally dynamic, because most of adaptive logics are nonmonotonic:
once our premise set is extended by new input, we might have to retract
some of our previous conclusions if the new information makes some
steps unreliable. Adaptive logics are also internally dynamic because
even with the same premise set, it may turn out that a conclusion
which is ULL-derived is no longer reliable once at some later stage of
the proof a problematic formula becomes LLL-derived. Now, we’ll take
a look at a simple example of an adaptive logic (I will restrict myself
to the propositional case).

In this simple adaptive logic LLL is the modal logic T for the stan-
dard modal propositional language built from a countable supply of
propositional variables (p, q, r, p1, q2, r2, . . .), negation (¬), conjunction
(∧), disjunction (∨), implication (→) and modal operators (2 and 3).
T is axiomatized by classical propositional logic (CL) strengthened
with all substitutions of axioms K and T

K 2(φ→ ψ)→ (2φ→ 2ψ)

T 2φ→ φ

and the necessitation rule which from the fact that φ is a theorem (` φ)
allows to infer that its necessitation is a theorem (` 2φ).

In what follows we will need the fact that all substitutions of the
following are theorems of T.8

T1 3φ→ (φ ∨ (3φ ∧ ¬φ))

T2 3(φ ∧ ψ)→ 3φ

A slightly unusual feature of our interpretation of the modal lan-
guage is that we read 3φ (where φ is a non-modal formula) as ‘it
is expected that φ’. This reading indicates where the dynamic aspect
comes in: we want to accept expectancies insofar as they do not contra-
dict the data, and to rectract conclusions which relied on expectancies
which later on turned out to contradict the data. This means, we want
to defeasibly assume that as many expectancies are true as we consis-
tently can assume to be true: we want to reject as many formulas of the
form 3φ∧¬φ (where φ is non-modal) as we can. I will call such formulas
abnormalities and abbreviate them sometimes as !φ. Once we define
abnormalities this way, the upper limit logic is just T strengthened
with the assumption that all abnormalities are false.

A dynamic proof is a sequence of lines which consist of four com-
ponents: a line number, a formula (which we will call the formula of

8 T1 is a theorem of propositional logic. T1 is a trivial theorem of logic K and
all its extensions.
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that line), a justification for that formula, and a possibly empty set of
formulas.9 Besides, each line can be marked (marks can come and go
as the proof progresses). If a line is at some point marked, it means
that the formula of this line is not considered derived at that stage.
The first three components are rather clear. Conditions and marking
require some more attention.

There are three rules for proofs from a premise set Γ. The first rule,
Prem allows one to introduce any premise φ ∈ Γ with the empty set
in the conditions column. That is if φ ∈ Γ, it allows to infer:

(n) φ Prem ∅

where n is an appropriate line number.
The second rule, Ru says that if we have proven φ1 on ∆1 (that is,

we have ∆1 among the conditions of a line where φ1 is the formula), φ2
on ∆2, . . . , and φn on ∆n, and if ψ can be LLL-derived (in the present
case, T-derived) from φ1, . . . , φn, we can introduce ψ as relying on the
normal behavior of ∆1 ∪∆2 ∪ · · · ∪∆n. That is, if

{φ1, . . . , φn} `T ψ

then

from

(i) φ1 ∆1

(j) φ2 ∆2

...

(k) φn ∆n

derive

(l) φ Ru: i, j, . . . , k ∆1 ∪∆2 · · · ∪∆n

where i < j < k < l are appropriate line numbers. That is, we can
add T-consequences relying on nothing more and nothing less than the
union of those sets on which the premises depended.

The third rule, Rc, is based on the following idea. If from Γ we
can T-derive that either ψ is true or one of the formulas in a set of
abnormalities ∆ is true, we can conclude that ψ follows in our adaptive
logic from Γ on the defeasible assumption that formulas in ∆ are false.
If ∆ is a finite set of abnormalities, let us call the disjunction of its

9 Often, these are abnormalities upon the assumption of whose falsehood the
formula is derived. Not necessarily so in the so-called direct proof theories. The
column containing such sets will be called a dependence column or a conditions
column.
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members ‘Dab(∆)’. If for some finite set of abnormalities Θ:

{φ1, . . . , φn} `T ψ ∨Dab(Θ)

then

from

(i) φ1 ∆1

(j) φ2 ∆2

...

(k) φn ∆n

Derive

(l) ψ Rc: i, j, . . . , k ∆1 ∪∆2 · · · ∪∆n ∪Θ

That is, if either ψ is true or one of the abnormalities in Θ is true,
then ψ holds, as long as formulas in Θ behave normally (=are false). If
ψ ∨Dab(Θ) is derived from φ1, . . . φn by means of Prem and Ru only,
then Rc allows to move Dab(Θ) into the conditions column and add it
to the union of dependencies of φ1, . . . , φn.

In particular, thanks to T1, if φ is non-modal, from 3φ we can T-
derive φ∨!φ, and then Rc allows us to derive φ from 3φ on the condition
!φ. Another way to think about this is to consider the (defeasible)
assumption that a certain abnormality is false: ¬!φ. This means ¬(3φ∧
¬φ) and is equivalent to 3φ → φ. Thus, our adaptive logic allows us
(defeasibly) to drop single diamonds in front of non-modal formulas.

Our task in a proof is not only to derive formulas from premises
but also to recognize those steps which cannot be trusted. What do we
mean by this? At the first (and not completely correct) stab, a step is
unreliable if it depends on the falsehood of an abnormality which as it
turns out T-follows from the premises.

This is quite close. There is a complication, though. A premise set
may T-prove Dab(∆) without proving any element of ∆ separately.
In such a case we learn that at least one of the formulas involved in
the dependence column doesn’t behave normally, but we have no idea
which disjunct is responsible. To deal with this issue, we need something
more.

A proof, as we conduct it, proceeds in stages. Every application of
a rule carries us to the next stage. A formula Dab(∆) is a minimal
Dab-formula of a proof at a stage s iff Dab(∆) occurs in the proof at
a line with the condition ∅ (that is, if it’s derived from the premises
by means of T only) and for no ∆′ ⊂ ∆ (that is, for no ∆′ which is a
proper subset of ∆) the proof at stage s contains a line with Dab(∆′)
derived on condition ∅.
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We need to define which lines of an adaptive proof are marked at
which stages (intuitively, a marking symbol next to a line means the
formula in that line is not derived at a given stage of the proof). One
of the simplest plausible marking definitions in this context10 is the
one based on reliability. On this definition, at a given stage a line is
marked (as unreliable) if it depends on a set of abnormalities ∆, and
at that stage some member of ∆ is a disjunct in a minimal disjunction
of abnormalities T-derived from the premises.

The intuitive reason why we are interested in minimal Dab-formulas
of a proof instead of just any proven Dab-formulas whatsoever is this.
We want Dab-formulas to help us discover those abnormalities whose
normal behavior is not to be expected. The fact that Dab(∆) has been
T-proven from the premises tells us only that at least one member of
∆ has to be true if the premises are to be true. However, we want to
assume that as many abnormalities are false as possible and we take any
abnormality to be false unless compelled to do otherwise. So, if we know
that both Dab(∆) and Dab(∆′) are T-derived from our premises, but
also that ∆′ ⊂ ∆, we know that we do not have to blame any member
of ∆ \∆′. If we want to accept as few abnormalities as possible, it will
suffice to assume that it is the members of ∆′ that are not reliable.

Hence, we first define Us(Γ) to be the union of all ∆s that are
constituents of those minimal Dab-formulas that have been derived
so far from Γ at stage s. Then, a line in a proof is marked at stage s if
it depends on the normal behavior of Θ, and yet at least one member of
Θ is a member of Us(Γ). That is, if a certain line contains a certain set
in the dependence column, and yet at least one member of this set is
among those abnormalities on whose normal behavior we can’t rely, the
formula of that line is not considered derived. As the proof proceeds,
the list of minimal Dab-formulas and Us(Γ) might change. If they do,
certain line marks might come or go.

Since sometimes an unmarked line becomes marked later in the
proof, the fact that a line is derived and unmarked at a certain stage
does not mean that it really follows from the premises. (Similarly, the
fact that a line is marked at a certain stage, doesn’t mean that it won’t
become unmarked at some later stage and that it doesn’t follow from
the premises). Hence we also need the notion of final derivability. A
formula is finally derived in a proof if it is derived in an unmarked line
of that proof at a finite stage and also any extension of the proof in
which it becomes marked can always be itself extended into a proof
where it is unmarked.

10 A variety of marking definitions, depending on the goal of a logic is available
(Batens, 2007). You will also see another marking definition in section 8.
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Suppose our premise set is Γ = {3(p ∧ q),¬p ∨ ¬q,¬q}. Consider
the following adaptive proof (I present it in a slightly condensed form,
superscripting marks with line numbers to indicate when those marks
appear and disappear).

(1) 3(p ∧ q) Prem ∅
(2) 3p Ru: 1, T2 ∅
(3) 3q Ru: 1, T2 ∅
(4) p ∨ (3p ∧ ¬p) Ru: 2, T1 ∅
(5) q ∨ (3q ∧ ¬q) Ru: 3, T1 ∅
(6) p Rc: 4 {!p} g9,10

(7) q Rc: 5 {!q} g9,10,11

(8) ¬p ∨ ¬q Prem ∅
(9) (3p ∧ ¬p) ∨ (3q ∧ ¬q) Ru: 2, 3, 8 ∅
(10) ¬q Prem ∅
(11) 3q ∧ ¬q Ru: 3, 10 ∅

In line (1) we just introduce a premise. In lines (2) and (3) we apply
T2 twice to distribute 3 over a conjunction. Lines (4) and (5) follow
by T1, and they are interesting because their second disjuncts are
abnormalities. Given the fact that lines (4) and (5) T-follow from the
premises, we are allowed to conditionalize on the normal behavior of
involved abnormalities, thus introducing p conditionally on the falsity
of 3p∧¬p and q conditionally on the falsity of 3q∧¬q in lines (6) and
(7). In line (8) we introduce another premise, which (together with lines
(2) and (3)) CL-entails line (9). At this point, our U9(Γ) = {!p, !q} (its
elements occur in a – so far – minimal derived disjuction of abnormali-
ties). This means the lines marked right after the introduction of line (9)
are (6) and (7), because each of them depends on an abnormality which
is in U9. In line (10) we introduce the last premise11 which classically
entails line (11). But once line (11) is derived, the formula from line
(9) no longer is a minimal Dab-formula, and indeed U11 for our proof
simply is {!q}. This means line (6) is at this stage no longer suspect and
is unmarked, while line (7) still relies on a formula in U11 and remains
marked. It is also clear that (6) contains a finally derived formula.

This should give the reader a sufficient grasp of what dynamic
proofs look like. Now, we can introduce another important element of

11 It is not required that all premises are introduced in the beginning of the proof.
On the other hand, the reader certainly can see that I introduce premises in a
somewhat artificial order, but I do it to be able to indicate a few different phenomena
in a single simple proof.
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our formal reconstruction of Galileo’s TE: the prioritized consequence
operation ND and its adaptive proof theory.

7. Non-defeated prioritized consequence operation

Say we are dealing with prioritized belief bases. Such a base Σ is iden-
tified with a finite tuple of consistent belief levels Σi, which contain
well-formed sentences of a given language: 〈Σ1,Σ2, . . . ,Σn〉. The basic
intuition here is that the lower the subscript is, the more important
the assumptions that belong to this set are. Note the assumption that
each level is consistent. This doesn’t mean that one’s beliefs in general
have to be consistent. The assumption here is weaker: it consists in the
restriction that if a belief set is inconsistent, it is not a set of beliefs of
the same level of entrenchment. To some extent, this is an idealization,
for it excludes cases where we have equal support for opposing con-
clusions. On the other hand, if this does happen, we rationally should
do our best to reassess the reasons we have and to either undermine
one of them or to strengthen the other. Since dealing with these issues
would lead us far beyond our considerations, this remark should suffice
for now.12

As it turns out, there are many different ways we can delineate sys-
tematic inferential practices that one might use to deal with prioritized
beliefs when some of them lead to a contradiction.13 I will employ the
non-defeated consequence operation (ND), not only because I find it
intuitive, but also because it is rather conservative compared to other
approaches (Benferhat et al., 1997), so whatever follows by ND, follows
also from the perspective of most of other approaches to prioritized
reasoning.14

First, we say that ∆ is a maximal consistent subset of Γ iff ∆ ⊆ Γ,
∆ is consistent and for any φ ∈ Γ \ ∆ the result of adding φ to ∆ is
inconsistent. Then we say that a formula φ is free in Γ (φ ∈ F (Γ))
iff φ belongs to every maximal consistent subset of Γ. To see how the
selection of free formulas works, consider a few examples.

Example 1. Suppose Γ = {p,¬p, q}. Intuitively, p and ¬p are problem-
atic and q is innocent. Γ has two maximal consistent subsets: MC1 =

12 Sometimes, I will be sloppy and talk about a formula belonging to Σ instead
of it belonging to some Σi which belongs to Σ, but I think this will save space and
won’t cause any important ambiguity.

13 For a survey, see (Benferhat et al., 1998) and (Verhoeven, 2003).
14 Choosing logic for a goal we often are more concerned with satisficing than

optimizing (Herbert, 2008).
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“Platonic” thought experiments 15

{p, q} and MC2 = {¬p, q}. Neither p nor ¬p belongs to both of them,
so p,¬p 6∈ F (Γ). However, q ∈MC1 and q ∈MC2, so q ∈ F (Γ). a
Example 2. Say Γ = {¬p, p ∨ q,¬q}. There are three maximal consis-
tent subsets of Γ: {¬p, p ∨ q}, {¬q, p ∨ q} and {¬p,¬q}. None of the
formulas from Γ belongs to all of them, so F (Γ) = ∅. Indeed, intuitively
speaking, each of those formulas can play an essential role in deriving
a contradiction, so each of them is suspicious.a
Example 3. Extend the set from the previous example to Γ = {¬p, p∨
q,¬q, r}. Intuitively, r has nothing to do with the fact that Γ is incon-
sistent. And indeed, there are three maximal consistent subsets of Γ:
{¬p, p ∨ q, r}, {¬q, p ∨ q, r} and {¬p,¬q, r}, each of them contains r,
but none of the other formulas belongs to each of them. So r ∈ F (Γ),
but ¬p, p ∨ q,¬q 6∈ F (Γ). a

The dominant subset of Σ is Σ? = F (Σ1)∪F (Σ1∪Σ2)∪· · ·∪F (Σ1∪
· · · ∪ Σn). This is supposed to be the set of those formulas which are
not suspicious, built with the preference to more entrenched premises.

Example 4. To observe how this encodes the preference relation, con-
sider a very simple case where Σ = 〈Σ1,Σ2〉, Σ1 = {p} and Σ2 = {¬p}.
There is exactly one maximally consistent subset of Σ1, namely {p}
itself. Thus, p ∈ F (Σ1) because F (Σ1) = {p}. Σ1 ∪ Σ2 has two maxi-
mally consistent subsets: {p} and {¬p}. Since no formula is in both of
them, F (Σ1∪Σ2) = ∅. But this means that Σ? = F (Σ1)∪F (Σ1∪Σ2) =
F (Σ1) = {p}. Thus, even though we had only two premises in our Σ
(one of which was the negation of the other) it was the one belonging
to the more entrenched set that was retained. a

Given that we made the assumption that each level (so also Σ1) is
separately consistent, F (Σ1) = Σ1.

Example 5. Consider a slightly more complicated example, where Σ
is composed of 〈Σ1,Σ2,Σ3〉, Σ1 = {p, q}, Σ2 = {¬p ∨ ¬q, r} and
Σ3 = {¬r}. Then F (Σ1) = Σ1. Σ1 ∪ Σ2 = {p, q,¬p ∨ ¬q, r} has three
maximally consistent subsets: {p, q, r}, {p,¬p ∨ ¬q, r}, {q,¬p ∨ ¬q, r}.
These have only one common element – r, so F (Σ1 ∪ Σ2) = {r}.
Σ1∪Σ2∪Σ3 = {p, q,¬p∨¬q, r,¬r}. It has six maximally consistent sub-
sets: {p, q,¬r}, {p, q, r}, {p,¬p∨¬q,¬r}, {p,¬p∨¬q, r}, {q,¬p∨¬q,¬r},
{q,¬p∨¬q, r} and they have no common element. So F (Σ1∪Σ2∪Σ3) =
∅. Thus, Σ? = {p, q, r}. That is, Σ2 “lost” with Σ1 when it came to
¬p ∨ ¬q, but “won” with Σ3 the “fight” about the value of r. a

We are ready to define the operation of non-defeated consequence.
We say that A is a non-defeated consequence of Σ iff it classically
follows from Σ?:

Σ `ND A iff Σ? `CL A
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16 Rafal Urbaniak

8. Dynamic proofs for non-defeated consequence

Playing around with non-defeated consequence is pretty complex: to
find out that something follows from a certain belief base you have to
survey all relevant subsets, and for each of them check if it is consistent
and if it is not a proper subset of another consistent set, find the com-
mon elements of such sets and then verify that the supposed conclusion
classically follows from the premise set thus obtained.

ND-consequence relation has been around for some time and wasn’t
originally provided with a proof theory. (Verhoeven, 2003) developed an
adaptive logic in the so-called standard format which captures this con-
sequence operation. She also constructed a slightly more user-friendly
direct proof theory capturing this consequence operation. Details lie
beyond the scope of this paper – what’s important is that I will ex-
plain and use the latter in what follows. Thus, adaptive logic comes in
because it provides ND with a proof theory.15

The basic elements of a proof are pretty much like in the simple
adaptive logic I have already described, but there are some slight mod-
ifications. To start with, for any formula φ ∈ Σi, I will sometimes
write i(φ) instead of φ, just to keep track of how entrenched a premise
is. Sometimes, instead of writing a whole formula in the dependence
column I will just write a line number where it occurs in a proof.
The proof system employs two main rules. The first says that, roughly
speaking, premises can be introduced based on the assumption that
they are not proven to be suspicious (I will explain what it means
to be proven to be suspicious later). This is marked by introducing a
premise in the line, but also adding it in its own dependence column:

Prem If φ ∈ Σi, one may introduce a line consisting of
an appropriate line number, φ, a dash, PREM
and {iφ}.

(Dash is just a place-holder for line numbers which a step relies on.
In case of premise introduction, the step does not depend on any other
line.)

We need only one more rule – the Unconditional Rule (Ru). It
tells us that if something classically follows from the premises we have,
given the dependencies, then we can introduce it, making sure that the
dependence set “accumulates”:

15 Incidentally, the language of the adaptive logic also has a greater expressive
power than prioritized belief bases. For example one can express that a certain
formula belongs either to Σ1 or to Σ2.
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“Platonic” thought experiments 17

Ru If φ1, . . . , φk `CL ψ and φ1, . . . , φk occur in the
proof on conditions ∆1, · · · ,∆k respectively, one
may add a line consisting of the appropriate line
number, ψ, the numbers of the lines in which
φ1, . . . , φk are derived, and ∆1 ∪ · · · ∪∆k.

The rule is called “unconditional” because it doesn’t allow for in-
troducing new elements into dependence sets – it only preserves the
dependencies.

The marking definition which adequately captures ND-consequence
requires a few preliminary explanations. First of all, proofs proceed in
stages: each application of a rule moves us to the next stage. A set of
formulas ∆ is shown inconsistent at a given stage of a proof if ⊥ has
been derived on the condition ∆ at this stage.

Given that a proof is at a certain stage s, Minics(Σ) is the set
of minimal subsets of Σ shown to be inconsistent at stage s. It is
important that we look only at minimal suspicious sets, because we
want to localize the anomalies as much as possible.

Since Σ1 is assumed to be consistent, Minics(Σ1) will always be
empty. If, on the other hand, Minics(Σ1 ∪ Σ2) is non-empty, it is the
formulas from Σ2 which are to be blamed, and thus the unreliable
formulas (from Σ1∪Σ2) are just

⋃
Minics(Σ1∪Σ2)∩Σ2 (recall Minic-

sets are not sets of formulas, but rather families of inconsistent sets of
formulas). In general, given a belief base 〈Σ1,Σ2, . . . ,Σn〉, the set of
formulas unreliable at stage s, Un

s is the union of the family of sets

(
⋃

Minics(Σ1 ∪ Σ2) ∩ Σ2)∪

∪(
⋃

Minics(Σ1 ∪ Σ2 ∪ Σ3) ∩ Σ3) ∪ · · · ∪

∪(
⋃

Minics(Σ1 ∪ Σ2 ∪ Σ3 ∪ · · · ∪ Σn) ∩ Σn)

At last, the marking definition: a line i with condition Θ is marked at
a stage s if Θ overlaps with Un

s . Thus, if we introduce a new line into
a proof and want to figure out which lines are marked, we have to go
over all the lines introduced so far, identify the minimal subsets known
to be inconsistent and “cut off” their weakest elements and all moves
in the proof that relied on them. Let’s take a look at an example.

Example 6. Say our belief set is composed of three sets: Σ1 = {¬p, p∨q},
Σ2 = {¬q} and Σ3 = {r}. I’ll first give the proof and then provide a
commentary.
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(1) ¬p – Prem {1(¬p)}
(2) p ∨ q – Prem {1(p ∨ q)}
(3) r – Prem {3(r)} g8,9

(4) ¬p ∧ r 1, 3 Ru {1(¬p), 3(r)} g8,9

(5) ¬p 4 Ru {1(¬p), 3(r)} g8,9

(6) ¬q – Prem {2(¬q)} g10

(7) q 2,5 Ru {1(p ∨ q), 1(¬p), 3(r)} g8,9

(8) ⊥ 6,7 Ru {1(p ∨ q), 1(¬p), 3(r), 2(¬q)} g8,9,10

(9) q 1,2 Ru {1(¬p), 1(p ∨ q)}
(10) ⊥ 6,9 Ru {1(¬p), 1(p ∨ q), 2(¬q)} g10

Up to line (8) the proof develops normally without any lines be-
ing marked. After the introduction of line (8), however, the situation
changes. Minic8(Σ1) = ∅ (by definition), Minic8(Σ1 ∪ Σ2) = ∅, but
Minic8(Σ1 ∪ Σ2 ∪ Σ3) is a singleton containing as its only element set
{1(p ∨ q), 1(¬p), 3(r), 2(¬q)} which is identical with

⋃
Minic8(Σ1∪Σ2∪

Σ3). Clearly, Minic8(Σ1 ∪ Σ2 ∪ Σ3) ∩ Σ3 = {3(r)} = U3
8 so at stage 8

all lines in whose dependence line 3(r) occurs are marked.
It is quite clear that ultimately 3(r) is not responsible for the contra-

diction. Once the proof is developed a bit further, up to line (10), the
situation changes. Minic10(Σ1∪Σ2∪Σ3) is identical to Minic10(Σ1∪Σ2)
and contains only one element: the dependence set from line 10. It
has been shown to be inconsistent, and it’s a proper subset of the
dependence set from line 8 (which was previously shown inconsistent).
Thus,

⋃
Minic10(Σ1 ∪Σ2 ∪Σ3)∩Σ3 = ∅ and Minic10(Σ1 ∪Σ2)∩Σ2 =

{2(¬q)} = U3
10. Thus, all and only those lines which contain 2(¬q) are

marked in stage 10.a

This should suffice as an exposition of what dynamic proofs for
the non-defeated consequence operation look like (final derivability is
defined on page 12).16

This indicates that dynamic proofs are, in a sense, tentative. To
really know that something follows from the premises you not only
have to derive it in an unmarked proof line, but also to know that the
above-mentioned conditions are satisfied. In the propositional case, final
derivability is decidable for finite premise sets. In the predicative case
(needed further on in this paper) the issue is not in general decidable

16 (Verhoeven, 2003) proves that the proof theory indeed captures this consequence
operation. Also, the way I described the proof theory is not in the standard format.
Showing that the proof theory can be given a standard-format formulation is beyond
our current interests. Details can be found in Verhoeven’s paper.
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and one needs to reason in meta-language to establish that the above
conditions are met.

Thus, for more interesting languages (for which the classical conse-
quence operation is not decidable) dynamic proofs, rather than provid-
ing us with ultimate reasons to accept our conclusion, provide us with
a systematic method of developing our insight into our belief set.

Some would insist that this fact indicates that what we’re dealing
with is not logic. This of course hinges on what you mean by logic. In
general, discussions whether something counts as logic or not sometimes
seem to me rather verbal, so only a few brief remarks will have to suffice.

If what someone cares about is decidability or proof-theoretic man-
ageability of their system, then dynamic logics of the sort discussed
above won’t be their thing. But it is unclear whether computational
considerations are to be decisive here (after all, classical first-order logic
is only semi-decidable and second-order logic is not even axiomatizable;
yet they are still called logics). Some other important factors indicate
at least some degree of logicality of the systems: the consequence op-
eration is well-defined and formal. Particular steps in the proofs are
justified by formally described steps and whole proofs are clearly rule-
driven (and the rules employed, even though they don’t guarantee the
truth of the tentative conclusion, certainly help to exclude problematic
premises and to increase the reliability of the conclusion as the proof
proceeds and insight is gained, in certain cases even informing us that
the conclusion is finally derivable). And the fact that just because at
a given point we might have to reject something we were led to accept
some time before, although causing serious computational difficulties,
makes the systems more capable of modeling real human reasoning.
The fact is that we often gain our insight into the logical wealth of our
premises only gradually and our insight into the logical structure of our
beliefs is rarely complete.

9. Dynamic proofs and Galileo’s TE

Now that we have described the formal framework, it’s time to get back
to Galileo’s TE and show how the factors mentioned in sections 4 and 5
can, within this framework, be modeled better than by classical means.

Suppose we quantify over bodies freely falling from a certain fixed
height in the same external conditions. The language is first-order, it
contains two name constants l and s for the large cannon ball and the
small musket ball. We have a binary function symbol + which denotes
the operation of joining falling bodies (I’ll assume that joining x and y
results in the same object as joining y and x.) and two unary function
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symbols W and S; W (x) is the weight of x and S(x) is the speed of
x (we assume there are no problems with these denoting functions).
Three binary predicates are involved:

− The identity symbol ‘=’,

− The predicate ‘D’; ‘D(x, y)’ means that there are no differences
in material and shape of x and y that would impact the relation
between their rate of falling (so, e.g. it is not the case that one is
made of cotton wool and the other is made of lead, or that one is
really flat and the other round etc.) I will assume that the relation
D is symmetrical.17

− The relational predicate ‘>’; ‘x > y’ means that x is greater than y
(we’ll be comparing weights and speeds, I allow obvious notational
variants).

To shape the premises into a belief base we have to stratify them
according to their entrenchment level. This involves certain complica-
tions. The main clue as to what the degrees of entrenchment Galileo
(or the Aristotelian) assigned to the premises involved is obtained post
factum by studying his reasoning (and the dropped premises). It is
still possible that Galileo felt the need to assign different degrees of
entrenchment to the premises only after discovering an inconsistency.
Such shifts of entrenchment levels are not modeled in the reconstruc-
tion. Also, the study of Galileo’s reasoning does not inform us about
the priorities of the non-rejected premises. Often we may reach infor-
mation about hose by carefully studying the context (other writings
of Galileo and other writings from the same period). But even in the

17 (Galileo Galilei, 1638) carefully emphasizes the assumption that the shape of
objects is not supposed to be taken under consideration:

Aristotle declares that bodies of different weights, in the same medium, travel (in
so far as their motion depends upon gravity) with speeds which are proportional
to their weights; this he illustrates by use of bodies in which it is possible to
perceive the pure and unadulterated effect of gravity, eliminating other consid-
erations, for example, figure as being of small importance, influences which are
greatly dependent upon the medium which modifies the single effect of gravity
alone. Thus we observe that gold, the densest of all substances, when beaten
out into a very thin leaf, goes floating through the air; the same thing happens
with stone when ground into a very fine powder. But if you wish to maintain
the general proposition you will have to show that the same rate of speeds is
preserved in the case of all heavy bodies, and that a stone of twenty pounds
moves ten times as rapidly as one of two; but I claim that this is false and that,
if they fall from a height of fifty or a hundred cubits, they will reach the earth
at the same moment. [p. 109]
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absence of such information, certain priorities do not matter for the
reconstruction.

For these reasons the reconstruction that follows, despite improving
on the straightforward accounts, still involves certain simplifications
and idealizations. It already takes the entrenchment level of the as-
sumption that was dropped to be fixed in the beginning of the ar-
gument. I also impose a certain entrenchment ordering even on those
premises which were retained. To some extent, this only mirrors the
intuitions I have about the plausibility of the premises involved. I do
hope most of the readers will share those intuitions, but (as it should
become clear by the end of this paper) nothing essential hinges on any
particular ordering of the retained premises: the main philosophical
point holds, it’s only the particulars of the argument that have to be
reconstructed differently.

After these general remarks, let’s take a look at the Galilean TE
itself. One plausible way to stratify the premises is to divide them into
four groups. First, we have the most entrenched beliefs:

− For no two objects x and y the speed of x can be simultaneously
smaller and greater than the speed of y.

− Objects considered in the TE either fall with the same speed, or
one is falling faster than another.

These are quite entrenched and seem to be conceptually true. Let’s
write them down as premises of an adaptive proof:

Σ1

(1) ∀x, y ¬(S(x) > S(y) ∧ S(y) > S(x)) – Prem {1(1)}

(2) ∀x, y (S(x) > S(y) ∨ S(x) = S(y) ∨ S(y) > S(x)) – Prem {1(2)}

Next, we have a few intuitively weaker but still very entrenched
beliefs:

− The body obtained by joining two bodies will be heavier than any
of those bodies separately.

− The large cannon ball is heavier than the small musket ball.

− There is no relevant difference in shape or material between those
balls.
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− If there is no relevant difference between two objects, there is no
relevant difference between any of these objects and the result of
joining them together.18

Σ2

(3) ∀x, yW (x + y) > W (x) - Prem {2(3)}

(4) W (l) > W (s) - Prem {2(4)}

(5) ¬D(l, s) - Prem {2(5)}

(6) ∀x, y (¬D(x, y)→ ¬D(x + y, x)) - Prem {2(6)}

Further, we have two assumptions which are still more entrenched
than the Aristotelian assumption, but I find them less compelling than
those in Σ2 (the reader is free to differ and to change this particular
detail in the proof, this won’t impact the main point).

− The first one says that if there is no difference in material or shape
(in the relevant sense) between two bodies, then the lighter one
will not fall faster than the heavier one.

− The second one says that if y is faster than x, then joining those
objects will result in an object slower than y.

Σ3

(7) ∀x, y [¬D(x, y)→ (W (x) > W (y)→ ¬S(x) < S(y))] - Prem {3(7)}

(8) ∀x, y (S(x) > S(y)→ S(x + y) < S(x)) - Prem {3(8)}

Finally we have (a simplified version of) the Aristotelian assumption:
if no relevant shape/material difference occurs, one object falls faster
than the other iff it is heavier than the other:

Σ4

(9) ∀x, y [¬D(x, y)→ (W (x) > W (y) ≡ S(x) > S(y))] - Prem {4(9)}

Observe that (9) might prima facie be on a par with (7) and (8).
What can be said for assigning (9) to a lower level? For one thing, (7)

18 This is false if the objects do not fall in vacuum. But here we just follow Galileo
in his claim (cited in footnote 17) that we are to ignore such factors.
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is a weakening of (9). For another, when the Aristotelian is faced with
the destructive part, they abandon (9) and not (7) or (8), which (at
least post facto) shows that if the reconstruction is to be correct, (9)
has to be weaker than (7) and (8) after all. (As we will see, once (9)
is rejected and (7) and (8) retained, there is nothing mysterious about
reaching the positive solution: it simply follows from the premises.)

Let’s proceed with the proof now. First, thanks to (4), (5) and (9),
we infer that l is moving faster than s.

(10) S(l) > S(s) 4, 5, 9 RU {2(4), 2(5), 4(9)}
Now, (8) together with (10) entail that joining l with s (which is

slower than l) will yield a body that will be slower than l on its own.

(11) S(l + s) < S(l) 8, 10 RU {2(4), 2(5), 3(8), 4(9)}
(3) gives us the conclusion that l + s is heavier than l itself.

(12) W (l + s) > W (l) 3 RU {2(3)}
(5) and (6) entail that no relevant difference in shape or matter

between l and l + s occurs.
(13) ¬D(l + s, l) 5, 6 RU {2(5), 2(6)}

Now, (9) with lines (12) and (13) delivers us:

(14) S(l + s) > S(l) 9, 12, 13 RU {2(3), 2(5), 2(6), 4(9)}
which together with (1) contradicts line 11. This shows that a certain

set is inconsistent.
(15) ⊥ 1, 11, 14 RU {1(1), 2(3), 2(4), 2(5), 2(6), 3(8), 4(9)}

This, with our marking definition, means we have to cancel our
commitment to line 9 and all the inferences that depend on this line.

Moreover, this means that since {(1), (3), (4), (5), (6), (8), (9)} is in-
consistent, {(1), (3), (4), (5), (6), (8)} entails the negation of (9). That
is, we not only can cancel our commitment to the Aristotelian assump-
tion, but we also can explicitly reject it, as long as we trust the more
entrenched premises involved. Thus, we obtain the following situation:
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(1) ∀x, y ¬(S(x) > S(y) ∧ S(y) > S(x)) - Prem {1(1)}

(2)
∀x, y (S(x) > S(y) ∨ S(x) = S(y)∨
∨S(y) > S(x))

- Prem {1(2)}

(3) ∀x, yW (x + y) > W (x) - Prem {2(3)}
(4) W (l) > W (s) - Prem {2(4)}
(5) ¬D(l, s) - Prem {2(5)}
(6) ∀x, y (¬D(x, y)→ ¬D(x + y, x)) - Prem {2(6)}

(7)
∀x, y [¬D(x, y)→ (W (x) > W (y)→
→ ¬S(x) < S(y))]

- Prem {3(7)}

(8) ∀x, y (S(x) > S(y)→ S(x + y) < S(x)) - Prem {3(8)}

(9)
∀x, y [¬D(x, y)→ (W (x) > W (y) ≡
≡ S(x) > S(y))]

- Prem {4(9)} g

(10) S(l) > S(s) 4, 5, 9 RU {2(4), 2(5), 4(9)} g

(11) S(l + s) < S(l) 8, 10 RU {2(4), 2(5), 3(8), 4(9)} g

(12) W (l + s) > W (l) 3 RU {2(3)}
(13) ¬D(l + s, l) 5, 6 RU {2(5), 2(6)}
(14) S(l + s) > S(l) 9, 12, 13 RU {2(3), 2(5), 2(6), 4(9)} g

(15) ⊥ 1, 11, 14 RU
{1(1), 2(3), 2(4), 2(5),
2(6), 3(8), 4(9)}

g

(16) ¬(9)
1, 3, 4,

5, 6, 8
RU

{1(1), 2(3), 2(4), 2(5),
2(6), 3(8)}

So far so good. We’re done with the destructive part of the TE and
we avoided logical explosion: it is not the case that right now we can
infer any sentence whatsoever — the contradiction depended crucially
on (9), and we retracted our commitment to this premise and all the
steps that depended on its truth. However, we can also infer that in
fact s and l will be falling at the same rate.

(17) ¬S(l) < S(s) 4, 5, 7 RU {2(4), 2(5), 3(7)}
(18) S(l) > S(s)→ S(l + s) < S(l) 8 RU {3(8)}
(19) ¬S(l + s) < S(l) 7, 12, 13 RU {2(3), 2(5), 2(6), 3(7)}

(20) ¬S(s) < S(l) 18, 19 RU
{2(3), 2(5), 2(6),
3(7), 3(8)}

(21) S(s) = S(l) 2, 17, 20 RU
{1(2), 2(3), 2(4),
2(5), 2(6), 3(7), 3(8)}

This completes the proof. Contrary to Brown’s claims, we were
able to use one and the same structural, rule-driven and formalized
argument to derive the antinomy, reject one of the premises, and then,
without any (as Norton would have it) stumbles, to reach the desired
conclusion.
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10. Final remarks

Brown argues against the representability of TEs by means of argu-
ments (the claim that TEs are not arguments arguably follows from
this claim: if TEs cannot be sensibly described as arguments, they are
not arguments). Brown rests his case on examples of TEs in which a
contradiction was encountered and a positive solution was nevertheless
reached. Thus, ultimately, the case rests on the claim that making
sensible use of a contradiction or rejecting previously held beliefs and
coming to an agreement cannot be modeled in terms of a formal logical
system. This claim, I suggest, has been shown false: there are plausible
formal systems which handle the phenomena Brown refers to in his
arguments.

A separate question is whether this has any direct bearing on the
“nature of TEs”. Is conducting arguments really what happens when we
use a TE? Assuming this question makes sense and there are methods
which in principle would allow us to settle it, our considerations aren’t
one of them. The goal of this paper was to criticize an argument against
the argument view of TEs, not to support the argument view directly.
What has been argued for is the representability of relevant TEs in
terms of arguments, not their identity with arguments.

An analogy might help to clarify this point. Consider the discus-
sions surrounding mind-reading. It is rather clear that very often we
are able to predict other people’s behavior. One view, the theory-
theory view suggests that this is because we have in mind a certain
(folk) theory of what people do in certain circumstances and use it
to make predictions. Its main opponent, the simulationist view, insists
that rather than using a theory and propositional reasoning, we just
“put ourselves in other person’s shoes” (whatever this would consist
in) and extrapolate a non-propositional simulation of what we would
do in such circumstances. Whatever the outcome of this debate is, this
doesn’t impact the usefulness of formulating a theory of what people
do given certain circumstances to try to predict their behavior. Even if
the theory-theory view is false and normally we don’t use any theory
to predict others’ behavior, it is still scientifically interesting whether
such a theory can be formulated and how successful (or unsuccessful)
it is.

Similarly, the debate about the “real nature” of TEs (however it
is to be settled) doesn’t have any direct impact on the usefulness of
having an explicit theory which helps to make predictions about what
the TEs are used to make predictions about. For instance, even if the
Galilean TE “really” wasn’t an argument, this doesn’t mean there is
no point in constructing a very closely related argument. Quite to the
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contrary: just like psychology meant to help us predict human behavior
has to be done propositionally, physics has to be done propositionally
too.
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