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NEGATIONS IN THE ADJUNCTIVE DISCURSIVE LOGIC

Abstract

In the logical literature, Discursive (or Discussive) Logic introduced by Stanis law
Jaśkowski is seen as one of the earliest examples of the so-called paraconsistent logic.
There is some confusion over what is actually discursive logic nevertheless. One of
the possible sources of the confusion is easy to discern; it comes from the fact that
Jaśkowski published his two papers in Polish and their English translations appeared
many years later.2 Up till 1999, no one but a Polish reader was able to read Jaśkowski‘s
paper on the discursive conjunction and consequently some authors took discursive
logic to be a foremost example of a non-adjunctive logic.3

The situation became even more complicated when da Costa, Dubikajtis and Ko-
tas presented an axiomatization with discursive connectives as primitive symbols. It
turned out that a connective of the discursive conjunction they considered did not
coincide with any connective presented by Jaśkowski. Moreover, their axiomatization
contained some axiom schemata that were not generally valid in Jaśkowski‘s logic.4

The purpose of this paper is to clarify the confusion surrounding the discursive
logic. We will present a new (direct) semantics and axiomatization of Jaśkowski‘s
adjunctive discursive logic and show how to define and axiomatize two additional
connectives of negation.

Keywords: discursive (discussive) logic, D2, paraconsistent logic.
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for Polish Science (FNP), Program Kolumb 2007.

2For details, see References ([16] and [17]).
3See, for example, [11], [21] and [24].
4See, [1], [9] and [12].
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1 Introduction

In 1949, Jaśkowski published his second paper on the discursive logic. It was the
first time when the discursive conjunction appeared and replaced the conjunction
introduced in [16]. The language of the resulting calculus is as follows.

Definition 1. Let var denote a non-empty denumerable set of all propositional vari-
ables {p1, p2, ...}. ForD2 is defined to be the smallest set for which the following
holds:

(i) α ∈ var ⇒ α ∈ ForD2

(ii) α ∈ ForD2 ⇒ ∼ α ∈ ForD2

(iii) α ∈ ForD2 and β ∈ ForD2 ⇒ α • β ∈ ForD2, where • ∈ {∨,∧d,→d}.
The symbols: ∼, ∨, ∧d, →d denote negation, disjunction, discursive conjunction

and discursive implication, respectively. The discursive equivalence, α↔d β, is defined
by (α→d β) ∧d (β →d α).

Now we determine a translation function of the language of the new calculus, D2

for short, into the language of S5 of Lewis, f : ForD2 ⇒ ForS5, i.e.:

(i) f(pi) = pi if pi ∈ var and i ∈ N
(ii) f(∼ α) =∼ f(α)
(iii) f(α ∨ β) = f(α) ∨ f(β)
(iv) f(α ∧d β) = f(α) ∧ ♦f(β)
(v) f(α→d β) = ♦f(α)→ f(β)

and additionally

(vi) ∀α ∈ ForD2 : α ∈ D2 ⇔ ♦f(α) ∈ S5.5

It is easy to observe that Duns Scotus’ thesis p→d (∼ p→d q) and many other
classically valid formulas are not valid in Jaśkowski’s calculus, for instance,

(1) p→d (∼ p→d∼ q)
(2) p→d (∼ p→d (∼∼ p→d q))
(3) (p→d q)→d ((p→d∼ q)→d∼ p)
(4) (p ∧d ∼ p)→d q
(5) (p→d q)→d (∼ q →d∼ p)
(6) (∼ p→d∼ q)→d (q →d p).

6

What is worth mentioning is that the calculus is closed under the rule:

(AdR) α, β / α ∧d β
since S5 is closed under ♦α, ♦β / ♦(α ∧ ♦β). Therefore it is an example of an
adjunctive logic.

5See [16] p. 44, [17] p. 57 (we use here the English translations of the Jaśkowski papers
that appeared in Logic and Logical Philosophy), [7] pp. 7-9, [8] pp. 285-288.

6See [16] pp. 50-53, [17] p. 58 and [8] pp. 289-290.
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2 Discursive Logic’s New Clothes

The guiding idea behind the semantics we present is to eliminate the translation rules.
A frame (D2-frame) is a pair < W,R >, where W is a non-empty set of points

(or possible worlds) and R is the equivalence relation on W . A model (D2-model)
is a triple < W,R, v >, where v is a mapping from propositional variables to sets of
worlds, v : var ⇒ 2W . The satisfaction relation |=m is defined as follows:

(var) x |=m pi ⇔ x ∈ v(pi) and i ∈ N
(∼) x |=m∼ α ⇔ x 6|=m α
(∨) x |=m α ∨ β ⇔ x |=m α or x |=m β
(∧d) x |=m α ∧d β ⇔ x |=m α and ∃y∈W (xRy and y |=m β)
(→d) x |=m α→d β ⇔ ∀y∈W (xRy ⇒ y 6|=m α) or x |=m β.

A formula α is valid in D2, |= α for short, iff for any model < W,R, v >, for every
x ∈W , there exists y ∈W such that: xRy and y |=m α.

The conditions (i) – (v) of the translation function were, respectively, replaced
with (var) – (→d); (vi) found its expression in the definition of |=.

The accessibility relation defined on D2-frames is reflexive, symmetric and tran-
sitive. Any point is accessible from any other. This fact enables us to simplify the
notion of the D2-model.

A model (D2-model) is a pair < W, v >, where W is a non-empty set (of points)
and a function, v : ForD2 ×W ⇒ {1, 0}, is inductively defined:

(∼) v(∼ α, x) = 1 ⇔ v(α, x) = 0
(∨) v(α ∨ β, x) = 1 ⇔ v(α, x) = 1 or v(β, x) = 1
(∧d) v(α ∧d β, x) = 1 ⇔ v(α, x) = 1 and ∃y∈W (v(β, y) = 1)
(→d) v(α→d β, x) = 1 ⇔ ∀y∈W (v(α, y) = 0) or v(β, x) = 1.

|= α iff for any model < W,R, v >, there exists y ∈W such that v(α, y) = 1.

Proposition 1. ∀α ∈ ForD2: |= α ⇔ α ∈ D2 (⇔ ♦f(α) ∈ S5).

Proof. By induction.

The consequence of Proposition 1 is that we established the equivalence between
the translation procedure and our semantics. The translation became redundant.

Now let us focus on the syntactic analysis of D2.

(A1) α→d (β →d α)
(A2) (α→d (β →d γ))→d ((α→d β)→d (α→d γ))
(A3) (α ∧d β)→d α
(A4) (α ∧d β)→d β
(A5) (α→d β)→d ((α→d γ)→d (α→d (β ∧d γ)))
(A6) α→d (α ∨ β)
(A7) β →d (α ∨ β)
(A8) (α→d γ)→d ((β →d γ)→d ((α ∨ β)→d γ))
(A9) α ∨ (α→d β)
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(A10) ∼ (∼ α∧d ∼∼ α∧d ∼ (α∨ ∼ α))
(A11) ∼ (∼ α∧d ∼ β∧d ∼ (α ∨ β))→d∼ (∼ α∧d ∼ β∧d ∼ γ∧d ∼ (α ∨ β ∨ γ))
(A12) ∼ (∼ α∧d ∼ β∧d ∼ γ∧d ∼ (α ∨ β ∨ γ))→d

∼ (∼ α∧d ∼ γ∧d ∼ β∧d ∼ (α ∨ γ ∨ β))
(A13) ∼ (∼ α∧d ∼ β∧d ∼ γ∧d ∼ (α ∨ β ∨ γ))→d ((α ∨ β∨ ∼ γ)→d (α ∨ β))
(A14) ∼ (∼ α∧d ∼ β)→d (α ∨ β)
(A15) (α ∨ (β∨ ∼ β))→d∼ (∼ α∧d ∼ (β∨ ∼ β)).

The sole rule of inference is Detachment Rule
(MP )∗ α, α→d β / β.

The set of axiom schemata and (MP )∗ define `D2 (the consequence relation).
The axiomatization we presented is in fact the first axiomatization of D2 (with

discursive connectives as primitive symbols and positive and negation fragments to be
separated).7

From now on, let D+
2 denote the set {(A1), . . . (A9)}.8

Theorem 1. `D2 α⇔ |= α.

Proof. See Section 6.

3 Negation as a Possible− not Connective

In this section we introduce a new connective of negation. This move allows some of
the weaker form of Duns Scotus’ thesis to be present in the modified calculus. The
definition is the following:

Definition 2. ∼d α = (p1∨ ∼ p1)∧d ∼ α
Observe that we can apply the translation function to transform the connective

into its modal counterpart:

(ii)’ f(∼d α) = ♦ ∼ f(α).

and extend our semantics by the additional condition:

(∼d) x |=m∼d α ⇔ ∃y∈W (xRy and y 6|=m α)

We will henceforth regard ∼d as a primitive symbol that has replaced the connec-
tive of ∼. This exchange results in obtaining a quite new calculus, called ND+

2 .

A model (ND+
2 -model) is a pair < W, v >, where W is a non-empty set (of points)

and a function, v : ForND2+ ×W ⇒ {1, 0}, is inductively defined:

(∼d) v(∼d α, x) = 1 ⇔ ∃y∈W (v(α, y) = 0)

7Most of the authors who dealt with this subject was interested in an alternative strategy.
They treated Jaśkowski’s calculus as a starting point for pure modal analysis. See [3], [4], [5],
[6], [13], [14], [15], [18], [19] and [20].

8As before, the discursive equivalence is a definable connective.
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(∨) v(α ∨ β, x) = 1 ⇔ v(α, x) = 1 or v(β, x) = 1
(∧d) v(α ∧d β, x) = 1 ⇔ v(α, x) = 1 and ∃y∈W (v(β, y) = 1)
(→d) v(α→d β, x) = 1 ⇔ ∀y∈W (v(α, y) = 0) or v(β, x) = 1.

|= α iff for any model < W,R, v >, there exists y ∈W such that v(α, y) = 1.

The idea to treat negation as ”possibly-not” is not quite new and was examined
by many authors,9 but any of them hardly studied it in relation to D2 and even so,
they neither axiomatized it nor gave a direct semantics for the resulting system.

Notice that some of the ND+
2 -valid formulas does not correspond to their D2-

counterparts (e.i. after replacing ∼d with ∼), for example,

(1) ∼d p→d (∼d∼d p→d q)
(2) ∼d p→d (∼d∼d p→d (∼d∼d∼d p→d q))
(3) (∼d p ∧d ∼d∼d p)→d q
(4) (∼d p→d ∼d q)→d ((∼d p→d ∼d∼d q)→d p)
(5) (p∨ ∼d q)→d ((p∨ ∼d∼d q)→d p).

10

On the other hand, there are many D2-valid formulas that are not valid in ND+
2 (after

replacing ∼ with ∼d), for example,

(6) (p→d q)→d ∼∼ (p→d q)
(7) p→d∼∼ p
(8) ∼ (∼ p ∧d p)
(9) p→d ∼ (∼ p ∧d ∼ q)
(10) (p ∨ q)→d (p∨ ∼∼ q).

Proposition 2. ND+
2 (with ∼d as primitive) is not a conservative extension of D2.

ND+
2 is axiomatizable by the rule of (MP )∗ plus the set of axiom schemata:

(A1) α, if α ∈ D+
2

(A2) ∼d (α∧d ∼d β)→d∼d∼d (∼d α ∨ β)
(A3) ∼d (α∧d ∼d α)
(A4) (α∨ ∼d β)→d ((α∨ ∼d∼d β)→d α)
(A5) ∼d∼d (α ∨ β)→d (α∨ ∼d∼d β)
(A6) ∼d∼d α→d α
(A7) ∼d∼d (α ∨ β)→d ∼d∼d (α ∨ β ∨ γ)
(A8) ∼d∼d (α ∨ β)→d ∼d∼d (β ∨ α)

The consequence relation `ND2+ is defined by the set and (MP )∗.

Theorem 2. `ND2+ α⇔ |= α.

Proof. See [10] for details.

9See, for instance, [2], [13] and [23].
10See [16] pp. 46-50, [17] p. 58.
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4 Collapse into the Classical Logic

Like in the previous section, we start by characterizing a new connective of negation:

Definition 3. ¬dα = α→d ∼ (p1∨ ∼ p1).

The formula ∼ (p1∨ ∼ p1) has the same meaning as falsum and Definition 3 looks
like the one for intuitionistic logic. It is, however, a bit deceptive since the formula
α ∨ ¬dα is generally valid in D2; in view of that, the translation rules may be of much
help, especially the rule

(ii)” f(¬dα) = ∼ ♦f(α).

is of particular interest.
In what follows, we will use ¬d as a primitive symbol that has replaced ∼ and

SD+
2 to denote the resulting calculus.
Here is a direct semantics for SD+

2 .

A model (SD+
2 -model), as before, is a pair < W, v >, where W is a non-empty set

(of points) and a valuation function, v : ForSD2+ ×W ⇒ {1, 0}, is defined:

(¬d) v(¬dα, x) = 1 ⇔ ∀y∈W (v(α, y) = 0)
(∨) v(α ∨ β, x) = 1 ⇔ v(α, x) = 1 or v(β, x) = 1
(∧d) v(α ∧d β, x) = 1 ⇔ v(α, x) = 1 and ∃y∈W (v(β, y) = 1)
(→d) v(α→d β, x) = 1 ⇔ ∀y∈W (v(α, y) = 0) or v(β, x) = 1.

|= α iff for any model < W,R, v >, there exists y ∈W such that v(α, y) = 1.

It is remarkable that among the theses of SD+
2 there are all the laws of the classical

propositional calculus (including Duns Scotus’ thesis) and the semantics we introduced
can be viewed as a new semantics for the classical propositional logic.

A deductive structure of SD+
2 is given by the set of axiom schemata:

(A1) α, if α ∈ D+
2

(A2) ¬d¬dα→d α
(A3) α→d ¬d¬dα
(A4) (α→d β)→d (¬dβ →d ¬dα)

and the rule:

(MP )∗ α, α→d β / β

The consequence relation `SD2+ is determined by the set and (MP )∗.
The axiomatization coincides with the well-known axiom system originated by

Hilbert and Bernays, but one might just as well adopt a different set of the axiom
schemata of the classical propositional calculus.

Proposition 3. Each thesis α of SD+
2 becomes a thesis α’ of the classical proposi-

tional logic after replacing in α the connectives ¬d, ∧d, →d, ↔d, ∨ by ¬, ∧, →, ↔,
∨, respectively.
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Proposition 4. Each thesis α’ of the classical propositional logic becomes a thesis
α of SD+

2 after replacing in α’ the connectives ¬, ∧, →, ↔, ∨ by ¬d, ∧d, →d, ↔d,
∨, respectively.

Proof. Apply the method described in [16], pp. 45–46.

Theorem 3. `SD2+ α⇔ |= α.

Proof. See Section 6.

5 Da Costa, Dubikajtis and Kotas’ system of the
Discursive Logic

In the late seventies, da Costa, Dubikajtis and Kotas published a few papers concerned
with an axiomatization of the discursive logic. Their axiomatization contains, among
others, the formulas

∼ ((p ∧d q) ∨ r)→d (p→d ∼ (q ∨ r))
∼ (∼ (p ∧d q) ∨ r)→d (p∧d ∼ (∼ q ∨ r))

as axioms. Notice, however, that they are not valid in Jaśkowski’s calculus.
We easily fix the problem by shifting the diamond from the right to the left side

of the conjunction, i.e.

(iv)’ f(α ∧d β) = ♦f(α) ∧ f(β)

and then replacing the item (∧d) with

(∧d)’ v(α ∧d β, x) = 1 ⇔ ∃y∈W (v(α, y) = 1) and v(β, x) = 1.

At cursory glance, the change seems just cosmetic but dig a little deeper into
formulas to realize that it is not the point. For example, the formulas

∼ ((q ∧d p) ∨ r)→d (p→d ∼ (q ∨ r))
∼ (∼ (q ∧d p) ∨ r)→d (p∧d ∼ (∼ q ∨ r))

are valid in Jaśkowski’s calculus, whereas it is not so in the case of da Costa, Dubikajtis
and Kotas’ system of the discursive logic.11

Since there are, nevertheless, striking similarities between the two approaches let
us just list a few of them, without trying to be complete.

Proposition 5. (i) Each of the axiom schemata of D+
2 is valid in D∗2 and (MP )∗

preserves validity.
(ii) Assume that α includes, besides variables, at most the connectives ∧d,→d,↔d

and ∨. If α is valid in D∗2 (or D2), then αcpc is valid in CPC, where αcpc is obtained
from α by replacing ∧d, →d, ↔d, ∨ with ∧, →, ↔, ∨ , respectively.

11For the sake of brevity, we denote the system by D∗2 .
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(iii) Suppose that α contains, besides variables, at most the connectives ∧, →, ↔
and ∨. If α is valid in CPC, then αd is valid in D∗2 (and D2), where αd is obtained
from α by replacing ∧, →, ↔, ∨ with ∧d, →d, ↔d, ∨, respectively.

So long as we deal with negation-free formulas, there is no difference between D2

and D∗2 ; it does not matter which definition of the discursive conjunction we use.

(iv) Let α contain, besides variables, at most the connectives ∨ and ∼. If α is valid
in CPC, then both α and α→d q is valid in D∗2 (and D2).

In practice, as stated in Proposition 5, we may read off the validity of some formulas
of ForD2∗ (and ForD2) directly from a classical true-value analysis.

Now we focus on a new axiomatization of D∗2 .

(A1−9) α, if α ∈ D+
2

(A10) ∼ (∼ (α∨ ∼ α)∧d ∼∼ α∧d ∼ α)
(A11) ∼ (∼ (α ∨ β)∧d ∼ β∧d ∼ α)→d∼ (∼ (α ∨ β ∨ γ)∧d ∼ γ∧d ∼ β∧d ∼ α)
(A12) ∼ (∼ (α ∨ β ∨ γ)∧d ∼ γ∧d ∼ β∧d ∼ α)→d

∼ (∼ (α ∨ γ ∨ β)∧d ∼ β∧d ∼ γ∧d ∼ α)
(A13) ∼ (∼ (α ∨ β ∨ γ)∧d ∼ γ∧d ∼ β∧d ∼ α)→d ((α ∨ β∨ ∼ γ)→d (α ∨ β))
(A14) ∼ (∼ α∧d ∼ β)→d (α ∨ β)
(A15) (α ∨ (β∨ ∼ β))→d∼ (∼ (β∨ ∼ β)∧d ∼ α).

plus (MP )∗ α, α→d β / β as the sole rule of inference.

The axiom schemata and (MP )∗ define `D2∗ (the consequence relation).
The differences with respect to the axiomatization of D2 appear in (A10) - (A13)

and (A15) where nothing but the variation of the components of the discursive con-
junction does change. Metaphorically speaking, the discursive conjunction changes its
flow.

Theorem 4. `D2∗ α⇔ |= α.

Proof. See [9].

The discursive conjunction has also changed its flow direction in the following:

Definition 2∗. ∼d α = ∼ α ∧d (p1∨ ∼ p1)

and consequently in (∧d) and (A2) of ND+
2 .

On the other hand, there is no difference which definition of the discursive con-
junctive is preferable to use after having introduced ¬d (Definition 3); the collapse
into the classical logic is inevitable.

6 Metalogic of the Discursive Systems

In this section we concentrate on the metalogical properties of the discursive systems.
Notice that the formulas:

α→d (β →d α)
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(α→d (β →d γ))→d ((α→d β)→d (α→d γ))

constitute the implicational fragment of D+
2 and each of the systems is closed under

(MP )∗ which is the sole rule of inference of all of the systems we mentioned. Therefore
a proof of the deduction theorem is standard.

Theorem 5. Φ `
D+

2
α→d β ⇔ Φ ∪ {α} `

D+
2
β, where α, β ∈ For

D+
2

, Φ ⊆ For
D+

2
.

Proposition 6. The formulas listed below are provable in all the discursive adjunctive
systems:

(T1) (α ∨ α)↔d α
(T2) (α ∨ β)↔d (β ∨ α)
(T3) ((α ∨ β) ∨ γ)↔d (α ∨ (β ∨ γ))
(T4) (α ∨ (β ∧d γ))↔d ((α ∨ β) ∧d (α ∨ γ))
(T5) (α→d β)→d ((α ∨ γ)→d (β ∨ γ))
(T6) (β ∨ α ∨ β)↔d (α ∨ β)
(T7) (α ∧d (α→d β))→d β

and the set of {α : `
D+

2
α} is closed under the rules:

(R1) α, β / α ∧d β
(R2) α ∧d β / α (β)
(R3) α (β) / α ∨ β,

where `
D+

2
is the consequence relation defined by D+

2 and (MP )∗.

Proof. We prove (T1) - (T7) in much the same way as it is in the classical proposi-
tional logic. (R1) - (R3) are obvious due to (A6), (A5), (A4), (A7), (A8) of D+

2 and
(MP )∗.

Proposition 7. The formulas:

(T8) α∨ ∼ α
(T9) ∼ (∼ α∧d ∼ β∧d ∼ (α ∨ β))→d (∼ (∼ α∧d ∼∼ β∧d ∼ (α∨ ∼ β))→d α)
(T10) ∼ (∼ α∧d ∼ β∧d ∼ (α ∨ β))→d ((α∨ ∼ β)→d α)
(T11) (α∨ ∼ α)→d∼ (∼ α∧d ∼∼ α∧d ∼ (α∨ ∼ α)).

are (schemata of the) theses of D2.

Proposition 8. The formulas:

(T12) α ∨ ¬dα
(T13) ¬d(α ∧d ¬dα)
(T14) (α ∨ β)→d (¬dβ →d α)

are (schemata of the) theses of SD+
2 .

Theorem. (i) `D2 α⇔ α is valid in D2.
(ii) `

SD+
2
α⇔ α is valid in SD+

2 .

Proof.(⇒) By induction.
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The initial idea of the proof we present below traces back to [22]. The crucial point
is to construct a canonical valuation that falsifies a non-thesis. However, contrary to
the Henkin’s method, we do not verify, but falsify the sets of formulas we build.

(⇐) Assume that 6`
D2 (SD+

2 )
α and α is valid in D2 (SD+

2 ). Define a sequence of all

the formulas of D2 (SD+
2 ) as follows:

Γ = γ1, γ2, γ3, ...

The only restriction is that the first element of Γ is α (i.e. α = γ1).
Define a family of (finite) subsequences of Γ:

∆1 = δ1 where δ1 = γ1 = α;
∆2 = δ1, δ2 where δ1 = α and δ2 = γ2 if 6`D2 δ1 ∨ γ2, otherwise δ2 6= γ2 and ∆1 = ∆2;

...

∆n = δ1, δ2 where δ1 = α, δ2 = γi and δ3 = γi+k
...

Define in addition:

∇1 = δ1,︸︷︷︸
∆1

δ1, δ2︸︷︷︸
∆2

, δ1, δ2, δ3,︸ ︷︷ ︸
∆3

. . . , δ1, δ2, δ3, . . . , δn,︸ ︷︷ ︸
∆n

. . .

∇2 = δ1, δ2︸︷︷︸
∆2

, δ1, δ2, δ3︸ ︷︷ ︸
∆3

, . . . , δ1, δ2, δ3, . . . δn︸ ︷︷ ︸
∆n

, . . .

∇3 = δ1, δ2, δ3︸ ︷︷ ︸
∆3

, δ1, δ2, δ3, δ4︸ ︷︷ ︸
∆4

, . . . , δ1, δ2, δ3, . . . , δn︸ ︷︷ ︸
∆n

, . . .

...
∇n = δ1, δ2, . . . , δn︸ ︷︷ ︸

∆n

, . . . , δ1, δ2, . . . , δn, . . . , δn+k︸ ︷︷ ︸
∆n+k

, . . .

...

Let ∇i, where i ∈ N , denote both the i-sequence and the set of formulas which
contains all the elements of the i-sequence and ∇ = {∇1,∇2, ...,∇i, ...}.
Lemma 1. (i) 6`

D2 (SD+
2 )
δ1 ∨ . . . ∨ δn, for any n ∈ N

(ii) if β 6∈ ∇i, then `
D2 (SD+

2 )
δ1 ∨ . . . ∨ δk ∨ β, for some k ∈ N

(iii) β ∈ ∇i ⇔ ∃∆k⊂∇i (β ∈ ∆k), for any i, k ∈ N .

Proof. Straightforward.

Lemma 2. For every β, γ ∈ ForD2+ , for any ∇i,∇k ∈ ∇:
(i) β ∨ γ ∈ ∇i ⇔ β ∈ ∇i and γ ∈ ∇i
(ii) β ∧d γ ∈ ∇i ⇔ β ∈ ∇i or ∀∇k∈∇ (γ ∈ ∇k)
(iii) β →d γ ∈ ∇i ⇔ ∃∇k∈∇ (β 6∈ ∇k) and γ ∈ ∇i.

Proof. See [10].
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Lemma 3. For every β, γ ∈ ForSD2+, for any ∇i,∇k ∈ ∇:
(i) ¬dβ ∈ ∇i ⇔ ∃∇k∈∇ (β 6∈ ∇k).

Proof. (i)⇒. Assume that (1) ¬dβ ∈ ∇i and (2) ∀∇k∈∇ (β ∈ ∇k). In particular, (3)
β ∈ ∇i. Apply Lemma 1(i) to get (4) 6`SD2+ β ∨ ¬dβ. A contradiction due to (T12).
(i)⇐. Suppose that (1) ∃∇k∈∇ (β 6∈ ∇k) and (2) ¬dβ 6∈ ∇i. Obviously, i ≥ k or k > i.

Let i ≥ k. Since ∇k = ∆k, . . . , ∆i,∆i+1, . . .︸ ︷︷ ︸
∇i

then ∇i ⊆ ∇k and (3) β 6∈ ∇i.

Now use Lemma 1(ii), to obtain (4) `SD2+ δ1 ∨ . . . ∨ δm ∨ β, for some m ∈ N , and (5)
`SD2+ δ1 ∨ . . . ∨ δn ∨ ¬dβ, for some n ∈ N . Observe that m ≥ n or n > m. Suppose
then that m ≥ n (the case n > m is similar to m ≥ n). Apply (R3), (T2), (T3), (MP )∗

to (5), to deduce (6) `SD2+ δ1 ∨ . . .∨ δm ∨¬dβ. Use (R1), to get (7) `SD2+ (δ1 ∨ . . .∨
δm∨β) ∧d (δ1∨. . .∨δm∨¬dβ) and (T4) to receive (8) `SD2+ (δ1∨. . .∨δm)∨(β∧d¬dβ).
Since (T13), (T14) are theses of SD+

2 and the system is closed under (MP )∗, we finally
obtain (11) `SD2+ δ1∨. . .∨δm. Notice, however, that δ1, . . . , δm ∈ ∇i. A contradiction
due to Lemma 1(i).

Let k > i. Then ∇k ⊆ ∇i and (3) ¬dβ 6∈ ∇k since ∇i = ∆i, . . . , ∆k,∆k+1, . . .︸ ︷︷ ︸
∇k

Next proceed analogously to i ≥ k.

Lemma 4. For every β, γ ∈ ForD2, for any ∇i,∇k ∈ ∇:
(i) ∼ β ∈ ∇i ⇔ β 6∈ ∇i.

Proof. (i)⇒. Analogous to the proof of Lemma 3(i)⇒.
(i)⇐. Assume that (1) β 6∈ ∇i and (2) ∼ β 6∈ ∇i. Apply Lemma 1 (ii) to (1) and (2),
to obtain (3) `D2 δ1 ∨ . . . ∨ δm∨ ∼ β, for some m ∈ N , (4) `D2 δ1 ∨ . . . ∨ δp ∨ β, for
some p ∈ N . Clearly, m ≥ p or m < p.

Let m ≥ p (the case m < p is similar to m ≥ p). Observe that the formula (α ∨
β) →d (∼ β →d α) is not valid in D2 (for every α, β ∈ ForD2) we are not, then,
allowed to proceed analogously to Lemma 3(i)⇐. In order to solve the problem, some
terminological explanations will be of much help.

Definition 4. We call a formula β classical if it does not include constant symbols
other than ∨ and ∼. We call a formula β discursive if it contains at least one of the
symbols: →d, ∧d,↔d. A formula β is a discursive thesis if it is a thesis and discursive.

Now for each ∇i, where i ∈ N , define an additional sequence of formulas, ∇?i , in
the following way:

∇?i = δ?1 , . . . , δ?k, . . .

where

(a) δ?1 = δ1 = γ1 = α
(b) (δ?k = δn) if 6`D2∼ (∼ δ?1∧d . . . ∼ δ?k ∧d ∼ (δ?1 ∨ . . . ∨ δ?k)),
for any δn ∈ ∇i, n ≥ k and i, k, n ∈ N ; otherwise δ?k 6= δn.
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Proposition 9. (i) ∇?i ⊆ ∇i, for every i ∈ N
(ii) 6`D2∼ (∼ δ?1 ∧d . . .∧d ∼ δ?n ∧d ∼ (δ?1 ∨ . . . ∨ δ?n)), for every n ∈ N
(iii) if β is not a discursive thesis, β 6∈ ∇i,
then `D2 ∼ (∼ δ?1 ∧d . . .∧d ∼ δ?k ∧d ∼ β ∧d ∼ (δ?1 ∨ . . . ∨ δ?k ∨ β)), for some k ∈ N .

Proof. (i) - (ii) Straightforward.
(iii) By the construction of ∇i (∇?i ), the fact that ∇?i ⊆ ∇i holds for every i ∈ N ,
(A11), (A12), (A15), (T11) and (MP )∗.

Now we return to the proof of the main lemma. If β 6∈ ∇i, ∼ β 6∈ ∇i and ∇?i ⊆ ∇i,
then (5) β 6∈ ∇∗i , (6) ∼ β 6∈ ∇∗i . There are three subcases to examine.

(a) neither β nor ∼ β is a discursive thesis
(b) β is a discursive thesis, but ∼ β is not a discursive thesis
(c) ∼ β is a discursive thesis, but β is not a discursive thesis.

The 4th subcase (both β and ∼ β is a discursive thesis) is impossible due to Soundness.
Subcase (a). Let m = 1. Then (7) `D2 ∼ (∼ δ?1∧d ∼ β∧d ∼ (δ?1 ∨ β)) and (8)

`D2 ∼ (∼ δ?1∧d ∼∼ β∧d ∼ (δ?1∨ ∼ β)) by Proposition 9(iii), (2), (1). Apply (T9) and
(MP )∗ to (7) and (8), to get `D2 δ

?
1 . But δ?1 = δ1 = γ1 = α and 6`D2 α. A contradiction.

Let m > 1. (7)’ `D2∼ (∼ δ?1 ∧d . . . ∼ δ?k ∧d ∼ β∧d ∼ (δ?1 ∨ . . . ∨ δ?k ∨ β)), for some
k ∈ N . Note that k < m or, at most, k = m. If k < m, then make use of (A11),
(A12) and (MP )∗ to get (8)’ `D2∼ (∼ δ?1 ∧d . . . ∼ δ?m ∧d ∼ β∧d ∼ (δ?1 ∨ . . . ∨ δ?m ∨ β)),
where δ?1 = δ1, δ?2 = δ2, . . ., δ?m = δm. Now take (8)’, (3) and use (A13) and (MP )∗, to
obtain (10)’ `D2 δ1 ∨ . . . ∨ δm. But δ1, . . . , δm ∈ ∇i. A contradiction due to Lemma
1(i).

We prove the subcases (b) and (c) in a very similar way, but you are not allowed
to apply Proposition 9(iii) to β 6∈ ∇i (in Subcase (b)) and to ∼ β 6∈ ∇i (in Subcase
(c)).

Let < ∇, vc > be a canonical model for D2 (SD+
2 ). The canonical valuation

vc : ForD2(SD2+) ×∇ ⇒ {1, 0} is defined:

vc(β,∇i) =

{
1, if β 6∈ ∇i
0, if β ∈ ∇i

Apply Lemma 2 and Lemma 4 (Lemma 3) to show that the conditions (∼), (∨),
(∧d) and (→d) ((¬d), (∨), (∧d) and (→d)) hold for vc.

Now assume that 6`D2(SD2+) α and α is valid in D2 (SD+
2 ). Notice that α is the

very first element of each i-sequence we defined (i.e. for every i ∈ N , α ∈ ∇i). Then
the formula α is not valid in D2 (SD+

2 ) since there exists a model < ∇, vc > such that
vc(α, ∇i) = 0, for every ∇i ∈ ∇. A contradiction.
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[16] S. Jaśkowski, Rachunek zdań dla systemów dedukcyjnych sprzecznych, Stu-
dia Societatis Scientiarum Torunensis, Sect. A, I, No 5, 1948, pp. 57–77. Eng-
lish translations: Propositional Calculus for Contradictory Deductive Systems, Studia
Logica, 24, 1969, pp. 143–157 and A Propositional Calculus for Inconsistent Deductive
Systems, Logic and Logical Philosophy, 7(1), 1999, pp. 35–56.
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