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Abstract

In this paper, a formal framework to problem-solving processes is pre-
sented. The framework is not complete. Nevertheless, even its present
sophistication allows one to see that it is promising.

The framework demonstrably allows one to understand scientific change
as content-guided. It will be argued that a formal framework is required
in order to make definite and precise statements about the content-guided
aspects of scientific problem solving.

1 Some Background

On the present-day view of scientific rationality, science is content-guided. As
Dudley Shapere phrases it: scientific inquiry relies on “what we have learned,
including what we have learnt about how to learn” [62, p. 52]. While the Vi-
enna Circle ultimately reduced scientific methodology to an a priori matter,
aiming at delineating all possible science, the present view understands science
as essentially relying on contemporary insights in the world as well as in method-
ological matters. While Kuhn and other members of the ‘historicist’ movement
reduced science to a form of relativism, the present view sees scientific decisions
as justified in terms of those contemporary insights.

It may come as a surprise that this view requires a heavy import of logic. In
trying to understand scientific reasoning, especially its more creative aspects,
heuristic aspects play a central role. One should clearly distinguish between
heuristic aspects that pertain to logic and other heuristic aspects. Both kinds
are important (and both result from a learning process). Even in order to give
the non-logical aspects their due place, the logical aspects should be located
and systematically described.

So I shall describe an approach to problem solving that has a remarkable
combination of properties. On the one hand, the approach is formal in a
specific but plain sense of the term. Yet, at the same time, it leaves ample
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room for content-guidance. Central to the approach are formal problem solv-
ing processes—henceforth fpsps. These are defined by ingredients of different
sorts: one or more logics (for declarative statements), the prospective dynam-
ics of these logics, one or more erotetic logics, an oracle, a procedure (set of
instructions), and a set of heuristic instructions. The main aim is obviously
the explication of actual problem solving processes. The backbone is to solve
a problem of the form {?{A,∼A}} by deriving one of its direct answers, A or
∼A, from Γ by Classical Logic—henceforth CL.

The logics for declarative statements should not be seen as alternatives for
CL (Classical Logic). They are formal explications of methodological reason-
ing forms. These are handled by adaptive logics, of which there are two sorts:
corrective and ampliative. Corrective adaptive logics are invoked for handling
premise sets that display unexpected and unwanted properties, such as incon-
sistency and ambiguity. In the presence of these, CL results in triviality, while
corrective adaptive logics interpret the premise set as consistently as possible
or as unambiguously as possible. Ampliative adaptive logics extend CL in view
of methodologically justifiable forms of reasoning: inductive generalization, ab-
duction (see Meheus’ paper in the present volume), compatibility reasoning (for
example for extending a theory), etc.1

Most adaptive logics require defeasible inferences. Indeed, the reasoning
forms have the peculiarity that there is no positive test for them. This makes
their proofs necessarily dynamic: it may be required that a step derived at some
point is considered as OUT at a later point and possibly as IN again at a still
later point. The reasons for considering steps as IN or OUT are provided by
the insights from the ongoing reasoning. Such reasoning forms are explicated
by the dynamic proofs of adaptive logics—see [12, 16, 19] for an introduction as
well as for technical results, and Section 3 for a brief introduction. In those dy-
namic proofs, the dynamics is technically controlled by conditions and marking
definitions.

A further dynamics is introduced. The prospective dynamics enables one
to push formal elements of the proof search into the proof itself. This allows
for more or less permissive heuristic procedures and makes the heuristic aspects
transparent. The prospective dynamics can be spelled out for the dynamic
proofs of adaptive logics.

Erotetic logics (in the style of [66]) are used to write problems (sets of ques-
tions) into the proof and to derive problems from given problems and declar-
ative (prospective) statements. The erotetic logics handle the introduction of
subproblems and so-called derived problems.

The framework is easily extended (i) with empirical means, observation and
experiment, and (ii) with the introduction of available information, which origi-
nally was not seen as relevant. Problems that can be solved by empirical means
are handled by a specific kind of oracle. Some problems will only be answered
in the context of an experimental setup, which may require a fpsp itself.

Interestingly, both extensions are guided by the fpsps: the present state of
the fpsp leads to an appeal to empirical means or to the introduction of new
information. This guidance has two sources. On the one hand, the prospective
dynamics may reveal (in terms of the positive part relation from Section 2)

1Whether an adaptive logic is corrective or ampliative is defined, in the present context,
with respect to CL, which is here taken as the standard of deduction. This is merely a
pragmatic convention.
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that available information is relevant for the problem. The information may
be knowledge that was previously not seen as relevant, or it may be obtained
by known empirical means. On the other hand, the derivable disjunctions of
abnormalities (jargon to be explained below), which play an essential role in
adaptive logics, sensibly guide research in suggesting empirical questions as well
as defeasible theoretical choices. Both lead to useful steps towards the solution
of the problem.

All these elements are joined and governed by a procedure. The specific road
followed to solve a problem is determined by choices that are permitted by the
procedure. These choices make it possible to proceed in view of “what we have
learnt about how to learn.” I shall pay special attention to further aspects that
make fpsps content-guided.

In order to keep the discussion within bounds, I shall only consider the
technicalities for the propositional case. This is merely a pragmatic decision.
The predicative version of the adaptive logics is available, and the same holds
for the prospective dynamics.

The background of the approach is formed by many sources of inspiration.
Science is seen a problem-solving activity, a widespread view that apparently
reached a stable formulation in [36]. From philosophy of science and episte-
mology, this view is elaborated by a combination of ideas mainly taken from
[38, 39, 40, 41, 42, 43], which combine Tom Nickles’ view on discovery in terms
of constrained problem solving processes, [51, 52, 53, 54, 55, 56, 57] with a con-
textual view on problem solving, [3, 4, 7, 8, 47]. The central idea is that a
problem is determined by constraints that are modified as the problem-solving
process proceeds. The constraints can be of three sorts: conditions on the so-
lution, methodological instructions (including heuristic instructions as well as
examples of successful problem solutions), and (contextual) certainties (which
form the so-called conceptual frame). Some handy sources for the logical as-
pects: [12, 19, 20, 27] for adaptive logics, [17, 30] for the prospective dynamics,
and [65, 66, 67, 68] for erotetic logic.

2 Formal Problem-Solving Processes

A fpsp is a chain of stages and a stage (of a fpsp) is a sequence of lines that
are written according to a set of instructions: rules with a deontic condition
attached to them. The first stage consists of a single line. A subsequent stage
is obtained by adding one line to the previous one. The instructions determine
which lines may be added at a stage. They obviously depend on the logic or
logics of the fpsp.

A fpsp contains problem lines as well as declarative lines. A problem is a
non-empty set of questions. In a first approach, one may take the main problem
to be a single yes–no question ?{M,∼M}, and all derived problems to be sets of
yes–no questions. A and ∼A are the direct answers of the question ?{A,∼A}.

Γ will always denote the premise set. The formula of a declarative line may
be a member of Γ or a formula derived from members of Γ. Such formula may
have the form

[B1, . . . , Bn]A

which indicates that Γ∪ {B1, . . . , Bn} ` A. The set {B1, . . . , Bn} will be called
the condition of A. A formula of the form A will be said to occur unconditionally.

3



However, a formula A is also identified with [∅] A, whence the condition of A is
said to be empty.

Given a problem, the problem solver has to chose a target (from the prob-
lem): a direct answer of a question of the problem. A target is noted on a target
line; it is a formula the problem solver tries to establish. A target A will be
written as

[A]A

which is logically redundant but guides the procedure, as we shall see. If [A]A
occurs on an unmarked line, A will be said to be an unmarked target. The
procedure is moreover guided by marking definitions. Some marks indicate that
a line became useless for solving the main problem; others that some action has
to be undertaken to further the solution.

We need some preparatory definitions for the formal machinery. Let ∗A
denote the ‘complement’ of A, viz. B if A has the form ∼B and ∼A otherwise.
Let us distinguish a-formulas from b-formulas, varying on a theme from [63],
and assign to each formula two other formulas according to the following table:

a a1 a2 b b1 b2

A ∧B A B ∼(A ∧B) ∗A ∗B
A ≡ B A ⊃ B B ⊃ A ∼(A ≡ B) ∼(A ⊃ B) ∼(B ⊃ A)
∼(A ∨B) ∗A ∗B A ∨B A B
∼(A ⊃ B) A ∗B A ⊃ B ∗A B
∼∼A A A

The positive part relation is defined recursively by the following clauses:

1. pp(A,A).

2. pp(A, a) if pp(A, a1) or pp(A, a2).

3. pp(A, b) if pp(A, b1) or pp(A, b2).

4. If pp(A,B) and pp(B, C), then pp(A,C).

The instructions rely on the prospective rules presented in [30]. A fpsp
starts with an application of Main, which introduces the main problem. In the
instructions, k denotes a suitable line number.

Main Start a fpsp with the line:

1 {?{M,∼M}} Main

Target If P is the problem of an unmarked problem line, and A is a direct
answer of a member of P, then one may add:

k [A]A Target

Prem If A is an unmarked target, B ∈ Γ, and pp(A,B), then one may add:

k B Prem

The formula analysing rules of CL (see [30]) may be summarized as follows:2

2The left rule states that both [∆] a1 and [∆] a2 may be derived (separately) from [∆] a
(notational abuse here and in the text).
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[∆] a
[∆] a1 [∆] a2

[∆] b
[∆, ∗b2] b1 [∆, ∗b1] b2

The general form of the rules is [∆] A / [∆ ∪∆′] B. The following instruction
handles their application:

FAR If C is an unmarked target, [∆] A is the formula of an unmarked line i,
[∆]A / [∆ ∪∆′] B is a formula analysing rule, and pp(C, B), then one
may add:

k [∆ ∪∆′]B i; R

in which R is the name of the formula analysing rule.

The condition analysing rules of CL are summarized by:

[∆ ∪ {a}] A
[∆ ∪ {a1, a2}] A

[∆ ∪ {b}]A
[∆ ∪ {b1}]A [∆ ∪ {b2}]A

They all have the form [∆ ∪ {B}] A / [∆ ∪∆′] A. The following instruction
refers to them:

CAR If A is an unmarked target, [∆∪ {B}] A is the formula of an unmarked
line i, and [∆ ∪ {B}] A / [∆ ∪∆′]A is a condition analysing rule, then
one may add:

k [∆ ∪∆′]A i; R

in which R is the name of the condition analysing rule.

The instructions EM (excluded middle) and EM0 allow one to eliminate
certain problems without answering them.

EM0 If [∆ ∪ {∗A}]A is the formula of a line i that is neither R-marked nor
I-marked, then one may add:

k [∆]A i; EM0

EM If A is an unmarked target, [∆ ∪ {B}] A and [∆′ ∪ {∼B}]A are the
respective formulas of the unmarked or only D-marked lines i and j,
and ∆ ⊆ ∆′ or ∆′ ⊆ ∆, then one may add:

k [∆ ∪∆′]A i, j; EM

Transitivity is essential for eliminating solved questions as well as for sum-
marizing the remaining problems (and paths) in a problem-solving process.

Trans If A is an unmarked target, and [∆∪{B}] A and [∆′] B are the respective
formulas of the at most S-marked3 lines i and j, then one may add:

k [∆ ∪∆′]A i, j; Trans

The last instruction handles derived problems:
3A line is at most S-marked iff (if and only if) it is not R-marked, not I-marked and not

D-marked.
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DP If A is an unmarked target from problem line i and [B1, . . . , Bn]A is
the formula of an unmarked line j, then one may add:

k {?{B1,∼B1}, . . . , ?{Bn,∼Bn}} i, j; DP

In view of the intended applications (deriving predictions, explanations, etc.)
the procedural system has no instruction for applying EFQ—the paraconsistent
procedural variant logic of CL is studied in [22, 23].

I now list the marking definitions. We shall need several kinds of marks,
which have distinct effects on the procedure. Each kind is governed by a defi-
nition, which applies to the stages of the fpsp—marks may come and go with
each new stage. An R-mark indicates that a line is redundant.

Definition 1 An at most S-marked declarative line i that has [∆]A as its for-
mula is R-marked at a stage iff, at that stage, [Θ] A is the formula of a line for
some Θ ⊂ ∆.

An unmarked problem line i is R-marked at a stage iff, at that stage, a direct
answer A of a question of line i is the formula of a line.

Remember that a target is a target from a problem line (and from its prob-
lem). If A is a target, every line in which [∆] A is derived for some ∆ 6= {A}
will be called a resolution line (for target A). The line called j in instruction
DP will be said to generate the problem line introduced by DP. A is a direct
target from [∆] B iff [∆] B is the formula of the resolution line that generates
problem P, A is a target from P, and A ∈ ∆—note that some targets from P
are not members of ∆.4 A target sequence is a sequence 〈[∆1]A1, . . . , [∆n] An〉
in which every Ai+1 (1 ≤ i < n) is a direct target from [∆i] Ai. A target se-
quence 〈[∆1] A1, . . . , [∆n] An〉 is grounded iff A1 is not a direct target from any
unmarked [Θ] B derived in the fpsp. A set is flatly inconsistent iff it contains A
as well as ∼A for some A. I-marked lines are inoperative: acting on the line is
not useful for solving any extant problem.

Definition 2 An at most S-marked target line that has [A] A as its formula is
I-marked at a stage iff every problem line from which A is a target is marked at
that stage.

An at most S-marked resolution line of which [∆1] A1 is the formula for
some ∆1 6= ∅ is I-marked at a stage iff, at that stage, for every grounded target
sequence 〈[∆n] An, . . . , [∆1] A1〉,

(i) some target [Ai] Ai (1 ≤ i ≤ n) is marked, or
(ii) {An, . . . , A1} ∩∆1 6= ∅, or
(iii) ∆1 ∪ . . . ∪∆n ∪ Γ◦s is flatly inconsistent.

An unmarked problem line is I-marked iff no unmarked resolution line gen-
erates it.

A is a dead end iff A is (in the present propositional context) a literal and
A is not a positive part of a premise. If A is not a literal, then CAR leads from
the unmarked [∆ ∪ {A}] B to one or more [∆ ∪ ∆′] B. The latter is called a
CAR-descendant of [∆ ∪ {A}]B. D-marks indicate that no further action can
be taken in view of a line.

4A resolution line containing [q] p leads to the derived problem ?{p,∼p} and ∼p is a target
from this.
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Definition 3 An at most S-marked resolution line with formula [∆] A is D-
marked at a stage iff some B ∈ ∆ is a dead end or, at that stage, all CAR-
descendants of [∆]A occur in the fpsp and are D-marked.

An at most S-marked target line with formula [A]A is D-marked at a stage
iff A is a dead end or no further action can be taken in view of target A.5

The procedure may be sped up (in a way that derives from a straightforward
insight in the fpsp) by S-marks. Let Γ◦s be the union of the set of premises and
the set of unconditional formulas that occur at stage s of the fpsp.

Definition 4 A R-unmarked resolution line in which [∆1] A1 is derived is S-
marked iff

(i) ∆1 ∩ Γ◦s 6= ∅, or
(ii) for some target sequence 〈[∆n] An, . . . , [∆1] A1〉, {An} ∪ ∆1 is flatly in-

consistent whereas ∆1 is not flatly inconsistent, or
(iii) ∆1 ⊂ ∆n ∪ . . . ∪∆2 for some target sequence 〈[∆n] An, . . . , [∆1] A1〉.

What precedes describes a rather permissive procedure in which the only
declarative logic is CL. Below I illustrate the procedure by means of an ex-
tremely simple example. The prospective dynamics for adaptive logics is hardly
more complicated—see [17].

Let ?{p∨ q,∼(p∨ q)} be the main problem and let {t ⊃ u,∼u∨ r, (r∧ t)∨ s,
∼s, (q ∨ u) ⊃ (∼t∨ q)} be the premise set. The superscripts of the marks name
the stage at which the line is (thus) marked—this convention saves rewriting.

1 {?{p ∨ q,∼(p ∨ q)}} Main
2 [∼(p ∨ q)]∼(p ∨ q) Target D3

3 [∼p,∼q)]∼(p ∨ q) 2; C∼∨E D3

As ∼p is not a positive part of any premise, line 3 is D-marked, and hence so is
line 2.

4 [p ∨ q] p ∨ q Target
5 [p] p ∨ q 4; C∨E D5

6 [q] p ∨ q 4; C∨E
7 {?{q,∼q}} 4, 6; DP
8 [q] q Target
9 (q ∨ u) ⊃ (∼t ∨ q) Prem
10 [q ∨ u]∼t ∨ q 9; ⊃E
11 [q]∼t ∨ q 10; C∨E
12 [q, t] q 11; ∨E I12

13 [u]∼t ∨ q 10; C∨E
14 [u, t] q 13; ∨E
15 {?{u,∼u}, ?{t,∼t}} 8, 14; DP
16 [t] t Target
17 (r ∧ t) ∨ s Prem
18 [∼s] r ∧ t 17; ∨E

5Whether an action that can be taken in view of target A is obvious in view of the instruc-
tions. If no further action can be taken in view of target A, all instructions that could be
applied in view of that target were taken and resulted in lines that are R-marked, I-marked
or D-marked.
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19 [∼s] t 18; ∧E S22

20 {?{s,∼s}} 16, 19; DP R22

21 [∼s]∼s Target R22

22 ∼s Prem

The S-mark of line 19 indicates that Trans can be applied. I repeat part of the
fpsp:

14 [u, t] q 13; ∨E S23

15 {?{u,∼u}, ?{t,∼t}} 8, 14; DP R23

16 [t] t Target R23

17 (r ∧ t) ∨ s Prem
18 [∼s] r ∧ t 17; ∨E
19 [∼s] t 18; ∧E S22 R23

20 {?{s,∼s}} 16, 19; DP R22

21 [∼s]∼s Target R22

22 ∼s Prem
23 t 19, 22; Trans

Again, the S-mark of line 14 indicates how to proceed.

24 [u] q 14, 23; Trans S29 R30

25 {?{u,∼u}} 8, 24; DP R29

26 [u]u Target R29

27 t ⊃ u Prem
28 [t] u 27; ⊃E S28 R29

29 u 23, 28; Trans
30 q 24, 29; Trans

Line 14 is R-marked at stage 24. The S-mark of line 24 triggers Trans, which
results in 30. Several marks are added at stage 30, most importantly, line 6 is
S-marked, which leads to

31 p ∨ q 6, 30; Trans

whence the problem is solved (and line 1 is R-marked).
The example does not present the shortest way to derive an answer to ?{p∨

q,∼(p ∨ q)} from the premise set. Rather, it illustrates most of the features of
(these simple) fpsps. Most of the heuristics is pushed into the fpsp and each
step of the fpsp is sensible in view of the previous stage. Note that several
premises were not introduced and cannot be introduced into the fpsp for this
main problem.

3 Adaptive Logics

Here is a loose characterization: a logic is adaptive iff it adapts itself to the
specific premises to which it is applied. The logic adapts itself to the premises:
it depends on the premises which instances of inference rules are correct. And
the logic adapts itself to the premises: the reasoner does not interfere in this.
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The first studied adaptive logics were inconsistency-adaptive—see [5, 6, 9].
As a growing multiplicity of adaptive logics were described, the need for sys-
tematization presented itself. The idea was to find a common formal character-
ization, which was called the standard format. As the basic mechanism behind
all adaptive logics is the same, the standard format should do most if not all of
the work. It does.

In the sequel, I shall consider only adaptive logics in standard format. I
shall try to avoid to complex technicalities, for which I refer to other papers,
but rather try to clarify the way in which adaptive logics characterize defeasible
reasoning processes.

The standard format is both simple and perspicuous. It was first presented
in [12] and was studied more thoroughly in [19]. An adaptive logic AL is in
standard format if it is characterized by a triple consisting of the following
elements:

(i) LLL, a lower limit logic,
(ii) Ω, a set of abnormalities that all have the same logical form,
(iii) an adaptive strategy.

Each of these elements has a specific technical function.
The lower limit logic LLL determines the part of the adaptive logic that is

not subject to adaptation. From a proof theoretic point of view, LLL delineates
the rules of inference that hold unexceptionally. From a semantic point of view,
the adaptive models of Γ are a selection of the LLL-models of Γ. It follows that
CnLLL(Γ) ⊆ CnAL(Γ). In principle, the lower limit logic is a monotonic and
compact logic.

Abnormalities are formulas that are presupposed to be false, unless and
until proven otherwise. “Abnormality” is a technical term. The abnormalities
of corrective adaptive logics are logical falsehoods of CL, but the abnormalities
of ampliative adaptive logics are not. Thus, in a context in which abductive
reasoning is appropriate, it will be supposed that one of the known possible
‘causes’ of a fact is indeed the cause of this fact. Similarly, in a context in which
inductive generalization is appropriate, the presence of instances of Px ∧ Qx
and the absence of instances of Px ∧ ∼Qx will be taken a reason to consider
∃x(Px ⊃ Qx) as true—there are some complications, but these need not concern
us here.

Ω comprises all formulas of a certain logical form, which may be restricted.
For many inconsistency-adaptive logics, Ω is the set of formulas of the form
∃(A∧∼A), the existential closure of (A∧∼A). For other inconsistency-adaptive
logics, the set is restricted, for example, to formulas in which A is a primi-
tive formula—a formula that contains no logical symbols except for identity.
Similar restrictions are imposed on many ampliative adaptive logics. See, for
example, [26] and [25]. Where introduced, the restriction is justifiable and
desirable—if it were not introduced, a flip-flop logic would result.6 Examples
of such inconsistency-adaptive logics are those that have as their lower limit
logic, for example, Schütte’s Φv from [61] (called CLuNs in Ghent—see [24]),
Priest’s LP from [58], or Meheus’ AN∅ from [44], and modal adaptive logics
that characterize paraconsistent inference relations under a translation, for ex-

6A flip-flip logic is an extremely simple adaptive logic AL for which CnAL(Γ) is identical
to CnLLL(Γ) if Γ requires some abnormalities to be true and is identical to CnULL(Γ) if Γ
requires no abnormality to be true—see below in the text on ULL. Most flip-flop logics have
no sensible applications
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ample [46, 49, 50]. Incidentally, if the logical form characterizing Ω is restricted,
every formula of the unrestricted form entails a disjunction of formulas of the
restricted form.

To illustrate the variety of sets of abnormalities, I list just a few other logical
forms that characterize, possibly with a restriction, the set of abnormalities of
some adaptive logics: ∃A ∧ ∃∼A, ¤A, ♦A ∧ ∼A, and (A ⊃ B) ∧ (A ∧ ∼B).7

That Ω is characterized by a logical form is not unimportant. It enables one
to consider adaptive logics as formal logics. They are defined by LLL, which is
a formal logic in the standard sense, and by the supposition that all formulas
of a certain logical form are false until and unless proven otherwise.8

Extending the lower limit logic with the requirement that no abnormality
is logically possible, results in the upper limit logic ULL. Syntactically, ULL
is obtained by extending LLL with an axiom stating that members of Ω entail
triviality. Semantically, the upper limit logic is characterized by the lower limit
models that verify no abnormality. ULL requires premise sets to be normal, and
‘explodes’ abnormal premise sets (assigns the trivial consequence set to them).

So ULL is the logic that is appropriate for premise sets that do not require
any abnormalities to hold true. For corrective adaptive logics have a lower limit
logic that is weaker than CL; most of them have CL as their upper limit logic.
One normally would apply CL, but if the premises do not allow this (because
their CL-consequence set is trivial), the adaptive logic interprets the premise
set as much as possible according to CL. Ampliative adaptive logics have an
upper limit logic that has often no sensible application contexts itself. This
does not make the adaptive logic meaningless. For example, we all know that
the world we live in is not completely uniform: not all objects have the same
properties. Nevertheless, it makes sense to interpret the world ‘as uniform as
possible’. The logic of inductive generalization does precisely this: it takes the
world to be as uniform as the empirical data permit.

Although corrective adaptive logics have a lower limit logic that is weaker
than CL, it is possible to add new logical symbols that have exactly the same
meanings as the original symbols of CL. These new connectives are extremely
helpful from a technical point of view, but obviously do not occur in the premise
set. They are means to handle the premises, to interpret them as normally as
possible, even if the premises require abnormalities to hold true.

As was suggested before, if the premise set does not require any abnormality
to obtain, then the adaptive logic delivers the same consequences as the upper
limit logic. If the premise set requires some abnormalities to obtain, the adaptive
logic will still deliver more consequences than the lower limit logic, viz. all upper
limit consequences that are not ‘blocked’ by those abnormalities.9 In sum, the
adaptive logic interprets the set of premises ‘as normally as possible’; it takes
abnormalities to be false ‘in as far as’ the premises permit.

An adaptive strategy is required because many premise sets LLL-entail a dis-
junction of abnormalities (members of Ω) without entailing any of its disjuncts.

7The abnormalities are the formulas that have the (possibly restricted) form and are LLL-
contingent.

8This is one of the central differences with the so-called formula-preferential systems from
[2, 37], which refer to an arbitrary set of formulas of which as many members as possible
are considered as true. See also [27] for the relation between adaptive logics and formula-
preferential systems.

9Flip-flop logics are an exception—see footnote 6.

10



Disjunctions of abnormalities will be called Dab-formulas. In the sequel, any
expression of the form Dab(∆) will refer to the (classical) disjunction of the
members of a finite ∆ ⊆ Ω. Dab-formulas that are derivable by the lower limit
logic from the premise set Γ will be called Dab-consequences of Γ. If Dab(∆)
is a Dab-consequence of Γ, then so is Dab(∆ ∪ Θ) for any finite Θ ⊂ Ω. For
this reason, only the minimal Dab-consequences of the premise set are relevant:
Dab(∆) is a minimal Dab-consequence of Γ iff Γ `LLL Dab(∆) and there is no
Θ ⊂ ∆ such that Γ `LLL Dab(Θ). If Dab(∆) is a minimal Dab-consequence of
Γ, then Γ determines that some member of ∆ behaves abnormally, but fails to
determine which member of ∆ behaves abnormally. We have seen that adaptive
logics interpret a premise set ‘as normally as possible’. As some minimal Dab-
consequences of Γ may contain more than one disjunct, this phrase is ambiguous.
It is disambiguated by choosing a specific adaptive strategy.

Reliability from [6] is the oldest known strategy. The minimal abnormality
strategy, first presented in [5], delivers at least the same consequences as the
Reliability strategy. For some lower limit logics and sets of abnormalities ∆ is
a singleton whenever Dab(∆) is a minimal Dab-consequence of a premise set. If
this is the case, the Reliability strategy and the Minimal Abnormality strategy
lead to the same result and coincide with what is called the Simple strategy—see
[26, 44, 45] for examples. Most other strategies were needed to characterize an
existing consequence relation by an adaptive logic—see [11, 14, 28, 34, 64] for
examples. In this paper, I only mention the marking definition of the Reliability
strategy, referring to [19] for the marking definitions of the Minimal Abnormality
strategy and of the Simple strategy (and to the specific papers for the making
definitions of the other strategies).

Adaptive logics handle defeasible inferences. Some formulas derived at a
point have to be considered as OUT at a later point, and possibly as IN at a
still later point. This dynamics should be controlled. The means to do so in the
dynamic proofs of adaptive logics are the marking definitions. They are phrased
in terms of the conditions that are attached to lines of annotated proofs.10

A line of an annotated dynamic proof consists of a line number, a formula,
a justification, and a (possibly empty) condition. The proofs are governed by
three (generic) rules and a marking definition. The rules, which depend on
LLL and Ω only, determine which lines may be added to the proof; the marking
definitions, which depend on Ω and the strategy, determine which formulas are
IN or OUT at some stage of the proof. Let

A ∆

abbreviate that A occurs in the proof on the condition ∆, the rules may then
be phrased as follows:

10The definitions may be adjusted for non-annotated proofs, which are just lists of formulas
as usual.
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PREM If A ∈ Γ: . . . . . .
A ∅

RU If A1, . . . , An `LLL B: A1 ∆1

...
...

An ∆n

B ∆1 ∪ . . . ∪∆n

RC If A1, . . . , An `LLL B ∨Dab(Θ) A1 ∆1

...
...

An ∆n

B ∆1 ∪ . . . ∪∆n ∪Θ

Only the conditional rule, RC, introduces non-empty conditions. The un-
conditional rule, RU, simply carries the conditions over from given formulas to
formulas that are derived from them.

The marking definitions require some preparation. Dab(∆) is a minimal
Dab-formula at stage s of the proof if, at stage s, Dab(∆) occurs in the proof
on the empty condition and, for any ∆′ ⊂ ∆, Dab(∆′) does not occur in the
proof on the empty condition. Where Dab(∆1), . . . , Dab(∆n) are the minimal
Dab-formulas at stage s of the proof, Us(Γ) = ∆1∪. . .∪∆n is the set of unreliable
formulas at stage s. So, whenever Dab(∆) is a minimal Dab-formula at stage
s, all members of ∆ are considered as unreliable at that stage (at least one of
them is true, but it is not determined which one). Further Dab-formulas may
be derived at a later stage s′. So Us′(Γ) may comprise abnormalities that are
not a member of Us(Γ). The opposite is also possiblen viz. if Dab(∆) is derived
at stage s and, for some Θ ⊂ ∆, Dab(Θ) is derived at stage s′. A line is marked
(for Reliability) at stage s iff a member of its condition is unreliable at that
stage:

Definition 5 Marking for Reliability: Line i is marked at stage s iff, where Θ
is the condition of line i, Θ ∩ Us(Γ) 6= ∅.

A formula is derived from Γ at a stage of the proof iff it is the formula of
a line that is unmarked at that stage. As the proof proceeds, unmarked lines
may be marked and vice versa. So, it is important that one defines a different,
stable, kind of derivability:

Definition 6 A is finally derived from Γ on line i of a proof at stage s iff
(i) A is the formula of line i, (ii) line i is not marked at stage s, and (iii) any
extension of the proof in which line i is marked may be further extended in such
a way that line i is unmarked.

A different definition goes as follows: A is finally derived on line i of a
(possibly infinite) proof from Γ iff i is unmarked and the proof is stable with
respect to line i, viz. line i is unmarked in all extensions of the proof. The
previous definition is more appealing. The only way to establish the existence
of a proof in which A is finally derived is by a metalinguistic reasoning anyway.
Moreover, the definition has a nice game-theoretic interpretation: if an opponent
is able to extend the proof in such a way that line i is marked, then the proponent
is able to extend it further in such a way that line i is unmarked.
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Definition 7 Γ `AL A (A is finally AL-derivable from Γ) iff A is finally
derived on a line of a proof from Γ.

To describe the semantics, let M |= A denote that M assigns a designated
value to A, in other words that M verifies A, and let the abnormal part of a
LLL-model M be defined as follows:

Definition 8 Ab(M) = {A ∈ Ω | M |= A}
Where Dab(∆1), Dab(∆2), . . . are the minimal minimal Dab-formulas that

are verified by all LLL models of Γ, U(Γ) = ∆1 ∪∆2 ∪ . . . is the set of formulas
that are unreliable with respect to Γ.11 Let ALr and ALm be the adaptive
logics defined by a LLL, an Ω, and the Reliability strategy, respectively the
Minimal Abnormality strategy.

Definition 9 A LLL-model M of Γ is reliable iff Ab(M) ⊆ U(Γ).

Definition 10 Γ ²ALr A iff A is verified by all reliable models of Γ.

Definition 11 A LLL-model M of Γ is minimally abnormal iff there is no
LLL-model M ′ of Γ such that Ab(M ′) ⊂ Ab(M).

Definition 12 Γ ²ALm A iff A is verified by all minimally abnormal models of
Γ.

Note that the proof theory as well as the semantics of an adaptive logic are
fixed by the standard format. There is more. Many metatheoretic properties
of adaptive logics can be proved from the format itself, rather than from the
specific properties of the logic. Among such properties are: the Soundness and
Completeness proof (given that the lower limit logic is sound and complete with
respect to its semantics), the Derivability Adjustment Theorem (Γ `ULL A
iff there is a finite ∆ ⊂ Ω such that Γ `LLL A ∨ Dab(∆)), Proof Invariance (a
formula finally derived in some proof from Γ can be finally derived in every proof
from Γ), Strong Reassurance (if M is a LLL-model of Γ but not an AL-model
of Γ, then there is an AL-model M ′ such that Ab(M ′) ⊂ Ab(M)), Cautious
Cut, Cautious Monotonicity, and many further properties—see especially [19].

Nearly all known inconsistency-adaptive logics have a characterization in
standard format.12 In some cases, forging a consequence relation into standard
format may require a translation, for example to a modal language. Even where
it is useful to provide ‘direct dynamic proofs’ in untranslated terms (see [32]
or [48] for examples) the formulation in standard format has the advantage
to provide the proof theory, semantics and metatheoretic properties, and to
warrant (by an easy demonstration) that the direct proof theory is correct.

In many situations one needs to combine adaptive logics. This too may
be handled in a generic way. Two general stratagems for combining adaptive
logics were designed. Apparently they serve all needs. Again, the combination
stratagems, rather than specific properties of the combined logics, warrant that
the combination does the desired job. The matter is studied, for example, in
[12].

11So U(Γ) is like Us(Γ), except that it refers to final derivability (or rather to its semantic
counterpart) and not to a stage of a proof.

12An exception is Priest’s LPm from [59] and emended in [60]. This adaptive logic proceeds
in terms of properties of the model, rather than in terms of the formulas verified by the model.
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4 Some Extra-Logical Extensions

Some questions can be directly answered by standard means, for example ques-
tions that are answered (obviously at a cost) by observational or experimental
means. Building this into fpsps is a bit more tricky than is usually thought (and
than I supposed before). Hintikka, for example in [35], tries to handle this in
terms of a set of formulas. If a direct answer to a question is a member of this
set, and the question is posed, then the answer is provided by the oracle. This
will not do because some questions are only answered in specific situations and
this cannot be expressed by means of CL-formulas. Consider an example.

Let p be “the shutter of the window is open” and let q be “the sun shines”.
Suppose that I know that the position of the sun is such that, if the shutter is
open and the sun shines, then I see a spot of sunlight on the floor, but that I
do not know (and cannot observe in the present situation) whether the shutter
is open and that I do not know (and cannot observe in the present situation)
whether the sun is shining. So, in the present situation, the oracle informs me
that ∼p ∨∼q (either the shutter is closed or the sun does not shine). Suppose,
moreover, that the sun is actually shining, p, and that the shutter of the window
is closed. So, if the shutter were open, I would see that the sun is shining. The
trouble is that this cannot be expressed by any statement in the oracle set.
Indeed, the only candidate seems to be ∼p ∨ q. But if that were in the oracle
set, I could force the oracle in the present situation to answer both ∼p∨∼q and
∼p∨q, from which ∼p follows. However, the oracle cannot provide me with this
information in the present situation (we supposed that I cannot observe in the
present situation whether the shutter is open). So if plain formulas go into the
oracle set, its contents has to vary with changes in the situation, contrary to
Hintikka’s implicit setup. The proposal I made in [13], viz. that the set contains
answerable questions, is affected by the same problem.13

How should the oracle be handled? The researcher is convinced that a certain
question Q is answered if certain circumstances ∆ obtain. Let this belief be
expressed by (∆ : Q). In the example from the previous paragraph, the formula
is ({p} :?{q,∼q}). Such a formula, respectively statement, may be handled as
a premise.

Obviously, the statement (∆ : Q) may be false. But if the researcher is
convinced of its truth (which may be seen from its occurrence in the fpsps) and
if he or she is convinced that all members of ∆ hold true (because they occur
in the fpsp), then he or she will take his or her observation as an answer to
the question. Consider again the example from two paragraphs ago. Suppose I
press a button which I believe to open the shutter and that I do not see a spot
of sunlight thereafter. I will then conclude that the sun is not shining. If the
button did not function and the shutter is still closed, I shall still believe that
the sun is not shining, because I believe the shutter to be open.

So the oracle is an epistemic device, not an ontological one. Formally, it may
be represented by a function that maps couples composed of a question and a
set of statements to a direct answer of the question, for example f(Q, ∆) = A,
in which A is a direct answer to Q. If (∆ : Q) and all members of ∆ occurs in
the fpsp, the researcher obtains one of the direct answers of Q. So the connected
instruction is as follows:

13That ∼p ∨ q cannot be put into the set is a result of the fact that it does not express the
intended counterfactual or conditional.
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New If A is an unmarked target, pp(A,B) for some direct answer B of Q,
(∆ : Q) and all members of ∆ occur in the fpsp, then one should add,
for some direct answer C of Q:

k C i; New

Of course, the researcher does not know beforehand which new premise will
be introduced if (∆ : Q) and the members of ∆ occur in the fpsp. So the
heuristics cannot proceed in terms of the answers that would be provided if
the conditions for New were realized, but only in terms of the statements of
the form (∆ : Q) that are held true. Precisely such statements are essential
for setting up experiments and for interpreting their outcome. It is instructive
to reconstruct for example Galilei’s inclined plane experiment in terms of such
knowledge. Planning an experiment may be seen as itself resulting from a fpsp.

I have supposed that a new premise is provided as soon as (∆ : Q) and all
members of ∆ occur in the fpsp. One might object that posing the question
to the oracle, viz. actually making the relevant observation, may come at some
expense, and hence that it should be left to the researcher’s decision whether the
question Q is actually introduced. To modify the formal machinery accordingly
is clearly not difficult, but I take it to be superfluous. Indeed, the expense might
be associated to the members of the condition ∆ in (∆ : Q). If the shutter is
open and if I turn my head in the right direction and if I pay the required
attention to the presence of a spot of sunlight on the floor, then I have the
answer to the question whether the sun is shining.

The expense for realizing certain statements to hold is obviously an impor-
tant factor. If the expense for answering the main problem by direct means is
near to nil, to do so would be preferred over engaging in logical deduction. If
the expense is extremely high, one may renounce from seeking a direct answer,
even where this entails that the main problem is left unsolved. However, such
considerations will be neglected in the present context.

The presence of (∆ : Q) and of the members of ∆ in the fpsp triggers an
application of New as soon as some unmarked target A is a positive part of a
direct answer of Q. If there is no such target A, the answer to Q is, for all one
knows, irrelevant to the extant problems and hence should not be introduced.
However, this should be refined in future work. Suppose that Q is ?{B,∼B},
that B is present in the fpsp, but that we observe ∼B. This reveals that there
is a problem with the fpsps, and hence that it has to be restructured in order
to solve the problem (possibly by introducing an inconsistency-adaptive logic).

The present extension requires that one redefines: A is a dead end iff A is
(in the present propositional context) a literal and A is not a positive part of
a premise or of a direct answer to a question Q which is such that (∆ : Q) is
among the premises for some ∆. It also requires an instruction for introducing
premises of the form (∆ : Q). This instruction should obviously require that
(∆ : Q) is only introduced if some unmarked target is a positive part of a
direct answer to Q. Finally, handling the matter adequately requires that fpsps
are extended with a feature indicating that the researcher performs a certain
action in an attempt to realize that the members of ∆ are true, and that he or
she reasons about such actions, taking their cost into account. Nothing of this
involves serious difficulties. Once it is built into the fpsps, the latter will be able
to guide action and the ensuing observations.
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A second extralogical extension was announced, but this is easier to handle.
It would be very unrealistic to suppose that a problem-solving process proceeds
from all available knowledge. It actually proceeds from a set of knowledge that
is judged relevant by the researcher and that he or she is sufficiently acquainted
with. Apart from the knowledge that forms the premise set, lots of knowledge
is available within the scientific community. Some of it may turn out relevant
as the problem-solving process proceeds, for example because the problem may
be suspected not to be solvable from the present premise set and because some
targets are positive parts of available knowledge.

If a body of available knowledge is added to the premise set, a researcher may
need to study this knowledge extensively or may invoke the help of a specialist in
the domain. The reasons for this are double. On the one hand, a specialist will
know many consequences of the body of knowledge which are directly relevant
for the extant problem, whereas it may take the researcher lots of (logical)
work to see what follows and what of this is relevant. Moreover, the specialist
will be able to determine which changes should be made to a fpsp in order to
accommodate the new body of knowledge. The changes may pertain to different
elements of the fpsp: the logics, the procedure, the heuristic instructions, and
the questions that are answerable by standard means.

5 On Heuristics

In [35] and elsewhere, Hintikka draws a sharp distinction between the rules of the
logic and the heuristics by which a desired proof is obtained—I avoid Hintikka’s
“strategy” because of the technical sense of this term in Section 3. Hintikka’s
favoured comparison is with games of chess: the rules determine the possible
moves whereas the heuristics is directed towards applying the rules in such a
way that the game is won. According to this view, the forms of reasoning that
are explicated by adaptive logics are not a matter of logic at all, but a matter
of heuristics and hence should be explicated in heuristic terms.

The least one can say is that the comparison does not add much bite to the
distinction. For one thing, the normal outcome of a game of chess is a checkmate
king, whereas a proof exhibits a reasoning that leads from (a subset of) the
premises to the conclusion. So, in the case of proofs, unlike in the case of chess,
both the heuristics and its result (even according to the standard view) are of
the same kind, viz. concern reasoning. That the heuristics concerns reasoning
clarifies at once why it is possible, for example in terms of the prospective
dynamics, to push part of the heuristics into the proof itself. In other words,
the bookkeeping of part of the heuristic reasoning, which is usually done outside
of the proof, can very well be done within the proof.

Prospective proofs still require a heuristics. However, as a result of their
proof format, the delineation between rules and heuristics lies at a different point
than with more usual proofs. The matter is even modified more drastically if
prospective proofs are phrased in terms of a procedure—remember that this is
composed by instructions: rules with permissions and obligations attached to
them. The more restrictive the deontic qualifications of the instructions, the
less room is left for heuristic considerations. Note that the extreme case, viz. a
deterministic procedure, is by no means a universal ideal. The room that should
be reserved for the heuristics depends on the specific application.
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The difference of opinion with Hintikka has a principled side and a prag-
matic one. From a pragmatic point of view, I see it as an advantage of my
approach that part of the usual heuristics is fixed by the chosen adaptive logics,
the prospective dynamics, and the (more or less restrictive) procedure by which
the latter is governed. These three elements provide means to articulate those
parts of the heuristics that are incorporated into them. Once articulated, they
can be evaluated, discussed, and replaced where necessary. In other words, it is
a pragmatic advantage of my view that the claim that “it is a matter of heuris-
tics” can be replaced by definite and precise statements about an articulated
framework.14

However, there was also a principled side. We have seen above that the
delineation between rules and heuristics is not a fixed one. It is instructive to
see why this is so. Consider again Hintikka’s view. In view of a given purpose,
a specific heuristics is applied in the framework of CL. For every premise set
Γ (possibly combined with a problem, say to find an explanation for Pb), there
will be a set f(Γ) of formulas that can be obtained by the heuristics. So the
heuristics can be seen as a function that maps every set Γ to a set f(Γ). So it
is a logic, a mapping ℘(W) 7→ ℘(W) (in which W is the set of closed formulas
and ℘(W) its power set). Obviously, this logic may have a number of unusual
properties; it may for example be non-monotonic, or even non-reflexive. But is
is a logic in the above sense. So it makes sense to study its proof theory and to
use it as an explication for the connected form of reasoning, and it makes sense
to study its semantics and the properties of its models. One may still try to
argue that the resulting logic is not the standard of deduction. I am not sure
that one will succeed in establishing that some other logic is the standard of
deduction, but I grant that the attempt to do so may be sensible. Yet, even if
the logic is not the standard of deduction and some other logic is, it still is a
logic and this was the point I had to make.

6 On Content Guidance

A first, general, and hence non-specific form of content guidance lies with the
language of a scientific discipline and with the connected conceptual system.
Both are the result of the development that led to the present state of the
discipline. They incorporate a set of presuppositions about the domain. They
determine the way in which problems are phrased and tackled.

A clear and specific form of content-guidance resides in the use of premises of
the form (∆ : Q), which was discussed in Section 4. There we have seen that the
oracle is actually an epistemic device, referring to current knowledge. Similarly,
the fact that the premise set may be extended with available knowledge that
was judged irrelevant before, constitutes a clear form of content-guidance.

A point that pertains to all adaptive logics is that these logics validate cer-
tain applications of rules that transcend their lower limit logic. It depends on
the content of the premise set, as determined by the lower limit logic, whether
certain consequences are drawn from the premises. This important point de-
serves to be spelled out clearly. It is not that the consequence set is a function

14Needless to say, there still is a need to make more precise claims about the heuristics that
remains once the adaptive logics, their prospective dynamics and the governing procedure
have been fixed.
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of the premise set—a feature that is shared by nearly all logics. The point is
that the logics adapt themselves to the premises: whether a conclusion follows
from some premises does not merely depend on properties of the logic, but also
on the other premises. So this form of content guidance is built in into adaptive
logics.

There is a multiplicity of adaptive logics for every purpose. Consider han-
dling inconsistency as an example. Many paraconsistent logics can be taken as
the lower limit logic and combined with a suitable set of abnormalities and a
strategy. Moreover, some forms of handling inconsistency are characterized by
an adaptive logic under a translation. A good example form the Rescher–Manor
mechanisms. They are characterized by an adaptive logic in standard format,
but under a translation—see for example [11]. They also have a so-called direct
proof theory, as was shown in [32], but this is not connected to an adaptive logic
in standard format. The situation is similar for the so-called signed systems for
paraconsistent reasoning from [33], as was shown in [28]. The variety is even
larger than that. An inconsistency-adaptive logic need not be the most suitable
instrument to handle a theory that turned out to be inconsistent. In some cases,
it is more fitting to apply a logic that is adaptive with respect to properties of a
different logical symbol. This point was already made in [10] and a case study
is forthcoming in [31].

Given the multiplicity of adaptive logics for nearly every purpose, the choice
has to be justified. The justification can only be obtained by logically analysing
the concrete case one is confronting—see again [31] for an example. In other
words, the choice of the adaptive logics that should be applied in a fpsp is
typically content dependent.

The selection of an adaptive logic is typically a local matter. This means
that the result of a fpsp will lead to certain changes in the setup of the fpsp.
Consider the case where one tries to obtain an explanation for a certain fact.
If one hopes that a theory is able to provide the explanation, the suitable way
to handle the problem is by a fpsp in which a logic is abduction is set to work.
But suppose that, at some point, it becomes dubious whether the theory will
provide any explanation. One will then first try to obtain a new generalization
that may provide the explanation. So one has to extend the adaptive logics of
the fpsp by a logic of inductive generalization. Another example of a local choice
occurs when the theory from which one tries to obtain the explanation turns
out inconsistent. This insight, possibly gained by the fpsp itself, may require
that CL is replaced by an inconsistency-adaptive logic as the underlying logic
of the theory—see [18] for an analysis of the effect of such a move. In still
other cases an invoked theory may prove to be contradicted by available data,
and hence need to be introduced as plausible only—there is a multiplicity of
adaptive logics handling plausible premises (see for example [25]). So, again,
the choice has to be justified in a contextual way.

The situation is similar for the choice of an erotetic logic: one has to justify
the specific choice in terms of the insights provided by the problem-solving
process. The situation is also similar for the choice of the specific procedure
that governs the prospective dynamics.

A further form of content guidance relates to invoked background theories.
In fpsps, background theories can be introduced in a defeasible way (as plau-
sible only) and (as was said before) there is a multiplicity of available means
for handling plausible premises. So background theories are taken serious but
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nevertheless can be rejected or revised where necessary.
It is well-known that the results of scientific discovery and creativity are

not fully determined by the situation of the discipline. Even if scientific dis-
covery is seen as a form a problem solving, there should be left ample room
for the world-view, personal constraints, . . . , of individual researchers and re-
search groups—see for example [47]. While it may be difficult to formalize such
elements, or even to make them explicit, it is easy enough to take their con-
sequences into account in fpsps. The central feature is that solutions may be
arrived at by eliminating certain disjuncts from disjunctions of abnormalities.
How this is done is discussed at length in [21] (in the context of inconsistency-
adaptive logics) and in [15] (in the context of inductive generalization), and the
mechanism is easily generalized to all adaptive logics. A derived (non-singleton)
disjunction of abnormalities leads to the question which of its disjuncts is abnor-
mal. This question can typically be answered, fully or partially, but always in
a defeasible way, by analysing the situation in the discipline, but also by world-
view considerations, by personal constraints, or even by blind guesses. So fpsps
provide a framework that locate the problems, suggest ways out (by clarifying
which defeasible statements may provide a solution), and logically guide the
handling of such statements. The origin of the statements is obviously extra-
logical. This is a form of content-guidance. However, but the logic guides the
problem-solving process.

Finally, I come to the heuristics that remains after all other elements of
the fpsp have been fixed. There are logical as well as non-logical aspects to
this heuristics. The logical ones are mainly related to the road along which a
statement that is derivable by the available means is actually derived. This too
is largely a matter of learning. Suppose that one wants to derive theorems from
the Peano Axioms. Whatever the target at a specific point in the fpsp, it will
always be a positive part of an instance of the axiom of mathematical induction.
One will soon find out, however, that the introduction of such instances will
only occasionally lead to a successful search path. This insight may lead to
the conclusion that one first tries to operate on the other axioms, and only
introduces an instance of the induction axiom when that fails. This is just an
example out of many. Every logician that has made a set of axiomatic proofs has
experienced that each new axiomatic system, even for the same logic, requires
another heuristics.

The non-logical aspects are especially related to the kind of move that is
invoked at a specific point. Given a target or set of targets, there often is the
choice between attempting a theoretical derivation, making an observation, and
(devising and) performing an experiment. Which is the right move will have to
be determined on the basis of one’s insight in the situation and on the analogy
between the situation and analogical cases that were successfully solved in the
past.

7 Concluding Comments

Let me begin with some warnings. The first is that, in the end, all knowledge
is defeasible. It does not follow that all declarative premises of a fpsp should
be introduced in a conditional way. This, indeed, would only make sense in a
futile attempt to incorporate into the approach all possible outcomes of scientific
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reasoning—see the comments on the Vienna Circle in the first paragraph. So
it cannot and should not be avoided that fpsps are seen as themselves subject
to revision. As we have seen in Section 6, the insights provided by a fpsp may
lead to changes to the elements of the fpsp. Such changes are justified in view
of insights in the situation and in view of insights from the history of science—
“what we have learnt about how to learn”.

The second warning concerns abduction. There are many ampliative rea-
soning forms. To reduce all of them to abduction would come to a serious
overestimation of the latter and to a simplistic view on scientific discovery and
creativity. A further warning concerning abduction itself is appropriate. It is
fairly clear what it means that an explanation for a fact is abduced in the pres-
ence of a theory—the most recent book on the topic, [1], handles precisely that.
A very different matter is an abduction in the absence of a theory. I can only
confess that I have read nothing on this that was sufficiently clear to me. Some
authors give the impression that such abductions rely on implicit beliefs, which
may be connected to action habits rather than to statements. This seems ac-
ceptable enough. Only, as the origins of such implicit beliefs are clearly located
in our observing and handling of everyday objects, it seems highly unlikely that
‘abductions’ relying on implicit beliefs could be responsible for creative science
or for novel insights.

In this paper, I avoided taking a stand in such philosophical debates as the
one opposing realism to positivism. The reason for this is that such debates may
be relevant from a general epistemological point of view, but their impact on
methodological decisions is often overestimated, at least from a contemporary
point of view. Moreover, in as far as they do play a role in problem solving,
they may be handled in the same way as world-views or personal constraints.
Even if they might occasionally shape a fpsp, the formal framework of fpsps is
sufficiently malleable (see Section 6) not to exclude the actual impact of such
philosophical stands.

The last warning is that the fpsps approach outlined in the previous sections
needs (obviously) further elaboration. Nothing was said, for example, on model-
based reasoning. Also, while fpsps demonstrably result in certain conceptual
changes, the problem of conceptual change requires a much deeper study. So
the approach is far from complete. It was presented here because it is promising
and hence deserves further study.

The most important comment is that seeing science as a content-guided
problem-solving activity does not exclude a formal approach. Quite to the
contrary. Precisely in order to be able to express and understand the content-
guidance, one needs a maximally formal approach. A fpsp can be seen as a
frame with many open slots. The slots have to be filled with (declarative as well
as erotetic) logics, prospective dynamics, a procedure, and a set of heuristic
instructions. The formal framework will not deliver any results unless the slots
are filled and to fill them requires a justification. The more structure there is
in the entities that may be plugged into the slot, the more it will be possible to
make the content-guidance explicit and to justify it. As I see it, this is the great
advantage of the fpsps approach over Hintikka’s—see Section 5. Rather than
keeping the heuristics free from the intrusion of rules and instructions, one has to
maximize the intrusion. One has to make an effort to turn all possible aspects of
the heuristics into alternative sets of transparent formal entities. Only in doing
so, one will be able to make sense of the content-guided aspects of problem
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solving.
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