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Abstract

We study original position arguments in the context of social choice under
ignorance. First, we present a general formal framework for such argu-
ments. Next, we provide an axiomatic characterization of social choice
rules that can be grounded by them. We illustrate this characterization
in terms of various well-known social choice rules, some of which do and
some of which do not satisfy the axioms in question. Depending on the
perspective one takes, our results can be used to argue against certain
rules, or conversely, against theories of procedural fairness that are built
on the Rawlsian notion of original position arguments.

Keywords: original position arguments, social choice under ignorance, axiom-
atization.

1 Introduction

When a social planner decides between different policies, we expect her to em-
ploy a decision procedure or rule that is fair to the individuals whose welfare is
affected by the decision.1 Naturally, there are many competing views on what it
means to say a procedure is fair. One prominent view takes an ex ante perspec-
tive and argues that “a procedure is fair if all parties would have agreed to the
procedure had they been able to contract for it in advance of (“ex ante”) their
dispute” [4, p. 491]. The central question is then: why should such hypotheti-
cal consent be enough to justify imposing a procedure on someone who objects
to it? Bone [4] distinguishes between two forms of contractarian theories that
provide an answer: egoistic contractarianism and ideal contractarianism.

Egoistic contractarianism states that a person should comply with a proce-
dure because if she were perfectly rational and well-informed she would have
agreed to the procedure. By contrast, ideal contractarianism states that a per-
son should comply because if she were put in an idealized choice situation, then
it would be in her self-interest to accept the procedure. A prominent example of

1While the terms ‘rule’ and ‘procedure’ have different meanings, we treat them as inter-
changeable in this paper.
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this last approach is Rawls’s original position argument in A Theory of Justice
[22].

The original position is a hypothetical situation where “no one knows his
place in society, his class position or social status [...]” [22, p. 11]. Once we
are placed in such a situation, the problem of ascertaining the fairness of a
procedure is reduced to one of rational choice:

Understood in this way the question of justification is settled by
working out a problem of deliberation: we have to ascertain which
principles it would be rational to adopt given the contractual situa-
tion [viz. the original position]. This connects the theory of justice
with the theory of rational choice. [22, p. 16]

Importantly, even if we buy into ideal contractarianism, it remains an open
question what principles we should adopt in the original position. Rawls, for one,
argues that individuals in the original position are fully ignorant and have no
reasonable basis to assign probabilities to the various possible outcomes [22, pp.
134-135]. He argues, moreover, that rational individuals would reason according
to the maximin principle, which compares choices by looking only at their worst
possible outcomes. This, it is argued, corresponds with the recommendations
of the difference principle, which states that we should “arrange social and
economic inequalities in such a way that they are to the benefit of the least
advantaged” [22, p. 20].

The difference principle has been criticized by Sen [25] on the grounds that
it violates the strong pareto principle.2 Some have proposed a lexical variant of
the difference principle, which says that one should first maximize the welfare of
the worst-off individuals and then, in case of equal welfare, maximize the welfare
of the second worst-off individuals, and so on. Both Parfit [20] and van Parijs
[28] have claimed that Rawls’s original position argument is better understood
as supporting such a lexical difference principle.3 In contrast to these proposals,
Harsanyi [11, 12] argues that when faced with complete ignorance, we should
assign every outcome an equal probability and maximize expected utility. This
corresponds to the principle of average utility, which favours the options that
lead to the highest average utility of the members of society.

The dispute between Rawls and Harsanyi has spawned a rich literature on
social choice and decision-making under uncertainty [17, 19, 24, 10, 8, 5, 26,
6]. Emerging from this is the view that, even if they are not able to single
out a unique principle of justice, original position arguments still serve as a
useful tool in sorting out our intuitions regarding procedural fairness and its
relation to social choice [14]. What is lacking, however, is an exact and general
characterization of exactly which conceptions of justice or social choice can be

2On the strong pareto principle, a welfare distribution is optimal if and only if there is no
other distribution such that no one is worse off and at least one individual is strictly better
off under that other distribution.

3See [7] for a critical survey of lexical variants of the difference principle from the viewpoint
of original position arguments.
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grounded in an original position argument. The present paper contributes to
filling this gap.

This paper Within the decision theoretic literature, choice under uncertainty
is typically split into two types: choice under ignorance and choice under risk.
The latter refers to cases where we know the probabilities of each possible state,
whereas the former refers to cases where such information is absent [23, 21]. In
this paper, we focus on social choice rules for decision-making under ignorance.
We ask under what conditions original position arguments such as Rawls’s and
Harsanyi’s can be successful. That is, instead of arguing for or against particular
individual and social choice rules, we provide an axiomatic characterization of
the general class of social choice rules that can be grounded in an original
position argument.

We start by introducing standard models of (social) choice under ignorance
and define the general classes of individual and social choice rules (Section 2).
In Section 3, we present a general format for evaluating original position ar-
guments, give examples of such arguments, and introduce the two axioms that
make way for our central characterization theorem, which is then established in
Section 4. This characterization result roughly says that a social choice rule can
be grounded in an original position argument if and only if according to this
social choice rule it does not matter which individual gets what and under what
circumstances. We end with a discussion of our results and what they imply for
original position arguments (Section 5).

Related work Maskin [15] gives a general, axiomatic characterization of indi-
vidual choice rules under ignorance. As he indicates, these axiomatizations are
strongly linked to results in social choice theory, but Maskin does not consider
the issue of social choice under ignorance per se, let alone the Rawlsian notion
of an original position.

Strasnick [27] also approaches original position arguments from an axiomatic
angle. He argues that the concept of an original position entails a specific
requirement on (a social planner’s) priorities over individual preferences that,
combined with various plausible principles of social choice, results in a ranking
of distributions that agrees with the difference principle. It is an open question
whether and how these insights can be generalized to deal with choice under
uncertainty.

A general format for evaluating original position arguments within the con-
text of choice under ignorance was first proposed in [7]. We use the same format
and make the underlying assumptions about individual and social choice fully
precise in this paper. Moreover, whereas [7] focuses on the lexical difference
principle and original position arguments for it, our focus here is on axiomatiz-
ing a general class of social choice rules, viz. those that can be grounded in an
original position argument.
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2 Choice scenarios and choice rules

We start by introducing models of social choice under ignorance (Section 2.1).
Once this is in place, we specify plausible individual and social choice rules and
delineate a general class of individual and social choice rules (Section 2.2).

2.1 Choice scenarios

The models we use are introduced in [7]. These models are obtained by com-
bining ingredients from the study of welfare distributions (cf. [25]) and from
decision-making under ignorance (cf. [23, 21]).

Definition 1. A choice scenario is a tuple C = 〈N,A, S, d〉, where N is a non-
empty finite set of individuals, A a non-empty finite set of alternatives, S a
non-empty finite set of states, and d : N × A × S → R a welfare distribution
function.

In a given choice scenario, the set S represents the ignorance of the decision-
maker, i.e. S is the set of states the decision-maker considers possible. The
members of A× S are called the (possible) outcomes of the scenario. For each
of these outcomes (a, s), the distribution function d determines the welfare of
each individual i ∈ N . Depending on the application, one may require an
ordinal or cardinal welfare scale and expect these values to be interpersonally
comparable. In all our examples we assume interpersonal comparability and
depending on the example a cardinal scale is also assumed. However, none of
our technical results depend on any scale or interpretation of welfare. We work
with finite models to keep our examples simple, but our characterization result
does not depend on this assumption.

Figure 1 represents a simple choice scenario with two individuals 1 and
2, three alternatives, and two states. Here, the couples (n,m) represent the
distribution function, where n = d(1, a, s) and m = d(2, a, s). For example,
at outcome (b, s2) individual 1’s welfare is 1 whereas individual 2’s welfare is 3,
such that individual 2 is considered better off than individual 1 at that outcome.
Throughout this article, we use this choice scenario (and variations of it) as our
running example.

C1 s1 s2

a (1, 1) (2, 2)

b (1, 2) (1, 3)

c (6, 0) (0, 2)

Figure 1: Choice scenario C1, with two individuals, two states, and three alter-
natives.
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2.2 Choice Rules

We consider two types of choice rules, viz. social choice rules and individual
choice rules. Given a choice scenario C = 〈N,A, S, d〉, a social choice rule S
determines a set of admissible alternatives S(C) ⊆ A, whereas an individual
choice rule R determines a set of admissible alternatives R(C, i) ⊆ A for each
individual i ∈ N . In what follows, we provide examples of individual (Section
2.2.1) and social (Section 2.2.3) choice rules and give exact definitions of these
concepts (Sections 2.2.2 and 2.2.4).

2.2.1 Examples of individual choice rules

Let us briefly recall two well-known individual choice rules to set the stage for
later discussions. First, the maximin rule tells us to choose any alternative
that maximizes the value of the worst possible outcome.4 More precisely, where
min(X) denotes the ≤-minimal element of a set X of real numbers, we have:

Definition 2 (Maximin admissibility). Where C = 〈N,A, S, d〉 is a choice sce-
nario, i ∈ N , and a ∈ A: a ∈ Rm(C, i) iff for all b ∈ A : min{d(i, a, s) | s ∈
S} ≥ min{d(i, b, s) | s ∈ S}.

For example, in Figure 1, alternatives a and b are maximin admissible for indi-
vidual 1 whereas for individual 2 only alternative b is admissible.5

Second, the expected utility rule tells us to choose any alternative that max-
imizes expected utility. However, recall that we do not assume that individuals
have expectations about the relative likelihood of states. In order to perform
expected utility calculations, we rely on the principle of insufficient reason or
principle of indifference (cf. [13]), which states that in the absence of relevant
evidence, individuals should assume that every state is equally likely.

Notation 1. Let C = 〈N,A, S, d〉 be a choice scenario. Where a ∈ A and i ∈ N ,
we write eui(a) to denote the expected utility of a for i, i.e.

eui(a) =
∑
s∈S

d(i, a, s)

|S|

.

Definition 3 (Expected utility admissibility). Where C = 〈N,A, S, d〉 is a
choice scenario, i ∈ N , and a ∈ A: a ∈ Reu(C, i) iff for all b ∈ A : eui(a) ≥
eui(b).

In our running example (Figure 1), we have eu1(a) = 1.5, eu1(b) = 1, and
eu1(c) = 3. Hence, the ranking for individual 1 induced by expected utility is

4See [15] for an axiomatic characterization of the maximin rule within the context of choice
under ignorance.

5Maximin is often described as a conservative rule as it only takes into account the worst
outcomes [21]. To remedy this, a number of more sophisticated rules have been proposed,
such as the leximin and optimism-pessimism rule. However, we do not consider these rules in
this paper.
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c � a � b. For individual 2, we have b � a � c since eu2(a) = 1.5, eu2(b) = 2.5,
and eu2(c) = 1. In conclusion, only alternative c is expected utility admissible
for individual 1, whereas only alternative b is expected utility admissible for
individual 2.

2.2.2 An exact characterization of individual choice rules

In general, we define individual choice rules as pointed choice rules that satisfy
certain axioms. By a pointed choice rule we mean a choice rule that determines
a set of admissable alternatives relative to a specific “point”, i.e. an individual.

Definition 4 (Pointed choice rule). R is a pointed choice rule iff for each
choice scenario C = 〈N,A, S, d〉 and individual i ∈ N , R(C, i) ⊆ A.

An individual choice rule is a pointed choice rule that satisfies Individualism
and Column Symmetry. First, Individualism (I) requires that for each individ-
ual, its set of admissible alternatives does not depend on the payoffs of other
individuals in the same scenario. This implies that whatever is admissible for
one individual does not change when we change the payoffs of other individuals.

Definition 5 (i-equivalence). Let C = 〈N,A, S, d〉 and C′ = 〈N,A, S, d′〉 be
choice scenarios and let i ∈ N . Scenarios C and C′ are i-equivalent iff for all
a ∈ A, s ∈ S : d′(i, a, s) = d(i, a, s).

In Figure 2, scenarios C1 and C2 are 1-equivalent because individual 1 receives
exactly the same payoffs in C1 as in C2. By contrast, individual 2 receives
different payoffs in both scenarios. Individualism requires that if a is admissible
for individual 1 in C1, then a should be admissible for individual 1 in C2 as well.

C1 s1 s2

a (1, 1) (2, 2)

b (1, 2) (1, 3)

c (6, 0) (0, 2)

C2 s1 s2

a (1, 0) (2, 0)

b (1, 0) (1, 0)

c (6, 0) (0, 0)

Figure 2: Scenario C1 and C2 are 1-equivalent but not 2-equivalent.

Individualism If C and C′ are i-equivalent then R(C′, i) = R(C, i).

Second, Column Symmetry (CS) requires that a choice rule is not sensitive to
the way states are labelled. This principle is one half of Milnor’s [16] Symmetry
Condition, which states that the labelling of states and alternatives should be
irrelevant to decision criteria.6 It is considered standard when dealing with
choice under ignorance (cf. [21]). The following definition determines when we
can relabel the states from different scenarios to obtain one from the other.

6Milnor’s Symmetry Condition is also known as Arrow and Hurwicz’s property B [1].
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Definition 6 (S-label variants). Let C = 〈N,A, S, d〉 and C′ = 〈N,A, S′, d′〉
be choice scenarios. Scenarios C and C′ are S-label variants iff there exists a
bijection σ : S → S′ such that for all i ∈ N , a ∈ A and s ∈ S : d′(i, a, σ(s)) =
d(i, a, s).

In Figure 3, we see two choice scenarios that are S-label variants. For both
individuals, the payoffs they receive at s1 in C1 are identical to the payoffs they
receive in s′1 in C2, and the same holds for s2 and s′2. Column Symmetry requires
that if a is admissible for individual 1 in C1, then a should also be admissible
for individual 1 in C2.

C1 s1 s2

a (1, 1) (2, 2)

b (1, 2) (1, 3)

c (6, 0) (0, 2)

C2 s′1 s′2

a (1, 1) (2, 2)

b (1, 2) (1, 3)

c (6, 0) (0, 2)

Figure 3: Scenario C1 and C2 are S-label variants.

Column
Symmetry

If C and C′ are S-label variants then for all i ∈ N : R(C, i) =
R(C′, i).

We submit that both Individualism and Column Symmetry are the weakest
requirements one can impose on pointed choice rules without compromising the
concept of an original position argument. First, Column Symmetry is both
common and plausible. More importantly, as shown in Appendix A, without
this axiom, the notion of an original position argument as we characterize it is
trivialized (Theorem 4). Second, Individualism is integral to the concept of an
original position argument.7 Rawls writes: “The essential idea is that we want to
account for the social values, for the intrinsic good of institutional, community,
and associative activities, by a conception of justice that in its theoretical basis
is individualistic.” [22, p. 233]. Hence, the attractiveness of original position
arguments relies on the fact that some social choice rules can be reduced to the
rational decision-making of self-interested persons (i.e. they are individualistic)
under hypothetical circumstances considered fair.

In what follows, we take individual choice rules to be pointed choice rules
that satisfy Individualism and Column Symmetry. Clearly, both maximin and
the expected utility rule satisfy Individualism since both determine a set of
admissible alternatives for each individual i ∈ N and only take into account the
payoffs of that individual. Likewise, both rules satisfy Column Symmetry for
obvious reasons. Hence, maximin and the expected utility rule are individual
choice rules in the sense just defined.

7It is possible to give up Individualism without trivializing the concept of an original
position argument. In Appendix A, we state and prove the characterization result that arises
in such a setting (Corollary 3).
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2.2.3 Examples of Social Choice Rules

In this section, we introduce four distinct social choice rules. These social choice
rules will be used as examples throughout the article.

Difference Principle The difference principle states that we should “arrange
social and economic inequalities in such a way that they are to the benefit of the
least advantaged” [22, p. 20]. Conceived as a social choice rule, the difference
principle tells us to choose any alternative that maximizes the prospects of the
least well-off. However, once we are dealing with a context of choice under
ignorance, it is ambiguous what exactly “least well-off” means, and hence one
may specify this principle in conceptually distinct ways (see [7] for an overview
of these approaches). Here, we will focus on one approach, viz. what is called
the basic approach in [7]. On the basic approach, we maximize welfare, ignoring
the distinction between different states and different individuals.

Definition 7 (Difference admissibility). Where C = 〈N,A, S, d〉 is a choice
scenario and a ∈ A: a ∈ Sd(C) iff for all b ∈ A : min{d(i, a, s) | i ∈ N & s ∈
S} ≥ min{d(i, b, s) | i ∈ N & s ∈ S}.

For example, in the scenario in Figure 1 on page 4, we have min{d(i, a, s) |
i ∈ N & s ∈ S} = 1, min{d(i, b, s) | i ∈ N & s ∈ S} = 1, and min{d(i, c, s) | i ∈
N & s ∈ S} = 0. Hence, both a and b are difference admissible, but c is not.

Average Expected Utility The second social choice rule that we discuss
is the average expected utility rule. It tells us to choose any alternative that
maximizes the average expected utility of all individuals.

Notation 2. Let C = 〈N,A, S, d〉 be a choice scenario. Where a ∈ A, we write
aeu(a) to denote the average expected utility of a, i.e.

aeu(a) =

∑
i∈N eui(a)

|N |
.

Definition 8 (Average expected utility admissibility). Where C = 〈N,A, S, d〉
is a choice scenario and a ∈ A: a ∈ Saeu(C) iff for all b ∈ A : aeu(a) ≥ aeu(b).

Applying the average expected utility rule to our running example (cf. Figure
1), we have aeu(a) = 1.5, aeu(b) = 1.75, and aeu(c) = 2, and hence the ranking
induced by average expected utility is c � b � a. Notice that the expected
utility for individual 1 under c is very high (eu1(c) = 3), whereas for individual
2 it is relatively low ( eu2(c) = 1). Still, the rule picks c because the average
social utility is skewed upwards by the great prospects of individual 1, even
though it is the worst alternative for individual 2. For this reason, the average
expected utility rule is sometimes criticized on the grounds that it allows for
the “sacrificing” of those who are less well-off if doing so would be offset by a
sufficient benefit to others. In order to remedy this, one should give greater
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weight to the expectations of those who are less well-off. More generally, one
may consider ways of combining the difference principle and expected utility.
In what follows, we consider two such combinations originally introduced by
Mongin and Pivato in [18].8

Difference Expected Utility According to this social choice rule we maxi-
mize the social value of alternatives, where the social value of an alternative is
the expected utility of the individual who has the worst prospects under that
alternative.

Definition 9 (Difference expected utility admissibility). Where C = 〈N,A, S, d〉
is a choice scenario and a ∈ A: a ∈ Sdeu(C) iff for all b ∈ A : min{eui(a) | i ∈
N} ≥ min{eui(b) | i ∈ N}.
In our running example (cf. Figure 1), we have min{eui(a) | i ∈ N} = 1.5,
min{eui(b) | i ∈ N} = 1, and min{eui(c) | i ∈ N} = 1. Hence, the difference
expected utility ranking is a � b = c.

Maximin Expected Utility On this social choice rule, to determine the
social value of an alternative, we obtain for each outcome the value of the
worst-off person at that outcome and then apply the expected utility rule to
these values.

Notation 3. Let C = 〈N,A, S, d〉 be a choice scenario. Where a ∈ A, we write
meu(a) to denote the maximin expected utility of alternative a, i.e.

meu(a) =
∑
s∈S

min{d(i, a, s) | i ∈ N}
|S|

.

Definition 10 (Maximin expected utility admissibility). Where C = 〈N,A, S, d〉
is a choice scenario and a ∈ A, a ∈ Smau(C) iff for all b ∈ A : meu(a) ≥ meu(b).

Looking at our running example once more, we have meu(a) = 1.5, meu(b) = 1,
and meu(c) = 0. Hence, the induced ranking is a � b � c.

2.2.4 An exact characterization of social choice rules

We introduce the general class of social choice rules. Recall that these are
conceived as rules that map every choice scenario C = 〈N,A, S, d〉 to a subset
S(C) ⊆ A of socially admissible alternatives. In addition to this formal require-
ment, we require that social choice rules satisfy State Multiplication Indifference.
This axiom says that if we duplicate every state of a given scenario a fixed num-
ber of times, then the admissibility of an alternative should be preserved.

8Mongin and Pivato [18] write: “probabilities can enter the maximin rule in accordance
with two different methods. Either an expected value is first taken for each individual and
maximin is then applied, which is the ex ante method, or maximin is first applied in each state
and the expected value is then taken, which is the ex post method.”. The difference expected
utility rule we mention corresponds to what they call the ex ante approach to maximin, and
the maximin expected utility rule to the ex post approach.
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Sd Saeu Sdeu Smeu

a 1 1.5 1.5 1.5

b 1 1.75 1 1

c 0 2 1 0

a = b � c c � b � a a � b = c a � b � c

Table 1: The choice rules applied to the running example (cf. Figure 1).

Definition 11 (State Multiplication variants). Let C = 〈N,A, S, d〉 be a choice
scenario and let ∆ be a non-empty finite set. Scenarios C and C∆ = 〈N,A, S∆, d∆〉
are State Multiplication variants iff

� S∆ = S ×∆

� for all i ∈ N , a ∈ A, (s, δ) ∈ S∆ : d∆(i, a, (s, δ)) = d(i, a, s).

State Multiplication
Indifference

For all choice scenarios C and all non-empty and finite

∆: S(C) = S(C∆).

All the social choice rules introduced above satisfy State Multiplication In-
difference. For example, for the expected average utility rule, multiplying the
entire set of states does not change the expected utility of any individual. Hence,
since the expected utility of each individual does not change after multiplication,
the expected average utility also does not change. State Multiplication Indiffer-
ence is weaker than the property known as Column Duplication9 [3, 16]. The
latter allows for adding copies of just some states, whereas State Multiplication
only allows one to copy all states a given number of times.

Definition 12 (Social choice rule). S is a social choice rule iff for each choice
scenario C = 〈N,A, S, d〉, S(C) ⊆ A and S satisfies State Multiplication Indif-
ference.

Our notion of social choice rules is very liberal: it assumes almost no prop-
erties. This is as intended. In what follows we ask, within this very broad class,
which social choice rules can be grounded in an original position argument.

3 Original Position Arguments

What does it mean that a given individual choice rule can be used to ground
a social choice rule, using an original position argument? We start by giving a
definition of original position arguments within our format (Section 3.1). Next,
we give examples of such arguments for concrete social choice rules (Section 3.2).
Finally, we introduce the axioms that characterize the class of all social choice
rules that can be grounded in an original position argument (Section 3.3).

9Column Duplication is also known as State-Individuation Invariance (cf. [9]) or Indepen-
dence of Duplicate States (cf. [2]).
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3.1 A definition of original position arguments

We present the general format for evaluating original position arguments intro-
duced in [7]. The starting point is the view that the original position does not
correspond to a particular scenario: instead, for each particular choice scenario,
we can construct a corresponding choice scenario which has the characteristics
of an original position. The latter is called the original position transformation
of the original choice scenario.

Definition 13 (OP-transformation). Let C = 〈N,A, S, d〉 be a choice scenario.
Let Π be the set of all bijective functions π : N → N . The original position
transformation of C is the choice scenario C∗ = 〈N,A, S∗, d∗〉, where

� S∗ = S ×Π

� for all i ∈ N , a ∈ A, and (s, π) ∈ S∗: d∗(i, a, (s, π)) = d(π(i), a, s)

In other words, given some choice scenario C, we obtain its OP-transformation
C∗ by combining the ignorance in the original model with ignorance about the
individual’s identities and the way these identities affect the level of welfare one
receives. We illustrate this by means of our running example. Figure 4 displays
(on the left-hand side) the choice scenario C1, and (on the right-hand side) its
OP-transformation. Here, π= is the identity relation, and π 6= swaps the two
individuals, i.e. π=(1) = 1, π=(2) = 2, π 6=(1) = 2, and π 6=(2) = 1. If we ap-
ply the maximin rule to the OP-transformation, we find that both a and b are
admissible for individual 1, while c is not.

C1 s1 s2

a (1, 1) (2, 2)

b (1, 2) (1, 3)

c (6, 0) (0, 2)

C∗1 (s1, π=) (s2, π=) (s1, π6=) (s2, π6=)

a (1, 1) (2, 2) (1, 1) (2, 2)

b (1, 2) (1, 3) (2, 1) (3, 1)

c (6, 0) (0, 2) (0, 6) (2, 0)

Figure 4: A choice scenario (C1) and its OP-transformation (C∗1).

With this in place, we can give an exact definition of what it means for a
social choice rule to be grounded in an original position argument.

Definition 14 (Original position derivation). Let S be a social choice rule, and
let R be an individual choice rule. S can be original position derived from R iff
for all scenarios C = 〈N,A, S, d〉 and all i ∈ N : S(C) = R(C∗, i).
The social choice rule S can be grounded in an original position argument iff
there is an individual choice rule R such that S is original position derived from
R.
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3.2 Two examples of original position arguments

Recall that both Rawls and Harsanyi claimed that their favoured social choice
rules can be supported by an original position argument. We will show that we
can verify counterparts of these claims, in the context of choice under ignorance.
In particular, we will show that the difference principle can be OP-derived from
the maximin rule (Proposition 1) and that the principle of average expected
utility can be OP-derived from the expected utility rule (Proposition 2). We
also provide an example of a social choice rule that cannot be grounded in an
original position argument: the difference expected utility rule (Proposition 3).

Before we get to the examples, it will be helpful to introduce some extra no-
tation. In particular, we work with multisets, i.e. sets that can contain multiple
instances of the same member. To distinguish a multiset from a regular set, we
use rectangular brackets [, ] instead of {, }.

We start by observing that there is a specific relation between the payoffs
of all individuals in a choice scenario and the payoffs of a fixed individual in its
original position transformation:

Fact 1. For all choice scenarios C = 〈N,A, S, d〉, i ∈ N and a ∈ A:

[d(j, a, s) | j ∈ N & s ∈ S] = [d(i, a, s) | s ∈ S∗]

Fact 1 says that, given an alternative, the multiset of possible payoffs any
individual can receive in a choice scenario is identical to the multiset of possible
payoffs a fixed individual can receive in its OP-transformation. This holds
because the OP-transformation of any scenario is constructed precisely so that
each individual in the original position considers the possibility of receiving the
payoffs of each individual in the pre-transformed scenario.

Proposition 1. The difference principle can be OP-derived from the maximin
rule.

Proof. We show that for all choice scenarios C = 〈N,A, S, d〉 and all i ∈ N :
Rm(C∗, i) = Sd(C). Fix a choice scenario C = 〈N,A, S, d〉, let i ∈ N and a ∈ A
be arbitrary. We have a /∈ Rm(C∗, i) iff [By Definition 2] there is a b ∈ A such
that min{d(i, b, s) | s ∈ S∗} > min{d(i, a, s) | s ∈ S∗} iff [By Fact 1] there is a
b ∈ A such that min{d(j, b, s) | j ∈ N & s ∈ S} > min{d(j, a, s) | j ∈ N & s ∈ S}
iff [By Definition 7] a /∈ Sd(C).

Proposition 2. The average expected utility principle can be OP-derived from
the expected utility rule.

Proof. We show that for all choice scenarios C = 〈N,A, S, d〉 and all i ∈ N :
Reu(C∗, i) = Saeu(C). Fix a choice scenario C = 〈N,A, S, d〉, let i ∈ N and
a ∈ A be arbitrary. We have a /∈ Reu(C∗, i) iff [By Definition 3] there is b ∈
A such that eui(b) > eui(a) iff [Notation 1 and simplifying the expression]∑

[d(i, b, s) | s ∈ S∗] >
∑

[d(i, a, s) | s ∈ S∗] iff [By Fact 1] there is b ∈ A such
that

∑
[d(j, b, s) | j ∈ N & s ∈ S] >

∑
[d(j, a, s) | j ∈ N & s ∈ S] iff [Notation 2]

there is b ∈ A such that aeu(b) > aeu(a) iff [By Definition 8] a /∈ Saeu(C).
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Proposition 3. The difference expected utility principle cannot be grounded in
an original position argument.

Proof. We show that there is no individual choice rule R such that for all choice
scenarios C = 〈N,A, S, d〉 and all i ∈ N : R(C∗, i) = Sdeu(C). Consider the
following scenarios:

C1 s1 s2

a (0, 1) (0, 1)

b (0, 0) (0, 0)

C∗1 (s1, π=) (s2, π=) (s2, π6=) (s2, π6=)

a (0, 1) (0, 1) (1, 0) (1, 0)

b (0, 0) (0, 0) (0, 0) (0, 0)

C2 s1 s2

a (0, 1) (1, 0)
b (0, 0) (0, 0)

C∗2 (s1, π=) (s2, π=) (s1, π6=) (s2, π6=)
a (0, 1) (1, 0) (1, 0) (0, 1)
b (0, 0) (0, 0) (0, 0) (0, 0)

Compare scenarios C1 and C2. In scenario C1, both alternative a and alterna-
tive b are admissible according to Sdeu, since the expected utility of the worst-off
person under both is 0. By contrast, in C2 only alternative a is admissible since
the expected utility of both individuals is 0.5, whereas the expected utility for
each under alternative b is 0. Hence, Sdeu(C1) 6= Sdeu(C2).

The proof now proceeds by reductio. Suppose that there is some individual
choice rule R that grounds the social choice rule Sdeu. Hence, x ∈ Sdeu(C1) iff
x ∈ R(C∗1). Similary for scenario C2 we have x ∈ Sdeu(C2) iff x ∈ R(C∗2). By
Column Symmetry and Individualism, x ∈ R(C∗1) iff x ∈ R(C∗2). Following this
chain of equivalences allows us to conclude that x ∈ Sdeu(C1) iff x ∈ Sdeu(C2),
which contradicts our earlier observation that Sdeu(C1) 6= Sdeu(C2).

So far, we have illustrated how one can show that a social choice rule can
be grounded in an original position argument (Propositions 1 and 2) as well as
how one can argue that it is impossible to do so (Proposition 3).10 In doing so,
we had to rely on the specific properties of the social choice rules in question.
However, one may also ask whether there are general properties that make
original position arguments tick. This would allow us to reduce the question of
whether a given social choice rule can be grounded to the question of whether
it satisfies these properties.

3.3 Indifference axioms

In this section, we introduce and discuss two axioms that we show to be charac-
teristic of original position arguments. First, Indifference to Intra-State Distri-
bution of Payoffs to Persons (IISD) states that social admissibility should not

10One can similarly show that the maximin expected utility rule cannot be grounded in an
original position argument.
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depend on how the payoffs within states are distributed across individuals. To
put it plainly, given any particular outcome, it should not matter whether Bob
gets a cake and Alice an apple or the other way around. Let us make this more
precise.

Definition 15 (Π-variants). Let C = 〈N,A, S, d〉 and C′ = 〈N,A, S, d′〉 be
choice scenarios. C and C′ are Π-variants iff for all s ∈ S there is a bijection
πs : N → N such that for all a ∈ A, i ∈ N : d′(πs(i), a, s) = d(i, a, s).

Figure 5 below depicts two choice scenarios that are Π-variants of each other.
Note that in scenario C2 the payoffs of individuals 1 and 2 are switched at s1

compared to s1 in C1, i.e. πs1(i) = j, πs1(j) = i and πs2(i) = i, πs2(j) = j.
In general, for different states s and s′ one may have different permutations:
πs 6= πs′ .

C1 s1 s2

a (1, 1) (2, 2)

b (1, 2) (1, 3)

c (6, 0) (0, 2)

C2 s1 s2

a (1, 1) (2, 2)

b (2, 1) (1, 3)

c (0, 6) (0, 2)

Figure 5: Two Π variants.

Indifference to Intra-State
Distribution of Payoffs to Persons

If C and C′ are Π-variants then S(C) =
S(C′).

One way to interpret the IISD axiom is to view it as securing what might be
called ex post anonymity ; i.e. once a particular outcome is fixed, the labels of
individuals should not matter. An example of a social choice rule that satisfies
IISD is the maximin expected utility rule. The maximin expected utility rule
is only sensitive to the utility values within states, and any permutation of
the individual’s payoffs at those states does not affect the utility values at those
state. By contrast, the difference expected utility rule does not satisfy IISD. For
example, in Figure 5, the difference expected utility rule considers alternative
a admissible in scenario C1, whereas both alternative a and alternative b are
considered admissible in scenario C2.

Our second axiom, Indifference to Intra-Person Distribution of Payoffs to
States (IIPD), says that social admissibility should not depend on how each
individual’s payoffs are distributed across states. For example, it should not
make a difference whether Bob gets a cake in state s and an apple in state s′

but only that Bob either gets an apple or a cake.

Definition 16 (Σ-variants). Let C = 〈N,A, S, d〉 and C′ = 〈N,A, S, d′〉 be
choice scenarios. C and C′ are Σ-variants iff for all i ∈ N there is a bijection
σi : S → S such that for all a ∈ A: d′(i, a, σi(s)) = d(i, a, s).

14



Figure 6 depicts two Σ-variants. In scenario C2, the payoffs of individual 1
are switched between s1 and s2 compared to scenario C1, whereas the payoffs
of individual 2 are untouched, i.e. σ1(s1) = s2, σ1(s2) = s1 and σ2(s1) =
s1, σ2(s2) = s2.

C1 s1 s2

a (1, 1) (2, 2)

b (1, 2) (1, 3)

c (6, 0) (0, 2)

C2 s1 s2

a (2, 1) (1, 2)

b (1, 2) (1, 3)

c (0, 0) (6, 2)

Figure 6: Two Σ-variants.

Indifference to Intra-Person
Distribution of Payoffs to States

If C and C′ are Σ-variants then S(C) =
S(C′).

The difference expected utility rule satsifies IIPD, whereas the maximin ex-
pected utility rule does not. The difference expected utility rule satisfies IIPD
because any permutation of an individuals’ payoffs across states does not change
the expected utility of that individual. Of course, this only holds because we
are assuming that each state is equally likely and hence switching payoffs be-
tween equally likely states does not make a difference. To see that the maximin
expected utility rule does not satisfy IIPD, consider Figure 6. In scenario C1,
only alternative a is maximin expected utility admissible, whereas in scenario
C2 all alternatives are admissible.

A little reflection on the definition of IIPD reveals that it implies Column
Symmetry.11 Suppose C and C′ are S-label variants (cf. Definition 6). Hence,
there is some σ : S → S such that for all i ∈ N , a ∈ A and s ∈ S : d′(i, a, σ(s)) =
d(i, a, s). Given σ, we let σi = σ for each i ∈ N . This gives us exactly what is
needed to satisfy the definition of Σ-variants (Definition 16).

Fact 2. If a social choice rule S satisfies IIPD, it satisfies Column Symmetry.

We also note that IISD implies Anonymity, i.e. the axiom that tells us that
the labels of individuals do not matter [25]. Since we need not rely on Anonymity
for our results to go through, we will omit a detailed discussion of this principle.
Taken together, IISD and IIPD say that it does not matter which individual gets
what and under what circumstances. While these are rather strong conditions,
both the basic difference rule and the average expected utility rule satisfy them.

4 Axiomatic Characterization

In this section, we prove that a social choice rule can be grounded in an original
position argument if and only if it satisfies Indifference to Intra-Person Distribu-

11While technically we have not defined the Column Symmetry axiom for social choice rules,
its definition is analogous to its definition for individual choice rules.
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Sd Saeu Sdeu Smau

State Multiplication Indifference + + + +

Indifference to Intra-State Distribution of Payoffs to Persons + + – +

Indifference to Intra-Person Distribution of Payoffs to States + + + –

Table 2: Overview of the properties of social choice rules.

tion of Payoffs to States and Indifference to Intra-State Distribution of Payoffs
to Persons. In Section 4.1 we prove the implication from left to right and in
Section 4.2 the implication from right to left.

4.1 Necessary conditions

We prove that if a social choice rule can be grounded in an original position
argument, it satisfies IISD (Theorem 1) and IIPD (Theorem 2).

Our first lemma establishes that if two scenarios are Π-variants, then their
OP-transformations agree on the set of admissible alternatives for every indi-
vidual. In what follows, if f and g are functions, we use g ◦ f to denote the
composition of f and g, i.e. g ◦ f(x) = g(f(x)).

Lemma 1. Let R be an individual choice rule. For all choice scenarios C1 =
〈N,A, S, d1〉 and C2 = 〈N,A, S, d2〉: if C1 and C2 are Π-variants, then for all
i ∈ N : R(C∗1, i) = R(C∗2, i).

Proof. Let C1 = 〈N,A, S, d1〉 and C2 = 〈N,A, S, d2〉 be choice scenarios and let
R be an individual choice rule. Suppose that C1 and C2 are Π-variants. We
show that C∗1 and C∗2 are S-label variants. By the supposition, for all s ∈ S there
is a bijection πs : N → N such that for all a ∈ A and i ∈ N : d2(πs(i), a, s) =
d1(i, a, s) (Definition 15). We define σ∗ : S∗ → S∗ as follows. Given some
arbitrary state (s, π) ∈ S∗, let σ∗(s, π) = (s, πs ◦ π). Let i ∈ N , a ∈ A,
(s, π) ∈ S∗, and m ∈ R be arbitrary. We have:

d∗1(i, a, (s, π)) = m

iff Definition 13 (OP-transformation)

d1(π(i), a, s) = m

iff Definition 15 (Π-variants)

d2(πs ◦ π(i), a, s) = m

iff Definition 13 (OP-transformation)

d∗2(i, a, (s, πs ◦ π)) = m

It follows that σ∗ is as required so that C∗1 and C∗2 are S-label variants.
Since R satisfies Column Symmetry, it follows that for all i ∈ N : R(C∗1, i) =
R(C∗2, i).
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With Lemma 1 in place, proving the following result is now straightforward.

Theorem 1. For all social choice rules S, if S can be grounded in an original
position argument, then S satisfies IISD.

Proof. Suppose S is a social choice rule that can be grounded in an original
position argument. Hence, there is some individual choice rule R such that for
all scenarios C = 〈N,A, S, d〉 and all individuals i ∈ N : R(C∗, i) = S(C). Take
two arbitrary Π-variants C1 and C2. Let i ∈ N and a ∈ A be arbitrary. We
have

a ∈ S(C1)

iff Definition 14 (OP-argument)

a ∈ R(C∗1, i)

iff Lemma 1

a ∈ R(C∗2, i)

iff Definition 14 (OP-argument)

a ∈ S(C2)

Hence, S satisfies IISD.

Our next step is to show that if S can be grounded in an original position
argument, it has to satisfy the IIPD axiom. We prove this in a way similar
to before by showing that if two scenarios are Σ-variants, then if we apply
any individual choice rule to their OP-transformations, we end up with the
same set of admissible alternatives (Corollary 1). However, proving this claim
requires a bit more preparatory work. Lemma 2 shows that the property of
being Σ-variants is preserved under OP-transformations. Lemma 3 establishes
that if two scenarios are Σ-variants, then the application of any individual choice
rule on those scenarios themselves will yield the exact same recommendations.
Corollary 1 follows immediately from these two properties.

Lemma 2. For all choice scenarios C1 and C2: if C1 and C2 are Σ-variants
then C∗1 and C∗2 are Σ-variants.

Proof. Suppose that C1 and C2 Σ-variants. Hence, for all individuals i ∈ N
there is some bijection σi : S1 → S2 such that for all alternatives a ∈ A :
d1(i, a, s) = d2(i, a, σi(s)). For every i ∈ N and state (s, π) ∈ S∗, let

σ∗i (s, π) = (σπ(i)(s), π)
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Let i ∈ N , a ∈ A, (s, π) ∈ S∗, and m ∈ R be arbitrary. We have:

d∗1(i, a, (s, π)) = m

iff Definition 13 (OP-transformation)

d1(π(i), a, s) = m

iff Definition 16 (Σ-variants)

d2(π(i), a, σπ(i)(s)) = m

iff Definition 13 (OP-transformation)

d∗2(i, a, (σπ(i)(s), π) = m

Hence, for every i ∈ N , σ∗i is as required so that C∗1 and C∗2 are Σ-variants.

Lemma 3. Let R be an individual choice rule. For all choice scenarios C1 =
〈N,A, S, d1〉 and C2 = 〈N,A, S, d2〉: if C1 and C2 are Σ-variants then for all
i ∈ N : R(C1, i) = R(C2, i).

Proof. Let C1 = 〈N,A, S, d1〉 and C2 = 〈N,A, S, d2〉 be choice scenarios. Fix an
arbitrary individual i ∈ N and let R be an individual choice rule. Suppose that
C1 and C2 are Σ-variants. Hence, there is a bijection σi : S → S such that for
all alternatives a ∈ A : d1(i, a, s) = d2(i, a, σi(s)). Let C◦i = 〈N,A, S, d◦i 〉, where
d◦i is defined as:

d◦i (j, a, s) =df

{
d1(j, a, s) if j = i

d2(j, a, σi(s)) otherwise

We show that (?) C◦i = 〈N,A, S, d◦i 〉 and C2 are S-label variants. Let σ = σi.
Let j ∈ N , a ∈ A, s ∈ S, and m ∈ R be arbitrary. There are two cases. The
case for j 6= i follows immediately from the definition of d◦i and σ. If j = i, we
have

d◦i (i, a, s) = m

iff Definition of d◦i

d1(i, a, s) = m

iff Definition of σ

d2(i, a, σ(s)) = m

Let i ∈ N , and a ∈ A be arbitrary. We have:
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a ∈ R(C1, i)

iff Individualism and definition of d◦i

a ∈ R(C◦i , i)

iff Column Symmetry and (?)

a ∈ R(C2, i)

Corollary 1. Let R be an individual choice rule. For all choice scenarios
C1 = 〈N,A, S, d1〉 and C2 = 〈N,A, S, d2〉: if C1 and C2 are Σ-variants then for
all i ∈ N : R(C∗1, i) = R(C∗2, i).

Theorem 2. For all social choice rules S, if S can be grounded in an original
position argument, then S satisfies IIPD.

Proof. The proof is analogous to the proof of Theorem 1 except that we rely on
Corollary 1 instead of Lemma 1.

4.2 Sufficient Conditions

In this section, we show that if a social choice rule S satisfies IISD and IIPD,
then S can be grounded in an original position argument (Theorem 3). To prove
this, we show that given any social choice rule S satisfying IISD and IIPD, we
can define an individual choice rule RS

= such that S can be original position
derived from RS

=. In order to give a precise definition of RS
=, we first introduce

some additional notation.

Definition 17. Let C = 〈N,A, S, d〉 be a choice scenario and let i ∈ N . The
scenario C=i = 〈N,A, S, d=i〉 is such that for all j ∈ N , a ∈ A, s ∈ S :
d=i(j, a, s) = d(i, a, s).

In words, the scenario C=i is the scenario where at every outcome every
individual receives the same payoff as individual i receives at that outcome in
scenario C. To see how this works, an illustration is helpful (cf. Figure 7).

C s1 s2

a (1, 1) (2, 2)

b (1, 2) (1, 3)

c (6, 0) (1, 1)

C=1 s1 s2

a (1, 1) (2, 2)

b (1, 1) (1, 1)

c (6, 6) (1, 1)

Figure 7: A choice scenario (C) and the scenario (C=1), where 1 is the “first”
individual.
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In the next step, we define the choice rule RS
= using the definition of C=i as

follows.

Definition 18. Let S be a social choice rule. RS
= is the choice rule such that

for all choice scenarios C = 〈N,A, S, d〉 and all i ∈ N : RS
=(C, i) = S(C=i).

The first lemma that we establish shows that RS
= is an individual choice rule

if S satisfies IIPD.

Lemma 4. If S is a social choice rule satisfying IIPD, then RS
= satisfies:

(i) Column Symmetry

(ii) Individualism

Proof. Ad (i). Let C = 〈N,A, S, d〉 and C′ = 〈N,A, S′, d′〉 be S-label vari-
ants. Hence, there is a bijection σ : S → S′ such that for all i ∈ N , a ∈ A:
d′(i, a, σ(s)) = d(i, a, s). Pick an arbitrary individual i ∈ N . That C=i and C′=i
are S-variants is clear in view of the following:

1. For all j ∈ N : d′=i(j, a, σ(s)) = d′(i, a, σ(s)) (Definition 17)

2. For all j ∈ N : d=i(j, a, s) = d(i, a, s) (Definition 17)

3. d′(i, a, σ(s)) = d(i, a, s) (S-label variants)

Hence, for all j ∈ N we have d′=i(j, a, σ(s)) = d=i(j, a, s). Since S satisfies IIPD,
it satisfies Column Symmetry (Fact 2), and so we have S(C=i) = S(C′=i). By
Definition 18, RS

=(C, i) = RS
=(C′, i).

Ad (ii). Let C = 〈N,A, S, d〉 and C′ = 〈N,A, S, d′〉 be i-equivalent. Defini-
tion 17 implies that C=i and C′=i are identical scenarios. Since C=i and C′=i are
identical, we have S(C=i) = S(C′=i). By Definition 18, RS

=(C, i) = RS
=(C′, i).

Before we come to the main result of this section, we prove two lemmas.
First, if a social choice rule satisfies IISD, then the set of admissible alternatives
is preserved under OP-transformations (Lemma 5). Second, for each individual
i, the scenario C∗=i is a Σ-variant of C∗ (Lemma 6).

Lemma 5. Let S be a social choice rule that satisfies IISD. For all choice
scenarios C: S(C) = S(C∗).

Proof. Let C = 〈N,A, S, d〉 be a choice scenario and let S be a social choice
rule that satisfies IISD. Where Π is the set of all bijections π : N → N , CΠ =
〈N,A, SΠ, dΠ〉 is a State Multiplication variant of C (Definition 11). Next, we
show that CΠ and C∗ are Π-variants. For every i ∈ N and state (s, π) ∈ SΠ, let

δ(s,π)(i) = π−1(i)
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Let i ∈ N , a ∈ A, (s, π) ∈ SΠ, and m ∈ R be arbitrary. We have:

dΠ(i, a, (s, π)) = m

iff State Multiplication variants (Definition 11)

d(i, a, s) = m

iff OP-transformation (Definition 13)

d∗(π−1(i), a, (s, π)) = m

iff δ(s,π)(i) = π−1(i)

d∗(δ(s,π)(i), a, (s, π)) = m

Relying on our intermediate steps, we have the following, for every a ∈ A:

a ∈ S(C)

iff State Multiplication Indifference

a ∈ S(CΠ)

iff IISD

a ∈ S(C∗)

Lemma 6. For all choice scenarios C = 〈N,A, S, d〉 and i ∈ N : C∗ and C∗=i
are Σ-variants.

Proof. Fix a choice scenario C = 〈N,A, S, d〉 and individual i ∈ N . Because of
the definition of Σ-variants (Definition 16) we must show that for all j ∈ N ,
there is a function σj : S∗ → S∗ such that for all a ∈ A and (s, π) ∈ S∗:

d∗=i(j, a, (s, π) = d∗(j, a, σj(s, π))

For every j ∈ N , we define σj as follows. Given some arbitrary state (s, π) ∈ S∗,
let σj(s, π) = (s, π′), where π′ is such that:

(1) π(i) = π′(j)

(2) π(j) = π′(i)

(3) π(k) = π′(k) for all k ∈ N \ {1, j}

Note that σj is well-defined. First, there is always exactly one π′ that satis-
fies conditions (1)-(3). Second, σj is a bijection; i.e if σj(s, π) = (s, π′), then
σj(s, π′) = (s, π). As our next step, we show that we have the following prop-
erty:

(†) for all j ∈ N , a ∈ A and (s, π) ∈ S∗: d∗(j, a, σj(s, π)) = d∗(i, a, (s, π))
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Let j ∈ N , a ∈ A, (s, π) ∈ S∗ be arbitrary and let m ∈ R. Given (s, π), let π′

be such that each of (1)-(3) is satisfied. We have:

d∗(j, a, σj(s, π)) = m

iff by the definition of σj

d∗(j, a, (s, π′)) = m

iff by condition (1)

d∗(i, a, (s, π)) = m

By the definition of d∗=i (Definition 17): for all j ∈ N , a ∈ A and (s, π) ∈ S∗:
d∗=i(j, a, (s, π)) = d∗(i, a, (s, π)). Hence, invoking our property (†), we conclude
that for all j ∈ N , a ∈ A and (s, π) ∈ S∗: d∗=i(j, a, (s, π)) = d∗(j, a, σj(s, π)).

Theorem 3. Let S be a social choice rule. If S satisfies IISD and IIPD then
S can be grounded in an original position argument.

Proof. Let S be a social choice rule satisfying IISD and IIPD. We establish that
for all choice scenarios C = 〈N,A, S, d〉 and all i ∈ N : S(C) = RS

=(C∗, i), where
RS

= is given by Definition 18. We can rely on Lemma 4 to establish that RS
= is

an individual choice. Let i ∈ N and a ∈ A be arbitrary. We have

a ∈ S(C)

iff Lemma 5

a ∈ S(C∗)

iff Lemma 6 and IIPD

a ∈ S(C∗=i)

iff Definition 18

a ∈ RS
=(C∗, i)

Corollary 2. A social choice rule S can be grounded in an original position
argument iff S satisfies IISD and IIPD.

5 Concluding remarks

The main contribution of this paper is an axiomatization of the class of social
choice rules that can be grounded in an original position argument within the
context of choice under ignorance. In particular, we have shown that a social
choice rule can be grounded in an original position argument if and only if the
social choice rule satisfies the axioms of Indifference to Intra-State Distribution
of Payoffs to Persons and Indifference to Intra-Person Distribution of Payoffs
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to States. Taken together, these axioms imply that it does not matter which
individual gets what and under what circumstances.

While IISD and IIPD are rather strong, there are well-known social choice
rules that satisfy them, the difference principle and the expected average utility
rule being two examples. Notably, once we move to social choice rules that
promote the welfare of those who are least well-off in some particular sense (e.g.
maximin expected utility and difference expected utility), we find that these
rules do not satisfy either IISD or IIPD and hence cannot be grounded in an
original position argument. What conclusions can we draw from this?

If one takes original position arguments seriously, then our results can be
used to criticize social choice rules on the grounds that they do not satisfy
these two axioms. On that picture, the difference expected utility rule and the
maximin expected utility rule are not fair after all.

We can also take the opposite perspective. If one finds the IISD and IIPD
axioms unconvincing or if one insists that the difference expected utility rule or
the maximin expected utility rule are plausible social choice rules, then original
position arguments themselves must be considered unpersuasive.

Finally, one could take our results as a reductio against our formal explication
of original position arguments and argue that there is something missing in
our approach. We followed a standard approach to choice under ignorance. A
consequence of this approach is that we treated ignorance in the original position
in a one-dimensional way as ignorance about states simpliciter. One could also
make a distinction between different types of ignorance in the original position:
ignorance with respect to the identity of individuals and ignorance with respect
to some independent state of nature. Hence, one option is to consider models
that treat these two types of ignorance as separate from each other. In the
absence of a unified theory of choice under multiple dimensions of ignorance,
however, such a move could be ad hoc.

A Appendix

In this appendix, we state and prove two technical results that were referred to
in Section 2.2.2. First, if we do not require Column Symmetry for individual
choice, then original position arguments are trivial (Theorem 4). Second, if we
require Column Symmetry but not Individualism, we have a characterization
result with respect to IISD and Column Symmetry (Corollary 3).

Theorem 4. Every social choice rule can be original position derived from a
pointed choice rule that satisfies Individualism.

Proof. Fix a social choice rule S. Consider an arbitrary C = 〈N,A, S, d〉 and
i ∈ N . We define R(C, i) by cases:

case 1: C is such that (?) S = S† × Π and for all π, π′ ∈ Π: if π(i) = π′(i),

then d(i, a, (s, π)) = d(i, a, (s, π′)). Let C†i = 〈N,A, S†, d†i 〉 be such
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that for all a ∈ A, j ∈ N , and s ∈ S†: d†i (j, a, s) = d(i, a, (s, π)) for

some π ∈ Π such that π(i) = j. Finally, let R(C, i) = S(C†i ).

case 2: Condition (?) does not apply. Then, let R(C, i) = A.

Note first that R is well defined. To see why, it suffices to note that C†i is
well defined whenever (?) holds. Second, R satisfies Individualism: whether
(?) holds only depends on the payoffs of i, and if (?) holds, then the definition

of C†i only depends on the payoffs of i. Finally, we show that S(C) = R(C∗, i)

for every i ∈ N . To see why this holds, note that (C∗)†i = C. So we have:

R(C∗, i) = S((C∗)†i ) = S(C).

Theorem 5. Let S be a social choice rule that satisfies IISD. There exists a
pointed choice rule R such that (i) S can be original position derived from R
and (ii) S satisfies CS iff R satisfies CS.

Proof. Let S be a social choice rule that satisfies IISD. Let R be such that
(?) for all scenarios C = 〈N,A, S, d〉 and all i ∈ N : R(C, i) = S(C). Pick an
arbitrary choice scenario C = 〈N,A, S, d〉. Since S satisfies SMI and IISD and
by Lemma 5, S(C) = S(C∗). Hence, given (?) it follows immediately that for
all i ∈ N : S(C) = R(C∗, i), and that R satisfies CS if and only if S satisfies
CS.

Theorem 6. Let S be a social choice rule. If S can be original position derived
from a pointed choice rule R satisfying CS, then S satisfies CS and IISD.

Proof. To show that S satisfies IISD, we can rely on Theorem 1 since its proof
does not depend on Individualism. The only thing left to establish is that S
satisfies CS. Suppose C1 = 〈N,A, S1, d1〉 and C2 = 〈N,A, S2, d2〉 are S-variants.
Hence, there is some bijection σ : S1 → S2 such that (?) for all i ∈ N , a ∈ A,
and s ∈ S1 : d1(i, a, s) = d2(i, a, σ(s)). We show that if C1 and C2 are S-
variants, then C∗1 and C∗2 are S-variants. Let σ∗ : S∗1 → S∗2 be such that for all
(s, π) ∈ S∗1 : σ∗(s, π) = (σ(s), π). First, σ∗ is a bijection if σ is. Second, (?)
holds for σ∗ as the required equalities are preserved by the OP-transformation.
Hence, C∗1 and C∗2 are S-variants. Let i ∈ N , a ∈ A be arbitrary. We have:

a ∈ S(C1)

iff Definition 14 (OP-argument)

a ∈ R(C∗1, i)

iff Column Symmetry for R

a ∈ R(C∗2, i)

iff Definition 14 (OP-argument)

a ∈ S(C2)
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Corollary 3. Let S be a social choice rule. S satisfies IISD and CS iff S can
be original position derived from a pointed choice rule that satisfies CS.
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