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Abstract. In this paper we will give an outline of the proof of the solv-
ability of the halting and reachability problem for 2-symbolic tag systems
with a deletion number v = 2. This result will be situated in a more gen-
eral context of research on limits of solvability in tag systems.
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1 Introduction

Tag systems were invented by Emil Post in 1921 [15],[16] and played an important
role in Post’s earlier work on normal systems. After 9 months of research on tag
systems, he came to the conclusion that proving the Entscheidungsproblem for
first-order predicate calculus solvable might be impossible. He never proved the
unsolvability of this Entscheidungsproblem, but was able to show that there are
certain unsolvable decision problems for normal systems [4],[5], [10], [18].
Although Post mentions some results on tag systems [15], [16] he never published
any of the proofs. He considered two different decision problems for tag systems:
the halting problem and the reachability problem.

Definition 1 The halting problem for tag systems is the problem to determine
for a given tag system and any initial string A0 whether the tag system will halt.

Definition 2 The reachability problem for tag systems is the problem to deter-
mine for a given tag system T, a fixed initial string A0 and any arbitrary string
A over the alphabet Σ, whether T will ever produce A when started with A0.

Note that the halting problem for tag systems is in fact just a special case of the
reachability problem. Post mentioned that he was able to prove the solvability of
both decision problems for a specific class of tag systems, a result he considered
as the major success of his research on tag systems. The main purpose of this
paper is to give an outline of a proof of this result.

1.1 Definition of Tag Systems and Notational Conventions

A tag system T, consists of a finite alphabet Σ = {a0, a1, ..., aµ−1} of µ symbols,
a deletion number v ∈ N and a finite set of µ words, w0, w1, ..., wµ−1 defined
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over the alphabet, including the empty word ε. Each of these words corresponds
with one of the letters from the alphabet as follows:

a0 → a0,1a0,2...a0,n0

a1 → a1,1a1,2...a1,n1

... ... ...
aµ−1 → aµ−1,1aµ−1,2...aµ−1,nµ−1

where each ai,j ∈ Σ, 0 ≤ i < µ. Given an initial string A0, the tag system first
tags the word associated with the leftmost letter of A0 at the end of A0, and then
deletes the first v symbols of A0.1 This process is iterated until the tag system
halts, i.e. produces the empty string ε. If this does not happen the tag system
can become periodic or show divergent behaviour. Post mentions one example
of a tag system with v = 3, 0 → 00, 1 → 1101 [15]. It is still not known whether
this particular tag system is recursively solvable, despite its formal simplicity.
Let T be a tag system with a deletion number v with µ symbols and words
w0, w1, ..., wµ−1. We shall write lwi to indicate the length of a word wi, lmax and
lmin denote the length of the lengthiest word wi rsp. the length of the shortest
word wj of T , 0 ≤ i, j < µ. The total sum of the number of ai’s in the words
w0, ...wµ−1 will be denoted as #ai. We will use ẋ rsp. x to indicate an odd rsp.
an even number. Given a string A = a1a2...alA , we will say that A is entered
with shift x, when the tag system erases its first x symbols, the first symbol
scanned in A being ax+1.

1.2 Results on the Limits of Solvability in Tag Systems

Post never proved that tag systems are recursively unsolvable. It was Minsky
who proved the result in 1961 [8], after the problem was suggested to him by
Martin Davis. He showed that any Turing machine can be reduced to a tag sys-
tem with v = 6. The result was improved by Cocke and Minsky [2], [9]. They
proved that any Turing machine can be reduced to a tag system with v = 2.
The same result was proven by Wang [19]. Maslov generalized this result and
proved that for any v > 1 there exists at least one tag system with an unsolvable
decision problem and, independent of Wang, furthermore proved that any tag
system for which v = 1 is solvable [7].
The result from [2], [9] can be used to determine the size of the smallest universal
tag system known. If we define the size of a tag system T as the product of µ and
v, it is possible to reduce any 2-symbolic Turing machine with m states to a tag
system with v = 2, µ = 16m. Using the universal Turing machine constructed
by Neary in the class TM(18, 2) [14] or the machine constructed by Baiocchi
which is in the class TM(19,2) [1], where TM(m,n) denotes the class of Turing

1 It should be noted that we follow Post’s original definition of tag systems, instead of
the one that is now commonly used. I.e. in the definition used here, the tagging and
deletion operation are not performed in one and the same step. The proof of the main
theorem only needs some minor changes in order to be applicable to a definition of
tag systems where tagging and deletion operation are performed synchronously.
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machines with m states and n symbols, it is possible to construct universal tag
systems in the classes TS(288, 2) rsp. TS(304,2), TS(m, v) denoting the class of
tag systems with m symbols and a deletion number v.
Despite the relatively large size of the smallest universal tag systems known,
there are some clear indications that proving very small classes of tag systems
solvable will be very hard, if not impossible. The fact that the tag system men-
tioned above from the class TS(2, 3) is still not known to be solvable serves as an
indication of this problem. A further indication is given by the result from [12],
where it is shown that the 3n + 1-problem can be reduced to a tag system from
the class TS(3, 2), i.e., w0 → w1w2, w1 → w0, w2 → w0w0w0. The reduction of
the 3n + 1-problem, which is known as a hard problem of number theory, to a
very small tag system, illustrates how hard it might be to prove this class of tag
systems solvable.
Post mentions that the halting and reachability problem for the class of tag
systems for which v = 1 or µ = 1 is trivially solvable and remarks that he com-
pletely solved the case µ = v = 2 [16]. But, as was said, the proofs were never
published. The case µ = 1 is indeed trivially solvable. Wang [19] provided the
proof for the case v = 1. In this paper we will outline the proof for the class
µ = v = 2.
Both µ and v can be regarded as decidability criteria [6] for tag systems, since
their solvability depends on the size of these parameters. Another such criterion
is the length of the words. Wang proved that any tag system for which lmin ≥ v
or lmax ≤ v is solvable [19].

2 Solvability of the Halting and Reachability Problem of
the Class TS(2,2)

In [16] Post remarks that his proof of the solvability of the halting and reacha-
bility problem of the class TS(2, 2) involved “considerable labor”. This is indeed
true, as will become clear from the outline of the proof we will give here. The
proof involves a study of a rather large number of subcases. We will merely out-
line the structure of the proof and restrict ourselves to detailed proofs for only
some of the subcases, because of the length of the actual proof, and the fact
that several subcases can be solved by using similar methods. A detailed proof
is made available on-line [11].
Post differentiates between three different classes of behaviour a tag system can
converge to, i.e., a tag system can halt, it can become periodic, or it can show
unbounded growth. The reachability and halting problem can be proven solv-
able, if one can determine for any initial condition, for a given tag system, that
it will lead to one of these three classes of behaviour after a finite number of
steps. In case of unbounded growth, one should be able to prove that for any
given number n, the tag system will always produce a string Ai of length lAi

> n
after a finite number of iterations i, such that no string Aj , j > i, will ever be
produced again for which lAj

≤ n.
In our proof, we have indeed been able to show that one can determine for any
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tag system T from the class TS(2, 2) and any initial condition over the alphabet
Σ = {0, 1}, that T will always become periodic, halt or show unbounded growth
after a finite number of steps. We have thus been able to prove the following
theorem:

Theorem 1 For any given tag system T , if µ = v = 2 then the halting problem
and the reachability problem for T are solvable.

First of all, it should be noted that we only have to consider those cases with
lmin < 2, lmax > 2, given the theorem proven by Wang mentioned in Sec. 1.2.
In the remainder, we assume that lmax = lw1 , lmin = lw0 , the symmetrical case
of course being equivalent to this case.
There are three global cases to be taken into account, i.e., w0 = ε, w0 = 1, w0 =
0. Each of these cases is subdivided into several subcases, determined by the
following parameters: lw1 , the parity of lw1 ,

2 #1, and the parity of the number
of 0’s separating consecutive 1’s in w1. It should be noted that, contrary to classes
of Turing machines TM(m,n), the three global cases to be taken into account
contain an infinite number of tag systems. In this sense it has been basic for
the proof to determine certain threshold values for two of these parameters, i.e.,
lw1 and #1. If the values of these parameters exceed a given value, the infinite
class of tag systems determined by the parameters will always show unbounded
growth (except for a specific class of initial strings), else they will halt or become
periodic (except for a specific class of initial strings).
There is one method that has been basic to solve the majority of cases, called
the table method. What one basically does with this method is to look at a
certain number of substrings that can be produced theoretically in a given tag
system, by starting from the possible productions from the respective words
w0, ..., wµ−1. Given a tag system T with a deletion number v, it is clear that
given a word wi = ai,1ai,2...ai,lwi

, some letters in wi will be ‘scanned’, others
not. The sequence of letters that is scanned is determined by the number n,
0 ≤ n ≤ v − 1, of leading letters of wi that is erased but not scanned by
the tag system and which leads to the concatenation or tagging of the words
corresponding to the letters from the sequence at the tail of a given string. For
example, if v = 3, there are three different sequences of letters in wi that might
be scanned by the tag system: ai,1ai,4...ai,t0 , ai,2ai,5...ai,t1 , ai,3ai,6...ai,t2 , with:

tj = lwi
− [(lwi

− j) mod 3]

Now, given a tag system T, with deletion number v and µ letters. The table
method is applied to the tag system by first looking at all the possible strings v
that can be produced from each of the words wi, 0 ≤ i < µ, by concatenating
the words corresponding to the letters of each of the different sequences in each
of the wi, determined as above. If one of these new strings is equal to one of
the words wi it is marked. If all the strings produced in this way are marked
or equal to ε it follows that the tag system will always halt or become periodic,

2 The parity of a number x is the property of it being even or odd.
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since the length of the strings that can be produced from the respective words is
bounded. If this is not the case, the same procedure is applied to all the strings
left unmarked and not equal to ε,...If we e.g. apply this method to the two words
00 and 1101 of the tag system mentioned above (Sec. 1.1), only one (11011101)
of the 6 possible strings produced will be left unmarked, and differs from ε. If we
apply the method to this one string it becomes clear very soon that the method
will never come to a halt, i.e., there will always remain strings left unmarked.
As will become clear in the proof, the table method is not only useful if, for a
given tag system, all the strings become marked or are equal to ε at a given
time, but can also be used to e.g. prove that a tag system will either halt or
show unbounded growth. In general, it should be noted here that, although this
method is very simple, it is an important instrument to study tag systems.
The method is called the table method, because the results from the method
can best be represented through tables. We will explain how such a table should
be read, in the first application of the method in the proof.
Note that from now on, lw0 and lw1 will be abbreviated as l0 rsp. l1.

Proof.
Case 1. w0 = ε

Case 1.1. #1 = 0. It is trivial to prove that tag systems from this class will
always halt, since only 0’s can be scanned.

Case 1.2. #1 = 1, l1 ≡ 0 mod 2. Let w1 = 0ẋ110y1 . To prove this case, we
need the table method mentioned above. The following table proves the case:

w0 w1

S0 ε ε
S1 ε w1X

The row headed with S0 gives the string produced from a given string S (in this
case w0 or w1) when the first letter of the string S is scanned by the tag system.
Similarly, the row headed S1 gives the possible productions from a given string
S when its first letter is erased without being scanned. Clearly, since in this case
w0 = ε actually no letter in w0 can be scanned or erased. The only possible
non-empty string that can be produced for this case, is the string resulting from
w1 when entered with a shift 1, i.e., its first letter is erased but not scanned.
As is clear from the table, a tag system from this class will either halt or become
periodic. It will become periodic when at least one 1 is scanned in the initial
condition, such that the first letter from the word w1 thus produced, will not be
scanned. This is determined by the parity of the length of the initial condition.
In all other cases, tag systems from this class halt. A similar proof can be given
for the case w1 = 0x110ẏ1 .
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Case 1.3. #1 = 1, l1 ≡ 1 mod 2. The table that can be constructed for this
class of tag systems, is identical to that of the previous case, with w1 = 0ẋ110ẏ1 .
Despite the table being identical, tag systems from this class can be proven to
always halt. The reason for this is that the number of surviving 1’s is at most
half of what it was when the tag system has scanned (and erased) all the letters
of the current word at a given stage of the computation. The reader is referred
to the on-line details of the proof.

Case 1.4. #1 = 2, l1 ≡ 0 mod 2. To prove the case we have to differentiate
between two subcases, i.e. w1 = 0x110y110z1 and w1 = 0ẋ110ẏ110z1 (the proof
for w1 = 0ẋ110y110ż1 is similar to the first case, the proof of w1 = 0x110ẏ110ż1

is similar to the second case).

Case 1.4.1. w1 = 0x110y110z1 . The first case is proven through the following
table:

Table 2: w1 = 0x110y110z1

w1

S0 w1X
S1 w1X

From this table it follows that any tag system from this class will always become
periodic, except when no 1 is scanned in the initial condition, then it always
halts.

Case 1.4.2. w1 = 0ẋ110ẏ110z1 . The case is proven through the following table:

Table 3: w1 = 0ẋ110ẏ110z1

w1 w1w1 ... (w1w1)n

S0 ε ε ... ε
S1 w1w1 w1w1w1w1 .... (w1w1)2n

As is clear from the table, tag systems from this class will either halt or show
unbounded growth depending on the parity of the length of the initial condition.

Case 1.5. #1 = 2, l1 ≡ 1 mod 2. The proof is almost identical to that of case
1.4., except that now we have to consider the cases w1 = 0x110ẏ110z1 (or similarly
w1 = 0ẋ110ẏ110ż1) and w1 = 0ẋ110y110z1 (or similarly w1 = 0x110y110ż1).
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Case 1.6. #1 = 3, l1 ≡ 0 mod 2. Again we have to consider several cases,
depending on the parity of the number of 0’s separating pairs of symbols 1 in
w1. The proofs of the several cases are similar to those for Case 1.4. Tag systems
from this class will always show unbounded growth, halt or become periodic,
depending on the parity of the initial condition and the spacings between the
several 1’s.

Case 1.7. #1 = 3, l1 ≡ 1 mod 2. We have to differentiate between two
cases: w1 = 0s110x110y110t1 (and all variants) or w1 = 0s110ẋ110ẏ110t1 (and all
variants). It can be proven that tag systems from both classes will either halt
(if no 1 is scanned in the string produced from the initial condition) or show
unbounded growth after a finite number of steps, by applying the table method.
See [11] for the detailed table.

Case 1.8. #1 > 3, l1 ≡ 0 mod 2 and Case 1.9. #1 > 3, l1 ≡ 1 mod
2. For any tag system from these classes and any initial condition it can be
determined that it will either halt, become periodic, or show unbounded growth
after a finite number of iterations. The result follows from the proofs of cases
1.4.–1.7.

Case 2. w0 = 1

Case 2.1. #1 = 1 In this case the length of w1 is a determining factor to
predict the behaviour of a tag system from this class, since w1 only consists of
0’s. We have to differentiate between the following two cases: 2 < l1 < 5 or
5 ≤ l1.

Case 2.1.1. 2 < l1 < 5 Tag systems from this class will always become periodic,
except when the initial condition is equal to 0, then it will halt. The result can be
proven through the table method, the details of the proof can be found on-line.

Case 2.1.2. 5 ≤ l1 It can be easily checked that tag systems from this class will
always show unbounded growth, except for a finite class of initial conditions, for
which the tag systems will halt or become periodic after a finite number of steps.
The proof follows from the fact that once a tag system from this class produces
a string that consists of at least two times w1 it will show unbounded growth.
The proof follows from the table method (see the on-line proof).

Case 2.2. #1 = 2, l1 = 3. It can be determined for any tag system from
this class that it will either halt or become periodic. There are three different
tag systems to be taken into account: 0 → 1; 1 → 100, 0 → 1; 1 → 010, and
0 → 1; 1 → 001. The result can be proven for each of the cases by applying the
table method. (see [11] for detailed tables.)
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Case 2.3. #1 = 2, l1 > 3. It can be determined for any tag system from this
class that it will either halt, become periodic or show unbounded growth. To
prove the result, we have to differentiate between l1 = 4 and l1 > 4

Case 2.3.1. l1 = 4 The result of the case follows from a rather complicated
application of the table method. The table is about half a page long and needs
some further deductions. The details of the proof can be found on-line.

Case 2.3.2. l1 > 4 For the second case it can be shown rather easily that once
w1w1 is produced as a substring, tag systems from this class will always lead to
unbounded growth. For more details the reader is referred to the on-line proof.

Case 2.4. #1 > 2. Each tag system from this class will either halt, become
periodic, or show unbounded growth. The proof differentiates between two sub-
cases l1 = 3 and l1 > 4. The first case involves a more complicated application
of the table method. The proof of the second case is rather straightforward and
follows from case 2.3.2. See the on-line proof for more details.

Case 3. w0 = 0

Case 3.1. #1 = 0, l1 > 2. It is trivial to prove that any tag system from this
class will halt, since any sequence of 0’s always leads to ε.

Case 3.2. #1 = 1, l1 > 2. It can be determined that any tag system from
this class will either halt or become periodic by applying the table method (see
the on-line proof).

Case 3.3. #1 = 2, l1 > 2, l1 ≡ 0 mod 2. It can be determined for any tag
system from this class that it will either halt, become periodic or show unbounded
growth after a finite number of iterations. From now on, we will write x instead
of 0x for the ease of notation. We have to take into account two cases. The 1’s
can be separated by an even or an odd number of 0’s, i.e., w1 = t11x11s1 (or
similarly w1 = ṫ11x11ṡ1), or w1 = t11ẋ11ṡ1 (or, similarly w1 = t11ẋ11ṡ1).

Case 3.3.1. w1 = t11x11s1 The proof of the first case results from the application
of the table method. It proves that any tag system from this class will always
become periodic after a finite number of steps for any initial condition except for
those conditions in which no 1 is scanned by the tag system, then a halt occurs.

Case 3.3.2. w1 = t11ẋ11ṡ1 It can be shown that any tag system from this
class will either halt, become periodic or show unbounded growth after a finite
number of iterations. The proof of this case is more complicated, and we have
to subdivide the case into two subcases: t1, ẋ1 or ṡ1 > 1 and t1 = 0, ẋ1 = 1,
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ṡ1 = 1.
Case 3.3.2.1. t1, ẋ1 or ṡ1 > 1 For any tag system from this class it can be
determined that it will either halt, become periodic or show unbounded growth.
Set w1 = t11ẋ11ṡ1. In shift 1, the tag system will produce a sequence of 0’s from
w1, ultimately leading to a halt. In shift 0, we get:

A1 = t2w1 bẋ1/2cw1s2 (1)

Depending on the shift, if ṡ1 + bẋ1/2c+ t1 is even, we get:

t3A10n1 (2)

or:
t30n1A1 (3)

from (1). It thus follows that if ṡ1 + bẋ1/2c + t1 is even, and at least one w1

is produced such that its first 1 will be scanned, the tag system will ultimately
become periodic, since the lengths of the possible strings produced from w1 in
this case are bounded, but never produce the empty string. If ẋ1 + bẋ1/2c + t1
is odd, the tag system produces:

A2 = t4A1 bẋ1/4cA1s3 (4)

from (1), or a string merely consisting of a certain number of 0’s (ultimately
converging to ε), depending on the shift. If ṡ1 + s2 + bẋ1/4c+ t2 + t1 is even, we
get:

t5A20n2 (5)

or:
t50n2A2 (6)

from A2, again depending on the shift. Thus if ṡ1 + s2 + bẋ1/2c+ t2 + t1 is even,
the tag system will always halt or become periodic. A halt occurs, if no A2 is
produced. If ṡ1 + s2 + (ẋ1 − 1)/4 is odd, the tag system produces:

A3 = t6A2b(ẋ1)/8cA2s4 (7)

from (4), or a sequence of 0’s depending on the shift.
Generally, tag systems from this class will become periodic or halt once a se-
quence ṡ1 + s2 + s3 + ... + sn + b(ẋ1)/2nc + tn + ... + t2 + t1, separating two
consecutive An−1 in An (n ∈ N, A0 = w1) becomes even. Indeed, given a string
An = tiAn−1 bẋ1/2ncAn−1ṡi, with ṡ1+s2+s3+...+sn+bẋ1/2nc+tn+...+t2+t1
even, the tag system will produce either tiAn0nj or ti0nj An, with the number
of 0’s surrounding each An being bounded. If for a given tag system, there is no
n such that the sequence ṡ1 + s2 + s3 + ... + sn + b(x1/2nc + tn + ... + t2 + t1
between a pair of An−1 in An is even, the tag system will either halt or show
unbounded growth.
Now, it can be easily determined (in a finite number of steps) for any tag system
from this class whether there exists an n such that ṡ1 +s2 +s3 + ...+sn + b(x1−
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1)/2nc+ tn + ...+ t2 + t1 between a pair of An−1 in An is even. This follows from
the following lemma:3

Lemma 1 For any tag system from the class 3.3.2.1. it can be proven that there
is always an n, n ∈ N such that for any i ≥ n the sequence of 0’s ṡ1 + s2 + s3 +
... + si + b(x1 − 1)/2ic+ ti + ... + t2 + t1 between a pair of Ai−1 in Ai is of the
same length as ṡ1 + s2 + s3 + ... + sn + b(x1 − 1)/2nc+ tn + ... + t2 + t1.

The proof of the lemma can be found in the on-line version. It follows from this
lemma that one can determine for any tag system from this class whether a
sequence of 0’s separating two consecutive Ai−1 in Ai will ever become even or
not, since it only takes a finite number of steps before a sequence An is produced
for which the number of 0’s separating a pair of An−1 becomes constant. We have
thus proven the case: tag systems from this class will either halt, become periodic
or show unbounded growth.
Case 3.3.2.2. t1 = 0, x1 = 1, s1 = 1 It can be proven that the only tag system
in this class, with w1 = 1010, will either halt or show unbounded growth. The
result can easily be obtained through the table method or by pure reasoning.
See the on-line proof for more details.

Case 3.4. #1 = 2, l1 > 2, l1 ≡ 1 mod 2. It can be determined for any tag
system from this class that it will always halt or become periodic. Again we have
to consider two cases, depending on the parity of the spacing between the two
1’s, i.e. w1 = ṫ11x11s1s and w1 = t11ẋ11s1. The proof of the first case is similar
to the proof of case 3.3.1. For the second case, we have to differentiate between
two subcases, i.e., t1, x1 or s1 > 1 and t1 = 0, x1 = 1, s1 = 0. The proof of the
first subcase is almost identical to that of case 3.3.2.1., the second subcase easily
follows by applying the table method. See the on-line proof for more details.

Case 3.5. #1 > 2, l1 > 2, l1 ≡ 0 mod 2. It can be determined for each
tag system from this class that it will either show unbounded growth, become
periodic or halt after a finite number of iterations, depending on the initial
condition. To prove this, we merely have to consider the case #1 = 3, since the
generalization to #1 > 3 trivially follows from the proof of the case #1 = 3.
There are two possible subcases to be proven: either all 1’s are separated by an
odd number of 0’s, or only one pair of 1’s is separated by an odd number of
0’s. The proofs of both cases use methods similar to those used for Case 3.3.2.
Detailed proofs are available on-line.

Case 3.6. #1 > 2, l1 > 2, l1 ≡ 1 mod 2. For any tag system from this class
it can be determined that it will either halt, become periodic or show unbounded
growth after a finite number of iterations, depending on the initial condition. The
3 We are indebted to an anonymous referee for pointing out a serious error in a previous

proof of this case concerning the number of 0’s separating a pair of An−1 and having
provided us with the necessary lemma and an outline of its proof to solve the case.
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proofs for the several subcases are similar to those for case 3.5.
The proof of theorem 1 follows from the proofs of cases 1–3. ut

3 Discussion

As is clear from the outline of the main theorem of this paper, proving the
solvability of the halting and reachability problem for the class TS(2, 2) indeed
involves considerable labor. Most probably the proofs of some cases might be
simplified. For example,the solvability of cases 1.2, 1.4, 1.6., 1.8. follows from the
following theorem:

Theorem 2 Given a tag system T with deletion number v, Σ = {a0, a1, ..., aµ−1}
and words wa0 , wa1 , ..., waµ−1 . Then, if the lengths l of the words and v are not
relative prime the solvability of a given decision problem for T can be reduced
to the solvability of the decision problem for n different tag systems, λ being the
greatest common divisor of v, lwa0

, ..., lwaµ−1
, with deletion number v′ = v/λ.

which is proven in [13]. It follows from this theorem that the halting and reacha-
bility problem for all the tag systems with w0 = ε, lw1 ≡ 0 mod 2 from the class
TS(2, 2) can be reduced to the halting and reachability problem of tag systems
with v = 1. Since Wang proved that these problems are solvable for any tag
system with v = 1 (See Sec. 1.2), the result easily follows.
As was explained in Sec. 1.2, it might be very hard, if not impossible, to prove the
solvability of those classes of tag systems that are closest to TS(2, 2), i.e., TS(2,3)
and TS(3,2). In fact, as far as our experience goes with these classes of tag sys-
tems, they seem to be completely intractable. The methods used in the present
proof do not work for these classes. The only reasonable explanation we have
been capable to find for this basic difference is related to the balance between
the total number #a0,#a1, ...,#aµ−1 of each of the symbols a0, a1, ..., aµ−1 in
the respective words for a given tag system. For each symbol ai, we can measure
the effect of scanning ai on the length of a string produced in a tag system, i.e.,
it can lead to a decrease or an increase. This effect of scanning a symbol ai on
the length of a string produced, can be computed by taking the absolute value of
lwai

− v. If we then sum up the products #ai · (lwai
− v) for each of the symbols,

and the result is a negative rsp. a positive number, one might expect that the
tag system will always halt rsp. show unbounded growth.
Although we have been able to show that this method cannot be used in gen-
eral, it is clear that this method might be applied to certain infinite classes of tag
systems to prove them solvable. Not taking into account the case with w0 = ε
it can be proven for the class TS(2, 2) that there is but a finite subclass of
tag systems for which this sum is equal to 0.4 This is in sharp contrast with the
classes TS(2,3) and TS(3,2) for which it can be proven that they each contain an
infinite class of such tag systems, even if no word is equal to ε. We consider this
as a fundamental difference between the class TS(2,2) and the classes TS(3,2),

4 These are tag systems with l0 = 1, l1 = 3, #1 = #0 = 2



12 Liesbeth De Mol

TS(2,3). In fact, we suspect that further research on this method might help to
considerably simplify the proof of Theorem 1. For more details on this issue the
reader is referred to [13].
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