
Chapter 2

From the second unknown to the
symbolic equation

Albrecht Heeffer

Abstract The symbolic equation slowly emerged during the course of the
sixteenth century as a new mathematical concept as well as a mathematical
object on which new operations were made possible. Where historians have of-
ten pointed at François Viète as the father of symbolic algebra, we would like
to emphasize the foundations on which Viète could base his logistica speciosa.
The period between Cardano’s Practica Arithmeticae of 1539 and Gosselin’s
De arte magna of 1577 has been crucial in providing the necessary build-
ing blocks for the transformation of algebra from rules for problem solving
to the study of equations. In this paper we argue that the so-called “second
unknown” or the Regula quantitates steered the development of an adequate
symbolism to deal with multiple unknowns and aggregates of equations. Dur-
ing this process the very concept of a symbolic equation emerged separate
from previous notions of what we call “co-equal polynomials”.

Key words: Symbolic equation, linear algebra, Cardano, Stifel, regula quan-
titates.

L’histoire de la résolution des équations à plusieurs inconnues n’a pas encore donné
lieu à un travail d’ensemble satisfaisant, qui donnerait d’ailleurs lieu à d’assez longues
recherches. Il est intimement lié aux progrès des notations algébriques. J’ai appelé
l’attention sur le problème de la resolution des equations simultanées, chaque fois que

je l’ai rencontré, chez les auteurs de la fin du XVIe et du commencement du XVIIe
siècle. (Bosmans, 1926, 150, footnote 16).

Centre for History of Science, Ghent University, Belgium.
Fellow of the Research Foundation Flanders (FWO Vlaanderen).

57



58 Albrecht Heeffer

2.1 Introduction

This footnote, together with many similar remarks by the Belgian historian
Father Henri Bosmans (S.J.), initiated our interest in the role of the second
unknown or regula quantitates on the development of symbolism during the
sixteenth century.1 Indeed, the importance of the use of multiple unknowns in
the process leading to the concept of an equation cannot be overestimated. We
have traced the use and the development of the second unknown in algebraic
problem solving from early Arabic algebra and its introduction in Europe
until its last appearance in Jesuit works on algebra during the late seventeenth
century. The first important step in abbaco algebra can be attributed to the
Florentine abbaco master Antonio de’ Mazzinghi, who wrote an algebraic
treatise around 1380 (Arrighi 1967). Luca Pacioli almost literally copied the
solution method in his Summa of 1494, and Cardano used the second unknown
both in his Arithmetica and the Ars Magna. A second thread of influence is
to be distinguished through the Triparty by Chuquet and the printed works
of de la Roche and Christoff Rudolff. The Rule of Quantity finally culminates
in the full recognition of a system of linear equation by Buteo and Gosselin.
The importance of the use of letters to represent several unknowns goes much
further than the introduction of a useful system of notation. It contributed to
the development of the modern concept of unknown and that of a symbolic
equation. These developments formed the basis on which Viète could build
his theory of equations.

It is impossible to treat this whole development within the scope of a single
chapter. The use of the second unknown by Chuquet (1489) and de la Roche
(1520) and its spread in early sixteenth-century Europe is already treated in
Heeffer (2010a). Its reception and development on the Iberian peninsula has
recently be studied by Romero (2010). In this paper we will concentrate on
one specific aspect of the second unknown – the way it shaped the emergence
of the symbolic equation.

2.2 Methodological considerations

As argued in Heeffer (2008), the correct characterization of the Arabic concept
of an equation is the act of keeping related polynomials equal. Two of the
three translators of al-Khwārizmı̄’s algebra, Guglielmo de Lunis and Robert
of Chester use the specific term coaequare. In the geometrical demonstration

1 References to the second unknown are found in Bosmans (1925-6) on Stifel, Bosmans
(1906) on Gosselin, Bosmans (1907) on Peletier, Bosmans (1908a) on Nunez and Bosmans
(1926) on Girard.
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of the fifth case, de Lunis proves the validity of the solution for the “equation”
x2 + 21 = 10x. The binomial x2 + 21 is coequal with the monomial 10x, as
both are represented by the surface of a rectangle (Kaunzner, 1989, 60):

Ponam censum tetragonum abgd, cuius radicem ab multiplicabo in 10 dragmas, quae
sunt latus be, unde proveniat superficies ae; ex quo igitur 10 radices censui, una cum
dragmis 21, coequantur.

Once two polynomials are connected because it is found that their arithmeti-
cal value is equal, or, in the case of the geometrical demonstration, because
they have the same area, the continuation of the derivation requires them to
be kept equal. Every operation that is performed on one of them should be
followed by a corresponding operation to keep the coequal polynomial arith-
metical equivalent. Instead of operating on equations, Arabic algebra and the
abbaco tradition operate on the coequal polynomials, always keeping in mind
their relation and arithmetical equivalence. Such a notion is intimately re-
lated with the al-jabr operation in early Arabic algebra. As is now generally
acknowledged (Oaks and Alkhateeb, 2007; Heeffer 2008; Hoyrup 2010, note 7),
the restoration operation should not be interpreted as adding a term to both
sides of an equation, but as the repair of a deficiency in a polynomial. Once
this polynomial is restored – and as a second step – the coequal polynomial
should have the same term added.

At some point in the history of algebra, coequal polynomials will transform
into symbolic equations. This transformation was facilitated by many small
innovations and gradual changes in permissable operations. An analysis of
this process therefore poses certain methodological difficulties. A concept as
elusive as the symbolic equation, which before the sixteenth century did not
exist in its current sense, and which gradually transformed into its present
meaning, evades a full understanding if we only use our current symbolic
language. To tackle the problem we present the original sources in a rather
uncommon format, by tables. The purpose is to split up the historical text
in segments which we consider as significant reasoning steps from our current
perspective. Each of these steps is numbered. Next, a symbolic representation
is given which conveys how the reasoning step would look like in symbolic
algebra, not necessarily being a faithful translation of the original source.
Finally, a meta-description is added to explain the reasoning and to verify its
validity. So, we have two levels of description: the original text in the original
language and notations, and a meta-level description which explains how the
reasoning would be in symbolic algebra. Only by drawing the distinction, we
will be able to discern and understand important conceptual transformations.
Our central argument is that once the original text is directly translatable into
the meta-description we are dealing with the modern concept of a symbolic
equation.
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2.3 The second unknown

Before discussing the examples, it is appropriate to emphasize the difference
between the rhetorical unknown and unknowns used in modern translitera-
tions. Firstly, the method of using a second unknown is an exception in al-
gebraic practice before 1560. In general, algebraic problem solving before the
seventeenth century uses a single unknown. This unknown is easily identified
in Latin text by its name res (or sometimes radix ), cosa in Italian and coss or
ding in German. The unknown should be interpreted as a single hypothetical
value used within the analytic method. Modern interpretations such as an
indeterminate value or a variable, referring to eighteenth century notions of
function and continuity, do not fit the historical context. In solving problems
by means of algebra, abbacus masters often use the term ‘quantity’ or ‘share’
or ‘value’ apart from the cosa. The rhetoric of abacus algebra requires that the
quantities given in the problem text are formulated in terms of the hypotheti-
cal unknown. The problem solving process typically starts with “suppose that
the first value sought is one cosa”. These values or unknown quantities can-
not be considered algebraic unknowns by themselves. The solution depends
on the expression of all unknown quantities in terms of the cosa. Once a value
has been determined for the cosa, the unknown quantities can then easily be
determined.

However, several authors, even in recent publications, confuse the unknown
quantities of a problem, with algebraic unknowns. As a result, they consider
the rhetorical unknown as an auxiliary one. For example, in his commentary on
Leonardo of Pisa’s Flos, Ettore Picutti (1983) consistently uses the unknowns
x, y, z for the sought quantities and regards the cosa in the linear problems
solved by Leonardo to be an auxiliary unknown. The “method of auxiliary
variable” as a characterization by Barnabas Hughes (2001) for a problem-
solving method by ben-Ezra also follows that interpretation. We believe this
to be a misrepresentation of the original text and problem-solving method.

The more sophisticated problems sometimes require a division into sub-
problems or subsequent reasoning steps. These derived problems are also for-
mulated using an unknown but one which is different from the unknown in the
main problem. For example, in the anonymous manuscript 2263 of the Bib-
lioteca Riccardiana in Florence (c. 1365; Simi, 1994), the author solves the
classic problem of finding three numbers in geometric proportion given their
sum and the sum of their squares. He first uses the middle term as unknown,
arriving at the value of 3. Then the problem of finding the two extremes is
treated as a new problem, for which he selects the lower extreme as unknown.
We will not consider such cases as the use of two unknowns, but the use of
a single one at two subsequent occasions. We have given some examples of
what should not be comprehended as a second unknown, but let us turn to a
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positive definition. The best characterization of the use of several unknowns
is operational. We will consider a problem solved by several unknowns if all
of the following conditions apply in algebraic problem solving:

1. The reasoning process should involve more than one rhetorical unknown
which is named or symbolized consistently throughout the text. One of the
unknowns is usually the traditional cosa. The other can be named quantità,
but can also be a name of an abstract entity representing a share or value
of the problem.

2. The named entities should be used as unknowns in the sense that they are
operated upon algebraically by arithmetical operators, by squaring or root
extraction. If no operation is performed on the entity, it has no operational
function as unknown in solving the problem

3. The determination of the value of the unknowns should lead to the solution
or partial solution of the problem. In some cases the value of the second
unknown is not determined but its elimination contributes to the solution
of the problem. This will also be considered as an instance of multiple
unknowns.

4. The entities should be used together at some point of the reasoning process
and connected by operators or by a substitution step. If the unknowns are
not connected in this way the problem is considered to be solved by a single
unknown.

In all the examples discussed below, these four conditions apply.

2.4 Constructing the equation: Cardano and Stifel

2.4.1 Cardano introducing operation on equations

As far as we know from extant abbaco manuscripts Antonio de’ Mazzinghi
was the first to use the second unknown (Arrighi, 1967). Surprisingly, this was
not for the solution of a linear problem but for a series of problems on three
numbers in continuous proportion (or geometric progression, further GP). The
same problems and the method of the second unknown are discussed by Pacioli
in his Summa, without acknowledging de’ Mazzinghi (Heeffer, 2010b). Before
turning to Cardano’s use of the second unknown, it is instructive to review
his commentary on the way Pacioli treats these – and hence, Mazzinghi’s –
problems. In the Questionibus Arithmeticis, the problem is listed as number
28 (Cardano, 1539, f. DDiiiv). Not convinced of the usefullness of the second
unknown, he shows little consideration for this novel solution as it uses too
many unnecessary steps (“Frater autem Lucas posuit ean et soluit cum maga
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difficultate et pluribus operationibus superfluis”). He presents the problem
(2.1) with a = 25 instead of 36, as used by Pacioli.

x
y = y

z

x+ y + z = a
a
x + a

y + a
z = x+ y + z = xyz

(2.1)

The solution is rather typical for Cardano’s approach to problem solving.
The path of the least effort is the reduction of the problem to a form in which
theoretical principles apply. Using his previously formulated rule,2

a

x
+
a

y
+
a

z
= x+ y + z, y =

√
a

he immediately finds 5 for the mean term. As the product of the three, xyz =
y3 = 125, is also equal to the sum of the three, the sum of the two extremes
is 120. Applying his rule for dividing a number a into two parts in continuous
progression3 with b as mean proportional

a

2
±

√(a
2

)2

− b2,

he immediately arrives at(
60 +

√
3575, 5, 60 −

√
3575

)
ita soluta est.

This approach is interesting from a rhetorical point of view. Abbaco trea-
tises are primarily intended to show off the skills of the master, often involving
the excessive use of irrationals while an example with integral values would
have illustrated the demonstration with the same persuasion. These trea-
tises are, with the exception of some preliminaries, limited to problem solving
only. With Pacioli, some recurring themes are extracted from his sources and
treated in separate sections. Cardano extends this evolution to a full body of
theory, titled De proprietatibus numerorum mirisicis, including 136 articles
(Cardano 1539, Chapter 42). The problem is easily solved because it is an
application of two principles expounded in this chapter.

2 Cardano 1539, Chapter 42, art. 91, f. Iiiv : “Omnium trium quantitatum continuae pro-
portionalium ex quarum divisione alicuius numeri proventus congregati ipsarum aggregato
aequari debeat, media illius numeri radix erit nam est eaedem necessarioeveniunt quantum
aggregatum est idem ex supposito”.
3 Cardano 1539, Chapter 42, art. 116, f. Ivir: “Si sint duo numeri utpote 24 et 10 et velis
dividere 24 in duas partes in quarum medio cadat 10 in continua proportionalitate, quadra
dimidium maioris quod est 12 sit 144. Detrahe quadratum minoris quod est 100 remanet
44, cuius R addita ad 12 et diminuta faciet duos numeros inet quos 10 cadit in medio in
contuna proportionalitate, et erunt 12 p R 44 et 10 et 12 m R 44.”
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Using such solution method, he completely ignores Pacioli’s use of two
unknowns for this problem. However Cardano adopts two unknowns for the
solution of linear problems in the Arithmetica Practicae of 1539. Six years
later he even dedicates two chapters of the Ars Magna (Cardano, 1545) to
the use of the second unknown. The last problem he solved with two unknowns
is again a division problem with numbers in continuous proportion.

Cardano used the second unknown first in chapter 51 in a linear prob-
lem (Opera Omnia, IV, 73-4). He does not use the name regula quantitates
but operandi per quantitatem surda, showing the terminology of Pacioli. He
uses cosa and quantita for the unknowns but will later shift to positio and
quantitates in the Ars Magna.4

Let us look at problem 91 from the Questionibus, as this fragment embodies
a conceptual breakthrough towards a symbolic algebra. The problem is a com-
plex version of the classic problem of doubling other’s money to make equal
shares (Tropfke 1980, 647-8; Singmaster 2004, 7.H.4). In Cardano’s problem,
three men have different sums of money. The first has to give 10 plus one
third of the rest to the second. The second has to give 7 plus one fourth of
the rest to the third. The third had 5 to start with. The result should be so
that the total is divided into the proportion 3 : 2 : 1 (Cardano 1539, Chap.
66, article 91, ff. GGviiiv – HHiv):

Tres ludebant irati rapverunt peccunias suas & alienas cum autem pro amicum
quievissent primus dedit secundo 10 p 1/3 residui. Secundus dedit tertio 7 p residui
& tertio iam remanserant 5 nummi & primus habuit 1/2 secundus 1/3 tertius 1/6
quaeritur summa omnium, & quantum habuit qui libet.

The meta-description in symbolic form is as follows:

a− 10 − 1
3 (a− 10) = 1

2 (a+ b+ c)
b+ 10 + 1

3 (a− 10) − 7 − 1
4

(
b+ 10 + 1

3 (a− 10) − 7
)

= 1
3 (a+ b+ c)

c+ 1
4

(
b+ 10 + 1

3 (a− 10) − 7
)

= 1
6 (a+ b+ c)

c = 5

Cardano uses the first unknown for a and the second for b (“Pone quod primus
habuerit 1 co. secundus 1 quan.”). He solves the problem, in the standard way,
by constructing the polynomial expressions, corresponding with the procedure
of exchanging the shares. Doing so he arrives at two expressions. The first one
is

x = 21
4
7

+ 3
6
7
y

(“igitur detrae 1/8 co. ex 5/12 co remanent 7/24 co. et hoc aequivalet 6 7/24
p. 1 1/8 quan. quare 7 co. aequivalent 151 p. 27 quan. quare 1 co. aequalet

4 The same problem is solved slightly different in the Ars Magna and is discussed below.
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21 4/7 p. 3 6/7 quan.”). This expression for x would allow us to arrive at a
value for the second unknown. Instead, Cardano derives a second expression
in x

x = 101
4
5

+ 1
4
5
y

(“et quia 5/12 co. aequivalent etiam 42 5/12 p. quan. igitur 5 co. aequivale-
bunt 509 p. 9 quan. quare 1 co. aequivalent 101 4/5 p. 1 4/5 quan.”). As these
two expression are equal he constructs an equation in the second unknown:

21
4
7

+ 3
6
7
y = 101

4
5

+ 1
4
5
y

(“igitur cum etiam aequivaleat 21 4/7 p. 3 6/7 quan. erunt 21 4/7 p. 3 6/7
quan. aequalia 101 4/5 p. 1 4/5 quan. “). The text continues with: “Therefore,
subtracting the second unknowns from each other and the numbers from each
other this leads to a value of 39 for the second unknown. And this is the share
of the second one.” (“igitur tandem detrahendo quan. ex quan. et numerum
ex numero fiet valor quantitatis 39 et tantum habuit secundus“). However,
the added illustration shows us something very interesting (see Figure 2.1).

Fig. 2.1: Cardano’s construction of equations from (Cardano, 1539, f. 91r)

The illustration is remarkable in several ways. Firstly, it shows equations
where other illustrations or marginal notes by Cardano and previous authors
only show polynomial expressions. As far as I know, this is the first unam-
biguous occurrence of an equation in print. This important fact seems to have
gone completely unnoticed. Secondly, and supporting the previous claim, the
illustration shows for the first time in history an operation on an equation.
Cardano here multiplies the equation

80
8
35

= 2
2
35
y

by 35 to arrive at
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2808 = 72y

The last line gives 39 = y and not ‘y equals 39’ which designates the implicit
division of the previous equation by 72. The illustration appears both in the
1539 edition and the Opera Omnia (with the same misprint for 2808). As
we discussed before, the term ‘equation’ should be used with caution in the
context of early sixteenth-century practices. This case however, constitutes the
construction of an equation in the historical as well as the conceptual sense.
We have previously used an operational definition for the second unknown.
Similarly, operations on an equation, as witnessed in this problem, support
an operational definition of an equation. We can consider an equation, in this
historical context, as a mathematical entity because it is directly operated
upon by multiplication and division operators.

2.4.2 Michael Stifel introducing multiple unknowns

As a university professor in mathematics, Stifel marks a change in the typical
profile of abbaco masters writing on algebra. In that respect, Cardano was a
transitional figure. Cardano was taught mathematics by his father Fazio “who
was well acquainted with the works of Euclid” (Cardano, 2002, 8). Although
he was teaching mathematics in Milan, his professorship from 1543 was in
medicine. His choice of subjects and problems fit very well within the abacus
tradition. However, he did change from the vernacular of the abbaco masters
to the Latin used for university textbooks. Stifel is more part of the university
tradition studying Boethius and Euclid, but believed that the new art of
algebra should be an integral part of arithmetic. That is why his Complete
Arithmetic includes a large part on algebra (Stifel, 1544). Most of his problems
and discussions on the cossic numbers, as he calls algebra, refer to Cardano. He
concludes his systematic introduction with the chapter De secundis radicibus,
devoted to the second unknown (ff. 251v − 255v).

Several authors seem to have overlooked Cardano’s use of the second un-
known in the Practica Arithmeticae. Bosmans (1906, 66) refers to the ninth
chapter of the Ars Magna as the source of Stifel’s reference, but this must be
wrong as the foreword of the Arithmetica Integra is dated 1543 and the Ars
Magna was published in 1545. In fact, the influence might be in the reverse
direction. Cifoletti (1993, 108) writes that “reading Stifel one wonders why the
German author is so certain of having found most of his matter on the second
unknown precisely in Cardano, i.e. in the Practica Arithmeticae. For, the Ars
Magna would be more explicit on this topic”. She gives the example of the
regula de medio treated in chapter 51 of the Practica Arithmeticae (Opera,
87) and more extensively in the Ars Magna (Witmer, 92). She writes: “In
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fact, the rule Cardano gives for this case is not quite a rule for using several
unknowns, but rather a special case, arising as a way to solve problems by
‘iteration’ of the process of assigning the unknown”. However, Stifel’s appli-
cation of the secundis radicibus to linear problems unveils that he drew his
inspiration from the problems in Cardano’s Questionibus of Chapter 66, as
the one discussed above. He makes no effort to conceal that:5

Christoff Rudolff and Cardano treat the second unknown using the term quantitatis,
and therefore they designate it as 1q. This is at greater length discussed by Car-
dano. While Christoff Rudolff does not mention the relation of the second [unknown]
with the first. On the other hand, Cardano made us acquainted with it by beautiful

examples, so that I could learn them with ease.

Graciously acknowledging his sources, he adds an important innovation for
the notation of the second an other unknowns. Keeping the cossic symbol
for the first unknown, the second is represented as 1A, the third by 1B, and so
on, which he explains, is a shorthand notation for 1A and 1B , the square
of 1A being 1A . The use of the letters A, B and C in linear problems is
common in German cossist manuscripts since the fifteenth century.6 Although
these letters are not used as unknowns, the phrasing comes very close to the
full notation given by Stifel. For example, Widman writes as follows: “Do as
follows, pose that C has 1x, therefore having A 2 , because he has double
of C, and B 3 , because he has triple”.7 Using Stifel’s symbolism this would
read as 1x, 2Ax and 3Bx. Although conceptually very different, the notation
is practically the same. The familiarity with such use of letters made it an
obvious choice for Stifel. Later, in his commentary on the Coss from Rudolff,
he writes on Rudolff’s use of 1 and 1q., “However, I prefer to use 1A for 1q.

5 Stifel (1544) f. 252r: “Christophorus et Hieronymus Cardanus tractant radices secundas
sub vocabulo Quantitatis ideo eas sic signant 1 q. Latius vero eas tractavit Cardanus.
Christophorus enim nihil habet de commissionibus radicum sedundarum cum primis. Eas
autem Cardanus pulchris exemplis notificavit, ita ut ipsas facile didicerim”, (translation
AH). In the edition of Rudolff’s Coss, he adds: “Bye dem 188 exempl lehret Christoff die
Regul Quantitatis aber auss vil oben gehandelten exemplen tanstu yetzt schon wissen wie
das es teyn sonderliche regel sey... Das aber Christoff und auch Cardanus in sollichen fal
setzen 1 q. Das ist 1 quantitet. Daher sie diser sach den nahmen haben gegeben und nennens
Regulam Quantitatis” (Stifel 1553, 307).
6 For example, the marginal notes of the C80 manuscript written by Johannes Widman
in 1481, give the following problem (C80 f. 359r, Wappler 1899, 549): “Item sunt tres
socij, scilicet A, B, C, quorum quilibet certam pecuniarum habet summam. Dicit C: A
quidem duplo plus habet quam ego, B vero triplum est ad me, et cum quilibet eorum
partem abiecerit, puta A 2 et B 3, et residuum vnius si ductum fuerit in residuum alterius,

proveniunt 24. Queritur ergo, quod quilibet eorum habuit, scilicet A et B, et quot ego”.

Høyrup (2010) describes an even earlier example by Magister Wolack of 1467, note 90.
7 Ibid.: “Fac sic et pone, quod C habet 1 x, habebit ergo A 2x, quia duplum ad C, et B 3x,
quia triplum”.
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because sometimes we have examples with three (or more) numbers. I then
use 1 , 1A, 1B, etc.”.8

Distinguishing between a second and third unknown is a major step for-
ward from Chuquet and de la Roche who used one and the same symbol for
both.9 Before Stifel, there has always been an ambiguity in the meaning of the
‘second’ unknown. From now on, the second and the third unknown can be
used together as in yz, which becomes 1AB. However, Stifel’s notation system
is not free from ambiguities. For the square of A, he uses 1A , while B
should be read as the product of x2 and B. The product of 2x3 and 4y2, an
example given by Stifel, becomes 8 A . A potential problem of ambiguity
arises when we multiply 3x2 and 4z, also given as an example. This leads to
12 B and thus it becomes very confusing that 12z2x being the product of
12z2 and x is written as 12 B while 12z2 would be 12B . Given the com-
mutativity of multiplying cossic terms, both expressions should designate the
same. The problem becomes especially manifest when multiplying more than
two terms together using the extended notation. Stifel seems not be aware of
the problem at the time of writing the Arithmetica integra.

Fig. 2.2: The rules for multiplying terms from Stifel (1545, f. 252r)

The chapter on the secundis radicibus concludes with some examples of prob-
lems. Other problems, solved by several unknowns are given in de exemplis of
the following chapters. Here we find solutions to many problems taken from
Christoff Rudolff, Adam Ries and Cardano, usually including the correct ref-

8 Stifel, 1553, f. 186r: “Ich pfleg aber für 1q zusetzen 1A auss der ursach das zu zeyten ein

exemplum wol drey (oder mehr) zalen fürgibt zu finden. Da setze ich sye also 1x, 1A, 1B etc”.
9 For an extensive discussion of the second unknown in Chuquet, de la Roche and Rudolff

and their interdependence see Heeffer (2010a).
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erence. In the original sources, these problems are not necessarily treated
algebraically, or by a second unknown. Let us look at one problem which he
attributes to Adam Ries:10

Three are in company, of which the first tells the second: if you give me half of your
share, I have 100 fl. The second tells the third: if you give me one third of your share,
then I have 100 fl. And the third tells the first: if you give me your sum divided by
four, I have 100 fl. The question is how much each has.

The problem is slightly different from the example discussed above, in that
the shares refer to the next one in the cycle and not to the sum of the others.
The direct source of Stifel appears to be the unpublished manuscript Die
Coss by Adam Riese, dated 1524 (Berlet 1860, 19-20). The problem is treated
twice by Riese (problem 31, and repeated as problem 120). Although he uses
the letters a, b and c, the problem is solved with a single unknown. Riese
in turn might have learned about the problem from Fredericus Amann, who
treated the problem in a manuscript of 1461, with the same values (Cod. Lat.
Monacensis 14908, 155r − 155v; transcription by Curtze, 1895, 70-1).
Stifel’s version in modern notation is as follows:

a+ b
2 = 100

b+ c
3 = 100

c+ a
4 = 100

The solution is shown in Table 2.1. As a pedagogue, Stifel takes more steps
than Cardano or the abacus masters before him. Line 8 is a misprint. Probably,
the intention was to bring the polynomial to the same denominator as is done
in step 13. This ostensibly redundant step shows the arithmetical foundation
of the performed operations. Our meta-description gives the multiplication of
equation (12) by 4 which makes line (13) superfluous. Stifel however, treats
the polynomials as cossic numbers which he brings to the same denominator.
Ten years later he will omit such operations as he acts directly on equations.
The solution method is structurally not different from the one used by previous
authors for similar linear problems. Note that Stifel does not use the second
and third unknown in the same expression. The problem could as well be
solved by two unknowns in which the second unknown is reused as by de
la Roche. However, the fact that more than two unknowns are used opens
up new possibilities and solution methods. How simply it may seem to the
modern eye, the extension of the second unknown to multiple unknowns by
Stifel was an important conceptual innovation.

10 Stifel 1553, f. 296r: “Exemplum quartum capitis huius, et est Adami. Tres sunt socij,
quorum primus dicit ad secundum, Si mihi dares dimidium summae tua, tunc haberem 100
fl. Et secundus dicit ad tertium: Si mihi dares summae tuae partem tertiam, tunc haberem
100 flo. Et tertius ad primum dicit: Si tu mihi dares summae tuae partem quartam, tunc
haberem 100 fl. Quaestio est, quantum quisque eorum habeat”.
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Symbolic Meta description Original text

1 a+ b
2

= 100 premise Quod autem primus petit â secundo dimid-

ium summae, quam ipse secundus habet, ut
ipse primus habeat 100 fl.,

2 x+ y
2

= 100 choice of first and
second unknown

fatis mihi indicat, aequationemen esse in-
ter 1x + 1/2A et 100 florenos. Sic aût soleo
ponere fracta huiusmodi (1x + 1A)/2 ae-
quatae 100 fl.

3 2x+ y = 200 multiply (2) by 2 Ergo 2x + 1A aequantur 200 fl.

4 y = 200 − 2x subtract 2x from
(3)

Et 1A aequantur 200 fl – 2x. Facit ergo 1A,
200fl. – 2x id quod mihi reservo loco unius
A. Habuit igitur primus 1x florenorum. Et
secundus 200 fl. – 2x.

5 z = c choice of third un-
known

Et tertius 1B flor.

6 y + z
3

= 100 premise Petit autem secundus tertiam partem sum-
mae terti socij, ut sicispe secundus habeat
100 fl.

7 200 − 2x+ z
3

= 100 substitute (4) in (6) Itaque iam 200 fl. – 2x fl + 1/3 B, aequan-
tur 100 florenis.

8 600 − 6
3
x+ z = 100 illegal Sic ego soleo ponere huiusmodi fractiones,

ut denominator respiciat totum numera-
torem. Ut 600 – 6/3 x + B aequata 100.

9 600 − 6x+ z = 300 multiply (7) by 3 Aequantur itaque 600 – 6x + B cum 300.

10 z = 6x− 300 add 6x+ 600 to (9) Atque hac aequatione vides fatis, ut 1B re-
solvatur in 6x – 300. Et sic primus habuit
1x florenorum. Secundus 200 fl – 2x. Tertius
6x – 300.

11 z + x
4

= 100 premise Petit autem tertius partem quartam sum-
mae, quam habet primus, ut sic ipse tertius
etiam habeat centum florenos.

12 6 1
4
x− 300 = 100 substitute (10) in

(11)
Itaque 6 x – 300 aequantur 100.

13 25x−1200
4

= 100 from (12) Item (25x – 1200)/4 aequantur 100 fl.

14 25x− 1200 = 400 multiply (12) by 4 Et sic 25x – 1200 aequantur 400.

15 25x = 1600 add 1200 to (12) Item 25x aequantur 1600 fl.

16 x = 64 divide (13) by 25 Facit 1x 64 fl.

17 y = 200 − 128 substitute (16) in
(4)

Habuit igitur primus 1x, id est, 64 fl. Se-
cundus habuit 200 – 2x.

18 y = 72 from (15) i. 72 fl.

19 z = 384 − 300 substitute (18) in
(10)

Et tertius habuit 6x – 300,

20 z = 84 from (19) hoc est 84 fl.

Table 2.1: Stifel’s exposition of the second unknown.
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2.5 Cardano revisted: The first operation on two
equations.

Cardano envisaged an Opus perfectum covering the whole of mathematics in
fourteen volumes, published in stages (Cardano 1554). Soon after the pub-
lication of the Practica arithmeticae, he started working on the Ars Magna,
which was to become the tenth volume in the series.11 It was published by
Johann Petreius in Nürnberg in 1545, who printed Stifel’s Arithmetica Integra
the year before as well as several other books by Cardano. We know that Car-
dano has seen this work and it would be interesting to determine the influence
of Stifel.12 The Ars Magna shows an evolution from the Practica Arithmeti-
cae in several aspects. Three points are relevant for our story of the second
unknown. Having learned that Tartaglia arrived at a solution to the cubic by
geometrical reasoning, Cardano puts much more effort than before in deliver-
ing geometrical proofs, and this not only for the cubic equation. He also tries
to be more systematical in his approach by listing all possible primitive and
derivative cases of rules (which we call equations), and then by treating them
separately. One of these primitive cases deals with two unknowns which he
discusses in two chapters. Chapter IX is on De secunda incognita quantitate
non multiplicata or the use of the second unknown for linear problems. Rules
for solving quadratic cases are treated in Chapter X. Let us look at the first
linear problem:13

Three men had some money. The first man with half the other’ would have had 32
aurei ; the second with one-third the other’, 28 aurei ; and the third with one-fourth
the others’, 31 aurei. How much has each?

In modern notation the problem would be:

a+ 1
2 (b+ c) = 32

b+ 1
3 (a+ c) = 28

c+ 1
4 (a+ b) = 31

(2.2)

In solving the problem Cardano introduces the two unknowns for the share
of the first and the second person (“Statuemus primo rem ignotam primam,

11 The dating can be deduced from the closing sentence of the Ars Magna: “Written in five
years, may it last as many thousands” from Witmer (1968, 261).
12 Cardano mentions in his biography that he is cited by Stifel in what must be the first
citation index (2002, 220).
13 Translation from Witmer (1968, 71). Witmer conscientiously uses p and q for positio
and quatitates which preserves the contextual meaning. Unfortunately he leaves out most

of the tables added by Cardano for clarifying the text, and replaces some of the sentences
by formulas. As the illustrations and precise wording are essential for our discussion, I will

use the Latin text from the Opera Omnia when necessary, correcting several misprints in
the numerical values.
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Symbolic Meta de-
scription

Original text

1 a = x choice of first
unknown

Statuemus primo rem ignotam pri-
mam,

2 b = y choice of second

unknown

secundo secundam rem ignotam

3 c = 31 − 1
4
(x+ y) substituting

(1) and (2) in
(2.2)c

tertio igitur 31 aurei, minus quarta
parte rei, ac quarta parte quanti-
tatis relicti sunt

4 a+ 1
2
(b+ c) = 32 premise iam igitur vide, quantum habet

primus, equidem si illi dimididium

secundi et terti addicias, habiturus
est aureos 32.

5 a = 32 − 1
2
y − 15 1

2
+ 1

8
x+ 1

8
y substitute (2)

and (3) in (4)
habet igitur per se aureos 32 m. 1/2
quan. m. 15 1/2 p. 1/8 positionis p.
1/8 quant.

6 a = 16 1
2
− 3

8
y + 1

8
x from (5) quare habebit 16 m. 3/8 quanti-

tatis p. 1/8 pos.

7 x = 16 1
2
− 3

8
y + 1

8
x substitute (1)

in (6)
hoc autem sit aequale uni positioni

8 7
8
x+ 3

8
y = 16 1

2
from (7) erit 7/8 pos. et 3/8 quant. aequale

16 1/2

9 7x+ 3y = 132 multiply (8)
with 8

quare deducendo ad integra 7 pos.
et 3 quant. aequabuntur 132.

10 b+ 1
3
(a+ c) = 28 premise Rursus videamus, quantum habeat

secundus, habet hic 28 si ei tertia
pars primi ac tertij addatur

11 1
3
(a+ c) = 1

3
x+ 10 1

3
− 1

12
x− 1

12
y from (3) and

(6)
ea est 1/3 pos. p. 10 2/3 m. 1/12
pos. m. 1/12 quant.

12 1
3
(a+ c) = 1

4
x+ 10 1

3
− 1

12
y from (11) hoc est igitur pos. p. 10 1/3 m.

1/12 quant.

13 b = 17 2
3

+ 1
12
y − 1

4
x substitute (12)

in (11)
abbice ex 28 relinquitur 17 2/3 p.
1/12 quant. m. pos. et tantum ha-
bet secundus.

14 y = 17 2
3

+ 1
12
y − 1

4
x substitute (2)

in (14)
suppositum est autem habere il-
lum quantitatem, quantitas igitur
secunda, aequivalet 1/12 suimet, et
17 2/3 p. m. pos.

secundo secundam rem ignotam”) (Opera III, 241). In the rest of the book
the two unknowns are called positio and quantitates, abreviated as pos. and
quan. They appear regularly throughout the later chapters, and in some cases
Cardano uses pos. for problems solved with a single unknown.

Note how strictly Cardano switches between the role of two unknowns and
the share of the first and second person by making the substitution steps of
lines (7) and (14) explicit.
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15 11
12
y + 1

4
x = 17 2

3
subtract 1

12
y from

(14) and add 1
4
x

abiectis communiter 1/12 quantitatis,
et restituto m. alteri parti, sient 11/12
quan. p. pos aequalia 17 2/3,

16 11y + 3x = 212 multiply (15) by 12 quare 11 quant. p. 3 pos. aequalia erunt
212 multiplicatis partibus omnibus per
12 denominatorem.

The next part in the solution is the most significant with respect to the emerg-
ing concept of a symbolic equation. Historians have given a lot of attention
to the Ars magna for the first published solution to the cubic equation, while
this mostly is a technical achievement. We believe Cardano’s work is equally
important for its conceptual innovations such as the one discussed here.

The first occurrence of the second unknown for a linear problem is by an
anonymous fifteenth-century abbaco master, author of Fond. prin. V.152.14

The problem about four men buying an ox is by means of the second unknown
reduced to two “linear equations”, 7y = 13x+4 and 4y = 2x+167. Expressed
in symbolic algebra it is obvious to us that by multiplying the two equations
with the coefficients of y, we can eliminate the second unknown which leads
to a direct solution. However, the author was not ready to do that, because
he did not conceive the structures as equations. They are subsequently solved
by the standard tool at that time, the rule of double false position. Cardano
here marks a turning point in this respect. Having arrived at two equations
in two unknowns Cardano gives a general method: 15

Now raise whichever of these you like to equality with the other with respect to the
number of either x or y “(in positionum aut quantitatum numero”). Thus you may
decide that you wish, by some method, that in 3x + 11y = 212, there should be 7x.

Then, by using the rule of three, there will be

7x+ 25
2

3
y = 494

2

3
.

You will therefore have, as you see,

7x+ 3y = 132 and 7x+ 25
2

3
y = 494

2

3

Hence, since 7x is the same in both, in both the difference between the quantities of
y, namely 22 2/3, will equal the difference between the numbers, which is 362 2/3.

14 Franci and Pancanti, 1988, 144, ms. f. 177r: “che tra tutti e tre gli uomeni avevano 3 oche
meno 2 chose e sopra a questo agiugnerò l’ocha la quale si vole chonperare, chos aremo che
tra tutti e tre gli uomeni e l’ocha saranno 4 oche meno 2 chose, dove detto fu nella quistione
che tra danari ch’anno tutti e tre gli uomeni e ’l chosto del’ocha erano 176. Adunque,
posiamo dire che lle 4 oche meno 2 chose si vagliano 176, chos̀ı ài due aguagliamenti”. In
Heeffer (2010b) it is argued that this text is by Antonio de’ Mazzinghi or based on a text
by his hand.
15 Cardano 1663, Opera IV, 241. I have adapted Witmer’s translation to avoid the use of
the terms coefficient and equation, not used by Cardano (Witmer 1968, 72).
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Divide therefore, as in the simple unknown, according to the third chapter, 362 2/3
by 22 2/3; 16 results as the value of y and this is the second.

Using modern terms, this comes down to the following: given two linear equa-
tions in two unknowns, you can eliminate any of the unknowns by making
their coefficients equal and adapting the other values in the equation. The
difference between the coefficient of the remaining unknown will be equal to
the difference of the numbers. Although the result is the same, the text does
not phrase the procedure as a subtraction of equations. However, the table
added by Cardano, which is omitted in Witmer’s translation, tells a different
story:

7x+ 3y = 132

7x+ 25 2
3
y = 494 2

3

22 2
3
y = 362 2

3

The table shows a horizontal line which designates a derivation: “from the first
and the second, you may conclude the third”. This table goes well beyond the
description of the text and thus reads: “the first expression subtracted from
the second results in the third”. He previously used the same representation
for the subtraction of two polynomials, also subtracting the upper line from
the lower one (Cardano 1663, IV, 20). Cardano never describes the explicit
subtraction of two equations in the text. Even if he did not intend to represent
it that way, his peers studying the Ars magna will most aptly have read
it as an operation on equations. As such, this is the first occurrence of an
operation involving two equations, a very important step into the development
of simultaneous equations and the very concept of an equation.

A second point of interest for the story of the second unknown is an addition
in a later edition of the Ars Magna (Cardano, 1570; 1663; Witmer p. 75
note 13). Cardano added the problem of finding three so that the following
conditions hold (in modern notation):16

a+ b = 1 1
2 (a+ c)

a+ c = 1 1
2 (b+ c)

He offers two algebraic solutions for this indeterminate problem. The second
one is the most modern one, since he only manipulates equations and not
polynomials. But the first solution has an interesting aspect, because we could

16 Cardano, Opera IV, 242: “Exemplum tertium fatis accommodatum. Invenias tres quan-
titates quarum prima cum secunda sit sequialtera primae cum tertia et prima cum tertia

sit sequialtera 2 cum tertia”.
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call it a derivation with two and a half unknowns. Cardano uses positio for
the third number and quantitates for the second, for which we will use x and
y. The sum of the first and third thus is

1
1
2
(x+ y).

Subtracting the third gives the value of the first as

1
2
x+ 1

1
2
y.

Multiplying the sum of the first and third with 11
2 gives the sum of first and

second as

2
1
4
x+ 2

1
4
y.

Subtracting the second gives a second expression for the first as

2
1
4
x+ 1

1
4
y.

As these two are equal

1
3
4
x =

1
4
y or y is equal to 7x

Only then, Cardano removes the indeterminism by posing that x = 1 lead-
ing to the solution (11, 7, 1). The interesting aspect of this fragment is that
Cardano tacitly uses a third unknown which gets eliminated. As a demonstra-
tion, the reasoning can be reformulated in modern notation, with z as third
unknown as follows:

z + y = 1
1
2
(z + x) (2.3)

z + x = 1
1
2
(x+ y) (2.4)

If we subtract x from (2.4) it follows that

z =
1
2
x+ 1

1
2
y

Substituting (2.4) in (2.3) gives

z + y = 2
1
4
x+ 2

1
4
y

Subtracting y from this equation gives
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z = 2
1
4
x+ 1

1
4
y

Therefore
1
2
x+ 1

1
2
y = 2

1
4
x+ 1

1
4
y

or
y = 7x

There is only a small difference between Cardano’s solution and our refor-
mulation. If only he had a symbol or alternative name for the first unknown
quantity, it would have constituted an operational unknown. He seems to be
aware from the implicit use of three unknowns as he concludes: “And this is a
nice method because we are working with three quantities” (“Et est pulchrior
modus quia operamur per tres quantitates”) (Opera, IV, 242). It is not clear
why this problem was not included in the 1545 edition. It could have been
added by Cardano as a revision to the Basel edition of 1570.

A third aspect from the Ars magna, which reveals some evolution in Car-
dano’s use of multiple unknowns is one of the later chapters, describing several
rules, previously discussed in the Practica aritmeticae. Chapter 31 deals with
the Regula magna, probably one of the most obscure chapters in the book.
The rule is not described, only some examples are given. Nor does it con-
tain any explanation why it is called The Great Rule. Most of these problems
concern proportions which are represented by letters. Remarkably, Cardano
performs operations on these letters and constructs equations using the letters
such as “igitur 49 b, aequalia sunt quadrato quadrati a” (see Table 2.2). Only
in the final step, as a demonstration that this solves the problem, does he
switch back to regular unknown called res. Let us look in detail at problem
10 (Witmer 190, Opera IV, 276). A modern formulation of the problem is:

a+ b = 8

a3

7b
=

7b
ab

The text is probably the best illustration that the straightforward interpre-
tation of the letters as unknowns is an oversimplification. If the letters would
be unknowns then substituting b = 8 − a in a4b = 49b2 would immediately
lead to the equation. Instead, Cardano takes a detour by introducing c, d and
e and then applying the magical step 5. No explanation is given, though the
inference

a

7
=
d

c
is correct, because

d

c
=

7b
a3

=
a

7
, or

7b
a3

=
ab

7b
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Symbolic Meta description Original text

1 c = a3 choice of unknown Sit a minor, eius cubus c, b autem maior,

2 ab = e choice of unknown et productum b in a sit e,

3 7b = d choice of unknown et septuplum b sit d,

4 a
7

= e
d

divide (2) by (3) quia igitur ex b in a, sit e et ex b in 7 sit d,
erit a ad 7,

5 a
7

= d
c

ut e ad d quare a ad 7 ut d ad c

6 ac = 7d multiply (5) by 7c Igitur ex a in c, sit septuplum d

7 a4 = 49b subtitute (1) & (3) in (6) sed est septuplum b, igitur 49 b aequalia
sunt quadrato quadrati a

8 b = 1
49
a4 divide (7) by 49 igitur b est aequale 1/49 quad. quadrati a

9 a+ b = 8 premise quia igitur a cum b est 8

10 a+ 1
49
a4 = 8 substitute (8) in (9) et b est 1/49 quad. quadrati a, igitur a cum

1/49 quad. quadrati sui, aequatur 8.

11 x+ 1
49
x4 = 8 substitute a by x in (10) quare res et 1/49 [quad. quadratum ae-

quatur 8]

12 x4 + 49x = 392 multiply (11) by 49 [Igitur] quad. quadratum p. 49 rebus, ae-
quatur 392

Table 2.2: Cardano’s Regula magna for solving linear problems

which is the reciprocal of what was given. Apparently, the fact that e is to d
as d is to c, is evident to Cardano, shows how his reasoning here is inspired
by proportion theory, rather than being symbolic algebra.
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2.6 The improved symbolism by Stifel

From the last part of Stifel’s Coss (1553, f. 480r) we know that he has read
the Ars magna. He cites Cardano on the discovery of Scipio del Ferro (f. 482r)
and adds a chapter on the cubic equation. The influence between Cardano and
Stifel is therefore bidirectional. At several instances he discusses the second
unknown from a methodological standpoint, as Cardano did in the Ars magna.
Although Rudolff does use the second unknown in the original 1525 edition
for several problems, in other examples Stifel recommends the regula quanti-
tatis as a superior method to the ones given by Rudolff (“Christoff setzet vier
operation oder practicirung auff diss exemplum. Ich will eine setzen ist besser
und richtiger zu lernen und zu behalten denn seyne vier practicirung”, 223v).
He notes that there is nothing magical about the second unknown. For him,
it is basically not different from the traditional coss: “Den im grund ist regula
Quantitatis nichts anders denn Regula von 1 .”(Stifel 1553, ff. 223v−−224r).
While we can only wonder why it has not been done before, for Stifel it seems
natural to use multiple unknowns for the typical shares or values expressed in
linear problems: “Man kan auch die Regulam (welche sye nennen) Quantitatis
nicht besser verstehn den durch sollische exempla [i.e. linear problems] Weyl
sye doch nichts anders ist denn da man 1 setzt under einem andern zey-
chen” (Stifel 1553, f. 277v). He considers arithmetical operations on shares not
fundamentally different from algebraic operations on unknowns: “Der Cossis-
chen zeychen halb darffest du dich auch nicht hart bekumern. Denn wie 3 fl.
un 4 fl. machen 7 fl., also auch 3 und 4 machen 7 ” (1553, f. 489r).

After treating over 400 problems from Rudolff, Stifel adds a chapter with
some examples of his own. Half of the 24 problems added are solved by two
unknowns. Interestingly, he silently switches to another notation system for
quadratic problems involving multiple unknowns, thus avoiding the ambigu-
ities of his original system. The improved symbolism is well illustrated with
the following example:17

Find two numbers, so that the sum of both multiplied by the sum of their squares
equals 539200. However, when the difference of the same two numbers is multiplied
by the difference of their squares this results in 78400. What are these numbers?

This is a paraphrase of Stifel’s solution: Using 1 and 1A for the two numbers,
their sum is 1 + 1A. Their difference is 1 – 1A. Their squares 1 and
1AA. The sum of the squares 1 + 1AA. The difference between the squares
1 – 1AA. So multiplying 1 + 1A with 1 + 1AA gives + 1 A +
1 AA + 1AAA which equals 539200. Then I multiply also 1 – 1A. with
1 – 1AA. This gives – 1 A – AA + 1AAA and that product equals
539200.
17 Stifel 1553, ff. 469r − 470v , translation mine.
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So Stifel now uses AA for the square and AAA for the third power of A. He
thus eliminates the ambiguities discussed before. Now that A becomes AA,
the product of the square of A with 1 can be expressed as AA and the
product of the square of 1 with A as A or A – thus also removing the
ambiguity of multiplying cossic terms together. As such, algebraic symbolism
is functionally complete with respect to to the representation of multiple un-
knowns and powers of unknowns. What is still missing, as keenly observed by
Serfati (2010), is that this does not allow to represent the square of a polyno-
mial. In order to represent the square of 1 + 1 + 2, for example, Stifel has
to perform the calculation. Also, the lack of symbols for the coefficients does
not yet allow that every expression of seventeenth-century Cartesian algebra
can be written unambiguously in Stifel’s symbolism. This was later introduced
by Viète. However, the important improvement by Stifel in his Coss, was an
important step necessary for the development of algebraic symbolism, and has
been overlooked by many historians.18 Having shown that Stifel resolved the
ambiguities in the interpretation of multiplied cossic terms, we will further
replace the cossic signs for coss, census and cube by x, x2 and x3.

Fig. 2.3: The improved symbolism by Stifel (1553, f. 469r)

Next, Stifel eliminates terms from the equation by systematically adding,
subtracting, multiplying and dividing the equations, not seen before in his
Arithmetica Integra of 1544 (Stifel 1553, 469v):

18 The symbolism introduced by Stifel in the Arithmetica integra is discussed by Bosmans
(1905-6), Russo (1959), Tropfke (1980, 285, 377), Gericke (1992, 249-50), Cifoletti (1993)

chapter 3, appendix 1 and 2. With the exception of Cajori (1928-9, I, 144-146) who mentions

Stifel’s innovation as “another notation”, none of these authors discuss the significance of the



2 From the second unknown to the symbolic equation 79

Multiply the two equations in a cross as you can see below:

x3 + 1x2A+ 1xAA+ 1AAA = 539200
x3 − 1x2A− 1xAA+ 1AAA = 78400

But dividing these numbers by their GCD (“yhre kleynste zalen”) gives 337 and 49
and so we arrive at the two sums:

49x3 + 49x2A+ 49xAA+ 49AAA
337x3 − 337x2A− 337xAA+ 337AAA

and these two sums are equal to each other. If we now add 337x2A+337xAA to each
side so, this result in

337x3 + 337AAA = 49x3 + 386x2A+ 386xAA+ 49AAA

Now subtract 49x3 + 49AAA from each side, this will give

386x2A+ 386xAA = 288x3 + 288AAA

Divide each side by 2x+ 2A, this results in

193xA = 144x2 − 144xA+ 144AA (2.5)

Next (as you can extract the square root from each side) subtract from each side
144xA

49xA = 144x2 − 288xA+ 144AA

Extract from each side the square root, which becomes
√

49xA = 12x − 12A . This
we keep for a moment.

Here, operations on equations are remarkably extended to root extraction.
Although not fully correct, this can be considered a ‘natural’ step from previ-
ous extensions. Because the alternative solutions are imaginary they are not
recognized as such. Only in the seventeenth century we will see the full ap-
preciation of double solutions to quadratic equations. Now Stifel returns to
the equation (2.5) (“Ich widerhole yetzt die obgesetzte vergleychung”).

Add to each side [of this equation] as much as is needed to extract the root of each
side. This is 3 times 144xA, namely 432xA. So becomes

144x2 + 288xA+ 144A2 = 625xA

Extract again from each side the square root, so will be

√
625xA = 12x+ 12A

And before I have found that
√

49xA = 12x− 12A. From these two equations I will
make one through addition. Hence

improvements of 1553. Eneström (1906-7, 55) spends one page on the improved symbolism

discussing Cantor’s Vorlesungen (1892, 441, 445).
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24x =
√

1024xA

Next I will square each side, which results in 576x2 = 1024xA and then I divide each
side with 576x. Thus

1x = 1
7

9
A or 1A =

9

16
x

Having formulated both unknowns in terms of the other, one of them can
be eliminated, or in Stifel’s wording resolved. He reformulates the original
problem in x and 9/16 x, which leads to a cubic expression with solution 64.

We have previously shown that Cardano’s operations on equations are im-
plicit in the illustrations but are not rhetorically phrased as such. In this
text by Stifel we have a very explicit reference to the construction from one
equation by the addition of two others: “From these two equations I make
one equation by addition” (“Aufs desen zweyen vergleychungen mach ich ein
einige vergleychung mit addiren”). This is certainly an important step forward
from the Arithmetica Integra, and from then on, operations on equations will
be more common during the sixteenth century.

We have here an unique opportunity to compare two works, separated
by a decade of development in Stifel’s conceptions of algebra. It gives us
a privileged insight into subtle changes of the basic concepts of algebra, in
particular that of a symbolic equation. As an illustration, let us look at one
problem with three numbers in geometric progression. The same problem is
presented in Latin in the Arithmetica Integra and in German in the Stifel
edition of Rudolff’s Coss, though with different values. The problem is solved
using two unknowns in essentially the same way, but there are some delicate
differences which are very important from a conceptual point of view. As Stifel
presents the problem in a section with “additional problems by his own”, we
can assume that he constructed the problem himself. In any case, it does
not appear in previous writings. In modern formulation the problem has the
following structure:

a : b = b : c
(a+ c)(a+ c− b) = d
(a+ c− b)(a+ b+ c) = e

with respectively (4335, 6069) and (90720, 117936) for d and e. The start of
the solution is identical in the Latin and German text, except that the choice
of the first and second unknowns are reversed (see Table 2.3).

In both cases Stifel arrives at two equations in two unknowns. These com-
pares very well with those from Fond. prin. V.152 and the example of Car-
dano’s Ars Magna, except that we now have a quadratic expression. If we
swap back the two unknowns in the German text, the equations compare as
follows:
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Stifel 1544, f. 313r Problem 24, Stifel 1553, f. 474r

Quaeritur tres numeri continue propor-
tionales, ita ut multiplicatio duorum
extremorum, per differentiam, quam
habent extremi simul, ultra numerum
medium, faciant 4335. Et multiplicatio
eiusdem differentiae, in summam, om-
nium trium faciat 6069.

Es sind drey zalen continue propor-
tionales so ich das aggregat der ersten,
und dritten, multiplicir mit der differ-
entz dess selbigen aggregatis uber die
mittel zal, so kommen 90720. Und so
ich die selbige differentz multiplicir in
die summa aller dreyer zalen, so kom-
men 117936. Welche zalen sinds?

1A + 1x est summa extremorum 1A
– 1x est summa medij 2A est summa
omnium trium 2x est differentia quam
habent extremi ultra medium.

Die drey zalen seyen in einer summa 2x.
Die zurlege ich also in zwo summ
1x + 1A, 1x – 1A
Nu last ich 1x – 1A die mittel zal seyn
so muss 1x + 1A die summa seyn der
ersten und dritten zalen. Und also sind
2A die differentz dess selbigen aggre-
gats uber die mittel zal.

Itaque 2x multiplicatae in summam ex-
tremorum, id est, in 1A + 1x faciunt
2xA + 2x2 aequata 4335.

Drumb multiplicir ich 2A in 1x + 1A
facit 2xA + 2AA gleych 90720.

Deinde 2x multiplicatae in 2A seu in
summam omnium, faciunt 4xA aequata
6096.

So ich aber 2A multiplicir in die summ
aller dreyer zalen, nemlich in 2x, so
kommen 4xA die sind gleych 117936.

Table 2.3: Two ways how Stifel solves structurally the same problem.

2xy + 2x2 = 4335
4xy = 6096

2xy + 2x2 = 90720
4xy = 117936

The next step is to eliminate one unknown from the two equations. We have
seen that Cardano was the first to do this by multiplying one equation to
equal the coefficients of one term in both equations and then to subtract the
equations, albeit implicitly. In this respect, the later text deviates from the
former (see Table 2.4).

The method in the Latin text articulates the value of xy from the two
expressions and compares the resulting values. The text only states that their
values are equal. Although Stifel writes “Confer iam duas aequationes illas”,
this should be understood as “now match those two equal terms”, aequationes
being the acts of comparing. So from the first expression we can infer that the
value of xy is (4335 – 2x2)/2. From the second we can know that the value
is 6069/4. Thus, (4335 – 2x2)/2 must be equal to 6069/4, from which we can
deduce the value of x. The reasoning here is typical for the abacus and early
cossist tradition were the solution is based on the manipulation and equation
of polynomials expressions. In the German text, a decade later, Stifel distinctly
moves to the manipulation of equations. He literally says: “Now double the
equation above” and “from this [equation] I will now subtract the numbers
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Stifel 1544, f. 313r Problem 24, Stifel 1553, f. 474v

Confer iam duas aequationes illas. Nam
ex priore sequitur quod 1xA faciat
(4335 − 2x2)/2.

So duplir ich nu die obern vergleychung,
fa. 4xA+ 4AA gleych 181440.

Ex posteriore autem sequitur quod
1xA faciat 6069/4. Sequitur ergo quod
(4335 − 2x2)/2 et 6069/4 inter se ae-
quentur. Quia quae uni et eidem sunt
aequalia, etiam sibi invicem sunt ae-
qualia. Ergo (per reductionem) 17340−
8x2 aequantur 12138 facit 1x2 · 650 1

4
.

Da von subtrahir ich yetzt die zalen
diser yetzt gefundnen vergelychung.
Nemlich 4xA gleych 117936 so bleyben
4AA gleych 63504.

Et 1x facit 25 1
2
. Also extrahir ich auff yeder seyten die

quadrat wurzel, so werden 2A gleych
252 und ist die differentz dess aggregats

uber die mittel zal. So in nu 1A gleych
126.

Table 2.4: Two ways how Stifel solves structurally the same problem.

of the newly found equation”, thus eliminating the second unknown. The last
step also shows a clear evolution. In the Latin text he reduces the expression
to the square of the unknown 1x2 and then extracts the root. In the later text
he “extracts the square root of each side [of the equation]”. The rest of the
problem is to reformulate the original problem using the value of the second
unknown. This is done in similar ways.

The example shows how the road to the concept of a symbolic equation
is completed in a crucial decade of algebraic practice of the mid-sixteenth
century. We have witnessed this evolution within a single author. The French
algebraists from the second half of the sixteenth century will extend this
evolution to a system of simultaneous linear equations.

2.7 Towards an aggregate of equations by Peletier

Stifel’s edition of the Coss was published in Köningsberg in 1553, his foreword
is dated 1552. Peletier’s postscript ends the Algèbre with the date July 28,
1554. The printer’s permit allows him to print and sell the book for three years
from June 15, 1554. So, while Peletier might have seen Stifel’s edition of the
Coss, it does not show in his book. He certainly has studied the Arithmetica
Integra well.

Jacques Peletier spends one quarter of the first book on the second unknown
which he calls les racines secondes (pp. 95-117), a direct translation of Stifel’s
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de secundis radicibus (Stifel 1544, f. 251v). He introduces Stifel’s notation by
way of the problem of finding two numbers, such that, in modern formulation
(Peletier 1554, 96):

x2 + y2 = 340
xy = 6

7x
2

If we would use the same name for the unknown for both numbers, this would
lead to confusion, he argues. He therefore adopts Stifel’s notation of 1A, 1B
for the second and third unknown in addition to his own sign for the first
unknown. He then discusses the operations with multiple unknowns: addition,
subtraction, multiplication and division, as was done with polynomials in
his introductory chapters. He retains Stifel’s ambiguity from the Arithmetica
Integra that xy cannot be differentiated from yx.
Peletier has selected this example, instead of the one used by Stifel, because
that problem can easily be solved in one unknown (“Car il est facile par une
seule posicion sans l’eide des secondes racines”, Peletier 1554, 102).

Fig. 2.4: The rules for multiplying terms with multiple unknowns from Peletier
(1554, 98). Compare these with Stifel (1545, f. 252r)

Using x for the larger number and y for the smaller one he squares the second
equation to

x2y2 =
36
49
x4 which leads to 49y2 = 36x2
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Because y2 = 340 − x2 this can be rewritten as y2 = 340 − 49
36y

2.
Then the second unknown can be expressed as

2
13
36
y2 = 340 or y2 = 144,

leading to the solution 12 and 14.
Peletier gives four other problems solved with multiple unknowns. The first

two are taken from Cardano’s De Quaestionibus Arithmeticis in the Practica
arithmeticae, problem 97 and 98 (Cardano, Opera III, 168-9), the third is the
problem from Cardano’s Ars magna discussed above (2.2). The fourth is one
from Stifel (1544, f. 310v), reproducing the geometric proof. This shows that
Peletier was well acquainted with the most important algebraic treatises of
his time. In fact, Peletier’s example III (1554, 105-7) and its solution, is a
literal translation from Cardano’s, only using the symbolism from Stifel. The
problem is structurally similar to problem 41 from Pacioli discussed earlier
and follows the method by Pacioli. Compare the following text fragments:

Cardano, 1539, ff. HH.vir - HH.viv Peletier, 1554, p. 106

Igitur per praecedentem iunge summam
eorum sit 3 quan. m. 31/30 co. divide per
1 m. numero hominum quod est 2 exit 1

quan. m. 31/60 co. et haec est summa quae

debet aequari valori equi sed aequus valet
1. quan. igitur 1 quan. m. 31/60 co. ae-
quantur 1 quan. quare detrahe 1 quan. ex
1 quan. remanebit quan. equivalens 31/60
co. igitur 1 quan. aequivalet duplo quod est
31/30 co. igitur dabis ex hoc fracto valorem

denominatoris qui est 30 [sic] ad co. et nu-
meratorem ad quan. igitur valor co. est 30
et valor quantitatis est 31 et in bursa fuere
30.

Par la precedente, assemblez les
troes sommes: ce sont 3A m. 31/30
R. Divisez par un nombre moindre

de 1 que les hommes, savoer est

par 2: ce sont 1 A m. 31/60 R.
E c’est la valuer du cheval. Donq,
1A est egale a 1 A m. 31/60 R.
E par souttraction, A est egale a
31/60 R. Donc 1A, vaut la double,
qui est 31/30 R. Meintenant, prenez
pour 1A, le numerateur, que est 31,
e pour 1R prenez le denominateur
30. Partant, le cheval valoet 31 e
l’argant commun etoest 30.

Table 2.5: The dependence of Peletier on Cardano’s Practica Arithmeticae.

Peletier thus literally translated Cardano’s text only changing 1 quan. in 1A
and reformulating the common sum as the value of a horse. We included
this fragment to show how strongly Peletier bases his algebra on Cardano
while Cifoletti attributes to him an important role in the development to-
wards a symbolic algebra. Nonetheless, Peletier introduces some interesting
new aspects in the next linear problem taken from Ars Magna. He first gives
a literal translation of Cardano’s solution calling the problem text proposi-
tion and the solution disposition. Interestingly he leaves out the substitution
steps from Cardano, lines (7) and (14). Cardano considered these important
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for a demonstration, but apparently Peletier does not. Then he introduces a
solution of his own (“trop plus facile que l’autre”). Starting from the same
formulation (2.2), Peletier adapts Cardano’s solution method by means of
Stifel’s symbolism for multiple unknowns.

Symbolic Meta description Original text

1 a = x choice of first unknown Le premier à 1R

2 b = y choice of second unknown Le second 1A

3 c = z choice of third unknown Le tiers 1B.

4 a+ 1
2
(b+ c) = 32 premise E par ce que le premier avec

1
2

des deus autres, an à 32:

5 x+ 1
2
(y + z) = 32 substitute (1), (2) and (3)

in (4)
1R p. (1A p. 1B)/2 seront
egales a 32.

6 2x+ y + z = 64 multiply (5) by 2 E par reduccion, e due trans-
posicion: 2R p. 1A p. 1B sont
egales a 64, qui sera la pre-
miere equacion.

7 b+ 1
3
(a+ c) = 28 premise Secondemant, par ce que le

second, avec 1/3 partie des
deus autres an à 28:

8 y + 1
3
(x+ z) = 28 substitute (1), (2) and (3)

in (6)
ce sont 1A p. (1R p. 1B)/3
egales a 28:

9 x+ z + 3y = 84 multiply (8) by 3 E par reduccion, 1A p. 1B p.
3A seront egales a 84, qui sera
la seconde equacion.

10 c+ 1
4
(a+ b) = 31 premise Pour le tiers (lequel avec 1

4
partie des deus autres an à

31),

11 z + 1
4
(x+ y) = 31 substitute (1), (2) and (3)

in (10)
nous aurons 1B p. (1R p.
1A)/4, egales a 31.

12 x+ y + 4z = 124 multiply (11) by 4 e par samblable reduccion,
1R p. 1A p 4B seront egales
a 124. Voela, noz troes equa-
cions principales.

Table 2.6: Peletier solving a problem by multiple unknowns.

Having arrived at three equations in three unknowns there seems to be little
innovation up to this point. All operations and the use of three unknowns have
been done before by Stifel. However, we can discern two subtle differences.
Firstly, the last line (12) suggests that Peletier considers the three equations
as an aggregate. In the rest of the problem solving process he explicitly acts
on this aggregate of equations (“disposons donq nos troes equacions an cete
sorte”). Secondly, he identifies the equations by a number. In fact, he is the
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first one in history to do so, a practice which is still in use today.19 The
identification of equations, as structures which you can manipulate, facilitates
the rhetorical structure of the disposition. This becomes evident in the final
part (see Table 2.7).

Symbolic Meta description Original text

13 2x+ 4y + 5z = 208 add (9) and (12) Ajoutons la seconde e la tierce, ce
seront, pour quatrieme equacion 2R
p. 4A p. 5B egales a 208

14 3y + 4z = 144 subtract (6) from (13) Donq an la conferant a la premier
equacion, par ce que 2R sont tant
d’une part que d’autre, la differance
de 64 a 208 (qui est 144) sera egale
avec la differance de 1A p. 1B a 4A
p. 5B: Donq, an otant 1A p. 1B de
4A p. 5B, nous aurons pour la cin-
quieme equacion 3A p. 4B egales a
144

15 3x+ 4y + 2z = 148 add (6) and (9) ajoutons la premiere e la seconde:
nous aurons pour la sizieme equa-
cion 3R p. 4A p. 2B egales a 148.

16 3x+ 2y + 5z = 188 add (6) and (12) ajoutons la premiere e la tierce:
nous aurons pour la sesttieme equa-
cion 3R p. 2A p. 5B egale a 188.

17 6x+ 6y + 7z = 336 add (15) and (16) ajoutons ces deus dernieres: nous
aurons, pour la huitieme equacion
6R p. 6A p. 7B egales a 336.

18 6x+ 6y + 24z = 744 multiply (12) by 6 Finablemant, multiplions la tierce
par 6 (pour sere les racines egales,
de ces deus dernieres equacions)
e nous aurons, pour la neuvieme
equacion 6R p. 6A p. 24B egales a
744.

Table 2.7: Peletier eliminating unknowns by adding and subtracting equations.

Peletier succeeded in manipulating the equations in such a way that he arrives
at two equations in which two of the unknowns have the same coefficients, or
in his terms, “equal roots”. Subtracting the two gives 17z = 408 arriving at
the value 24 for z. The other values can then easily be determined as 12 and
16. Comparing his method with Cardano’s, it is not shorter or more concise.
Cardano takes 16 steps to arrive at two equations in which one unknown can
be eliminated, Peletier takes 18 steps to the elimination of two unknowns. But

19 The classic work by Cajori (1928-9) on the history of mathematical notations, does not
include the topic of equation numbering or referencing. I have seen no use of equation
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Peletier does not use the argument of length, instead he considers his method
easier and clearer, thus emphasizing the argumentative structure. Indeed, as
can be seen from the table, the actual text fits our meta-description very well.
Peletier systematically uses operations on equations and applies addition and
subtraction of equations to eliminate unknowns. Moreover, he explicitly for-
mulates the operations as such: “add the second [equation] to the third, this
leads us to a fourth equation”. Although we have seen such operations per-
formed implicitly in Cardano’s illustration, the use of the terminology in the
argumentation is an important contribution. The use of multiple unknowns,
the symbolism and the argumentation, referring to operations on structures,
called equations, makes this an important entrance into symbolic algebra.

2.8 Valentin Mennher (1556)

Valentin Mennher, a reckoning master from Antwerp, introduces the rule in
between problems 254 and 255 as regle de la quantité, ou seconde radice in his
Arithmétique seconde (Mennher, 1556, f. Qiv; 1565, f. FFir) as a “rule which
exceeds all other rules and without which many examples would otherwise be
unsolvable”. He refers to Stifel for the origin of the rule and adopts Stifel’s
notation.20 From problem 267, it becomes clear that he has used Stifel’s edi-
tion of Rudolff (1553) as he also uses the improved notation AA for the square
of the second unknown (1556, ff. Qvir − Qviv; 1565, ff. Ffviiir − Ffviiiv).
We will give one example from Mennher, though the method does not differ
from Stifel’s solution to problem 193 of Rudolff’s Coss. The problem is about
four persons having a debt, with the four sums of three given. The problem
is known from early Indian sources. Stifel uses four unknowns while Rudolff
originally reuses the second unknown. Mennher adopts Stifels method with
different values and slightly changing the unknowns. Mennher uses the values:

a+ b+ c = 18
b+ c+ d = 25
a+ c+ d = 23
a+ b+ d = 21

With the unknowns x, A, B and C for d, a, b and c respectively, he expresses
the sum of all four as 18 + x, 25 + A, 23 + B and 21 + C.

numbers prior to Peletier’s.
20 Mennher, clearly learned the use of letters from Stifel, as he writes: “tout ainsi comme M.
Stiffelius l’enseigne, en posant apres le x pour la seconde position A, et pour la troisiesme
B, et pout la quatriesme C.” (Mennher, 1556, Qiv ; 1565 Ffir − Ffiv).



88 Albrecht Heeffer

Fig. 2.5: The use of the second unknown by Mennher (1556, f. Ffir).

As these four expressions have the same value, the debts of the first three
can be restated in terms of x, namely x – 7, x – 5, and x – 3 respectively.

Adding the three together with x leads to the sum of all four 4x – 15, which
is equal to 18 + x. From this it follows that x is 11, and the other debts are 4,
6 and 8. Most of the last twenty problems in the book are solved using several
unknowns.

2.9 Kaspar Peucer (1556)

The humanist Caspar Peucer wrote, among other works on medicine and
philosophy, a Latin algebra with the name Logistice Regulae Arithmeticae. The
book contributed little to the works published by Stifel and had little influence.
Except for a recent paper by Meiβner and Deschauer (2005), Peucer seems to
be forgotten. He discusses the regula quantitatis by the term radicibus secundis
and provides four examples (Peucer 1556, ff. Tvir-Viir). He refers to Rudolff,
Stifel and Cardano for the origin of the method. His first example is the
ass and mule problems from the Greek epigrams, creating the indeterminate
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equation 1x+1 = 1A−1. The other problems are linear ones involving multiple
unknowns. The symbolism is taken from Stifel (1544).

2.10 Towards a system of simultaneous equations

2.10.1 Buteo (1559)

Jean Borel, better known under his Latinized name Buteo, is an underesti-
mated as an author of mathematical works during the sixteenth century. He
started publishing only after he became sixty. His Logistica of 1559 is a natu-
ral extension of the ideas of Peletier. Though Peletier was the first to consider
an aggregate of equations, Buteo improved on Peletier and raised the method
to what we now call solving a system of simultaneous linear equations. The
naming of his book by the Greek term of logistics is an implicit denial of the
Arab contributions to Renaissance algebra. This position is shared by several
humanist writers of the sixteenth century.

Buteo introduces the second unknown in the third book on algebra in a
section De regula quantitatis (Buteo 1559, f. 189r). For the origin of the rule
he cites Pacioli and de la Roche (by the name Stephano). While the name of
the rule is indeed derived from de la Roche, Buteo remains quiet about his
main source, his rival Peletier.21

After an explanation of the method by means of four examples he solves
many linear problems by multiple unknowns in the fifth book. He introduces
some new symbols but he had too little influence on his peers to be followed
in this. Where Peletier and Mennher still used the radix or cossic sign for the
first unknown, Buteo assigns the letter A to the first unknown and continues
with B, C, .. for the other unknowns. Ommitting the cossic signs all together,
Buteo takes a major step into the “representation of compound concepts”, a
necessary step towards algebraic symbolism according to Serfati (2010). The
next step would be the use of exponents as introduced by Descartes in the
Regulæ. Buteo further uses a comma for addition, the letter M for subtraction
and a left square bracket for an equation. Thus the linear equation

6x+ 3y + 2c = 84

is written as
6A, 3B, 2C[84

21 Apart from a theoretical dispute on the angles of contact, in which Buteo’s Apologia of
1562 pursues a refutation of Peletier, there existed a real hostility between them.
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Once an equation is resolved in one unknown, he uses two brackets as in

5C[60] for 5z = 60

A fragment of the fourth example is shown in Figure 2.6.

Fig. 2.6: Systematic elimination of unknowns by Buteo (1559, 194)

Buteo refers to equations, not by numbers as Peletier but at least by their
order. As an example let us look at question 30 (Buteo 1559, 357-8). His
commentary is very terse (see Table 2.8).

With this and other examples, Buteo systematically manipulates equations
to eliminate unknowns. His explanation refers explicitly to the multiplication
of equations and the operations of adding or subtracting two equations. The
idea of substitution is implicitly present, but is not performed as such, as can
be seen from the missing commentaries for steps (13) and (16).

2.10.2 Pedro Nunes criticizing the second unknown

Although from Portugese origin, Nunes wrote his treatise on algebra in Span-
ish and published it in Antwerp.22 Because his Algebra was published in 1567,
it could appear that Nunes did not take advantage of the significant advances
22 His name is therefore often written in the Spanish form Pedro Nuñez.
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Symbolic Meta description Original text

1 x+ y
2

+ z
3

= 14 premise Huius solution secundum quanti-
tatis regulam investigabitur, hoc
modo. Pone Biremes esse 1A,
Triremes 1B, Liburnicas 1C. Erit
igitur 1A, B, 1/3 C [ 14. Item 1B,
1/3 A, C [13. Et 1C, 1/6 A, 1/8 B
[ 14.

2 x
3

+ y + z
4

= 13 premise

3 x
6

+ y
8

+ z = 14 premise

4 6x+ 3y + 2z = 84 multiply (1) by 6

5 4x+ 12y + 3z = 156 multiply (2) by 12

6 4x+ 3y + 24z = 336 multiply (3) by 24

7 24x+ 12y + 8z = 336 multiply (4) by 4 multiplica aequationem (4) in 4

8 20x+ 5z = 180 subtract (5) from (7) auser (5) restat

9 10x+ 15y + 5z = 240 add (4) and (5) adde (4) (5)

10 10x+ 60 = 15y subtract (9) from (8) Inter duas equationem postremas
que sunt (8) et (9) differentia est
(10)

11 5z = 60 subtract (10) from (8) qua sublata ex (10) restat (11)

12 z = 12 divide (11) by 5 Partire in 5 provenit (12)

13 20x+ 60 = 180 substitute in (12) in (8)

14 20x = 180 − 60 resolves (13) habeas Biremes ex aequatione ubi
est 180 auser 60

15 x = 6 divide (14) by 20 partire (14) in 20

16 2 + y + 3 = 13 substitute (15), (12) in (2)

17 y = 8 resolves (16) et Trimeres erunt 8

Quod erat quaesitum.

Table 2.8: Buteo’s handling of a system of linear equations.

in symbolic algebra established during the decades before him. However, in
the introduction, Nunes explains that he wrote most of the book over thirty
years ago.23 He chose to base much of the problems treated in his book on
the Summa by Pacioli (1494). He questions some innovations that he learned
from Pacioli, such as the use of the second unknown. Nunes discusses the
problem of three men comparing their money as treated by Pacioli in distinc-
tion 9, treatise 9, paragraph 26 (1494, f. 191v − 192r). However, the values
of the problem are not those of Pacioli but are identical to the problem of
Cardano, which we discussed above (2.2). Nunes does not reduce the problem

23 John Martyn discovered a manuscript in 1990, the Cod. cxiii/1-10 at Municipal Library
of Évora, Portugal. This Portugese text, written in 1533, contains an algebra which he at-
tributed to Pedro Nunes. The date corresponds well with this thirty years of time difference.

Martyn (1996) published an English translation and put much effort in the demonstration

of the similarities with the Spanish text of 1567. The attribution of this text to Nunez has
recently been refuted by Leitão (2002).
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to two linear equations in two unknowns to be resolved by manipulating the
equations as did Cardano (1545). Instead he follows the solution method in
two unknowns from Pacioli.24 He then provides a solution of his own, using a
single unknown and concludes with the following observation:25

But having treated the same example, that is case 51, we solved this with much ease,
and more concise by the single unknown, without the use of the absolute quantity.
And all the cases that Father Lucas solved with the [rule of] quantity, we solved by

the rules of the unknown, without the aid of this last quantity.

Nunes is not very impressed by the regula quantitatis in which others saw “a
more beautiful” way for solving problems or even “a perfection of algebra”.
He believes that most (linear) problems can be solved easier and shorter by a
single unknown.

Similar criticism was formulated by other authors. Bosmans discovered a
copy of the Arithmetica Integra by Stifel (1544) with marginal annotations
from Gemma Frisius. The book, kept at the Louvain university library, has
unfortunately been destroyed during World War I. Bosmans (1905-6, 168)
reports three occasions in which Frisius critizes Stifel for using the second un-
known: “Haec quaestio non requirit secundas radices” (f. 252v), “hic quoque
secundis radicibus non est opus” (f. 253r), “et haec quastio secundis radi-
cibus non est opus” (f. 253v) and “et haec quaestio secundis radicibus absolve
potest” (f. 255r). This demonstrates that the use of the second unknown was
still controversial during the mid-sixteenth century.

One could blame Frisius and Nunes for a reactionary view point. Bosmans
(1908a, 159) quotes Nunes with some examples in which he rejects negative
solutions and zero as a solution to an equation. However, Nunes had a very
modern approach to algebra. As pointed out by Bosmans (1908a, 163), he can
be credited as being the first who investigates the relationship of the following
product with the structure of the equations (Nunes 1567, f. 125v):

(x+ 1)(x+ 1), (x+ 1)(x+ 2), (x+ 1)(x+ 3) . . .
(2x+ 1)(x+ 1), (2x+ 1)(x+ 2), (2x+ 1)(x+ 3) . . .

As we now known from further developments, such investigations were impor-
tant to raise sixteenth century algebra from arithmetical problem solving to
the study of more abstract algebraic structures and relations. This leads us
to the last author before Viète writing on the Regula quantitatis.

24 We omit the solution here because a complete transcription of the problem with a
symbolic translation is provided by Bosmans (1908b, 21-2).
25 Nunes 1567, f. 225v: “Pero nos avemos tratado esto mismo exemplo, que es el caso 51, y
lo practicamos muy facilmente, y brevemente por la cosa, sin usar de la quantidad absoluta.
Y todos los casos que Fray Lucas practica por la quantidad, practicamos nos por las reglas
de la cosa, sin ayuda deste termino quantidad”.
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2.10.3 Gosselin (1577)

Guillaume Gosselin’s De Arte Magna is our last link connecting the achieve-
ments of Cardano, Stifel, and Buteo using the second unknown with Viète’s
study of the structure of equations in his Isagoge. Cifoletti (1993) has rightly
pointed out the importance of this French tradition to the further development
of symbolic algebra.

Gosselin is rather idiosyncratic in his notation system and seems to ignore
most of what was used before him. For the arithmetical operators, addition
and subtraction he uses the letters P and M, rather than + and – as was
commonly used in Germany and the Low Countries at that time and also
adopted by Ramus in France. However, five years later in de Ratione (Gosselin,
1583) he did use the + and – sign. The letter ‘L’ (from latus) is used for the
unknown; the square becomes ‘Q’ and the cube ‘C’. In some cases he refers
to the second unknown by ‘q’, as did Cardano. For a linear problems with
several unknowns he switches to the letters A, B, C, as Buteo, but evidently
leading to ambiguities with the sign for x3. Even more confusing is the use of
‘L’ for the root of a number, such as

L9 for
√

9 and LC8 for 3
√

8

Accepting isolated negative terms, the letter ‘M’ is also used as M8L for –8x.
Gosselin follows Buteo with equations to zero as in ‘3QM24L aequalia nihilo’,
for 3x2−24x = 0 (Gosselin 1577, f. 73v). The symbolism adopted by Gosselin
can be illustrated with an example of the multiplication of two polynomials
(ibid. f. 45v):

4 L M 6 Q P 7
3 Q P 4 L M 5

12 C M 18 QQ P 21 Q
Producta 16 Q M 24 C P 28 L

M 20 L P 30 Q M 35

Summa 67 Q P 8 L M 12 C M 18 QQ M 35

The major part of book IV deals with the second unknown, though his ter-
minology is rather puzzling. Chapter II is titled De quantitate absoluta (f.
80r) and chapter III (misnumbered as II) as De quantitate surda (f. 84r).
In both these chapters Gosselin solves linear problems with several unknown
quantities. So what is the difference? Gosselin gives no clue as he leaves out
any definitions of the terms. However, we have previously seen that ‘abso-
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lute quantity’ is used by Nunes and quantita sorda by Pacioli and Cardano.26

From a comparison of the five problems solved by ‘absolute quantities’ with
the four solved by the quantita surda it becomes apparent that Gosselin places
the distinction between multiple unknowns and the second unknown. Thus the
‘absolute quantities’ correspond with the symbolic unknowns A, B, C, .. as
used by Buteo. Gosselin leaves out the primary unknown of Stifel or Peletier,
as was previously done by Buteo. The quantita surda corresponds with the
quan. of Cardano (1545), for which Gosselin uses the symbol q. The positio of
Cardano becomes the latus for Gosselin.

1
2
y + 2 + x = 9

2
y − 18

x+ 20 = 4y

y = 1
4
x+ 5

1
3
x+ 3 + 1

4
x+ 5 = 2x− 9

17
12
x = 17

x = 12, y = 8

Table 2.9: Gosselin’s use of the quantita surda (Gosselin, 1577, f. 84v)

Cifoletti (1993, 138-9) concludes on Gosselin that

it is true that this innovation originates with Borrel [Buteo], but Gosselin uses it with
a new skill that permits him to more easily solve the same problems proposed by
Borel. It seems reasonable to think that Viète took his symbol as point of departure to
arrive at his A, E. Gosselin could also be a source for the notation used by Descartes,
who in the Regulae proposes to designate the known term with lower-case letters and
the unknown with capitals.

26 Cifoletti (1993, 136) is wrong in claiming that “Cardano does not use the word surda
in this sense”. Furthermore, she translates the quantita surda as the surd quantity and
speculates on irrational quantities. However, the Italian term sorda, as used by Pacioli,
means ‘mute’ in Italian. Thus quantitate sorda may simply refer to the voiceless consonant



2 From the second unknown to the symbolic equation 95

Symbolic Meta description Original text

1 x+ y
2

+ z
2

+ u
2

= 17 premise 1ABCD aequalia 17

2 x
3

+ y + z
3

+ u
3

= 12 premise 1B1/3A1/3C1/3D aequalia 12

3 x
4

+ y
4

+ z + u
4

= 13 premise 1CABD aequalia 13

4 x
6

+ y
6

+ z
6

+ u = 13 premise 1D1/6A1/6B1/6C aequalia 13

5 2x+ y + z + u = 34 multiply (1) by 2 revocentur ad integros numeros, exis-
tent 2A1B1C1D aequalia 34

6 x+ 3y + z + u = 36 multiply (2) by 3 1A3B1C1D aequalia 36

7 x+ y + 4z + u = 52 multiply (3) by 4 1A1B4C1D aequalia 52

8 x+ y + z + 6u = 78 multiply (4) by 6 1A1B1C6D aequalia 78

9 2x+ 2y + 5z + 7u = 130 add (7) and (8) addamus duas ultimas aequationes,
tertiam scilicet et quartam, existent
2A2B5C7D aequalia 130

10 y + 4z + 6u = 96 subtract (5) from

(9)

tollamus hinc primam, restabunt

1B4C6D aequalia 96

11 2x+ 4y + 2z + 7u = 114 add (6) and (8) addamus quartam et secundam, fient
2A4B2C7D aequalia 114

12 3y + z + 6u = 80 subtract (5) from
(11)

tollamus hinc primam, supererunt
3B1C6D aequalia 80

13 2x+ 4y + 5z + 2u = 88 add (6) and (7) addamus secundam et tertiam aequa-
tionem, fient 2A4B5C2D aequalia 88

14 3y + 4z + u = 54 subtract (5) from
(13)

tollamus primam, restabunt
3B4C1D aequalia 54

15 3y + 12z + 18u = 288 multiply (10) by 3 iam vero triplicemus 1B4C6D quae
fuerunt aequalia 96 fient 3B12C18D ae-
qualia 288

16 11z + 12u = 208 subtract (12) from
(15)

tollamus hinc 3B1C6D aequalia 80,
restabunt 11C12D aequalia 20

17 8z + 17u = 234 subtract (14) from
(15)

subducamus iterum ex eadem tripli-
cata aequatione 3B4C1D eaqualia 54,
restabunt 8C17D aequalia 234

18 88z + 187u = 2574 multiply (17) by 11 multiplicemus hanc aequationem in 11,
fient 88C187D aequalia 2574

19 88z + 96u = 1664 multiply (16) by 8 ducamus etiam 11C12D aequalia 208,
in 8, existent 88C96D aequalia 1664

20 91u = 910 subtract (19) from
(18)

tollamus 88C96D aequalia 1664 ex
88C187D aequalibus 2574, restabunt
91D aequalia 910 sicque stat aequatio

21 u = 10 divide (20) by 91 partiemur 910 in 91, quotus erit 10
valor D, est ergo 10 ultimus numerus
ex quaesitis

22 11z + 120 = 208 substitute (21) in
(16)

et quoniam 11C12D erant aequalia 208,

Table 2.10: Gosselin’s solution to a problem from Buteo.

q representing ‘quantity’. In English a voiceless consonant is also called a surd.
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We believe that the influence on Viète and Descartes attributed to Gosselin
by Cifoletti is too much of an honour for Gosselin. The many ambiguities in
Gosselin’s system of symbols are clearly a departure from the achievements
by Stifel (1553). As to the superior way of solving problems with multiple
unknowns let us look at the fifth problem which Gosselin solves by ‘absolute
quantities’. The problem text and its meta-description is as follows (Gosselin
1577, f. 82v):

Quatuor numeros invenire, quorum primus cum semisse reliquorum faciat 17. Secun-
dus cum aliorum triente 12. Tertius cum aliorum quadrante 13. Quartus cum aliorum
sextante faciat 13.

x+ y
2 + z

3 + u
2 = 17

x
3 + y + z

3 + u
3 = 12

x
4 + y

4 + z + u
4 = 13

x
6 + y

6 + z
6 + u = 13

This is the very same problem of Buteo (1559, 193-6) shown in Figure 2.6.
Bosmans (1906, 64) writes that here “Gosselin triumphs over Buteo who gets
confused in solving the problem”. Let us first look at Gosselin’s solution in
Table 2.10.

23 11z = 88 subtract 120 from
(22)

tollamus 12D hoc est 120, restabunt 88
aequalia 11C

24 z = 8 divide (23) by 11 dividemus 88 in 11, quotus erit 8, valor
C et tertius numerus

25 3y + 10 + 32 = 54 substitute (21) and
(24) in (14)

sed etiam 3B4C1D aequalia sunt 54,

26 3y = 12 subtract 42 from
(25)

tollamus hinc 4C1D, hoc est 10 et 32,
nempe 42, restabunt 12 aequalia 3B

27 y = 4 divide (26) by 3 estque B et secundus numerus 4

28 2x+ 4 + 8 + 10 = 34 substitute (21),
(24) and (27) in (5)

iam vero 2A1B1C1D aequantur 34,

29 2x = 12 subtract 22 from
(28)

tollamus 1B, nempe 4, 1C 8, 1D 10, hoc
est 22, restabunt
12 aequalia 2A

30 x = 6 divide (28) by 2 quare 1A et primus numerus est 6

Table 2.11: Final part of Gosselin’s solution to a problem from Buteo.

Buteo provides three different but correct solutions to the problem. In the
first he reduces the number of equations by multiplication and subtraction to
eliminate an unknown in every subtraction step. Gosselin’s method may be
somewhat more resourceful but there is little conceptual difference between
both with regards to equations and the possible operations on equations.
Remark that the solution text is close to identical with our meta-description.
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This signifies the completion of an important phase towards the emergence of
symbolic algebra.

2.11 Simon Stevin (1585)

In his L’arithmetique, Simon Stevin (1585) employs the second unknown for
several problems. From questions 25 to 27 it becomes obvious that he used
Cardano’s Ars Magna for his use of the second unknown. Although not orig-
inal in its method, Stevin’s use of symbolism is quite novel (see Figure 2.7).
Let us look at question 27 asking for three numbers in GP with the sum given
and the condition that the square of the middle term is equal to twice the
product of the two smaller numbers plus six times the smaller number (Stevin
1585, 402-404). In modern symbolism the structure of the problems is:

Fig. 2.7: Simon Stevin’s symbolism for the second unknown (from Stevin 1585,
401)

a : b = b : c
a+ b+ c = d
eab+ fa = b2

Cardano discusses the problems with (20; 2, 4) for the values of (d; e, f).
Stevin writes that he has the problem from Cardano and changes the values
to (26; 2, 6). Stevin calls his solution a construction (of an equation) and
starts by using the first unknown for the middle term and the second for the
lower extreme, for which we will use x and y. An unknown is represented by
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Stevin as a number within a circle. The number inside denotes the power of
the unknown. Thus

� stands for x and � for x2

To differentiate the second unknown from the first the power of the unknown
is preceded by sec., for example

5y2 becomes 5sec. �

For multiplication, Stevin used the letter M , thus

5xy2 would be 5 �Msec. �

Remark that if this system would be extended to pri. and ter., the circled
numbers correspond to our exponents and the Stevin’s symbolism becomes
very similar with the one adopted by Descartes in 1637.

Stevin proceeds by formulating the condition in terms of the two unknowns
as x2 = 2xy + 6y, or using his notation, as

1� égale à 2 �Msec. � + 6sec.�

As x is the mean proportional between y and the third number c, x2 = yc
and the larger extreme must be equal to 2x+ 6. Thus, y, x and 2x+ 6 are in
continuous proportion and their sum is 26. This allows Stevin to express the
value of the second unknown as:

−3� + 20

Substituting (−3x+ 20) as the value of y in x2 + 2xy + 6y leads to

x2 = −6x2 + 22x+ 120

for which Stevin gives the root of 6 leading to the solution (2, 6, 18).

2.12 Conclusion

We have treated the development of symbolism with regards to the second
unknown from 1539 to 1585, the period preceding Viète’s Isagoge (1591). We
have argued that the search – or we might even say, the struggle – towards
a satisfactory system for representing multiple unknowns has lead to the cre-
ation of a new mathematical object: the symbolic equation. The solution to
linear problems by means of the second unknown initiated, for the first time,
operations on equations (in Cardano’s Practica Arithmeticae) and operations
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between equations (in Cardano’s Ars Magna). Once operations on equations
became possible, the symbolic equation became a mathematical object of its
own and hence required a new concept. Algebraic practice before Cardano
consisted mostly of problem solving by means of the manipulation of poly-
nomials – on the condition that they were kept equal – in order to arrive at
a format for which a standard rule could be applied. We therefore use the
term ‘co-equal polynomials’ for these structures rather than “equations” in
the modern sense. Half a century of algebra textbooks marked the transition
from algebra as a practice of problem solving (the abbaco and cossic tradition)
to algebra as the study of equations. These authors, and especially Cardano
and Stifel paved the Royal road for Viète, Harriot, and Descartes, to use al-
gebra as an analytic tool within the wider context of mathematics. In order
to study the structure of equations, the concept of a symbolic equation had
to be established.
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matica, 3 (8), pp. 154-69.
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Sabine Rommevaux, Maryvonne Spiesser, Archives internationales d’histoire des sci-
ences, 2010 (to appear).

25. Høyrup, Jens, 2010. “Hesitating progress — the slow development toward algebraic
symbolization in abbacus - and related manuscripts, c. 1300 to c. 1550”. in A. Heeffer
and M. Van Dyck (eds.) Philosophical Aspects of Symbolic Reasoning in Early Modern

Mathematics, Studies in Logic 26, London: College Publications, 2010 (this volume,
chapter 1).

26. Heeffer, Albrecht, 2010b. “Algebraic partitioning problems from Luca Pacioli’s Perugia
manuscript (Vat. Lat. 3129)”. Sources and Commentaries in Exact Sciences, (2010),
11, pp. 3-52.

27. Hughes, Barnabas, 2001. “A Treatise on Problem Solving from Early Medieval Latin
Europe”, Mediaeval Studies, 63, pp. 107-41.

28. Leitão, Henrique, 2002. “Sobre as ‘Notas de Álgebra’ atribúıdas a Pedro Nunes (ms.
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