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ABSTRACT

What are scientific theories and how should they be represented? In this article, I propose

a causal–structural account, according to which scientific theories are to be represented

as sets of interrelated causal and credal nets. In contrast with other accounts of scientific

theories (such as Sneedian structuralism, Kitcher’s unificationist view, and Darden’s

theory of theoretical components), this leaves room for causality to play a substantial

role. As a result, an interesting account of explanation is provided, which sheds light on

explanatory unification within a causalist framework. The theory of classical genetics is

used as a case study.
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1 Introduction

What are scientific theories and how should they be represented? In this art-

icle, I propose a causal–structural account according to which scientific the-

ories are to be represented as sets of interrelated causal and credal nets. The

theory of classical genetics will be used as a case study, and several philosoph-

ical topics (relating to exemplars, anomalies, explanation, and unification) will

be explored.

What scientific theories are and how they should be represented have been

pressing questions in twentieth-century philosophy of science. In search for an

answer, many have used the theory of classical genetics as a case study.

Woodger ([1929], [1952], [1959]) has provided an elaborate reconstruction of

classical genetics within the neo-positivist axiomatic framework. Balzer and

Lorenzano ([2000]) and others have discussed classical genetics extensively

within the Sneedian structuralist framework (based on Balzer et al. [1987]).1

Others have used the case of classical genetics to address related questions

about theory change in science (Darden [1991]) or about explanation and

unification (Kitcher [1989]).

1 Other structuralist accounts of classical genetics can be found in (Balzer and Dawe [1986a],

[1986b], [1997]).
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Unfortunately, causality plays no substantial role in any of the aforemen-

tioned accounts. During the past decades, however, more and more phil-

osophers have stressed the centrality of causality in, among other things,

explanation. If they are correct, which I think they are, and if scientific

theories can be used for explanation, which I think they can, then we need

an account of scientific theories that allows us to represent their causal

structure (see Section 4 for a more elaborate discussion of causality and

explanation). It will emerge that my causal–structural approach, which

builds on Woodward’s interventionist account of causation and on the

theory of causal Bayes nets, is suitable to that task. It naturally represents

both the qualitative and the quantitative aspects of the causal structure of

classical genetics in an integrated way. It also results in an interesting ac-

count of explanation, which allows us to get a grip on explanatory unifi-

cation within a causalist framework. Moreover, it offers a nice explication

of lawfulness in classical genetics and in the special sciences in general (see

Section 17). A final advantage, which I will not stress here, is that it can

easily be implemented in computers and AI; see the tools developed by

Spirtes et al. ([2000]), such as TETRAD. Some of the leading figures dis-

cussed in this article have endeavoured a similar advantage in the past,

using different tools such as PROLOG (Balzer and Lorenzano [2000],

p. 243) and SUTTON (Darden and Rada [1988]).

This article consists of three parts. In the first part (Sections 2–6), I will set

the stage. In Section 2, I introduce the reader to the main concepts of classical

genetics. In Section 3, I briefly present three existing philosophical accounts of

classical genetics, by the structuralists, by Kitcher, and by Darden. Their ideas

will play an important role in this article, and I will try to accommodate

several of them. Yet, I will also point to an important lacuna they have in

common: they have no substantial role for causality to play (Section 4).

Finally, I will sketch Woodward’s interventionist account of causation

(Section 5) and the basic formal concepts to be used in this article: causal

nets, credal nets, and several kinds of isomorphism relations (Section 6).

In the second part (Sections 7–16), I will present the causal–structural ac-

count of scientific theories by applying it to the theory of classical genetics.

More specifically, I present classical genetics’ qualitative causal structure

(Section 7), its application to monohybrid crosses with complete dominance

(Sections 8 and 10) and incomplete dominance (Section 12), and its applica-

tion to multi-hybrid crosses with independent assortment (Section 14) and

with linkage and crossing over (Sections 15 and 16). Meanwhile, I also present

a causal–structural account of explanation (Section 9) and glance at Darden’s

discussion of exemplars (Section 11) and anomalies (Section 13).

In the third part (Sections 17 and 18), I will expand on the causal–structural

account of scientific explanation (Section 17) and highlight one of its
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important advantages, viz. that it allows us to get a grip on explanatory

unification within a causalist framework (Section 18).

Finally, I conclude in Section 19 by discussing the possible generalizability

of the causal–structural account of scientific theories.

2 The Theory of Classical Genetics

The theory of classical genetics has been developed roughly between 1900 and

the end of the 1920’s. In the middle of the nineteenth century, Gregor Mendel

studied phenomena of inheritance and hybridization mainly by experimenting

with pea plants. He presented his seminal ideas in 1865. In 1866, these were

published in his Versuche über Pflanzen-Hybriden (Mendel [1966], [1933]). In

1900, his work again came to the fore, owing to the works of De Vries ([1966]),

Correns ([1966]), and, shortly afterwards, Bateson ([1900], [1902]). Almost

thirty years later, Thomas Hunt Morgan published the second edition of

The Theory of the Gene ([1928]). This can be considered an end-point in the

development of classical genetics (Darden [1991], pp. 3 and 38). In this article,

I will use Morgan’s exposition as my main source for exploring the structure of

classical genetics. But first, I will introduce the main concepts of classical

genetics based on a contemporary textbook (Klug et al. [2006]).

The main aim of classical genetics is to explain the distribution of observ-

able traits in the offspring of two (groups of) crossed organisms (Klug et al.

[2006], Chapters 3–5). For example, why is it that after crossing true-breeding

tall pea plants with short pea plants, all the resulting offspring are tall?2 And

why is it that after crossing this offspring with short pea plants, half of the

resulting plants are tall, whereas the other half are short?

Traits (such as tall and short) are alternative forms of the same character (in

casu stem length in pea plants) (Klug et al. [2006], p. 40). They are assumed to

be coded for (or caused) by the organism’s genes. Alleles are alternative forms

of genes (Klug et al. [2006], p. 42). For example, there exists an allele for tall

stems and an allele for short stems. (Other genes may have more than two

possible alleles; Klug et al. [2006], Section 4.5.) An organism’s observable

features are called its phenotype; the set of its alleles for a given character

(or set of characters) is called its genotype (Klug et al. [2006], p. 42). In their

experiments, classical geneticists focussed on the transmission of one charac-

ter (monohybrid crosses) or more characters (dihybrid, trihybrid, . . . crosses)

(Klug et al. [2006], pp. 40–4). The number of copies an organism has of each

gene depends on its number of chromosomes. In this article, I will focus on

2 A plant is true-breeding for some trait if, when self-fertilized, it only produces offspring with this

trait. This definition is not watertight. In a given cross, all the offspring of non-true-breeding

plants may, by accident, have the parental phenotype. Yet, the larger the set of offspring, the less

likely this is.
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diploid organisms. These have two copies of each chromosome, and hence two

copies of each gene (Klug et al. [2006], p. 20). If both copies are identical (the

same allele), the individual is homozygous, otherwise it is heterozygous (Klug

et al. [2006], p. 42). The specific location of a specific gene on its chromosome

is called its locus (plural: loci) (Klug et al. [2006], p. 51).

Alleles are transmitted to the next generation via the gametes or germ-cells.

Barring cases of crossing-over, each germ-cell receives one member of each

pair of chromosomes, and hence one copy of each gene (Klug et al. [2006], pp.

27–30). By invoking certain hypotheses about this process, the distribution of

genotypes (and hence of phenotypes) in the offspring can be explained. With

respect to each pair of alleles, the law of segregation states that during gamete

formation, the paired alleles separate or segregate randomly so that each

germ-cell receives one or the other with equal likelihood (Klug et al. [2006],

p. 42). When multiple pairs of alleles are investigated (as is the case in multi-

hybrid crosses), extra assumptions are needed. Mendel assumed that the trans-

mission of one pair of alleles was independent of the transmission of other

pairs. This was later called the law of independent assortment (Klug et al.

[2006], p. 46). This law holds only for genes that lie on different chromosomes.

Genes lying on the same chromosome are said to be linked (Klug et al. [2006],

p. 101). Normally, gametes do not receive exact copies of the original chromo-

somes. Homologous chromosomes (chromosomes of the same pair) typically

exchange part of their material (crossing-over). As a result, linkage is normally

incomplete (Klug et al. [2006], p. 101).

Other hypotheses pertain to the relation between genotype and phenotype.

The best-known principle is complete dominance. For example, a pea plant

that is heterozygous for stem length is tall (the tall-allele is dominant, the

short-allele is recessive). Not all characters show complete dominance,

however (see Section 12).

3 Three Philosophical Accounts of the Theory of Classical

Genetics

In this section, I will briefly present three existing philosophical accounts of

the theory of classical genetics: by the structuralists, by Kitcher, and by

Darden. Even though they have an important problem in common (they all

treat issues of causality in stepmotherly fashion; see Section 4), these three

accounts definitely deserve our attention. I will focus on the structuralist no-

tions of ‘theory-element’, ‘T-theoreticity’, and explanation as ‘embedding’, on

Kitcher’s ‘general argument patterns’, and on Darden’s notions of ‘theoretical

component’ and ‘abstract explanatory pattern’. In the rest of this article, these

notions will be translated into the language of causal Bayes nets. This will
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prove to be fruitful in the construction of an adequate account of scientific

theories, of explanation, and of unification.3

3.1 The structuralist account

Balzer and Lorenzano ([2000]) have analysed the theory of classical genetics

within the Sneedian structuralist framework, in which mature scientific the-

ories are represented in terms of their logical models, i.e. set-theoretic struc-

tures that satisfy particular statements or propositions (Balzer et al. [1987], pp.

2–3). In the structuralist approach, scientific theories are rarely treated as

monolithic entities. They are usually represented as theory-nets: partially

ordered sets of theory-elements, which are the basic building blocks of scien-

tific theories (Balzer et al. [1987], p. 172). A theory-element, T ¼ hK, Ii, con-

sists of a core, K, and a limited domain of intended applications I (Balzer et al.

[1987], p. 39).

The theory-core, KðTÞ ¼ hMpðTÞ, MðTÞ, MppðTÞ, GCðTÞ, GLðTÞi, consists of

five elements (Balzer et al. [1987], p. 79). MpðTÞ, the set of T’s potential models,

consists of those set-theoretic structures that can be subsumed under T’s con-

ceptual framework, i.e. the structures for which it makes sense to ask whether

they satisfy T’s laws (Balzer et al. [1987], pp. 15–7). MðTÞ is the set of T’s

models, i.e. those potential models that satisfy T’s laws (hence MðTÞ �MpðTÞ)

(Balzer et al. [1987], pp. 3 and 15–7). MppðTÞ is the set of T’s partial potential

models, i.e. those fragments of the potential models that contain only T’s non-

theoretical conceptual apparatus (Balzer et al. [1987], pp. 56–7). Roughly

speaking, a concept is T-non-theoretical if there are ways of determining or

measuring that concept that do not invoke T’s laws, and T-theoretical other-

wise (Balzer et al. [1987], pp. 50ff). For example, in classical genetics, ‘pheno-

type’ is a non-theoretical concept; ‘genotype’ is theoretical (see Section 7).4

Partial potential models can be ‘extended’ to potential models by adding suit-

able T-theoretical relations (Balzer et al. [1987], pp. 56–7). T’s constraints,

GCðTÞ, characterize the connections among the different local applications of

T (Balzer et al. [1987], pp. 40–1 and 78). For example, one constraint may state

that the same genotype used in two different models will produce the same

phenotype in these respective models (Balzer and Lorenzano [2000], p. 254).

Finally, T’s intertheoretical links, GLðTÞ, represent the transfer of data from

3 I will not discuss Woodger’s work, as I will not incorporate any of his views later in the text. To

some extent, his work also suffers from the common lacuna to be presented in Section 4. Where

at first he paid relatively much attention to causation ([1929], passim), he became more sceptical

about using causal language in science later on ([1952], p. 194).
4 The T-theoretical/T-non-theoretical distinction should not be confused with the observable/

unobservable distinction. The two distinctions differ both intensionally and extensionally (Dı́ez

[2002], p. 15).
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another theory T0 to T (Balzer et al. [1987], pp. 58 and 79). Such transfer is

needed for measuring T-non-theoretical concepts.

The set of intended applications, I, describes the phenomena that T should

account for (Balzer et al. [1987], pp. 86–9). The intended applications have the

structure of partial potential models. But Mpp contains all of T’s possible

applications (even ‘purely mathematical’ structures), not all of which are in-

tended; therefore, I �Mpp. The distinction between merely possible applica-

tions and intended possible applications cannot be made in a purely formal

way (Balzer et al. [1987], pp. 88–9). Often, the set of intended applications is

specified by citing a few ‘paradigms’ or ‘exemplars’ (such as ‘the pendulum’

and ‘the projectile’ in classical particle mechanics). Systems that are suffi-

ciently similar to these exemplars are then said to belong to I.

To explain some given data or phenomena by means of T, one proceeds as

follows (Balzer et al. [1987], p. 23). By assumption, the data have the structure

of one of T’s partial potential models (some Mpp 2Mpp). By adding T’s the-

oretical concepts, one creates a potential model (some Mp 2Mp); this ‘embed-

ding’ of the data in a potential model is the conceptual aspect of the

application of T. Then one asserts that the data satisfy the laws of T, i.e.

that Mp is an actual model of T (Mp 2M). This assertion has empirical con-

sequences, which, if they turn out to be true, show that we have successfully

applied T to I.

To simplify matters, Balzer and Lorenzano do not distinguish between

actual, potential, and partial potential models. In their reconstruction, all

the models of classical genetics consist of eight components: a set, J, of genetic

individuals (these are individual organisms or populations thereof); a set, P, of

phenotypes; a set, G, of genotypes, and five functions relating these sets to one

another (for example, APPEARANCE is a function mapping individuals to

their phenotypes) ([2000], pp. 246–9). Different theory-elements are obtained

by specifying the number of genes that are investigated or by specifying the

precise mathematical form of the models’ functions. They distinguish, among

other things, between theory-elements for monohybrid crosses with complete

dominance, for monohybrid crosses with incomplete dominance, for dihybrid

crosses with independent assortment, and so forth; together, these

theory-elements form the theory-net of classical genetics ([2000], pp. 260–2).

Data are explained by embedding them in one of classical genetics’ models

([2000], p. 3).

Like Balzer and Lorenzano, I will discuss the different ‘theory-elements’ of

classical genetics separately, and I will explore their formal interrelations

(albeit using a different formal apparatus). I will also adopt the notion of

‘T-theoreticity’ and of explanation as ‘embedding’. These ideas, together

with some of Kitcher’s and Darden’s, will help to get an adequate grip on

explanatory unification.
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3.2 Kitcher’s unificationism

Kitcher’s main research question is not how to represent scientific theories,

but how to build a unificationist theory of explanation.

According to Kitcher ([1989], p. 447), scientific theories are constituted by

patterns of derivation or general argument patterns, which are defined as

follows:5

A schematic sentence is an expression obtained by replacing some, but

not necessarily all, the nonlogical expressions occurring in a sentence

with dummy letters [. . .] A set of filling instructions for a schematic

sentence is a set of directions for replacing the dummy letters of the

schematic sentence, such that, for each dummy letter, there is a direction

that tells us how it should be replaced [. . .] A schematic argument is a

sequence of schematic sentences. A classification for a schematic

argument is a set of statements describing the inferential characteristics

of the schematic argument: it tells us which terms of the sequence are to

be regarded as premises, which are inferred from which, what rules of

inference are used, and so forth. Finally, a general argument pattern is a

triple consisting of a schematic argument, a set of sets of filling

instructions, and a classification for the schematic argument. (Kitcher

[1989], p. 432, original emphasis)

Kitcher ([1989], pp. 438–42) characterizes classical genetics as a set of patterns

that serve to answer specific types of questions:

What is the expected distribution of phenotypes in a particular

generation? Why should we expect to get that distribution? What is the

probability that a particular phenotype will result from a particular

mating?, and so forth. (Kitcher [1989], p. 438)

The general idea common to all patterns is that these questions may be

answered:

[. . .] by making hypotheses about the relevant genes, their phenotypic

effects, and their distribution among the individuals in the pedigree.

(Kitcher [1989], pp. 438–9)

The simplest pattern, for example, is called ‘Mendel’ and has four premises

(Kitcher [1989], p. 439). The first premise says that there are two alleles, A and

a, where A is dominant and a recessive. It is a schematic sentence with A and a

as dummy letters. The filling instructions state that these are to be replaced

with names of alleles. The second premise says that AA and Aa individuals

have trait P, whereas aa individuals have trait P0. The dummy letters P and P0

are to be replaced with names of phenotypic traits. The third premise is a list

5 Later, Kitcher ([1993], p. 9) rejected thinking of science as a series of theories, defined as sets of

statements, while at the same time sticking to the view that explanatory schemata or patterns are

implicit in scientific practice ([1993], pp. 82–4).

Bert Leuridan8

,
.
,
.
.


specifying the genotypes of all the individuals involved. The fourth premise

says that ‘for any individual, x, and any alleles, yz, if x has yz, then the

probability that x will transmit y to any one of its offspring is 1/2’ (Kitcher

[1989], p. 439). This is the law of segregation. From these premises, the ex-

pected distribution of progeny phenotypes can be derived by filling in the

dummy letters. Mendel is limited to cases with only one gene and two possible

alleles, and with complete dominance. Other more complicated patterns

(called ‘Refined Mendel’ and ‘Morgan’) are more encompassing (Kitcher

[1989], pp. 440–1).

3.3 Darden and theory change in science

Darden’s main research question is how scientific theories change over time,

how new scientific ideas are developed, and what strategies there are for theory

change in science (Darden [1991]). To that end, she analyses the theory of

classical genetics in terms of theoretical components, ‘parts of the theory that

change over time’ (Darden [1991], p. 18). For example, between 1900 and

1903, Mendelian genetics incorporated the following component:

Unit-characters: (1) An organism is to be viewed as composed of

separable unit-characters. (Adapted from Darden [1991], p. 168)

This component gradually evolved. Where, according to Darden, no distinc-

tion was made in 1900–1903 between observable traits and underlying elem-

ents or factors, that distinction was evident as of 1910:

Factors and characters: (10) Characters are produced by factors. (2a0)

One factor may produce one character or (2b0) multiple factors may

interact in the production of one character. (Adapted from Darden

[1991], p. 168)

By 1926, this evolved into the following:

Genes and characters: (10 0) Genes cause characters. (2a0 0) One gene may

cause one character or (2b0 0) multiple factors (genes at different loci in

linkage groups) may interact in causing one character or (2c0 0) one gene

may affect many characters. (Adapted from Darden [1991], p. 169)

Theoretical components are not the same as structuralist theory-elements.

First, a single theory-element may (and usually does) satisfy more than one

law or explanatory principle. Theoretical components are such explanatory

principles. Hence, theory-elements consist of more than one theoretical com-

ponent. (In Section 17, I will expand on my views on laws and explanatory

principles.) Second, although theoretical components are inherently dynamic,

theory-elements are more or less stable end-products of such theory evolution

(but see Balzer et al. [1987], Chapter 5, for an account of the diachronic
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structure of theories). Darden’s analogue of a theory-element is an abstract

explanatory pattern—a notion derived from Kitcher. Each pattern invokes a

number of theoretical components and is introduced by means of one or more

exemplars or paradigmatic crosses (see Section 11).

4 A Common Lacuna: Where is Causality?

These three accounts of the theory of classical genetics have one lacuna in

common: to a greater or lesser extent, they treat issues of causality in step-

motherly fashion.

First, Balzer et al. ([1987]) do not discuss the difference between causal and

non-causal relations or laws. It could well be that (some of) a theory’s laws are

causal, but the structuralist framework lacks the expressive power to say so.

As a result, the structuralist account of explanation (see Section 3.1) is

a-causal. Moreover, it is also intended as an account of prediction; no distinc-

tion is made between prediction and explanation. And even when they apply

their framework to overtly causal theories such as classical genetics, the struc-

turalists are reluctant to make room for causality. Balzer and Lorenzano, for

example, talk about phenotypes being ‘caused’ (with quotation marks!) by

genotypes ([2000], pp. 247–8).6

A notable exception in the structuralist literature is Forge ([2002]), who goes

some way to giving a structuralist account of causal explanation. He conjec-

tures that in structuralist reconstructions of scientific theories, causes can be

represented by (unconstrained) theoretical concepts or functions ([2002],

p. 113). Although this conjecture is interesting, two remarks should be

made. First, Forge focuses on scientific theories in the physical sciences, and

it is an open question whether his conjecture would apply to the theory of

classical genetics as well. Second, and more importantly, a function or concept

that is theoretical for a theory, T1, may be non-theoretical for some other

theory, T2. But that would make it non-causal for T2 by definition. This is an

unwelcome consequence of Forge’s conjecture.

Second, Kitcher explicitly discusses the notion of causation, but he ‘explains

it away’. Because of well-known empiricist concerns, he refuses to adopt a

causal account of explanation (Kitcher [1989], p. 435). Instead, he develops an

explanatory account of causation: ‘What is distinctive about the unification

view is that it proposes to ground causal claims in claims about explanatory

dependency rather than vice versa’ (Kitcher [1989], p. 436). Causal relevance is

dependent on explanatory relevance, where the latter is tied to the

6 See also (Balzer and Dawe [1986a], pp. 58 and 62) and (Balzer and Dawe [1986b], p. 179) for a

similar reluctance to use causal language.
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systematization of belief in the limit of scientific inquiry, as guided by the

search for derivational unification (Kitcher [1989], p. 499).7

Third, Darden is less reluctant to talk about causality in her account of

classical genetics. She acknowledges that causal considerations did play a role

in genetics and cytology (Darden [1991], pp. 253–4), especially in the Morgan

group (Darden [1991], p. 183), and she uses causal language when formulating

the theoretical components of Mendelian genetics (see the examples cited in

Section 3.3). But for all that, she pays relatively little attention to causation in

classical genetics. Neither does she give an account of causation.

One may wonder, of course, whether causality really is that important.8 In

my opinion, there are multiple reasons why causality merits particular atten-

tion in our representations of scientific theories, the most important one being

related to explanation.9 For many philosophers, explanation is tightly con-

nected to causation; see the causal–mechanical accounts of Salmon ([1984])

and Dowe ([2000]), the interventionist accounts of Hausman ([1998]) and

Woodward ([2003]), and the mechanistic accounts of Machamer et al.

[2000]), Glennan ([1996], [2002]), Bechtel and Abrahamsen ([2005]), and

Craver ([2007]).

One of the central motivations for stressing the role of causality in explan-

ation is that it solves several of the problems that notoriously plague Hempel’s

([1965]) deductive-nomological (DN) model of explanation. (Woodward

[2009], Section 2.5) One such problem is explanatory asymmetry. One may

logically derive, and hence DN-explain, the length of a flagpole’s shadow from

its height, together with certain laws and initial conditions. Likewise, one may

derive, and hence DN-explain, its height from the length of its shadow, again

together with certain laws and initial conditions. But although the first deriv-

ation seems explanatory, the second does not. Kitcher ([1989], pp. 485–7)

endeavours to solve this problem within his unificationist model, but he ar-

guably fails (Woodward [2003], pp. 358–60; Gijsbers [2007], pp. 489–91).

Causal considerations, by contrast, fit this intuition well: the length of the

shadow is caused by the length of the flagpole, but not vice versa.

Before turning to the next section, I would like to add one remark on the

relation between explanation and causality. Even though I endorse the view

7 Woodward ([2003], pp. 360–2) criticizes Kitcher’s theory as a theory of causation and explan-

ation. For criticisms of Kitcher’s theory as a theory of unification and for my solution to the

problems raised, see Section 18.
8 I would like to thank an anonymous referee for pressing me on this issue.
9 Causation is also deemed by many to play an important role in policy, manipulation, or inter-

vention. The consensus view in philosophy of science now is that causal relations are potentially

exploitable for manipulation, policy, and control, whereas spurious correlations are not; see for

example (Cartwright [1983]; Spirtes et al. [2000]; Pearl [2000]; Woodward [2003]; and

Williamson [2005]). However, see (Leuridan et al. [2008]) for a specific type of policy—selective

policy—that is based on spurious correlations such as the phenotypic distributions studied in

classical genetics.
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that causality plays an important role in explanation, I do not wish to say that

all explanation is causal explanation. Mathematical explanations, for ex-

ample, may well be a-causal (see Mancosu [2011], Section 1 and Woodward

[2003], pp. 220–1), and they may better fit Hempel’s or Kitcher’s account of

explanation. That need not be a problem; after all, it seems doubtful that there

can be a truly general account of explanation that holds in all possible do-

mains of inquiry (cf. note 25). Still, if causal considerations are relevant, they

should better be taken into account. This surely holds in the case of classical

genetics, as I will argue in the next section.

5 Woodward’s Interventionist Account of Causation

My account of the causal structure of classical genetics builds on Woodward’s

interventionist theory of causation. The central idea of this theory is that

causal relations ‘are potentially exploitable for purposes of manipulation

and control’ (Woodward [2003], p. v). For two reasons, Woodward’s theory

is well-suited for my purposes.10 First, it dovetails with (a large part of) the

literature on causal Bayes nets, such as the works of Pearl ([2000]) and Spirtes

et al. ([2000]) (see Woodward [2003], pp. 38–45). Second, it also nicely fits the

concept of causality as it figured in classical genetics. As Waters ([2007],

Section I) points out, classical geneticists considered genes as difference

makers for phenotypic traits in the way specified by the difference principle

(see Waters [1994], p. 172 for a seminal version of this principle):

Difference principle: differences in a gene cause uniform phenotypic

differences in particular genetic and environmental contexts. (Waters

[2007], p. 558)

In well-devised experiments, these classical geneticists created a stable gen-

etic and environmental context so as to make sure that the difference principle

would apply (Waters [2007], p. 558). This principle, Waters contends, can be

naturally reformulated in terms of manipulations of genes (in the sense of the

‘ideal interventions’ to be discussed later in the text), given certain genetic and

environmental contexts (Waters [2007], p. 564).

Woodward ([2003], p. 39) conceives of the relata of causal relations as

random variables (more precisely: changes in the values thereof). Intuitively,

a random variable represents some feature of an entity or set of entities. Each

random variable can have several possible values, each of which represents a

different state that the feature can take. For example, the variable

‘TrafficLights’ can take ‘red’, ‘orange’, and ‘green’ as its possible values.

10 For reasons of space, I will not systematically discuss the other accounts of causation that are

available on the philosophical market. The two reasons to be discussed should suffice to show at

least that Woodward’s theory is a well-suited candidate for my purposes.
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The basic intuition underlying Woodward’s account of causation is that one

random variable, X, is a (type-level) cause of another random variable, Y, just in

case manipulating X would result in a change in Y (or in the probability distri-

bution of Y). Of course, not every manipulation of X would be suitable. If, for

example, the manipulation of X would change Y directly, or if it would change

some of the causes of Y that are not themselves effects of X, then Y would

change, irrespective of whether X is a cause of Y. To rule out such problems,

Woodward introduces the notion of an ‘ideal intervention’ on X with respect to

Y to explicate changes in X, which influence Y, if at all, only via X and not via

some other causal route (see Woodward [2003], p. 94 for an informal charac-

terization and pp. 98–9 for a precise definition). If the relation between X and Y

remains ‘invariant’—that is, continues to hold, under some range of such ideal

interventions on X—then it is causal. It is not necessary that it is invariant under

all possible interventions on X; ‘invariance under interventions’ is a gradual

notion (Woodward [2003], pp. 257–65). With the help of the notion of ideal

interventions, Woodward defines ‘direct causation’ (relative to a set of variables,

V) as follows (this notion nicely fits the formal framework of causal Bayes nets.):

(DC) A necessary and sufficient condition of X to be a direct cause of Y

with respect to some variable set V is that there be a possible intervention

on X that will change Y (or the probability distribution of Y) when all

other variables in V besides X and Y are held fixed at some value by

interventions. (Woodward [2003], p. 55)

6 Causal Bayes Nets and Their Interrelations

In this section, I first introduce the basic terminology of causal Bayes nets

(Section 6.1). Then I introduce some new concepts: various isomorphism rela-

tions for causal nets and their constituents (Section 6.2). Finally, I discuss a

related concept—credal nets—and define corresponding isomorphism relations

(Section 6.3). Causal nets will play the same role as models in the structuralist

framework. Credal nets will serve in the creation of a causal analogue for struc-

turalist theory-elements and Darden’s abstract explanatory patterns. The iso-

morphism relations will help to explore classical genetics’ unifying power.

6.1 Causal Bayes nets

A causal net (or causal Bayesian network) is a causally interpreted Bayesian

network. A Bayesian network, B ¼ hG, Pi, consists of a directed acyclic graph,

G ¼ hV , Ei, and a probability distribution, P(V), over a set of random vari-

ables V, where P(V) and G satisfy the Markov Condition. (If it is clear over

which set of variables a distribution is defined, I will write P instead of P(V).)

A directed acyclic graph, G ¼ hV , Ei, consists of a set, V, of vertices or nodes
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(this is the set of random variables on which B is defined), and a set, E, of

directed edges (A! B, where A, B 2 V ). As G is acyclic, there is no directed

path from any variable to itself.

To interpret a Bayesian network causally (and hence to treat it as a causal

net) is to interpret the edges in E causally so that for all vertices, A, B 2 V ,

A! B 2 E if and only if A is a direct cause of B, relative to V. The notion of

‘direct cause’ can be defined by means of Woodward’s (DC).

In the case of causal nets, the Markov condition is called the causal Markov

condition. Let DESC(A) consist of all variables, B 2 V , such that in G there is

a directed path from A to B (these are the graph-theoretical ‘descendants’ of

A); let PA(A) consist of all C 2 V such that C ! A 2 E (these are the graph-

theoretical ‘parents’ of A).

Definition 1 (Causal Markov Condition (CMC)): Let G ¼ hV , Ei be a causal

graph with vertex set V and P be a probability distribution over the vertices in

V generated by the causal structure represented by G. G and P satisfy the

CMC if and only if for every A 2 V , A is independent of

VnðDESCðAÞ [ PAðAÞÞ, given PA(A). (Adapted from Spirtes et al. [2000],

p. 29)11

The CMC specifies which conditional or unconditional independence rela-

tions a probability distribution P must satisfy to be causally Markov with

respect to a given graph G so that B ¼ hG, Pi counts as a causal net.12 This can

be illustrated by means of Figure 1. PT1 is independent of GC1 conditional on

GT1 in any P that is causally Markov to Figure 1; likewise, GC1 and GC2 are

unconditionally independent. (At the moment, the reader need not care about

what these variables stand for or which causal relations this figure depicts.)

6.2 Relations among causal nets

As is evident from the aforementioned definitions, causal nets may differ from

each other along several lines: with respect to V and/or E and/or P. Here, I

will define several possible relations between sets of variables, between graphs,

and between causal nets that are helpful to analyse the causal structure of

classical genetics.

But first let me introduce some notation pertaining to random variables.

Each random variable A 2 V may assume a range of possible values. These

are mutually exclusive and jointly exhaustive. Let ½A� be the set of A’s values.

11 In this definition, ‘independent’ means ‘probabilistically independent according to P’.
12 The CMC does not rule out that P satisfies some extra conditional or unconditional independ-

ence relations as well. To simplify automated causal discovery, many search algorithms invoke

another complementary assumption (faithfulness), which rules out such extra independence

relations, see (Spirtes et al. [2000], p. 31). As I will not touch on the problem of causal discovery,

I will not require that P and G are faithful.
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In this article, I will only deal with finite random variables (variables with a

finite number of values). Where U ¼ fA1, . . . , Ang is a set of variables, let

½U � ¼ ½A1� � . . .� ½An�. The members of ½U � thus consist of the possible con-

figurations of members of ½A1�, . . . , ½An�, respectively.13 Finally, let

½½U �� ¼
S
½Ai� (for all Ai 2 U). Obviously, ½U � and ½½U �� are different sets.

Now we are ready to define some possible interrelations between causal

nets. I will start with isomorphism and value-isomorphism, defining these

notions in turn for sets of variables, for graphs, and for causal nets.

Definition 2 ((value-)isomorphism for sets of variables): Two sets of variables V

and V 0 are isomorphic if and only if there is a bijection b : V ! V 0.14 They are

value-isomorphic if and only if there are bijections b : V ! V 0 and

b0 : ½½V �� ! ½½V 0�� such that for any A 2 V and a 2 ½½V ��, a 2 ½A� if and only

if b0ðaÞ 2 ½bðAÞ�.

Definition 3 ((value-)isomorphism for graphs): Two graphs G ¼ hV , Ei and

G0 ¼ hV 0, E0i are isomorphic if and only if there is a bijection b : V ! V 0

such that for any A, B 2 V : A! B 2 E if and only if bðAÞ ! bðBÞ 2 E0.

They are value-isomorphic if and only if they are isomorphic and V and V 0

are value-isomorphic.

Definition 4 ((value-)isomorphism for causal nets): Two causal nets B ¼ hG, Pi

and B0 ¼ hG0, P0i are isomorphic if and only if G and G0 are isomorphic. They

are value-isomorphic if and only if G and G0 are value-isomorphic.

PT2

GT2

PT1 GC2GC1

GT3

PT3

GT1

GC3

Figure 1. The causal structure of classical genetics.

13 When I will apply the definitions developed in this section and the next one to the theory of

classical genetics, I will not attach significance to the order of the values in the elements of ½U �

and hence will use a relaxed notation.
14 A bijection or bijective function f is a function, which is both injective (if f ðxÞ ¼ f ðyÞ, then it

must be the case that x¼ y) and surjective (for every element w in its range, there is an element v

in its domain such that w ¼ f ðvÞ). Source: http://mathworld.wolfram.com (accessed on 31 May

2013).
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With respect to isomorphic graphs and causal nets, let me introduce the

following convention:

Convention 1: If G ¼ hV , Ei and G0 ¼ hV 0, E0i are isomorphic, I will write

G0 ¼ hV 0, Ei instead of G0 ¼ hV 0, E0i—even if E and E 0 are specified over dif-

ferent sets of variables. Analogously, I will write B0 ¼ hhV 0, Ei, P0i instead of

B
0
¼ hhV 0, E0i, P0i in case B and B0 are isomorphic.

The relations of isomorphism and value-isomorphism of Definition 4 con-

cern structural (or qualitative) similarities between causal nets. Let us now

turn to probabilistic (or quantitative) similarities.

Definition 5 (distribution-identity for causal nets): Let B ¼ hhV , Ei, Pi

and B0 ¼ hhV 0, Ei, P0i be value-isomorphic and let b and b0 be bijections

as in definition 2. Moreover, for every u ¼ ha1, a2, . . . , ani 2 ½V �, let

b0ðuÞ ¼ hb0ða1Þ, b0ða2Þ, . . . , b0ðanÞi. Then B and B0 are distribution-identical if

and only if PðuÞ ¼ P0ðb0ðuÞÞ for each u 2 ½V �. (In other words, B and B0 have

like joint distributions.)

The relations between these definitions are obvious. If two sets of variables

V and V 0 are value-isomorphic, they are also isomorphic, but not vice versa.

(Idem for graphs and causal nets.) If two causal nets, B and B0, are isomorphic

(resp. value-isomorphic), then so are their respective graphs and hence their

respective sets of variables, but not vice versa. If two causal nets are distribu-

tion-identical, they are value-isomorphic, but not vice versa.

6.3 Credal nets and their interrelations

Along with causal nets, I will use another concept that ties graphs and prob-

ability distributions together: credal nets. A credal net is a set of Bayesian

networks over a fixed set of variables (Cozman [2005], p. 171).15 These Bayes

nets all have the same G but differ with respect to P. More precisely, a credal

net, B ¼ hG,Pi, consists of a directed acyclic graph, G ¼ hV , Ei, and a set, P,

of probability distributions over V, called a credal set. As I interpret Bayes

nets causally here, I will carry over this interpretation to credal nets.

Definition 6 (credal net): A credal net is a set of causal nets with a common

graph: B ¼ hG,Pi ¼ fB ¼ hG, PijP 2 Pg.

15 Originally, credal nets were used to facilitate reasoning with imprecise probabilities (Cozman

[2000]). This is not my aim in this article.
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Structural (qualitative) and probabilistic (quantitative) similarity relations

can also be defined for credal sets and credal nets:

Definition 7 ((value-)isomorphism for credal sets): Two credal sets, PðV Þ and

P
0ðV 0Þ, are isomorphic if and only if V and V 0 are isomorphic. They are value-

isomorphic if and only if V and V 0 are value-isomorphic.

Definition 8 (distribution-identity for credal sets): Let V and V 0 be value-iso-

morphic, let b and b0 be bijections as in Definition 2, and let u and b0ðuÞ be

defined as in Definition 5. Then, the credal sets PðV Þ and P0ðV 0Þ are distribu-

tion-identical if and only if there is a bijection, b00 : P! P
0, such that

PðuÞ ¼ b00ðPÞðb0ðuÞÞ for all P 2 P and all u 2 ½V �. (In other words, all distribu-

tions in P are distribution-identical to their image in P0.)

Definition 9 ((value-)isomorphism for credal nets): Two credal nets, B ¼ hG,Pi

and B
0
¼ hG0,P0i, are isomorphic if and only if G and G0 are isomorphic. They

are value-isomorphic if and only if G and G0 are value-isomorphic.

Definition 10 (distribution-identity for credal nets): Two credal nets,

B ¼ hhV , Ei,Pi and B
0
¼ hhV 0, Ei,P0i, are distribution-identical if and only

if PðV Þ and P0ðV 0Þ are distribution-identical. Equivalently, B and B
0 are dis-

tribution-identical if and only if there is a bijection, b� : B! B
0, such that for

all B 2 B, B is distribution-identical to b�ðBÞ.

The relations between these definitions are obvious. If two credal sets, P and

P
0, are distribution-identical, they are also value-isomorphic, and hence also

isomorphic, but not vice versa. (Idem for credal nets.) If two credal nets, B and

B
0, are distribution-identical, then so are their respective credal sets. (Idem for

value-isomorphism and isomorphism.)

Overview of the above definitions:

(value-)isomorphism distribution-identity

sets of variables definition 2 /

graphs definition 3 /

causal nets definition 4 definition 5

credal sets definition 7 definition 8

credal nets definition 9 definition 10

7 The Theory of the Gene and its Causal Graph

Let us turn now to the second part of this article and apply the aforementioned

formal framework to Morgan’s exposition of the ‘theory of the gene’ (Morgan

[1928]). According to Morgan, the modern theory of heredity ‘is primarily

concerned with the distribution of units between successive generations of

individuals’ (Morgan [1928], p. 1). These units are invisible and they are
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called genes. To these genes, properties are assigned in a non-arbitrary way,

based on ‘numerical data obtained by crossing two individuals that differ in

one or more characters’ (Morgan [1928], p. 1). After presenting several ex-

amples of possible relations between genes and characters, Morgan formulates

the theory of the gene as follows (the three following quotes are from Morgan

[1928], p. 25):

We are now in a position to formulate the theory of the gene. The theory

states that the characters of the individual are referable to paired

elements (genes) in the germinal material that are held together in a

definite number of linkage groups [. . .]

Where Morgan writes about ‘pairs of genes’, we would now say ‘pairs of

alleles’. Linkage groups are groups of genes that are typically transmitted

together (as they lie on the same chromosome). Morgan continues by specify-

ing the law of segregation (Mendel’s first law) and the law of independent

assortment (Mendel’s second law):

[. . .] it states that the members of each pair of genes separate when the

germ-cells mature in accordance with Mendel’s first law, and in

consequence each germ-cell comes to contain one set only; it states

that the members belonging to different linkage groups assort independ-

ently in accordance with Mendel’s second law [. . .]

Finally, he explains the basics of ‘gene mapping’, the technique by means of

which the Morgan group was able to discover which of an organism’s genes

belonged to the same linkage group (and in what order):

[. . .] it states that an orderly interchange—crossing-over—also takes

place, at times, between the elements in corresponding linkage groups;

and it states that the frequency of crossing-over furnishes evidence of the

linear order of the elements in each linkage group and of the relative

position of the elements with respect to each other.

The theory of the gene, as it is presented by Morgan, is not one single

theory. It is composed of different abstract explanatory patterns (Darden

[1991]), general argument patterns (Kitcher [1989]), or theory-elements form-

ing a theory-net (Balzer and Lorenzano [2000]). I will incorporate this aspect

by representing it by means of interrelated credal nets. As these credal nets are

interpreted causally, the common lacuna is remedied. To some extent, these

credal nets share the same causal structure. This common causal structure ties

them together and distinguishes the theory of the gene from alternative the-

ories of inheritance such as Francis Galton’s (see Leuridan [2007] for a brief

characterization of Galton’s theory).

This shared causal structure is shown in Figure 1. The directed acyclic graph

comprises nine nodes, which represent the genotype (GTi), the phenotype

(PTi), and the make-up of the germ-cells (GCi) of three groups of organisms
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(a paternal group, i¼ 1; a maternal group, i¼ 2; and a filial group, i¼ 3).16

The GTi and GCi variables in Figure 1 are dotted to indicate that they are

CG-theoretical in the structuralists’ sense (see Section 3.1; ‘CG’ stands for the

theory of classical genetics). At the time, there was no way to determine an

organism’s genotype or the make-up of its germ-cells without invoking the

theory of classical genetics. The phenotypic variables, by contrast, are

CG-non-theoretical. One can determine an organism’s phenotypic traits with-

out relying on CG. This point is important with respect to explanation in

classical genetics (see Section 17).

The causal relations between these variables are depicted in Figure 1. The

genotypes (GTi) causally influence the corresponding phenotypes (PTi), as

well as the corresponding germ cells (GCi)—manipulating the former via an

ideal intervention will change (the probability distribution over) the latter.

The parental germ cells (GC1 and GC2) together causally determine the filial

genotype (GT3). These relations are plausible from a present-day point of

view. But to avoid any allegation that I’m misinterpreting Morgan’s expos-

ition, we should briefly justify them on the basis of his work.

In Section 5, I have argued, based on (Waters [2007]), that Woodward’s

interventionism fits Morgan’s concept of causality. Here, I discuss the precise

causal relations that played a role in Morgan’s theory of the gene. Let me start

with the relation between genes and characters. It is natural to consider genes

as the causes of characters, i.e. to assume that for each i, GTi ! PTi. It is not

so natural, however, to attribute this assumption to Morgan and his contem-

poraries. Explicit causal language was surprisingly rare in the genetics litera-

ture at the time. Still, Morgan uses implicit causal language on repeated

occasions. He hypothesizes that the tall variety of pea plants ‘contains in its

germ-cells something that makes the plants tall’ (Morgan [1928], p. 2, my

emphasis). He distinguishes between red-producing genes and white-produ-

cing genes in crosses of four-o’clocks (Morgan [1928], p. 8). He talks about the

effects of mutant changes (Morgan [1928], p. 315). These examples should

suffice to show that, according to Morgan, genes cause characters (see also

Darden [1991], pp. 182–3, and Waters [2007]).

What about the relations between the paired genes and the germcells? In the

third and the fourth chapter of his book, Morgan lists overwhelming cytolo-

gical evidence leading to the conclusion that GTi ! GCi (1 � i � 3) and that

GC1 ! CT3  GC2: the chromosomes are the bearers of the genes ([1928],

p. 45); somatic cells have a diploid number of chromosomes, half of which

come from the father, the other half from the mother ([1928], p. 32); and the

germ cells receive a haploid number of chromosomes ([1928], p. 33).

16 In the case of self-fertilization, the paternal and the maternal group are the same. Still, it is

convenient to represent such crosses by means of the causal graph in Figure 1.
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8 A First Exemplar: Stem Length in Pea Plants

Morgan ([1928]) presents the theory of classical genetics by means of a set of

exemplars: particular crosses that are explained by means of the theory of the

gene and that are supposed to represent a class of similar phenomena. His first

exemplar consists of Mendel’s well-known monohybrid crosses with complete

dominance on pea plants (Morgan [1928], pp. 2–4). Recall that in a mono-

hybrid cross only one pair of opposing characteristics is studied.

8.1 Three crosses on stem length in pea plants

Mendel ([1966], pp. 5–27) crossed a tall variety of edible pea (Pisum) with a

short variety. The tall plants he used were true-breeding. He observed that

when true-breeding tall plants are crossed with short plants, all the offspring

or hybrids (F1) are tall (cross one). It did not matter whether the tall plants

produced pollen and the short plants produced eggs, or vice versa. Reciprocal

crosses gave identical results (Mendel [1966], pp. 8–9). In a second cross (cross

two), self-fertilization of the F1-generation resulted in offspring (F2), about

75% of which were tall, the other 25% being short. Finally, when the F1 hy-

brids (pollen plants) were back-crossed to short plants (egg plants), about 50%

of the resulting off-spring F 02 was tall, the other 50% was short (cross three).

How can these phenotypic distributions be explained? It will turn out in

Section 9 that the results of each cross can be explained by fitting them in a

causal net the graph of which is isomorphic to Figure 1. Here, I will first

characterize the graph that these causal nets have in common and the explana-

tory principles or laws their probability distributions have to satisfy.

8.2 The causal graph for stem length in pea plants

Let us first give an appropriate interpretation for the nodes in Figure 1

by specifying their respective sets of possible values. All the plants in these

crosses are tall (PTi ¼ tall) or short (PTi ¼ short). These traits are referable to

paired alleles in the germinal material. Let t and s denote a ‘tall-producing’

and a ‘short-producing’ allele, respectively.17 There are three possible config-

urations of paired alleles, i.e. three possible values for the variables GTi:

tt, ts, and ss. Finally, the germ-cells contain one allele of each pair. Hence,

the variables GCi may assume the values t or s.

These specifications can be summarized as follows. Let V1 ¼ fPT1, . . . , GC3g

be a set of variables corresponding to the nodes in Figure 1. Let

17 Morgan does not use ‘tall-producing allele’ or ‘short-producing allele’. But his presentation of

inheritance of flower-colour in four-o’clocks is phrased in terms of ‘white-producing gene’ and

‘red-producing gene’ ([1928], p. 5–7).
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½PTi� ¼ ftall, shortg, ½GTi� ¼ ftt, ts, ssg, and ½GCi� ¼ ft, sg, ð1 � i � 3Þ. Let

G1 ¼ hV 1, Ei be isomorphic to Figure 1 (where PT1 2 V1 corresponds to the

node PT1 in the graph, . . . ). This completes the description of G1. By adding

probability distributions to this graph, we will obtain causal nets that represent

crosses 1 to 3. These probability distributions have to satisfy the explanatory

principles, or laws, invoked by Morgan.

8.3 Morgan’s explanatory principles and the credal net for stem

length in pea plants

To explain the phenotypic distributions of crosses one to three, Morgan ap-

peals to four principles—either explicitly or implicitly ([1928], pp. 2–4). First,

he assumes that plants having two tall-producing alleles are tall; that hybrids,

which have an allele for tall and one for short, are tall; and that plants having

two short-producing alleles are short. This corresponds to what is called the

principle of complete dominance. They are summarized in conditional prob-

ability Table 1. This table specifies the probability distribution over the values

of each PTi, given the possible values of its graphical parent, GTi, ð1 � i � 3Þ.

For example, the second row states that PðPTi ¼ talljGTi ¼ tsÞ ¼ 1:00. This

expresses the dominance of tall over short.

Second, Morgan invokes the law of segregation (Mendel’s first law): ‘[i]f the

element [or allele] for tall and the one for short (that are both present in the

hybrid) separate in the hybrid when the eggs and pollen grains come to ma-

turity, half the eggs will contain the tall and half the short element [. . .]

Similarly, for the pollen grains’ (Morgan [1928], p. 3). In this quote,

Morgan only discusses segregation for hybrid plants, but from his exposition

of the underlying chromosomal mechanism, it is clear that Mendel’s first law

applies to true-breeding plants as well, see (Morgan [1928], pp. 33–4). The law

of segregation is summarized in Table 2.

A third, implicit principle states that when an egg and a pollen grain fertil-

ize, their respective elements together make up the genotype of the resulting

offspring. I will call this the combination principle (Table 3).18

Finally, Morgan assumes chance fertilization ([1928], p. 3). For example,

when one crosses or self-fertilizes hybrids it may not be the case that tall-pro-

ducing pollen have a tendency to fertilize tall-producing eggs rather than

short-producing eggs. This assumption need not be expressed by means of a

conditional probability table, as it holds for any probability distribution that

satisfies the CMC relative to Figure 1.19

18 The combination principle should not be confused with the ‘combinator’ function in (Balzer and

Lorenzano [2000]). In their article, the role of the gametes is not made explicit.
19 Chance fertilization comes down to GC1 and GC2 being probabilistically independent, which is

true for any probability distribution that satisfies the CMC relative to Figure 1 (or to any
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Together, these principles give rise to a credal set P1ðV1Þ:

P
1ðV1Þ ¼ fPðV 1ÞjPðV 1Þ satisfies tables 1� 3 and

the CMC relative to G1g:

Joined with G1, this defines a credal net B1
¼ hG1,P1i.

9 Explaining Mendel’s Crosses: A Causal–Structural Account

Morgan explains the filial phenotypic distributions in crosses one to three by

deriving them, by means of the laws or explanatory principles just discussed,

Table 3.

GC1 GC2 GT3

tt ts ss

t t 1.00 0.00 0.00

t s 0.00 1.00 0.00

s t 0.00 1.00 0.00

s s 0.00 0.00 1.00

Conditional probability, satisfied by all P 2 P1.

Table 1.

GTi PTi

tall short

tt 1.00 0.00

ts 1.00 0.00

ss 0.00 1.00

Conditional probability, satisfied by all P 2 P1:

Table 2.

GTi GCi

t s

tt 1.00 0.00

ts 0.50 0.50

ss 0.00 1.00

Conditional probability, satisfied by all P 2 P1.

isomorphic graph), as can be seen by means of the d-separation criterion, see (Pearl [2000], p. 16;

Spirtes et al. [2000], p. 44).
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from assumptions regarding the parental genotypes. Described in this way,

explanation is syntactic. But we can also approach it in a semantic or model-

theoretic way. Each of the crosses can be explained by embedding them in a

causal net (some B 2 B
1). This model-theoretic approach mimics the struc-

turalist account of explanation while making room for the concept of causal-

ity. Let me call it the causal–structural account of explanation. (See Section 17

for a further elaboration.)

In Section 3.1, we saw that for the structuralists, to explain some given data

by means of a theory T,20 one adds to these data—which have the structure of

a partial potential model—T’s theoretical concepts—thus creating a potential

model—and then shows that it is an actual model of T. This ‘embedding’ can

be translated to the language of causal nets.21

The data in Section 8.1 concern the phenotypic distribution of the filial

group, given the phenotypes of the parental groups. Hence, they pertain to

the CG-non-theoretic variables PTi (with ½PTi� ¼ ftall, shortg, 1 � i � 3).

These can be included in a graph that also contains the CG-theoretical vari-

ables GTi and GCi (1 � i � 3). By demanding that this graph is isomorphic

to Figure 1 and by adding suitable probability distributions, which satisfy

Tables 1–3 and are causally Markov to the graph in question, one obtains

models (causal nets in B
1) that incorporate classical genetics’ conceptual

framework, satisfy its laws, and explain the data.

Let us first turn to cross one. In one variant of cross one, the pollen

plants are true-breeding for tall and the egg plants are short:

PT1 ¼ tall, PT2 ¼ short. If it is assumed that a true-breeding tall plant con-

tains the element for tall twice (cf. Morgan [1928], p. 6), it can be ‘abduced’

that GT1 ¼ tt and GT2 ¼ ss.22 If we denote the probability distribution

20 Strictly speaking, what is explained in classical genetics is not the data, but what Bogen and

Woodward ([1988], pp. 305–6) call ‘phenomena’. Phenomena are relatively stable and repeatable

and can hence be predicted and explained by theories. Data are idiosyncratic to a particular

experimental setting and hence not predictable or systematically explainable. For example, the

phenotypic 3:1-ratio of tall versus short in the F2 generation of cross two (Section 8.1) is a

phenomenon, an idealized statistical generalization. Mendel’s data for that cross were 787
1064

versus
277
1064

, which is close but not identical to 3:1 ([1965], p. 13). From here onwards, by ‘data’ I will

mean ‘phenomena’ in the aforementioned sense.
21 Within the structuralist literature, there is some discussion as to whether all explanation has to

be ‘ampliative’, i.e. whether it always requires the addition of T-theoretical concepts. I would

like to thank José Dı́ez for pointing this out.
22 Abduction is a type of inference, which is to be distinguished from ‘deduction’ and ‘induction’

(Douven [2011], Section 1.1). Peirce ([1974], p. 117) defines ‘abduction’ as follows: ‘The surpris-

ing fact, C, is observed. But if A were true, C would be a matter of course. Hence, there is reason

to suspect that A is true’. In classical genetics, the inference from phenotypes to genotypes was

explicitly abductive and, given the CG-theoretical nature of the GTi and GCi variables, based on

the explanatory principles of genetics itself. This does not mean, however, that the explanation

being given is ad hoc. The explanatory principles were expected to hold in a wider range of

related cases (see Section 18 for an explication of this ‘wider range of related cases’), and they

were explicitly tested by means of test crosses (see cross three later in the text). In Waters’ words,

they were ‘local inferences to the best explanation’ ([2004], p. 802). (Inference to the best
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corresponding to this cross by P1ðV1Þ, or briefly P1, we can express this as

follows: P1ðPT1 ¼ tallÞ ¼ P1ðPT2 ¼ shortÞ ¼ 1:00, and P1ðGT1 ¼ ttÞ ¼

P1ðGT2 ¼ ssÞ ¼ 1:00. Assume now that P1 2 P1 so that it satisfies Tables 1–

3 and the corresponding explanatory principles. Then, it follows that

P1ðGC1 ¼ tÞ ¼ P1ðGC2 ¼ sÞ ¼ 1:00 (by Table 2), and that

P1ðGT3 ¼ tsÞ ¼ 1:00 (by Table 3). Hence, P1ðPT3 ¼ tallÞ ¼ 1:00 (by Table

1), which corresponds to the data. This shows that cross one can be

represented by a causal net, B1
¼ hG1, P1i, which predicts that all hybrid off-

spring is tall. As B1 satisfies causal explanatory principles, this embedding of

the data in B1 can rightly be called causal explanation. It shows how the

variables on which the data report (in casu PT3) fit in a larger causal

system, and how this causal system brings about the (probability distribution

over the) values of these variables.23

The phenotypic distribution in cross two can be explained in an analogous

way, by embedding it in some causal net, say B2
¼ hG1, P2i, where P2 2 P1 so

that B2
2 B

1. In cross two, the F1 hybrids are selfed, and they produce F2

offspring, 75% of which are tall and 25% of which are short. Obviously, if

P2ðGT1 ¼ tsÞ ¼ P2ðGT2 ¼ tsÞ ¼ 1:00 and if P2 2 P1, then P2ðGT3 ¼ ttÞ ¼

0:25, P2ðGT3 ¼ tsÞ ¼ 0:50, and P2ðGT3 ¼ ssÞ ¼ 0:25 so that P2ðPT3 ¼ tallÞ

¼ 0:75 and P2ðPT3 ¼ shortÞ ¼ 0:25. This corresponds to the data.

Finally, in cross 3, the F1 hybrids are back-crossed with the recessive par-

ental plants. Let P3ðGT1 ¼ tsÞ ¼ P3ðGT2 ¼ ssÞ ¼ 1:00. If P3 2 P1, then

P3ðPT3 ¼ tallÞ ¼ 0:50. ‘The results confirm the expectation’ (Morgan [1928],

p. 4). Hence, cross three can be represented by B3
¼ hG1, P3i 2 B

1.

Cross 3 was designed by Mendel (and cited by Morgan) as a Peirce (CP

5.189). The fact that several different, but somehow similar crosses could be

explained by means of the same explanatory principles, raised confidence that

the explanatory principles invoked were not ad hoc.

So far we have seen that a number of crosses with tall and short pea plants

can be represented by distinct causal nets, B1,B2,B3, that belong to one

common credal net B1. Each of these causal nets is a model of classical gen-

etics and explains the data (phenotypic distributions) at hand. In what follows,

I will show how crosses on other characters in Pisum or with other genera can

be represented by causal nets that fit in analogous credal nets, and explicate

explanation is a close nephew of abduction. A hypothesis, A, is the best explanation for C if it

outdoes all other explanations for C.)
23 A reciprocal variant of cross one, in which the pollen plants are short and the egg plants are

pure tall, gives the same results, as Mendel ([1966], p. 9) discovered. These results can be ex-

plained by means of the same set of principles: there is a P 2 P1 such that

PðPT1 ¼ shortÞ ¼ ðPT2 ¼ tallÞ ¼ 1:00, and PðGT1 ¼ ssÞ ¼ PðGT2 ¼ ttÞ ¼ 1:00. Given that

P 2 P1, PðPT3 ¼ tallÞ ¼ 1:00. This also corresponds to the data. In cases of sex-linked inherit-

ance, however, reciprocal crosses do not result in identical filial phenotypic distributions. Such

cases can also be modelled in my framework, but I will not do so here.
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the precise relations between these credal nets. (This will prove to be fruitful

when we turn to the discussion of explanatory unification.)

10 Monohybrid Crosses with Complete Dominance

B
1’s members can be used to describe monohybrid crosses with tall (domin-

ant) and short (recessive) Pisum plants. In the history of classical genetics,

many other monohybrid crosses with complete dominance have been re-

ported. In his Versuche über Pflanzen-Hybriden, Mendel discussed six more

such crosses with Pisum (Mendel [1966], pp. 5–17). He selected traits relating

to the shape of the ripe seeds (round, wrinkled), the colouration of the seed

albumen (yellow, green), and so on. Likewise, Morgan ([1928], pp. 4–5) dis-

cusses the inheritance of eye colour in humans (blue, brown) as an example of

complete dominance. These crosses cannot be described by the members of

B
1, as the set of variables V1 on which these are defined is tied to stem length in

Pisum. However, by slightly changing the members in V1, they can be

described.

Consider Morgan’s case of human eye colour. Two phenotypic traits are

studied, where brown is dominant to blue. These are referable to paired alleles

in the germinal material, which Morgan denotes by br and bl, respectively.

(Morgan and his co-workers used a large variety of symbolic systems to

denote alleles.) The results of crosses with blue and brown eyes in humans

can be accounted for with the help of the explanatory principles discussed in

Section 8.3, viz. the law of segregation, complete dominance, and so forth.

Thus, they are similar to the case of stem length in Pisum. This similarity can

be explicated in a precise way. There is a credal net, say B
2, that is both value-

isomorphic and distribution-identical to B
1 such that its members can be used

to explain crosses on eye colour in humans.

Let us see how B
2 can be characterized. V2 ¼ fPT 01, . . . , . . . , GC 03g is a set of

variables corresponding to the nodes in Figure 1, where ½PT 0i � ¼

fbrown, blueg, ½GT 0i � ¼ fbrbr, brbl, blblg, and ½GC0i � ¼ fbr, blg, ð1 � i � 3Þ. Let

b : V 1 ! V 2 be a bijection such that bðPTiÞ ¼ PT 0i , bðGTiÞ ¼ GT 0i , bðGCiÞ ¼

GC 0i ð1 � i � 3Þ. Let b0 : ½½V 1�� ! ½½V 2�� be a bijection such that for any

A 2 V1 and a 2 ½½V1��, a 2 ½A� if and only if b0ðaÞ 2 ½bðAÞ�. More specifically,

let b0ðtallÞ ¼ brown, b0ðshortÞ ¼ blue, b0ðttÞ ¼ brbr, . . . , b0ðsÞ ¼ bl. V2 is value-

isomorphic to V1 (Definition 2); hence, G2 ¼ hV 2, Ei is value-isomorphic to

G1 ¼ hV 1, Ei (Definition 3).

Let P2 be the set of probability distributions over V2 that satisfy constraints

analogous to Tables 1–3 and are causally Markov to G2. More specifically,

where the members of P1 satisfy PðajpaðAÞÞ ¼ r (for some r 2 ½0, 1�), let the

members of P2 satisfy Pðb0ðaÞjb0ðpaðAÞÞÞ ¼ r for any A 2 V1, a 2 ½A�, and
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paðAÞ 2 ½PAðAÞ�.24 (PAðAÞ � V 1 comprises A’s graphic parents in G1.) It

follows that P2 is distribution-identical to P1.

Let B2
¼ hG2,P2i. B2 is value-isomorphic (Definition 9) and distribution-

identical (Definition 10) to B
1. Thus, for any possible cross of tall and short

pea plants, there is an analogous cross on eye colour in humans and likewise

for their respective explanations.

Formally speaking, it is trivially easy to create a distribution-identical image

of a credal net: just relabel the variables and their values. But empirically, the

discovery that eye colour could be explained in the same way as stem length

was not trivial at all. Hence, distribution-identity expresses a philosophically

interesting phenomenon (see also Section 18).

11 Exemplars, Abstract Explanatory Patterns, Generic Credal

Nets, and Mechanism Schemas

The relations between crosses on stem length in pea plants and crosses on eye

colour in humans can be generalized to all monohybrid crosses with complete

dominance. It is useful to introduce the notion of a generic credal net that

serves as an abstract representation of all these similar crosses in the same way

as do Darden’s abstract explanatory patterns. Like abstract explanatory pat-

terns, generic credal nets are obtained by abstracting from exemplars, and they

play a role in a theory’s unifying power.

Darden’s notions of ‘exemplar’ and ‘abstract explanatory pattern’

derive from the works of Kuhn and Kitcher. Starting from (Kuhn [1996],

pp. 186–91), she defines exemplars as ‘[. . .] concrete problem solutions in

which a formalism (such as a mathematical equation) is applied and given

empirical grounding’ (Darden [1991], p. 18). Kuhnian exemplars, Darden

argues, may serve to generate Kitcherian argument patterns:

[They] may serve in the construction of abstract explanatory patterns or

schemas [. . .] The patterns abstractly characterize mechanisms, which,

when they are operating, produce observable data-points as output.

Thus, fitting an observation into a pattern is a way of explaining it. A set

of exemplary patterns constitutes the explanatory repertoire of

Mendelian genetics [. . .] (Darden [1991], p. 19)

The crosses on stem length in Pisum play the role of Dardenian exemplars in

(Morgan [1928]). Darden writes, ‘[t]he examples supplied model cases. Similar

results of similar hybrid crosses could be explained by invoking similar steps

and filling in the details about the characters in the specific cross’ (Darden

[1991], p. 18).

24 Where U ¼ fA1, . . . , Ang � V and b : V ! V 0, let bðU Þ ¼ fbðAÞjA 2 Ug and b0ð½U �Þ ¼

½bðA1Þ� � . . .� ½bðAnÞ�.
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Credal nets (such as B1 and B
2) can be looked on as precise explications of

the notion of ‘exemplar’ in Darden’s works. Generic credal nets can be ob-

tained from credal nets by abstracting from the precise details (which geno-

types? which phenotypes? and so on) of the latter. They are distribution-

identical to the credal nets from which they result. Let B
�
¼ hG�,P�i be a

generic credal net that is distribution-identical to B
1 (with G� ¼ hV�, Ei). Any

reciprocal monohybrid cross with two phenotypic traits, two alleles, and com-

plete dominance can be described by means of a causal net that is distribution-

identical to some member of B�, by filling in V� and P�.25

These explications of Darden’s concepts are fruitful, I contend, because

they explicitly make room for causality. This fruitfulness will emerge in

Section 18, where I will provide a causal account of explanatory unification,

which improves on those of Kitcher and Darden.26

Before we go to the next section, let me briefly turn to Darden’s more recent

work on mechanisms. Darden now uses the label ‘mechanism schema’ instead

of ‘abstract explanatory pattern’ ([2002], [2005]). A mechanism schema is a

‘truncated abstract description of a mechanism that can be instantiated by

filling it with more specific descriptions of component entities and activities’

(Darden [2005], pp. 360–1); see also (Machamer et al. 2000], p. 15).27 They are

often depicted in diagrams (Darden [2005], p. 358). Darden now claims that

‘[t]he structure of biological theories in [classical genetics and molecular biol-

ogy] is best analyzed by appeal to mechanism schemas, and not by appeal to

sets of laws or argument schemata’ ([2005], p. 351).

It may be suggested that the notion of ‘mechanism schema’ provides a more

elegant and less formal tool for analysing the theory of classical genetics than

mine.28 Perhaps, my formal apparatus could be eliminated in favour of the use

25 Generic credal nets not only resemble Darden’s abstract explanatory pattern but also resemble

the structuralist notion of ‘theory-element’. Moreover, they also resemble van Fraassen’s ‘model

types’ (see van Fraassen [1980], p. 44, and especially Lloyd [1983], pp. 118–21). However, my

account of explanation is more substantive (or less sceptical) than van Fraassen’s ([1980],

Chapter 5) and Lloyd’s ([1983], pp. 16–7), without being a truly general account of explanation

(see Sections 9 and 17; for a defense of truly general accounts of explanation, see Nickel [2010];

for a critique of his arguments, see Dı́ez et al. [2013]).
26 My framework cannot account for every single detail of Darden’s analysis. For example,

Darden ([1991], pp. 195–9) strongly clings to the role of diagrammatic representations (for

example, pedigree diagrams) in the history of classical genetics. Given that diagrams, and

more broadly visual representations, may play an important role in functional explanation

(Perini [2005a]), in scientific arguments (Perini [2005b]), and in confirmation (Perini [2005c]),

all of which are highly important in science, the causal–structural account should be viewed as

complementary to (rather than a strict alternative for) Darden’s analysis.
27 Darden’s ([2005]) main interest is in the relation between classical genetics and molecular biol-

ogy. She argues that these fields investigated different, serially integrated, hereditary mechan-

isms, and that molecular biology offered a kind of explanatory extension of the field of classical

genetics, albeit via mechanism schemas instead of Kitcherian argument patterns (Darden [2005],

p. 350). For an interesting critique of the explanatory extension view, based on the existence of

‘explanatory interference’ between the two fields, see (Baetu [2011]).
28 I would like to thank both anonymous referees for pressing me on this issue.
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and reuse with modifications of the diagram in Figure 1, interpreted as a

mechanism schema. I disagree. Most of Darden’s mechanism schemas and

the diagrams in which they are depicted are purely qualitative—as is the graph

in Figure 1. But in contrast to the former, the latter may be given a quanti-

tative interpretation in a natural way, viz. by combining it with causally

Markov probability distributions so as to obtain causal nets. (Hence, generic

credal nets offer an explication of Darden’s mechanism schemas; they should

not be eliminated in favour of the latter.) As should be clear by now, quan-

titative information was crucial for the prediction and explanation of pheno-

typic distributions in classical genetics. In the interest of prediction, biologists

like Lazebnik ([2002]) and philosophers like Bechtel ([2011]) have stressed the

need for quantitative representations of biologists’ findings at the expense of

merely qualitative diagrammatic representations. Casini et al. ([2011]) and

Clarke et al. ([unpublished]) have offered accounts of mechanisms invoking

causal Bayes nets. These accounts offer an integrated approach to both the

qualitative and the quantitative aspects of mechanisms. As a result, one of

their major advantages is that they can be easily used for quantitative predic-

tion (both passive prediction and prediction of the results of manipulations).

My approach is in line with this work.

12 Incomplete Dominance

B
1 and B

2 represent but two exemplars, and B
� represents but one part of

classical genetics. Obviously, there was more to classical genetics than mono-

hybrid crosses with complete dominance. After presenting Mendel’s crosses

and those regarding eye colour in man, Morgan turns to crosses that are

interestingly different and which cannot be represented by means of B�:

There are other crosses that give, perhaps, a more striking illustration of

Mendel’s first law. For instance, when a red and a white-flowered four-

o’clock [Mirabilis jalapa] are crossed, the hybrid [F1] has pink flowers [. . .]

If these pink-flowered hybrid plants self-fertilize, some of their offspring

(F2) are red like one grandparent, some of them pink like the hybrid, and

others white like the other grandparent, in the ratio of 1:2:1. Here one

original parental color is restored when red germ-cell meets red, the other

color is restored when white meets white, and the hybrid combinations

appear as often as red meets white, or white meets red. All the colored

flowered plants in the second generation taken together are to the white-

flowered plants as 3:1.

In passing, it is important to note two facts. The red and the white F2

individuals are expected to breed true, because they contain the elements

for red, or for white, twice present [. . .] but the pink F2 individuals should

not breed true, since they are like the first hybrid generation, and contain

one red and one white element [. . .] All this turns out to be true when

these plants are tested. (Morgan [1928], pp. 5–6)

Bert Leuridan28

,
very 
,
[
]
[
]
,
ince
.


Morgan’s explanation of these phenotypic distributions rests on the law of

segregation, chance fertilization, and the combination principle. What is new,

however, is the relation between the genotype and the phenotype. Let me

jointly label the relations in the quote above the ‘principle of incomplete

dominance’.

How can we account for this difference in terms of causal nets? It is easily

seen that crosses with incomplete dominance are structurally different from

crosses with complete dominance. Crosses on flower colour in four-o’clocks

cannot be described by means of causal nets that are value-isomorphic (let

alone distribution-identical) to members of B
�, as the corresponding set of

variables, say V3, is not value-isomorphic to V�. The flower colour of four-

o’clocks has three possible states: white, pink, and red. So let me define

V3¼fPT1, . . . , . . . , GC3g, with ½PTi� ¼ fred, pink, whiteg, ½GTi�¼ frr, rw, wwg,

and ½GCi� ¼ fr, wg, ð1 � i � 3Þ.29 Let G3 ¼ hV3, Ei be isomorphic to Figure 1.

What about the probability distributions over G3? The constraints generated

by incomplete dominance, by Mendel’s first law, and by the combination

principle are summarized in Tables 4, 5, and 6, respectively. Together, they

determine the credal set P3ðV 3Þ and the resulting credal net B3
¼ hG3,P3i. (As

before, chance fertilization is ingrained in the graphical structure of Figure 1.)

In line with Section 9, the crosses cited by Morgan can be explained by

means of members of B3. In a first cross, a red flowered four-o’clock is joined

with a white-flowered four-o’clock. Morgan does not clarify which of the two

is the pollen-producing plant but, as reciprocal crosses again give the same

results, we may assume that the pollen-producing plant is red.30 Now consider

a distribution P1ðV3Þ such that P1ðPT1 ¼ redÞ ¼ P1ðPT2 ¼ whiteÞ ¼ 1:00.31 If

P1ðV3Þ 2 P3, then P1ðPT3 ¼ pinkÞ ¼ 1:00. This corresponds to the data; there-

fore, it may be assumed that B1
¼ hG3, P1i, with P1 2 P3, represents and ex-

plains this first cross. In the second cross, the F1 hybrids are self-fertilized;

therefore, let P2ðV3Þ be such that P2ðPT1 ¼ pinkÞ ¼ P2ðPT2 ¼ pinkÞ ¼ 1:00.

If P2ðV 3Þ 2 P3, then P2ðPT3 ¼ redÞ ¼ 0:25, P2ðPT3 ¼ pinkÞ ¼ 0:50, and

P2ðPT3 ¼ whiteÞ ¼ 0:25. Hence, the 1:2:1 ratio can be explained by assuming

that this cross is rightly described by B2
¼ hG3, P2i, where P2 2 P3.

As we saw in Section 9, Morgan cites test crosses to confirm the law of

segregation. With respect to incomplete dominance, he considers three such

crosses: self-fertilization of the red F2 plants, selfing of the white F2 plants, and

selfing of the pink F2 hybrids (Morgan [1928], p. 6). All predictions turned out

29 Morgan does not use r and w (but black and white circles) for the red- and white-producing

alleles in his diagrammatic representation of these crosses (Morgan [1928], p. 7).
30 The reverse assumption would result in a different B 2 B

3.
31 P1ðV 1Þ and P1ðV3Þ are different distributions, given that V1 and V3 are different sets of vari-

ables (they are not even value-isomorphic). Likewise, B1
¼ hG3, P1i with P1 2 P3 should not be

confused with B1
¼ hG1, P1i with P1 2 P1.

The Structure of Scientific Theories, Explanation, and Unification 29

ince
s
,
so 
,
so 
s
Note that 


to be true. In other words, for all three crosses there is a P 2 P3 such that the

corresponding B ¼ hG3, Pi explains the data. As a result, the adequacy of P3

and of B3 is confirmed.

Flower colour in four-o’clocks is not the only character that shows incom-

plete dominance. Like results have been obtained with snapdragons

(Antirrhinum), where crosses of red- and white-flowered plants give rise to

pink-flowered offspring (Klug et al. [2006], pp. 68–9).

These relations can be generalized to all monohybrid crosses with incomplete

dominance. Let B�
¼ hG�,P�i, with G� ¼ hV�, Ei, be a generic credal net such

that V� is value-isomorphic to V3, G� is value-isomorphic to G3, and B
� is

distribution-identical to B
3. Any monohybrid cross with incomplete dominance

Table 6.

GC1 GC2 GT3

rr rw ww

r r 1.00 0.00 0.00

r w 0.00 1.00 0.00

w r 0.00 1.00 0.00

w w 0.00 0.00 1.00

Conditional probability, satisfied by all P 2 P3

Table 4.

GTi PTi

red pink white

rr 1.00 0.00 0.00

rw 0.00 1.00 0.00

ww 0.00 0.00 1.00

Conditional probability, satisfied by all P 2 P3

Table 5.

GTi GCi

r w

rr 1.00 0.00

rw 0.50 0.50

ww 0.00 1.00

Conditional probability, satisfied by all P 2 P3
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can be described by means of a causal net that is distribution-identical to some

member of B�.32 Complete dominance and incomplete dominance are clearly

different, as B
� and B

� are not value-isomorphic, let alone distribution-

identical.

13 Anomalies

The history of classical genetics is replete with theory changes to account for

apparent anomalies. In the beginning of the twentieth century, more and more

exceptions to the principle of complete dominance were reported. In Darden’s

terminology, these should be regarded as model anomalies (as opposed to

monster anomalies), as they required ‘a change in the set of patterns for

normal, well-functioning cases [. . .] either the alteration of a typical pattern

or the addition of one or more new patterns to the set’ (Darden [1991], p.

199).33 Mendel’s theory was not abandoned, but adapted.34

In the structuralist vocabulary: crosses with complete dominance and with

incomplete dominance are different kinds of intended applications, giving rise

to different kinds of data structures, which are to be dealt with by means of

different theory-elements (Balzer and Lorenzano [2000], pp. 256–61).

In my terminology: failures of complete dominance gave rise to data for

which there is no B ¼ hG, Pi such that (i) B is distribution-identical to some

member of B�, the then available generic credal net, and (ii) P is consistent

with the data. They were model anomalies, as they required a new generic

credal net, B�
¼ hG�,P�i, that substantially differed from B

�.

32 Monohybrid crosses with co-dominance, instead of incomplete dominance, can also be repre-

sented by causal nets that are distribution-identical to some member of B�. This is in line with

the fact that to distinguish between co-dominance and incomplete dominance, one has to invoke

a theory (at the molecular level) other than classical genetics. In (Morgan [1928]), no exemplar of

co-dominance is mentioned.
33 See also (Kitcher [1993], pp. 256–63) for a more elaborate account of anomaly-resolution in

terms of the deletion/alteration of patterns (or ‘constraints’) in an escape tree. Darden ([1991])

does not discuss the status of incomplete dominance as a model anomaly.
34 The status of the principle of complete dominance was hotly debated in the early days of clas-

sical genetics. The question was whether it is a universal law. Mendel ([1966]) only discussed

crosses with complete dominance, but there is no clear indication that he deemed complete

dominance a universal phenomenon—to the contrary. Nevertheless, De Vries ([1966], p. 110)

took it to be a (nearly) universal phenomenon. Correns ([1966], pp.122 and 132), by contrast,

mentioned several failures of complete dominance. Weldon ([1902], pp. 229, 236–52) attributed

the law of dominance a central place in Mendel’s theory and showed that it was plagued by

exceptions. Bateson ([1902], pp. 117–8) replied to Weldon’s arguments by denying the principle

of complete dominance this central place. Hence, he argued, exceptions to it should not count

heavily against the theory of Mendelian genetics.
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14 Multi-hybrid Crosses with Independent Assortment

After presenting two monohybrid crosses with complete dominance, and one

with incomplete dominance, Morgan turns to dihybrid crosses. He cites one of

Mendel’s well-known dihybrid crosses with Pisum plants on albumen colour

(yellow versus green) and seed shape (round versus wrinkled).35 Mendel had first

crossed peas with yellow and round seeds and peas with green and wrinkled

seeds. The resulting hybrids (F1) were yellow and round. Then he self-fertilized

the hybrids, thus obtaining F2 plants, which were yellow-round, yellow-

wrinkled, green-round, and green-wrinkled in the ratio of 9:3:3:1 (Morgan

[1928], pp. 7–8).

To explain the phenotypic distributions in the F1 and the F2 generation,

Morgan takes the law of segregation and adds the assumption that segregation

for one pair of elements is independent of segregation for another pair. This is

the law of independent assortment (Morgan [1928], p. 10). He assumes com-

plete dominance for the pairs yellow/green and round/wrinkled, as in the

monohybrid crosses. He adopts some revised version of the combination prin-

ciple (see Figure 8 in Morgan [1928], p. 9). Finally, he assumes chance fertil-

ization. Together, these laws or explanatory principles give rise to a credal net,

say B
4
¼ hG4,P4i, the members of which explain dihybrid crosses on albumen

colour and seed shape in pea plants. Let us see how B
4 looks like.

Clearly, the aforementioned crosses cannot be described by any set of

variables that is value-isomorphic to V� or V�. Each phenotypic variable

has four possible values: ½PTi� ¼ fyellowround, yellowwrinkled , greenround,

greenwrinkled}. Morgan refers these phenotypes to eight possible genotypes:

½GTi� ¼ fGGWW , GGWw, . . . , ggwwg; see Table 7 for the full list. The gam-

etes have four possible make-ups: ½GCi� ¼ fGW , Gw, gW , gwg.36 (G stands for

the yellow-producing allele, g for green, W for round, w for wrinkled.) Let V4

be the set of these variables and let G4 ¼ hV 4, Ei be isomorphic to Figure 1.

Tables 7 and 8 specify some of the constraints to be satisfied by all P in the

credal set P4 over V4. (I will not discuss the combination principle, the speci-

fication of which is straightforward. Nor will I discuss chance fertilization,

which is ingrained in Figure 1.) Table 7 explicates the principle of complete

dominance for both albumen colour and seed shape. Table 8 explicates the law

of segregation and the law of independent assortment. The fifth line of Table 8

shows the quintessence of independent assortment: PðGCi ¼ GW jGTi ¼

GgWwÞ ¼ PðGCi ¼ GwjGTi ¼ GgWwÞ ¼ PðGCi ¼ gW jGTi ¼ GgWwÞ ¼

PðGCi ¼ gwjGTi ¼ GgWwÞ ¼ 1
4

(compare this with the fifth line of Table 10).

35 Mendel ([1966], p. 17–23) also performed multi-hybrid crosses with three or more characters and

independent assortment. Morgan ([1928], p. 10) mentions these only in passing (but see Morgan

[1919], pp. 1–2 for an example). Crosses with three or more independent pairs of traits can be

easily incorporated in my framework, but I will not do it here.
36 For the extensions of ½GTi� and ½GCi�, see (Morgan [1928], p. 9, Figure 8).
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Both aforecited crosses (GGWW � ggww and GgWw� GgWw) can be ex-

plained by means of a causal net B 2 B
4. Similar crosses can be explained in a

similar way. Hence, let B�
¼ hG� ,P�i be the generic credal net for dihybrid

crosses with complete dominance and independent assortment, where

G� ¼ hV � , Ei and where B
� is distribution-identical to B

4.

15 Multi-hybrid Crosses with Linkage and Crossing-over

Many cases of independent assortment were known at the time; yet, independ-

ent assortment is not a universally applicable law.

It might, then, have seemed justifiable to extend this conclusion to as many

pairs of characters as enter any particular cross. This would mean that

Table 8.

GTi GCi

GW Gw gW gw

GGWW 1.00 0.00 0.00 0.00

GGWw 0.50 0.50 0.00 0.00

GGww 0.00 1.00 0.00 0.00

GgWW 0.50 0.00 0.50 0.00

GgWw 0.25 0.25 0.25 0.25

Ggww 0.00 0.50 0.00 0.50

ggWW 0.00 0.00 1.00 0.00

ggWw 0.00 0.00 0.50 0.50

ggww 0.00 0.00 0.00 1.00

Conditional probability, to be satisfied by all P 2 P4

(together with the combination principle).

Table 7.

GTi PTi

ye ye gr gr

rnd wrd rnd wrd

GGWW 1.00 0.00 0.00 0.00

GGWw 1.00 0.00 0.00 0.00

GGww 0.00 1.00 0.00 0.00

GgWW 1.00 0.00 0.00 0.00

GgWw 1.00 0.00 0.00 0.00

Ggww 0.00 1.00 0.00 0.00

ggWW 0.00 0.00 1.00 0.00

ggWw 0.00 0.00 1.00 0.00

ggww 0.00 0.00 0.00 1.00

Conditional probability, to be satisfied by all P 2 P4

(together with the combination principle).
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there are as many independent pairs of elements in the germinal material as

there are possible characters. Subsequent work has shown, however, that

Mendel’s second law of independent assortment has a more restricted

application, since many pairs of elements do not assort freely, but certain

elements that enter together show a tendency to remain together in

succeeding generations. This is called linkage. (Morgan [1928], p. 10)

More precisely,

By linkage we mean that when certain characters enter a cross together,

they tend to remain together in later generations, or, stated in a negative

way, certain pairs of characters do not assort at random. (Morgan [1928],

p. 10)

Genes that are linked belong to the same linkage group. Drosophila melano-

gaster (fruit fly), for example, has four linkage groups (Morgan [1928],

pp. 11–2). It was soon discovered that genes in the same linkage group are

not always completely linked. There may be some interchange between linkage

groups:

This interchange is called crossing-over, which means that, between two

corresponding linked series, there may take place an orderly interchange

involving great numbers of genes. (Morgan [1928], p. 14)

As an exemplar, Morgan cites crosses performed by Bateson and Punnett

on Lathyrus odoratus or sweet peas (purple flowers and long pollen grains

crossed to red flowers and round pollen grains). Flower colour and pollen

shape in sweet peas were known to show normal Mendelian segregation and to

satisfy the principle of complete dominance, with purple dominant to red and

long dominant to round (Darden [1991], pp. 122–3). Bateson and Punnett had

observed that ‘the two types that go in together come out together more

frequently than expected for independent assortment of purple-red and

round-long’ (Morgan [1928], p. 10).

Because of the difference between linkage and independent assortment,

there is no credal net, B, which is (i) distribution-identical to B
� , the generic

credal net for dihybrid crosses with independent assortment, and which is such

that (ii) its members can be used to explain dihybrid crosses on flower colour

and pollen shape in sweet peas. We should seek a new credal net, say

B
5
¼ hG5,P5i, with G5 ¼ hV5, Ei and such that P5 accounts for the failure

of independent assortment.

Let us first have a look at Bateson and Punnett’s data (Morgan [1928], p. 11,

Figure 9).37 Cross one: Sweet peas with purple flowers and long pollen grains

were crossed with sweet peas with red flowers and round pollen grains. (It may

37 The text in (Morgan [1928], p. 11, Figure 9) gives the impression that the cross concerned purple

and white flowers, instead of purple and red ones. This conflicts with Morgan’s main text and

with (Darden [1991], p. 122).
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be assumed that all plants were true-breeding.) The resulting hybrids (F1) had

long pollen grains and purple flowers. Cross two: Self-fertilization of the F1

generation produced F2 individuals in the following proportions (the absolute

frequencies are Morgan’s, I have added the percentages):

Cross two: long, purple round, purple long, red round, red

583 26 24 170

73% 3% 3% 21%

These results can be explained as follows. We know that the F1 plants are

hybrid; therefore, PðGT1 ¼ GgWwÞ ¼ PðGT2 ¼ GgWwÞ ¼ 1:00, where G de-

notes the purple-producing allele, g the red-producing allele, W the long-pro-

ducing allele, and w the round-producing allele.38 We may assume that

complete dominance still holds between purple and red, and between long

and round in the dihybrid case, so that we may rely on some variant of

Table 7. We may also assume that the combination principle holds. Then all

we need to do is to find the appropriate conditional probability table for the

relation between GTi and GCi. It turns out that the phenotypic distribution for

the F2 individuals can be explained if (but not only if, see later in the text):

PðGCi ¼ GW jGTi ¼ GgWwÞ ¼ 0:46;

PðGCi ¼ GwjGTi ¼ GgWwÞ ¼ 0:04;

PðGCi ¼ gW jGTi ¼ GgWwÞ ¼ 0:04;

PðGCi ¼ gwjGTi ¼ GgWwÞ ¼ 0:46:

For example, by the principle of complete dominance the F2 individuals can

only have round pollen and red flowers if their genotype is ggww. Hence, their

fertilizing gametes must both be gw. The following calculations retrodict that

21% of the F2 plants will have round pollen and red flowers (assuming chance

fertilization). We know that PðGT1 ¼ GgWwÞ ¼ PðGT2 ¼ GgWwÞ ¼ 1:00. By

the conditional probabilities just given, we can compute that PðGC1 ¼ gwÞ ¼

0.46, and likewise that PðGC2 ¼ gwÞ ¼ 0:46. Given chance fertilization,

PðGC1 ¼ gw ^ GC2 ¼ gwÞ ¼ 0:46� 0:46 ¼ 0:21. Therefore, by the combin-

ation principle and by some analogue of Table 7, PðGT3 ¼ ggwwÞ ¼ 0:21

and PðPT3 ¼ roundredÞ ¼ 0:21. Like calculations allow us to retrodict the

probabilities of the other phenotypes in F2.39

38 Morgan ([1928], p. 11) uses pictorial elements instead of letters to denote these alleles.
39 The calculations for the other phenotypes are somewhat more elaborate, given the multiple

realizability of dominant phenotypic traits.
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P
5 cannot be specified by demanding that for all P 2 P5, the aforementioned

conditional probabilities hold, as these conditional probabilities are cross-

dependent. Assume that, in cross one, GGww individuals had been crossed

with ggWW individuals (instead of GGWW � ggww).40 The resulting F1 hy-

brids would all be GgWw, as in Morgan’s example. But self-fertilization of

these hybrids would give F2 plants in the following proportions:

long, purple round, purple long, red round, red

50.16% 24.84% 24.84% 0.16%

The reason is that here G and w (and thus g and W), tend to remain together,

whereas in the original cross, G and W (and thus g and w) did so:

PðGCi ¼ GW jGTi ¼ GgWwÞ ¼ 0:04;

PðGCi ¼ GwjGTi ¼ GgWwÞ ¼ 0:46;

PðGCi ¼ gW jGTi ¼ GgWwÞ ¼ 0:46;

PðGCi ¼ gwjGTi ¼ GgWwÞ ¼ 0:04:

How, then, should we characterize P5? Linkage and crossing-over influence

the probabilistic relations between GTi and GCi, as compared with cases of

independent assortment, if and only if GTi ¼ GgWw (i.e. if and only if doubly

heterozygous plants are involved).41 Both sets of conditional probabilities

listed earlier in the text can be summarized as follows:

PðGCi ¼ GW jGTi ¼ GgWwÞ ¼
a

2
;

PðGCi ¼ GwjGTi ¼ GgWwÞ ¼
1� a

2

PðGCi ¼ gW jGTi ¼ GgWwÞ ¼
1� a

2

PðGCi ¼ gwjGTi ¼ GgWwÞ ¼
a

2
,

40 Morgan does not discuss this particular cross, but an analogous way of reasoning can be found

in (Morgan [1928], pp. 16–7).
41 The if-direction has been illustrated by means of the data from Bateson and Punnett. For the

only if-direction, suppose first that GTi ¼ GGWW or any other doubly homozygous value.

Then (absent mutation) only one kind of gametes can be produced, in casu GCi ¼ GW .

Second, suppose that GTi ¼ GGWw or any other singly homozygous value. Then one chromo-

some will carry G and W. The other chromosome will carry G and w. Part of the gametes (say,

x%) will not be the result of crossing-over. Half of them (x
2
%) will be GW, the other half will be

Gw. The rest of the gametes, ð100� xÞ%, will be the result of crossing-over. Half of these,
100�x

2
%, will be Gw; the other half will be GW. Consequently, x

2
+ 100�x

2
¼ 50% of the gametes

will be GW, the other half will be Gw. Hence, the gametes of both doubly homozygous plants

and singly heterozygous plants are as in the case of independent assortment (even though they

result from strongly different underlying mechanisms).
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where a 2 f0:08, 0:92g and where minf0:08, 0:92g ¼ 0:08 is the frequency of

crossing-over for dihybrid crosses on flower colour and pollen shape in

Lathyrus odoratus. All this is summarized in Table 10.

P
5 thus is the set of distributions over V5 that satisfy Tables 9 and 10 (plus

the combination principle and chance fertilization). (The physical probability

a may take two possible values and that, hence, the distribution over GCi

Table 10.

GTi GCi

GW Gw gW gw

GGWW

GGWw 0.50 0.50 0.00 0.00

GGww 0.00 1.00 0.00 0.00

GgWW 0.50 0.00 0.50 0.00

GgWw a
2

1�a
2

1�a
2

a
2

a 2 f0:08, 0:92g

Ggww 0.00 0.50 0.00 0.50

ggWW 0.00 0.00 1.00 0.00

ggWw 0.00 0.00 0.50 0.50

ggww 0.00 0.00 0.00 1.00

Conditional probability, satisfied by all P 2 P5 (together with
the combination principle). The difference between Tables 8
and 10 reveals the difference between independent assortment
on the one hand, and linkage and crossing-over on the other
hand. min{0:08, 0:92} is the frequency of crossing-over.

Table 9.

GTi PT i

pu pu red red

lng rnd lng rnd

GGWW 1.00 0.00 0.00 0.00

GGWw 1.00 0.00 0.00 0.00

GGww 0.00 1.00 0.00 0.00

GgWW 1.00 0.00 0.00 0.00

GgWw 1.00 0.00 0.00 0.00

Ggww 0.00 1.00 0.00 0.00

ggWW 0.00 0.00 1.00 0.00

ggWw 0.00 0.00 1.00 0.00

ggww 0.00 0.00 0.00 1.00

Conditional probability, satisfied by all P 2 P5 (together with
the combination principle). Table 9 is analogous to Table 7
(complete dominance holds, even though pollen shape is
linked with flower colour).
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conditional on GTi is imprecise. But regarding crosses on flower colour and

pollen shape in Lathyrus odoratus, the physical probability a may not take a

value between 0.08 and 0.92.)

Other crosses, for example on Drosophila, also revealed linkage and cross-

ing-over, but with different frequencies of crossing-over. The frequency of

crossing-over for some particular pair of genes in some particular organism

is most easily determined observationally as follows (cf. Morgan [1928], pp.

14–7): Let A and B denote dominant alleles; a and b their recessive counter-

parts. Let two grandparental individuals (for example, AABB and aabb or

AAbb and aaBB) together produce a double heterozygote (AaBb) (F1).

Perform the cross AaBb� aabb (the resulting offspring is F2). Barring prob-

lems of statistical inference and barring cases of double crossing-over, the

frequency of crossing-over is identical to the proportion of individuals in F2

that do not phenotypically resemble any of the grandparents (called cross-over

types).

Crosses on wing colour (yellow, grey) and eye colour (white, red) in

Drosophila revealed a frequency of crossing-over of 1%. Other crosses in

Drosophila gave other frequencies: 33% in white versus red eyes and miniature

versus long wings, or 40% in white versus red eyes and forked versus normal

bristles. If there are no cross-over types, linkage is complete.

In short, Morgan and his group observed all possible percentages of cross-

ing-over, up to nearly 50% (Morgan [1928], pp. 19–20). As a result, the generic

credal net for dihybrid crosses with linkage and crossing-over (and with com-

plete dominance) should look like the following: Let B
�
¼ hG�,P�i be such

that (i) G� ¼ hV �, Ei is value-isomorphic to G5 ¼ hV5, Ei, and (ii) any P 2 P�

satisfies complete dominance, the combination principle and some analogue

of Table 10, where a 2 fb, 1� bg for some b 2 ½0:00, 0:50�. (The characteriza-

tion of P� should invoke one more principle relating to the linear ordering of

the genes, see Section 16.)

16 Double Crossing-over and the Linear Order of the Gene

Crossing-over may occur within linkage groups, and the frequency of

crossing-over may be estimated from the types of crosses cited in Section

15. However, the Morgan group discovered a phenomenon called double

crossing-over that leads to a systematic underrating of the frequencies of

crossing-over: ‘By double crossing-over is meant that interchange takes

place twice between two pairs of genes involved in the cross. The result is to

lower the observed cases of crossing-over, since a second crossing-over undoes

the effect of a single crossing-over’ (Morgan [1928], p. 20, original emphasis).

This problem is solved by taking into account more than two pairs of traits:
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For example, if a female [Drosophila] with the following nine characters

of Group I, scute, echinus, cross-veinless, cut, tan, vermilion, garnet,

forked and bobbed, is crossed to a wild type male, and if the F1 female

[. . .] is back-crossed to the same multiple recessive type, the offspring

produced will give a record of every crossing-over. (Morgan [1928], p. 20)

Based on these results, Morgan draws a linear diagram depicting the cor-

responding genes in the linkage group ([1928], p. 21). In Figure 2, crossing-

over has taken place twice. As a result, it seems as if no crossing-over has taken

place between, for example, forked and cross-veinless, thus lowering the esti-

mated frequency of crossing-over. By taking the intermediate loci into

account, this bias is remedied.

More generally, the Morgan group concluded that linkage groups can

be represented linearly, with genes lying in a line ‘like beads on a string’

(Morgan [1928], p. 24). Evidence for this linear order came from two

sources. First, cytological evidence showed that chromosomes were thread-

like entities (Morgan [1928], pp. 38–44). As the assumption that genes are

located on the chromosomes became more and more accepted, it was most

natural to assume they are organized linearly. Second, genetic evidence

pointed in the same direction in a way that is relevant for the character-

ization of P�.

It can be assumed that crossing-over is the result of some interchange taking

place at the level of the chromosomes (Morgan [1928], p. 39). Though cyto-

logical evidence for such an interchange was not conclusive, it was quite

convincing (Morgan [1928], p. 44). Such considerations gave rise to the con-

cept of map distance: the ‘distance’ between pairs of elements or genes on the

same chromosome, measured in terms of their percentage of crossing-over

(Morgan [1928], p. 22).42 The concept of map distance allowed further corro-

boration of the hypothesis of the linear order of the genes:

Suppose that crossing-over between yellow wings and white eyes occurs

in 1.2 per cent of cases. If we then test white with a third member of the

same series, such as bifid wings, we find 3.5 per cent of crossing-over [. . .]

If bifid is in line and on one side of white it is expected to give with

yellow 4.7 per cent crossing-over, if on the other side of white it is

expected to give 2.3 per cent of crossing-over with yellow. In fact, it gives

one of these values, namely, 4.7. We place it, therefore, below white in the

diagram. This sort of result is obtained whenever a new character is

42 Sturtevant equated one map unit (mu) with 1% recombination. In honour of Morgan’s work,

map units are often referred to as centimorgans (cM) (Klug et al. [2006], p. 105). Map distances

are not absolute distances, as not all parts of the chromosome are evenly prone to interchange.

Moreover, a cross-over event in one region of the chromosome may inhibit a second event in

nearby regions (positive interference). Positive interference increases as the genes in question are

closer. This may be explained by physical constraints preventing the formation of closely aligned

chiasmata. (Klug et al. [2006], p. 114).
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compared with two other members of the same linkage group. The

crossing-over of a new character is found to give, in relation to two other

known factors, either the sum or the difference of their respective cross-over

values. This is the known relation of points on a line, and is the proof of the

linear order of the genes; for no other spatial relation has yet been found

that fulfills these conditions. (Morgan [1928], p. 24, my emphasis)

Morgan’s citation can be explicated as follows. Let i, j and k be characters of

the same kind of organism, say Drosophila. Let the credal net

B
ij
¼ hhV ij , Ei,Piji be the set of causal nets that represent dihybrid crosses

on i and j (and analogously for Bjk
¼ hhVjk, Ei,Pjki and B

ik
¼ hhVik, Ei,Piki).

If i, j, and k are cases of complete dominance, then B
ij , B

jk, and B
ik are

distribution-identical to B
�.43 Finally, let aij , ajk, and aik be the frequencies

of crossing-over for Bij,Bjk and B
ik. If the genes belong to the same linkage

group, then according to Morgan’s findings either aij ¼ ajk + aik or

aij ¼ jajk � aikj. This imposes an important constraint (in the structuralists’

sense) on the characterization of P�: it expresses important connections

between different local applications of B�.

17 Causal–Structural Explanation

Let us turn now to the final part of this article: the causal–structural account

of explanation and its relation to unification. As we saw in Sections 9–16,

Morgan explains filial phenotypic distributions by means of a carefully chosen

Figure 2. The linear order of the genes in Group I of Drosophila (adapted from

Morgan [1928], p. 21, Figures 15 and 18). At the top, no crossing-over has

occurred. At the bottom, crossing-over took place twice (between tan and cut,

and between garnet and forked).

43 Obviously, cases of incomplete dominance, co-dominance, and so forth also conform to

Morgan’s observation, but the corresponding dihybrid crosses are represented by generic

credal nets other than B
�.
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set of explanatory principles or laws and assumptions regarding the parental

genotypes. As such, his explanations are a syntactic enterprise, a matter of

derivation. But they can also be explicated model-theoretically. To explain a

given phenotypic distribution, one tries to find an appropriate credal net B,

satisfying the right explanatory principles so that one of its causal nets can be

used to embed the data in. The label ‘causal-structural account of explanation’

covers both these aspects of explanation.

This account has a number of interesting characteristics. First and fore-

most, it is a causal account of explanation. The laws or explanatory principles

invoked by Morgan are inextricably joined to the causal structure in Figure 1,

where this structure is defined in terms of Woodward’s (DC).

It may seem strange to equate the explanatory principles of classical genetics

with laws. After all, are not laws of nature true, universal, and physically

necessary generalizations, whereas the explanatory principles of classical gen-

etics face numerous exceptions, have a limited domain of application, and are

highly contingent? No. By endorsing this claim, one would demand too much

from laws of nature—so much that it becomes questionable whether there are

any laws at all in the special sciences. As I have argued, following Mitchell

([1997], [2000]), explanatory principles such as those of classical genetics need

not satisfy the traditional criteria for lawfulness to deserve the label ‘law’

(Leuridan [2010]). If they (or, more precisely, the regularities they describe)

have sufficient stability and strength,44 and if they are invariant under some

range of interventions, they can be used (in particular contexts) for explan-

ation (even if they fail to hold outside those contexts). The causal–structural

account of scientific theories provides a nice explication of this view. The

explanatory principles or laws of each (generic) credal net have a limited

domain of application. Within that domain, they may be used for explanation,

regardless of the fact that they face exceptions (anomalies, see Section 13) and

fail to hold in other credal nets.

Another way to phrase this is as follows: Each generic credal net implicitly

incorporates a set of ceteris paribus conditions, which help to determine its

domain of intended applications. Of course, these are not just any ceteris

paribus conditions, but well-delineated sets of such conditions, based on exist-

ing scientific knowledge. Therefore, it should not be feared that these ceteris

paribus conditions make the principles of classical genetics trivially true. (See

Pietroski and Rey [1995]; Earman et al. [2002]; Woodward [2002]; and

Mitchell [2002] for a discussion of ceteris paribus clauses.) For example,

44 Stability is a gradual notion. It pertains to the conditions on which a regularity is contingent.

Strength also is a gradual notion. It can be thought of in terms of covariance or correlation, with

deterministic regularities being a limit case (Leuridan [2010], pp. 324–5; Mitchell [1997], pp.

S477–8, [2000], pp. 259–63).

The Structure of Scientific Theories, Explanation, and Unification 41

,
'
in fact 
,
-
s
So 
up


B
�
�B

� all assume that mutation does not occur; B� and B
� both assume

that there is no gene interaction.

A second characteristic of the causal–structural account of explanation is

that it also is an epistemic and representational, rather than an ontic, account

of explanation. What explains is not the causal structure of the world itself,

but causal explanatory principles describing that causal structure. The model-

theoretic approach need not detract from that representational character, as

classical genetics’ causal nets are themselves ‘simulacra’ of real-world states of

affairs (cf. Cartwright [1983], pp. 143–62).45 To say it with a catchphrase: ‘No

explanation without representation!’ Yet focussing on these models also helps

to see that explanation is not merely derivational; the causal nets in question

have to bear the right relations to the ontic structure of the world. It helps to

illuminate the notion of explanatory unification; the causal nets in question

bear interesting similarity relations to each other. Finally, the formal frame-

work I use allows for an integrated approach to both the qualitative and the

quantitative aspects of causal structures in a way that is suitable for, for

example, prediction (see Section 11).

18 Explanatory Unification

The causal–structural account of scientific theories allows us to get a grip on

explanatory unification within a causalist framework. Today, Kitcher’s anti-

causalist approach is still influential in the literature on unification. Yet, in the

past years, the need for, or desirability of, a causalist account has been stressed

by several authors. Here, I will present the criticisms raised by Mäki ([2001])

and Woodward ([2003]) against Kitcher’s unificationism, elaborate my own

proposal, and contrast it with Strevens’ kairetic account.

Kitcherian unification consists in showing that many different phenomena

can be derived from a small number of explanatory patterns. The unifying

power of a set of argument patterns varies directly with the number of state-

ments that can be derived by means of its members, directly with the strin-

gency of the patterns in the set,46 and inversely with the number of patterns in

the set (Kitcher [1989], p. 435). The patterns in the most unifying set of pat-

terns over a body of scientific knowledge, K (called the explanatory store E(K))

determine what explains what.

Both Mäki and Woodward endorse the importance of unification as an

epistemic virtue, but they are dissatisfied by Kitcher’s approach. I go with

45 Although classical genetics’ causal nets are possible realizations in which all of the theory’s valid

sentences are satisfied (cf. Suppes [1969], p. 24), and hence ‘things depicted by classical genetics’,

(cf. Balzer et al. [1987], p. 2), they are themselves abstract representations of the real-world states

of affairs.
46 One pattern is more stringent than another one if the conditions it sets on instantiations are

more difficult to satisfy (Kitcher [1989], p. 433).
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them in several ways. I, too, consider unificatory power an epistemic virtue.

It is a virtue that scientific theories may have, to a greater or lesser extent, on

top of their being explanatory. I also agree with their critique of Kitcher. Yet,

I am not fully satisfied with their views either (for reasons to be outlined

below). As I will show, the causal–structural theory of explanation adequately

addresses their worries while providing an interesting and elaborate alterna-

tive to Kitcher’s account.

Woodward finds the idea that explanation is a matter of unifying a range of

different phenomena ‘unquestionably intuitively appealing’, generality is ‘at

least sometimes an explanatory virtue’, and ‘theory unification has clearly

played an important role in science’ ([2003], p. 358). Yet, he wonders whether

our intuitive notion(s) of unification can be made more precise in a way that

fits our interventionist intuitions concerning explanation ([2003], p. 358). In

his opinion, Kitcher fails to do so. Unification may be an explanatory virtue,

but it is not a sufficient condition for explanation: ‘considerations having to do

with unification do not automatically pick out those derivations that are

explanatory from those that are not’ ([2003], p. 361).

Woodward’s own proposal is to explicate unification in terms of ranges of

invariance. A generalization’s explanatory depth is tied to the range of ideal

interventions under which it is invariant: the wider its range of invariance, the

more explanatory it is ([2003], pp. 257–65). This range of invariance is also

related to the generalization’s generality or unifying power ([2003], pp. 366

and 373).

I agree that ‘range of invariance’ captures part of the notion of unification,

but I think that more of Kitcher’s intuitions can be recovered in the interven-

tionist approach (Woodward leaves open this possibility; [2003], p. 373). More

specifically, generic credal nets and their possible interrelations allow us to

explicate the intuition that different phenomena can be explained by means of

a number of more or less similar causal ‘patterns’. But let me first turn to

Mäki’s views.

For Mäki, Kitcher’s account of unification is problematic, as it comes

down to mere derivational unification, i.e. ‘unification as a derivational ac-

complishment without ontological groundings’ ([2001], p. 497). According to

Kitcher, explanation is not a matter of describing causal relations in the world.

Instead, causal relevance is dependent on explanatory relevance and hence on

derivational unification ([1989], pp. 36 and 499; see also Section 4 earlier in the

text).

In Mäki’s opinion, unification should not be (merely) derivational; it should

(also) be ontological.47 Ontological unification is ‘based on the referential and

47 See also (Mäki [1990]; Marchionni [2005]). Woodward ([2003], p. 362) calls this kind of unifi-

cation ‘physical unification’, but he and Mäki do not refer to each other’s writings.
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representational capabilities of theories’, not on their inferential capabilities

(Mäki [2001], p. 498).48 It is ‘a matter of redescribing apparently independent

and diverse phenomena as manifestations [. . .] of one and the same small

number of entities, powers, and processes’ (Mäki [2001], p. 498).

Unification, according to this picture, is not just a matter of derivational

success but rather a matter of successfully representing how things are

related in the causal order of things in the world. (Mäki [2001], p. 500, my

emphasis)

What is important for the present article is the fact that derivational and

ontological unification need not be incompatible (Mäki [2001], p. 499). They

may coincide, or derivational unification may have partial ontological

grounds. Ontological unification is only incompatible with mere derivational

unification. I agree that ontological and derivational unification may coincide.

But Mäki’s view is only partly satisfying, as he adds the following:

My hunch is that this is a contingent issue; there is no necessity for the

two kinds of unification to be related in one particular way or another.

(Mäki [2001], p. 499)

Mäki’s hunch is plausible, provided derivation is tied to standard logical

inference. In this respect, I would like to take his side. Kitcher’s argument

patterns are phrased in natural language, but their expressive power does not

exceed that of non-modal second-order logic joined with probability theory.49

Hence, whether they coincide with ‘the causal order of things in the world’

(where this causal order is not defined as a function of the explanatory rela-

tions) is a contingent issue. Yet, if derivation is tied to causal reasoning, the tie

between derivational and ontological unification is much stronger and Mäki’s

distinction largely dissolves. In this sense, his answer is but partly satisfying.

In my causal–structural framework, unification is a matter of similarity

between a theory’s intended applications and, relatedly, between its causal

and credal nets. As such, it comes in degrees. The stronger the relations be-

tween credal nets (where distribution-identity is stronger than value-

isomorphism, which is stronger than isomorphism), the stronger the corres-

ponding phenomena are unified. But, and this is important, all credal nets are

isomorphic.

First, different crosses on a particular trait (or set of traits) in a particular

organism are explained by means of a given set of explanatory principles. For

48 The notion of ontological unification is not wedded to an ontic account of explanation as is

evident from Mäki’s use of ‘the referential and representational capabilities of theories’.

Ontological unification and ontic explanation should not be conflated.
49 Alleles and genotypes may be considered properties (of organisms) instead of objects. Then, in a

sense, Kitcher’s schematic sentences, ‘There are two alleles A, a. A is dominant, a is recessive’ is a

second-order sentence. I write ‘in a sense’, as the quantifier indirectly refers to filling instructions

(A and a are dummy letters, not common second-order variables).
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example, crosses on stem length in pea plants are explained by means of

complete dominance, the law of segregation, chance fertilization, and the

combination principle. Semantically speaking, these different crosses are

embedded in different causal nets B1,B2, . . . which belong to a ‘common

credal net’, B1. This already provides some unification.

Second, other crosses, for example, on eye colour in humans, are explained

by means of the same explanatory principles. They are embedded in causal

nets that belong to a different credal net, such as B
2. B

2 is distribution-

identical to B
1, which means that inheritance of stem length in pea plants

and of eye colour in humans is highly similar, notwithstanding the fact that

prima facie they are distinct characters in distinct species. This can be general-

ized to all monohybrid crosses with complete dominance. These can be ex-

plained by members of credal nets that are distribution-identical to B
1. I

have used the generic credal net B� as an abstract representation of all such

crosses. Many divergent cases can be viewed as highly similar (in the sense of

distribution-identity). ‘Distribution-identity’ is a very strong notion of simi-

larity, which expresses a kind of very strong unification. It shows that phe-

nomena not only resemble each other qualitatively (qua qualitative causal

relations) but also quantitatively or probabilistically.

Third, monohybrid crosses with complete dominance are but one kind or

type of phenomena. Other kinds were explained by means of other sets of

explanatory principles, giving rise to other generic credal nets. (Each of these

generic credal nets, and their instances, provide unification for their domain of

intended application.) I have discussed B
�,B� ,B�, and more could be speci-

fied for other types of crosses (see Section 19). All these credal nets (and their

specific instances) are isomorphic, as their graphs are isomorphic to Figure 1.

‘Isomorphism’ is a much weaker relation than distribution-identity and hence

expresses a weaker notion of unification, but the large number of kinds of

phenomena that stand in this isomorphism relation made classical genetics

interestingly unifying. What is important: it shows that all these kinds of

crosses are explained in terms of a common underlying causal structure,

and that the distinct generic credal nets of classical genetics each characterize

similar mechanisms (Darden [1991], p. 19) or similar entities, powers, and

processes (Mäki [2001], p. 498).50

The causal–structural notion of unification is both derivational and onto-

logical, and hence meets Mäki’s worries. It is derivational because classical

genetics makes use of (a limited stock of) explanatory principles, which

are syntactic statements, to explain a wide range of phenomena. It is

50 Credal nets here are defined in terms of Woodwardian causal relations (Section 6) and laws or

explanatory principles that can be conceived of in the sense of Mitchell’s pragmatic laws

(Section 17); they are not defined in terms of mechanisms. I have argued elsewhere, however,

that there need not be any tension between the former and the latter (Leuridan [2010], Section 7).
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also ontological because these principles are closely tied to a common causal

mechanism (entities, processes, powers), which is qualitatively represented in

Figure 1.51

All of classical genetics’ causal nets are isomorphic, and this shows that

apparently very different phenomena can be explained in a unified way. Yet, I

do not claim that isomorphism of a theory’s causal nets is a sufficient condi-

tion for that theory to be unifying. One may, after all, devise artifacts that

have a causal structure that is isomorphic to Figure 1 but which have nothing

to do with classical genetics. To show that their structure is isomorphic to the

causal nets of classical genetics would only be a kind of ‘spurious unification’

(Kitcher [1981], pp. 526–9). The phenomena to be explained have to be in the

domain of intended applications of classical genetics. This is not a defect of my

account but an unavoidable feature that it shares with the structuralists and

with Kitcher. From their works, it is clear that there is no straightforward

recipe, or set of necessary and sufficient conditions, for establishing a theory’s

domain of intended applications. As I wrote in Section 3.1, the structuralist

notion of intended applications cannot be defined in a purely formal way; it

also relies on pragmatic considerations (see Balzer et al. [1987], pp. 37–40, 87–

9; Balzer and Lorenzano [2000], p. 245; Balzer and Dawe [1986a], p. 67). Sets

of intended applications, I, are often specified by citing a few ‘paradigms’ or

‘exemplars’ such as stem length in pea plants. All exemplars of classical gen-

etics concern crosses of organisms with certain phenotypic traits, the resulting

progeny of which shows a more or less definite phenotypic distribution. To be

included in the set of intended applications of classical genetics, crosses of

organisms have to be sufficiently similar to one of its exemplars (qua types of

traits involved, qua resulting distributions, and so on).52 What counts as suf-

ficiently similar depends on pragmatic considerations. Moreover, the set of

classical genetics’ intended applications changed over time and frequently was

a matter of debate (Darden [1991], pp. 166 and 260). Likewise, Kitcher’s

notion of filling instructions, which he needs to avoid spurious unification,

cannot be formally defined. Although he nowhere says so, it is clear from his

writings that their specification has to rely on pragmatic considerations as

well.

Isomorphism is not a necessary condition either. Define isomorphism class

as a class of causal nets that are isomorphic to each other. Although classical

genetics has only one isomorphism class (all of its causal nets are isomorphic

51 This claim should be nuanced. (I would like to thank an anonymous referee for pressing me on

this issue.) Figure 1 represents only certain aspects of this common causal mechanism, to wit, the

qualitative relations between those properties of the entities, processes, and powers that can be

represented by the variables GT1, . . . , PT3. That is not surprising: all representations are

abstractions that leave out part of their subject matter.
52 For a broader conception of the domain of classical genetics, see (Waters [2004]).
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to each other), there may be scientific theories that have more than one such

class and still are judged to have at least some unifying power. Yet, I conjec-

ture that, ceteris paribus, the less isomorphism classes a theory has, the more

we would judge it to be unifying. A theory with less isomorphism classes posits

less fundamentally different causal structures underlying the phenomena to be

explained.53 Thus, isomorphism for causal and credal nets and its stronger

nephew, distribution-identity, serve to explicate our intuitive notion of unifi-

cation in a way that fits the interventionist theory of causation and allows us to

reconcile derivational with ontological unification.

Let me conclude this section by briefly turning to Strevens’ kairetic account

of explanation. The claim that the causal–structural account of scientific the-

ories allows us to get a grip on explanatory unification within a causalist

framework may suggest that this account is similar in spirit to Strevens’

([2004]), at least prima facie. After all, Strevens also endeavours to ‘unify

the causal and unificatory approaches to explanation—causally’ (see the

title of his article). More specifically, his goal is ‘a causal account of explan-

ation that has many of the advantages of the unification account’ (Strevens

[2004], p. 154). Yet, there are some important differences, which reward fur-

ther examination. (Strevens [2004] focuses on explanations of events or sin-

gular facts, whereas I have been focusing here on explanations of regularities;

yet, the differences I mention carry over to the kairetic account of the explan-

ation of laws and regularities; see Strevens [2008], Part III.)

A first difference is that Strevens’ use of the unificationist framework is not

meant to capture the notion of unification, but the distinct notion of explana-

tory relevance. A second, minor difference is that Strevens’ use of ‘model’ as a

‘set of propositions’ is a syntactic one ([2004], p. 163), whereas mine is seman-

tic. This brings me to a last and most important difference: Strevens does not

attempt to explicate his concept of causation. This places him in a comfortable

position—too comfortable, perhaps. It allows him, for instance, to stipulate

that logical entailment in causal models represents relations of causal produc-

tion ([2004], p. 163). The literature on interventionist accounts of causation

has shown, however, that one should not skate on thin ice when trying to

make logical entailment fit causal relations; see, for example, (Hausman

[1998], Chapter 8) for an elaborate attempt to model explanations as causal

arguments. Strevens ([2004], p. 163) acknowledges that not all entailments

represent causal processes. Yet, he does not provide even the slightest account

of what would make an entailment represent a causal process. The best one

finds is whether physical theory (the true theory of everything, whatever that

may be) attributes to the premises the power to bring about the conclusion

53 This same intuition can be found in the works of Bartelborth ([1996], [2002]), Sintonen ([1989]),

and Lloyd ([1983]).

The Structure of Scientific Theories, Explanation, and Unification 47

-
paper
,
,
chapter 
or not 


([2004], p. 165). By opting for a specific and substantive account of causation

(Woodward’s), I have placed myself in a more difficult and vulnerable situ-

ation, as I expose myself to possible counterexamples (see Section 19 on the

tenability of the CMC).

19 Concluding Remarks

In this final section, I would like to make some concluding remarks on three

issues. First, I will briefly discuss the parts of classical genetics that I have not

explicitly dealt with in this article. Second, I will consider the applicability of

the causal–structural account to theories other than classical genetics. What

characteristics should a theory have to fit the causal–structural account? This

brings me to a third and important issue: the tenability of the CMC.

In this article, I have discussed some of the best known parts of classical

genetics, starting from Morgan’s exposition from 1928. At the time, however,

many phenomena were known that do not fit any of the generic credal nets

I have sketched: cases of sex-linked inheritance, multiple alleles, multiple

genes, gene interaction, pleiotropy, lethal alleles, non-diploidy, incomplete

penetrance and so on. I contend that causal nets, credal nets, and generic

credal nets can be defined for all these phenomena, based on the graph in

Figure 1. Hence, they fit the causal–structural account of classical genetics.

Apart from classical genetics, which other theories would be suitable for the

causal–structural account of scientific theories? In my opinion, the following

three criteria are relevant (this list is not intended to be exhaustive): First, the

theory in question should be causal in the interventionist sense. The concepts

of intervention, invariance, and the like should be applicable. Given that

Woodward ([2003]) uses examples from a wide range of scientific disciplines,

ranging from physics and chemistry, over biology and the biomedical sciences,

to economics and social theory, this criterion is not restrictive. Still, not all

scientific theories may be suitable. For example, it has been suggested that the

notion of ‘ideal intervention’ is not applicable to Einstein-Podolsky-Rosen

(EPR) phenomena in quantum mechanics (Hausman and Woodward [1999],

pp. 560–70). If that is correct, then my causal–structural account is not suited

for quantum mechanics. (See Suárez and San Pedro [2011], pp. 183–7, for a

critical evaluation of Hausman and Woodward’s claim, however.)

Second, given the relations between the causal–structural account and

Sneedian structuralism, I surmise that a good place to look for further can-

didate theories would be among the wide range of examples that have been

discussed by the structuralists (see Balzer et al. [2000] for a collection of para-

digmatic examples). Insofar as these theories fit the interventionist framework,

approaching them from a causal–structural rather than structuralist
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perspective would be advantageous. For example, it would allow us to exam-

ine to what extent they give rise to causalist explanatory unification.

A theory that seems to meet both criteria is general equilibrium theory in

economics, which pictures the economy as ‘a collection of economic agents

who make supply and demand decisions over commodities, labour types and

assets, in order to further their own interests’ and ‘studies the equilibrium

properties of the economy, so conceived’ (Bryant [2010], p. 1). Hamminga

and Balzer ([2000]) have analysed this theory within the structuralist frame-

work, and Woodward ([2003], pp. 233 and 355–6) suggests that the relations

between, for example, supply, demand, and prices can be analysed in inter-

ventionist terms.

The third criterion is related to the first: the theory should not violate the

CMC, as that condition is one of the most central assumptions of my account.

The aforementioned claim by Hausman and Woodward ([1999]) is based on

problems regarding the CMC in the context of EPR phenomena.

The CMC and its relation to interventionism is not undisputed.54 Hausman

and Woodward ([1999], [2004a], [2004b]) defend the link between the CMC

and manipulation. Cartwright ([2001], [2002]) and Steel ([2006]) offer a critical

discussion. It has been also argued that the CMC may fail for a number of

reasons (see Cartwright [2001], pp. 254–60; Spirtes et al. [2000], pp. 295–7; and

Williamson [2005], pp. 52–7). One example is Cartwright’s chemical factory

([1999], p. 7). Suppose that a factory, C, probabilistically produces some

chemical, X, and that when it does produce X, it also produces, as a side-

effect, a nasty polluant, Y. X and Y always occur together (the one is produced

if and only if the other is). The factory is a purely probabilistic cause: X (and

hence Y) is produced only 80% of the time the production process is active. In

this set-up, X and Y are not independent conditional on C.55 Hence, the CMC

is violated. Different solutions have been proposed for this problem. For ex-

ample, Hausman and Woodward ([1999], p. 562) suggest that maybe C has

been characterized in insufficient detail. Another possibility is to treat the

production of the chemical and its by-product as a single effect, to be modelled

by a single variable (cf. Hausman and Woodward [1999], p. 564).

These solutions may be helpful in some cases; yet, whether they always

work, I do not know. My approach, in any case, would be pragmatic. The

CMC should not be considered an a priori principle, which is indissolubly tied

to the concept of causation. It is a substantive—and hence useful—semantic

54 I will not discuss the tenability of the faithfulness condition, as I did not assume it.
55 If X and Y would be independent conditional on C, then PðxyjcÞ ¼ PðxjcÞ � PðyjcÞ for all

x 2 ½X �, y 2 ½Y � and for all c 2 ½C� (provided PðcÞ 6¼ 0). In this case, however,

PðX ¼ 1, Y ¼ 1jC ¼ 1Þ ¼ 0:8 6¼ PðX ¼ 1jC ¼ 1Þ � PðY ¼ 1jC ¼ 1Þ ¼ 0:64 (where ‘X¼ 1’

means that X is present, ‘Y¼ 1’ means that Y is present, and ‘C¼ 1’ means that the production

process is active).
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constraint, as it makes causal graphs more than mere dots-and-arrows. But it

is also fallible. As a result, when applying causal nets for causal discovery, for

causal reasoning, or for representing scientific theories (in a certain context),

one always runs the risk that the CMC is violated (in that context). But this is

no reason to dispense with the CMC or with causal nets altogether. Their

applicability should be checked on a case-by-case basis. If it is true that

Woodward’s interventionism fits many different disciplines, we need not des-

pair. We have good reasons to believe that my causal–structural approach fits

many causal scientific theories.

Acknowledgements

I thank Diderik Batens, Gert de Cooman, José Dı́ez, Tjerk Gauderis, Joke
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Mäki, U. [2001]: ‘Explanatory Unification: Double and Doubtful’, Philosophy of the

Social Sciences, 31, pp. 488–506.

Mancosu, P. [2011]: ‘Explanation in Mathematics’, in E. N. Zalta (ed.), The Stanford

Encyclopedia of Philosophy, <http://plato.stanford.edu/archives/sum2011/

entries/mathematics-explanation/>.

Marchionni, C. [2005]: ‘Unity, Plurality, and Explanation: The Case of Geographical

Economics and its Neighbours’, Unpublished PhD thesis, Erasmus University of

Rotterdam.

Mendel, G. [1966]: ‘Experiments on Plant Hybrids’, in C. Stern and E. R. Sherwood

(eds), The Origin of Genetics: A Mendel Source Book, San Francisco: Freeman,

pp. 1–48.

Mendel, G. [1933]: Versuche über Pflanzenhybriden (Ostwald’s Klassiker der Exakten

Wissenschaften), Leipzig: Akademische Verlagsgesellschaft.

Mitchell, S. D. [1997]: ‘Pragmatic Laws’, Philosophy of Science, 64, pp. S468–79.

Mitchell, S. D. [2000]: ‘Dimensions of Scientific Law’, Philosophy of Science, 67,

pp. 242–65.

Mitchell, S. D. [2002]: ‘Ceteris Paribus—An Inadequate Representation for Biological

Contingency’, Erkenntnis, 57, pp. 329–50.

Morgan, T. H. [1919]: The Physical Basis of Heredity, Philadelphia: Lippincott.

Morgan, T. H. [1928]: The Theory of the Gene, New Haven: Yale University Press.

Nickel, B. [2010]: ‘How General do Theories of Explanation Need To Be?’, Noûs, 44,
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