
191On Building Abstract Terms in Type Systems

On Building Abstract Terms
in Type Systems*

Giuseppe Primiero

1. Abstraction and predication

This paper offers some historical and conceptual remarks on the philosophical
and logical procedures of abstraction, based on an account of the notions of
concept and function. In order to provide a complete analyis, one should start
by considering Plato’s theory of Ideas, which provides the first interpretation
of “abstract terms” in the history of philosophy1. The nature of the most gen-
eral Forms, the related problem of the knowledge thereof, their connection to
existing (concrete) objects, are the essential features of the Platonic theory of
knowledge and of his metaphysics. The Platonic approach is grounded on the
principle of conceptual priority of Ideas over their partecipations, the Forms ex-
isting separeted from all the particulars: the former are interpreted as standard
particulars to which other particulars conform. Nonetheless, my investigation
will start rather by Aristotle, who held first the relation of predication to be the
basis for defining abstraction: from this I will try to consider some important
ideas for the notion of abstraction in Type Systems.

By rejecting the Platonic understanding of general Forms, Aristotle main-
tains that the logical relation of predication is the starting point for any account
of the Categories: these are intended as the forms of both what there is, and of
what can be said2. Consequently, to speak about the existence of a certain cat-
egory means properly to make a predication about a certain substance (as the
first category, to which the others refer). To analyse predicative expressions (in
order to explain the related predicables) will thus amount to a proper abstrac-
tion procedure. The Aristotelian understanding of abstract terms is in turn given
by two related aspects, expressing the underlying distinction between abstract
methods and abstract terms:

* This research has been made possible thanks to a post-doc research fellowship founded by the
University of Palermo (Italy) and spent at the Faculty of Philosophy at the Universiteit Leiden (the
Netherlands).
1 Different passages in the dialogues can be referred to for his theory of abstraction, among them:
Phaedo, 100a–101e; Theaetetus 201d–202c; Republic, 476a, 596a; and the entire discussion in the
Sophist.
2 Aristotle, Categories, par.2.

192 Giuseppe Primiero

• the notion of universal (καθὸλυ);
• the notion of object produced by (a method of) abstraction (τὰ εξ

αφαίρεσεος λεγόμενα, εν αφαίρεσει, δί αφαίρεσεος, αφαίρειν).

Starting by the classical form of judgement “P belongs to S” (with P and S used
as schematic letters respectively for predicate and subject), one says that P be-
longs universally to S if:

• the predicate P belongs to every element S;
• that P belongs to S is due to S itself in such that it is an S (in virtue of S

and qua S), i.e. not by accidens.

A universal is therefore identified with a predicable satisfying the two previous
conditions3. On the other hand, the idea of (a method of) abstraction (by which
a certain abstract term is produced) corresponds to a removal operation4. This
idea is formulated in the general logical context of the Analytics in terms of the
operation of removing particular predicates, namely those not falling under the
previously given description of the universal. The removal operation preserves
only the definitional predicates for the subject (its defining categories), and this
corresponds to proceeding from the particular to the more general of the cate-
gories5. This procedure amounts to concepts formation by abstraction, in terms
of the classification of the properties belonging to objects or entities, thus pro-
viding their hierarchy of universality. The determination of universals in terms
of the particulars defines moreover the peculiar aspect of demonstration6.

The distinction between formal procedures of abstraction and abstract enti-
ties (concepts) seems thus to be already developed in the Aristotelian logic and
metaphysics, where “concept” must be intended as the abstract entity result-
ing from progressive universalization of predications. In the following I will
consider further the relation between abstraction and concepts, to show the
development of the logical notions involved.

2. Universality and meaning

The relation between general names and related particulars, first questioned by
Plato at length for example in the Parmenides, is one of the greatest heredities
the Middle Age received from antiquity. Porphyry in his Isagoge, or introduction

3 For this explanation cf. e.g. Metaphysics B, 4, 1000a1; Γ, 9, 1017b 35; Z, 13, 1038b11–13; Posterior
Analytics I, 4, 73b 26–74a 3.
4 The standard example is given in the Physics, in terms of perceptibles defined as physical magni-
tudes, something which by nature can be added or removed. Cf. Aristotle, Physics, Book 3.
5 See e.g. Posterior Analytics, I, 18, 81b 3–7 and Metaphysics, M 2, 1077b 10.
6 See Aristotle, Posterior Analytics, I, 11, 77a 5–9.

193On Building Abstract Terms in Type Systems

to Aristotle’s Categories, considers the problem of universals explicitely. The
nature of Platonic Forms (or of Aristotelian categories) became then a ground
problem for later philosophers in the Middle Age, among them Boethius in his
Commentaries on Porphyry’s Introduction discussed it, and Abelard maintained
that Ideas preexist the creation as patterns which determine divine Providence
in creating the best of the possible worlds (a thesis known as exemplarism).

The theory of universals, which is clearly connected to the nature of abstract
entities and therefore to abstraction, was later deeply influenced by the semantic
theory of suppositio. One of the most relevant interpretations was the thereon
based notion of generality developed by Ockham, and the derived theory of ab-
stract entities. The theory of supposition furnishes notoriously a semantic treat-
ment for the properties of terms in a sentence: it actually consists in determin-
ing the context of semantic validity of a categorematic term in a proposition.
Ockham uses the powerful theory of supposition in connection with the theory
of universals, by considering the relation between categorematic and syncateg-
orematic terms (i.e. respectively the counterparts of Aristotelian categories and
of modern logical constants), in order to answer the question whether univer-
sal terms have proper signification. He maintains that a term which supposits
generally in a proposition (i.e. under the specification of the syncategorematic
“all”), supposits for every term contained in the appellative domain determined
by the general noun. In paragraphs 6–8 of his Summa Logicae7, he states that
each of two names which are respectively the abstract and the concrete of the
same concept (e.g. humanity-man, animality-animal, hotness-heat) are not syn-
onymous, i.e. they do not stay in relation of supposition for the same thing,
and what is predicated of one of them cannot be also predicated of the other
one. This amounts, in turn, to explicate the problem of predication holding
for general abstract and concrete terms in relation to meaning, and identity of
meaning is established in terms of their definitions, therefore appealing to their
supposita simplex. Thus according to Ockham “every universal is one particular
thing and [...] is not a universal except in its signification, in its signifying many
things”8. According to this quotation (which expresses Ockham’s nominalism),
the referents of terms render the distinction between universal and particulars,
whereas it exists a common suppositum, a meaning determined as an affection
of the soul. This is also confirmed by the thesis that a concrete term, being a
predicate in a proposition, supposits for a form, as “white” for “whiteness” in
“Socrates is white”9. The interesting thesis held by Ockham is therefore that the
term in the universal form introduces the context of semantic validity of any

7 Ockham (1349), these paragraphs are titled respectively: “On concrete and abstract names that
are synonyms”, “The correct account of abstract and concrete names” and “On the third mode of
concrete and abstract names”.
8 Ockham (1349, par.14, p.78)
9 Ockham (1349, par.63, p.189).

194 Giuseppe Primiero

case of predication in which the same name is used in the concrete form: this
means also that universals are applicable to concrete things insofar the latter
resemble each other and the concept resembles each of them.

According to Aristotle the nature of abstract terms was obtained by a pro-
cedure of removal from the concrete predications, a position which finds many
variants in Averroes, Aquinas, Scotus. By introducing explicitely the semantic
relation of supposition in this context, Ockham describes an abstract term as
allowing those concrete predications to be formulated, by displaying the context
of semantic validity in which they can be performed, and thus working as their
logical presupposition. The two approaches differ in the understanding of the
conceptual priority of concepts and the hierarchy of predications.

3. From functions to types

After this debate, here exemplifi ed by the theories of Aristotle and Ockham, an
essential change is provided by the new Fregean paradigm: on the one hand, it
preserves the essential role of predication in the definition of concepts; on the
other hand, it provides a completely new (logical) form for such a notion, noto-
riously in terms of functions. The most relevant consequence of this theoretical
shift is the connection to the problem of impredicativity and the development of
the hierarchy of predications, which will lead to the invention of logical types.

The Fregean approach is a direct critique of the Aristotelian understanding
of abstraction as the determination of a unity among many separeted enitites.
Frege presents abstraction in relation to the notion of function in the Begriff-
schrift, in terms of the so-called Abstraction Principle: if in an expression a simple
or compound sign has one or more occurrences and that sign is recognised as
replaceable in all of its occurrences by some other sign, the invariant part is
then a function and the replaceable part is its argument10. On the basis of this
general principle, Frege develops the related notion of concept: a concept is not
the result of a removal operation in the Aristotelian sense, rather it is the refer-
ence (Bedeutung) of a predicative expression11. This is obtained by explaining a
predicate as an unsaturated object, whereas an argument for it is the instantia-
tion of a concept saturating the former12. The classical judgemental form “S is
P/P belongs to S” is thus changed to a new functional structure F(x), where F
plays the role of the predicate, to be evaluated for a certain object (the variable

10 Frege (1879, par.9).
11 Frege (1892). Notoriously, he explains moreover the reference of singular terms as the objects
they stand for, and that of indicative sentences as their courses of values. See also his (1892b,
p.193). Cf. Primiero (2004). .
12 Frege (1891, p.6).

195On Building Abstract Terms in Type Systems

representing a place-holder for it). To build up a judgement means therefore
essentially to evaluate a concept for an argument, and the distinction between
concept and object determines the former as an abstract term. According to
Frege therefore, a concept cannot play the role of the reference of the gram-
matical subject: it has to be converted into (or represented by) an object, which
allows for its evaluation. According to this theory of concepts as predicates it is
not even necessary for the predicate to be logically possible; the existence of
an object instantiating a self-contradictory predicate is obviously a completely
different matter.

The formal definition by abstraction of the old-fashioned notion of concept,
establishing a class of given objects which satisfy an equivalence relation R such
that reflexivity, identity and transitivity hold, can be provided also for functional
expressions, for which one has to specify their course of values only by means
of terms for which they can be evaluated: this makes the notion of function cor-
responding to its extension, namely the correlation of its arguments and its val-
ues13. A concept intended as an abstract term (represented by a function) has
a range corresponding to the usual logical extension, i.e. the set of all objects
falling under it. In Funktion und Objekt Frege avoids the essential paradox of
the Grundgesetze by considering a first-level and a second-level form of abstrac-
tion, producing different kinds of functions14. Frege had essentially obtained the
same result of the later Russellian Ramified Type Theory (RTT)15, but treating
Wertverläufe as ordinary objects, he allows a function to be applied on its very
same course-of-values (corresponding to a function applied to its own graph),
thus he cannot avoid the possibility of impredicative definitions. In the devel-
opment of the notion of function for RTT, based on the distinction between
the hierarchy of types of propositions and that of propositional functions, an
important conceptual change occurs: the connection between predication and
concepts as abstract entities is forgotten, and it is only partially recovered in
terms of the notion of function as the stable part of the abstraction procedure.
Correspondingly, the abstraction procedure in the formation of propositional
functions is the basis of RTT, where it holds the double hierarchy of simple
types and of orders, which also allows to abstract by universal quantification
on all propositional functions of a certain order. The thesis that abstraction has
now a rather different meaning is confirmed by the understanding of general-
ity for functions as interpreted by Russell. In RTT, this property either means
the assertion of any value of a propositional function, or the assertion that the

13 The latter is then an ordered pair, corresponding to the notion of function as a graph; conceptu-
ally different is the simple dependent object considered before. In the next section, the notion of
function involved in the analysis of type systems will be yet a different one. The clarification of the
distinction of these three notions is due to B.G. Sundholm.
14 Frege (1891, pp.26–27).
15 Russell (1908).

196 Giuseppe Primiero

function is always true: in the first case, one refers to real variables (any value
of the function is asserted); in the second, to apparent variables (the function is
always true). The notion of abstraction which leads to the function as indepen-
dent object (and in turn to contradiction whenever the appropriate hierarchy of
predications is not considered) acts on the values (real variables), what Russell
called a proper propositional function16. Thus the type of functions does not only
depend on the type of arguments, rather also on the type of apparent variables
(place-holders)17.

Typing procedures introduced by Russell are not just the solution to the
problem of impredicativity: they present a new interpretation of the notion of
function and a different approach to abstraction. In particular, abstract terms
require to be explained on the basis of the logical notion of type, as objects of
an higher level.

4. Abstraction from type-free to typed λ-calculus

The traditional interpretation of the notion of function due to Leibniz, Ber-
noulli and Euler, is that of an analytic expression in one or more variables. Frege
and Russell formulated the logical notion based on the relation of predication,
which refers to substitution and evaluation as its defining operations. In the
Fregean interpretation a function stands also by itself as an independent object
of individual type, defined by the correlation to its course of values. By the Rus-
sellian theory of types, functions as formal structures of predication are admis-
sible on the basis of the order of their objects. This evolution led to a different
model of function and to the notion of type: it restores the old-fashioned notion
of function as rule rather than as graph, i.e. it consists of an operation from an
argument to a value.

The formalization of abstraction in terms of functional expressions à la Rus-
sell substituting the notion of Fregean concepts, where real variables take the
place of the abstraction procedure, is further exemplified in the simple typed
λ-calculus developed by Church (1940). It combines the Russellian calculus and
the operation of deramification, which removes all the orders on types. In a
type-free structure the objects of study are both functions and arguments; the
alphabet of such a calculus is formed by λ-terms, which are formal expressions
for functions and for applications of functions. In this kind of calculus, actually

16 Russell (1908, p.157).
17 A condition which notoriously Russell restricted by formulating the Axiom of Reducibility (AR):
for each formula f there is a formula g with a predicative type such that f and g are logically equiva-
lent, where a type is predicative if none of its objects is of a higher order than the order of the ele-
ments of the class to which this object should belong.

197On Building Abstract Terms in Type Systems

everything is or is meant to represent a function, based on a composed process
of abstraction and application18. Their combination is essential to the formula-
tion of functions, and application is in fact the main operation, whereas abstrac-
tion is complementary. The system of operations is completed by reduction,
consisting in the process of computing from a λ-abstracted term to its value.
The model of abstraction here at hand is of a different kind than the Fregean
notion of function: the result of abstraction is performed by an operator, and
it produces a function rather than a predicate or a concept. Consider the nu-
merical expression 2 + 3, and its transformation into a function, by which one
takes into account first the λ-term (λx.x + 3)2 which is the β-expansion of the
given numerical expression: in this transformation we have a certain argument
(2) which is substituted by the argument-variable (x) via the lambda-abstractor.
What is peculiar in this operation is that one has already the abstracted term
(which in turn performs the role of an abstractor operator on values) without
having necessarily the starting term from which one abstracts. The β-expansion
in the λ-calculus is thus joined to the operation of removing an argument and
it corresponds to the function construction. Respectively, instantiation of the
latter corresponds to application plus β-reduction of the former19. The concep-
tual identity between the predicative part and the argument is relevant to the
understanding of the notion of abstraction involved: the very same expression
can perform the role of the operator and of its object. In this sense no term
represents the result of an abstraction procedure, nor the context-determining
term of predication (as in the case of the relation of supposition). The abstrac-
tor operators are such that they can be applied to functions without considering
the order of progressively higher types: the abstraction is a pure operation, not
a complete process and functions are first-class citizens. The resulting notion of
function for these calculi is therefore considered in terms of evalutation (func-
tion values), rather than in terms of objects (abstract function).

The typed version of λ-calculi affects then the simple version in an essential
way: every term of the calculus has now a normal form, i.e. every possible β-and
η-reductions terminate, which makes the set of typable λ-terms entirely recur-
sive. The introduction of types in order to describe the functional behaviour
of the terms is relevant in two ways: first, it transforms the idea of abstraction
connected to these calculi; second, it provides a bridge between the notion of
function and the one of type. On the basis of the Brouwer-Heyting-Kolmogorov
interpretation of propositions-as-proofs, in the typed version of this calculus a
proof of an implication is a construction, and accordingly a construction of an
implication is a function (from the proof of the antecedent to the proof of the
consequent). The intrepretation of all operations in terms of their types, due to

18 See e.g. Laan (1997, pp.4–5).
19 Laan (1997, p.43).

198 Giuseppe Primiero

the Curry-Howard isomorphism, leads to a different consideration of abstrac-
tion procedures. A useful way to explain this, which holds for all kind of typed
systems, is to consider the information-content of the expressions: the explicit
formulation in the syntax of constructions and bound variables in the environ-
ments represents the formal structure for which operations of abstraction can be
defined20. Typed systems can in fact be intended as such that types for all vari-
ables and terms are fixed, and expressions contain full type information (whereas
a so-called type-assignment system would not have such a full information in the
basic syntax). The procedure which allow to transform a fully built term into a
“core one”, i.e. one which provide only the necessary type information, can be
seen as an operation of erasing the domains of abstraction; conversely, the typ-
ability of terms consists in filling in a proof-trace with the missing elements. Ac-
cording to this relation between informational content of terms and procedures
of abstraction, one needs now to distinguish between two different uses of “ab-
straction”: abstraction as λa.M consists in a proof by generalization; an abstract
type, will be instead the term obtained by means of an existential type. This dis-
tinction is of the greatest importance to understand the nature of abstraction for
type systems: it is clearly based on the logical nature of types and on the essential
connection which seems to hold between abstraction and information.

5. Other examples of typed systems

Other examples of abstraction procedures in typed systems show interesting
properties connected to the explanations provided in the previous sections.

A prototype proof, whose notion was first formulated by Herbrand21, is the
proof of a universally quantified statement, whose verification is applicable to
each specific instance of the quantified variable. It is executed by assuming a
certain generic element of the set the quantification ranges over, in this way
making the proof independent from that specific element. This shows the for-
mulation of a model to be applied in different cases22. A second case in which
the same notion of model is clearly involved in connection to abstraction is that
of abstract data types (ADT). ADT are defined as a set of data values (abstract
data structure) and associated operations (interface) that are considered inde-

20 This results clearly in the different formulations known as Curry-style and Church-style typed
λ-calculi. See e.g. Sørensen, Urzyczyn (2006, ch. 3).
21 See Longo (2000, p.2).
22 Longo (2000) provides a nice interpretation of the notion of prototypic proof in type systems un-
der the propositions-as-types interpretation, where one can consider this kind of proofs as λ-terms:
this is done by considering a simple type called generic, i.e. such that it can be assumed as a variable,
and whose proof is provided by a specific instance called “parametric”, i.e. which can be uniformly
substituted.

199On Building Abstract Terms in Type Systems

pendently from any specific implementation. These data represent the result
of an operation of abstraction intended as the process of deleting unnecessary
details from necessary characteristics (i.e. again to formulate a model by remov-
ing information) in order to solve a problem (i.e. to provide the correct opera-
tions on a certain set of data). Clearly, the process of obtaining the relevant
data is exemplified by the abstract predicates entering into the solution of the
problem; as in the case of the application function, this process of abstraction
is never taken separately from the determination of the operations which are
to be performed on the empty schema. To mention a last example: by polytypic
abstraction one understands instead formalizations and verifications abstracted
in respect to a large class of datatypes, which is especially relevant in functional
programming. A simple and nice example is that of the function map in the
Hindler-Miller type system (map: ∀A, B.(A → B) → (list(A) → list(B))) which
provides a structure of transformation of data lists in other kind of data, with
an untouched schema or model, irrelevant to the kind of data instantiated as
object of that function23. Also in this case we are treating with a procedure of
abstraction by which an empty model is obtained, able to implement all the
different data of a certain range of (distinct) equivalent types, and to be used in
terms of application24.

6. Types, abstraction and information

The connection between types and information in the light of the abstraction
procedures can be reconsidered under the syntactic-semantic method of Mar-
tin-Löf’s Type Theory. The relevant notion of type in such a system is related to
abstraction both from the philosophical and the purely formal viewpoints: its in-
terpretation provides also interesting comments on the analysis done up to now.
The main argument is that the syntactic procedures (rule-based operations) are
not the unique way to account for abstraction: on the one hand one has to con-
sider the removal operation by which the notion of emtpy (polymorphic) model
is obtained; on the other hand, the notion of abstract (meaning-determining and
predicative-component) object is involved by the definition of types themselves.
In both cases, the notion of information plays a key-role.

At the syntactic predicative level, the notion of abstraction is satisfied in
terms of rules. Abstraction and application rules concern the informative con-

23 See Pfeifer, Ruess (1998).
24 This obviously requires that the basic distinction between monomorphic and polymorphic lan-
guages holds; its better application is given by the so called parametric polymorphism, according to
which the same object or function can be used uniformly in different type contexts without changes
(provided all data are represented). See Cardelli, Wegner (1985, p.477).

200 Giuseppe Primiero

tent of expressions in terms of the specific constructions. The rule of Π-intro-
duction defines an independent object of the lowest individual type

 [x : A]
 b(x) : B(x)
 ———————————————————
 λ((x)b(x)) : (Πx : A)B(x)

with the related Π-elimination or Application rule; on the other hand, abstrac-
tion consists in functions formation of the higher type, i.e. if x is a variable of
type A and b is a term of type B, then (x)b is a term of type A → B:

 [x : A]
 b : B
 ——————————
 (x)b : A → B

explained by the ordinary β-rule, expressing what does it mean to apply an ab-
straction to an object in A:

 a : A b : B[x : A]
 —————————————————————
 ((x)b)(a) = b[x/a]: B[x/a]

The distinction between universalization and abstraction on contents is there-
fore clearly stated in terms of syntactic operations. The object of abstraction is
here the informative content of judgements, as stated by the Forget-restore Prin-
ciple25: the principle says that to build up an abstract concept from a raw flow of
data, one must disregard some information, and an abstraction is constructive
when the information forgotten can be restored at will. Under this principle,
abstraction corresponds to an operation of forgetting from irrelevant computa-
tional information, whereas instantiation is the restoring of such information.
In particular, by a procedure of abstraction one obtains the transition from the
monomorphic to the polymorphic versions of the theory.

Operational abstraction leads to consider higher types as abstract terms
themselves. By insisting on the procedure of abstraction in terms of removing
the informational content of the constructions, one formulates the judgement
declaring the truth of the involved types26:

 a : A
 ——————
 A true

25 Valentini (1998).
26 This formulation simply expresses the propositions-as-sets interpretation, see Nordström, Peters-
son, Smith (1990, p.37).

201On Building Abstract Terms in Type Systems

A multi-level typed λ-calculus can be provided for rigorous treatment of judge-
ments of the form “A true”, on the basis of canonical expressions of the form
a : A. In this sense, abstraction procedures allow for type-expressions of the form
A type, provided that abstraction applies as follows:

 A set(/prop)
 ————————————
 A type

This procedure leads to the analysis of types as independent objects of predica-
tion; they are presuppositions for judgements in which those types are used27.
The explanation of this abstraction procedure is given accordingly to the syntac-
tic-semantic method of Martin-Löf’s Type Theory, in which types come concep-
tually before their objects. This means that the conceptual order between types
and their instantiation goes from the former to the latter (i.e. types are abstract
terms in respect to their constructions), whereas in the order of knowledge one
proceeds from existential predications to their types by means of an abstraction
procedure. Higher types, i.e. of the monomorphic kind, should therefore be
explained as abstract terms, in connection to predication and semantic context:
they recover essential features of abstraction lost in the functional interpreta-
tion.

Giuseppe Primiero
Centre for Logic and Philosophy of Science
Universiteit Gent
Blandijnberg 2
B-9000 Gent, Belgium
Giuseppe.Primiero@UGent.be

References

Aristotle. Works. The Loeb Classical Library.
Cardelli, L., & Wegner, P. (1985). On Understanding Types, Data Abstraction

and Polymorphism. Computing Surveys, 17 (4), 471–522.
Church, A. (1940). A formulation of the simple theory of types. The Journal of

Symbolic Logic, 5, 56–68.

27 See Primiero (forth).

202 Giuseppe Primiero

Frege, G. (1891). Funktion und Begriff. Lecture given on 1891, at Jenaischen
Gesellschaft für Medizin und Naturwissenschaft. In M. Textor (Ed.)
(2002). Funktion – Begriff – Bedeutung (pp. 2–22). Vandenhoeck
& Ruprecht.

Frege, G. (1892). Über Sinn und Bedeutung. Zeitschrift für Philosophie und
philosophische Kritik, NF 100, 25–50. In M. Textor (Ed.) (2002). Funktion
– Begriff – Bedeutung (pp. 23–46). Vandenhoeck & Ruprecht.

Frege, G. (1892b). Über Begriff und Gegenstand. Vrijschrift für
wissenschaftliche Philosophie, 16, 192–205. In M. Textor (Ed.) (2002).
Funktion – Begriff – Bedeutung (pp. 47–60). Vandenhoeck & Ruprecht.

Laan, T. (1997). The Evolution of Type Theory in Logic and Mathematics.
PhD Dissertation Thesis. Technische Universiteit Eindhoven. Enschede:
Print Partners Ipskamp.

Longo, G. (2000). Prototype Proofs in Type Theory. Mathematical Logic
Quarterly, 46 (3).

Martin-Löf, P. (1993). Philosophical Aspects of Intuitionistic Type Theory.
Unpublished notes of lectures given at the Faculteit Wijsbegeerte Leiden.

Nordström, B., & Petersson, K., & Smith, J. (1990). Programming in Martin-
Löf ’s Type Theory – An Introduction. Oxford: Clarendon Press.

Ockham, W. (1349). Summa Logicae – Part One: Logic of Terms. Translated
and introduced by M. J. Loux. Notre Dame/London: University of Notre
Dame Press.

Pfeifer, H., & Ruess, H. (1998). Polytipic Abstraction in Type Theory. Informal
Proceedings of Workshop on Generic Programming (WGP98). Marstrand,
Sweden.

Primiero, G. (2004). The Determination of Reference in a Constructive
Setting. Giornale di Metafi sica, 26 (3), 483–502.

Primiero, G. (forth). Presuppositions, Assumptions, Premises. Forthcoming.
Russell, B. (1908). Mathematical Logic as based on the Theory of Types.

In J. van Heijenoort (Ed.) (1999). From Frege to Gödel – A source book in
mathematical logic, 1879–1931 (pp. 150–182). ToExcel Press.

Sørensen, M. H., & Urzyczyn, P. (2006). Lectures on the Curry-Howard
Isomorphism. Studies in Logic and the Foundations of Mathematics,
vol. 149. Amsterdam: Elsevier.

Valentini, S. (1998). The forget-restore principle: a paradigmatic example.
In Sambin, Smith (Eds.), Twenty-five years of Construcitve Type Theory
(pp. 275–283). Oxford: Clarendon Press.

