
Formalism.

The success(es) of a failure

1 Introduction

I had my first encounter with logic when I was still in high-school. My Dutch
teacher chose to skip certain chapters in the course book including the one on
logic. Fascinated as I was by things not taught in school I had a look at the
chapter. Today I know that at that point I had no clue whatsoever what logic
is. The chapter gave something in the spirit of the following syllogism as an
example, adding that this was a correct derivation:

All elephants are ruby red
Bambi is an elephant

Bambi is ruby red

I simply could not get this: how could this conclusion be correct? As is evident,
the mistake I made was that I was focusing on the meaning of what is said
rather than on the form of the deduction. I did not understand at that point
in time that one can speak about truth in relation to form without reference to
what is true, empirically speaking. Since that first encounter with logic, I have
long disliked, if not opposed, the idea of formalization.

Nowadays I feel no longer appalled by logic-as-formalism, on the contrary.
However, my interest is not in the formalization of something “empirical” like
human reasoning but in the form as form, form without content. This paper
is an account of why “form” matters and why the quest for “meaningfulness”
sometimes obscures and even slows down certain developments or ideas.

In the introduction to Proofs and refutations [6], an influential book in the
philosophy of mathematics and science in general, Lakatos makes clear that
the motivation behind his book is to criticize and ultimately reject formalism as
being the latest link in the long chain of dogmatist philosophies of mathematics”
[6, p. 4]. By identifying formalism as the “bulwark” of logical positivism, he
concludes that formalism somehow excludes the informal aspects of mathematics
and that it denies mathematics its history. In this paper I will apply a Lakatos-
inspired method on formalism itself viz. study formalism-as and embedded in-
a-practice of (informal) mathematics. By doing so, I will argue that formalism
as practiced is far removed from the kind of picture one gets from formalism
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upon reading Lakatos and that his view on formalism should at least be nuanced
if one turns to actual formalism in action.

By way of a historically-inspired study of the work of a well-known math-
ematical logician, Emil Leon Post, I will make a stand for the concreteness,
historicity and practicability of “form”. It is shown that at least in the case of
Post the formalist approach was a necessary prerequisite to unveil the funda-
mental limitations of formalism itself. Ultimately, this paper aims at showing
how Post’s formalism is relevant even today. By putting it into the perspective
of computer science, it is suggested that it might be considered as an interesting
philosophical and practical alternative to the “art of simulation” as a means to
explore the limits and possibilities of computation.

2 In search of the ultimate form

2.1 Lewis’ influence on Post’s early work

Perhaps one of the most extreme formalist convictions can be found in Chapter 6
Symbolic Logic, Logistic and mathematical method of Lewis’ Survey of Symbolic
Logic, a chapter that was removed from the later editions of [8, 355-56]:

A mathematical system is any set of strings of recognizable marks
in which some of the strings are taken initially and the remainder
derived from these operations performed according to rules which are
independent of any meaning assigned to the marks. [The] distinctive
feature of this definiton lies in the fact that it regards mathematics
as dealing, not with certain denoted things – numbers, triangles,
etc – nor with certain symbolized “concepts” or “meanings”, but
solely with recognizable marks, and dealing with them in such wise
that it is wholly independent of any question as to what the marks
represent. This might be called the “external view of mathematics”
or “mathematics without meaning”. [W]hatever the mathematician
has in his mind when he develops a system, what he does is to set
down certain marks and proceed to manipulate them [...]

With this lengthy quote, the stage is set for “pure” form, viz. form without
meaning. As is clear, for Lewis, such form is in fact the ideal of mathematics
as an activity.1 Going a step further, if mathematics is the foundation of all
of science then “Logistik is the universal method for presenting exact science in
ideographic symbols. It is the “universal mathematics” of Leibniz” [8, 372].

1In the long footnote 17, p. 360, Lewis explains that this does not exclude creativity.
The mathematician as the “manipulator” of the marks needs to be intelligent and ingenious
for the derivation of required, interesting or valuable results. Lewis makes the analogy here
with Gulliver “who found the people of Brobdingnag (?) feeding letters into a machine and
waiting for it to turn out a masterpiece. Well, masterpieces are combinations achieved by
placing letters in a certain order! However mechanical the single operation, it will take a
mathematician to produce masterpieces of mathematics.” (Clearly, Lewis has made a mistake
here: it is not in Brobdingnag but in the Academy of Lagado – where useless projects are
undertaken – that Gulliver saw the machine for producing sentences and books.)
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Imagine the impression this must have left on the young mathematician Emil
Post. It is important to keep in mind that at that point in time, mathematical
logic as a discipline hardly existed in the United States [5]. In fact, Emil Post
would become one of the few U.S. mathematical logicians who made fundamen-
tal contributions to the field in the early 20s. Lewis’ book, was one of the few
available English textbooks in circulation at that time, so it is logical that Post
studied it.

In the same year as Lewis’ book was published, Post was a postgraduate
student at Columbia University. It was during that time that he was familiarized
with the formal austerity of Principia Mathematica by Russel and Whitehead
[18] through the teachings of Cassius J. Keyser. Together with Lewis’ [8] this
would become the main influence on Post’s PhD Introduction to a general theory
of elementary propositions [11].2 Post however was not fully satisfied with the
formal apparatus of Principia because [11, 163–164]:

[...] owing to the particular purpose the authors had in view they
decided not to burden their work with more than was absolutely nec-
essary for its achievements, and so gave up the generality of outlook
which characterized symbolic logic. [W]e might take cognizance of
the fact that the system of ‘Principia’ is but one particular develop-
ment of the theory [and] so [one] might construct a general theory
of such developments.

Hence, instead of working with Principia Post decided to develop his own formal
apparatus, one, as Post would later write, which eschews all interpretation [15].

2.2 The method of combinatory iteration

But why exactly did Post regard Principia as being too particular and why
did he develop his own formal apparatus? The motivation behind this is what
one could call (a kind of) methodological formalism: the development of the
most general form of symbolic logic and ultimately mathematics as instruments
of generalization which make possible a study of the general properties of the
whole of mathematics. Post’s idea was that if one wants to study the general
properties of logic and mathematics then one needs not one particular system
of symbolic logic or mathematics, but a general form that comprises all such
possible systems. In this sense, Post’s formalism can be regarded as a method
to study mathematics.

In an unpublished note from the Emil Post Papers held at the American
Philosophical Society titled Note on a Fundamental Problem in Postulate Theory
and dated June 4, 1921 Post makes explicit that formalism can be used “to
obtain theorems about all [possible] assertions” of mathematics but that such a
“complete specification of the logic that is employed [in a mathematical system]is
not made in the usual mathematical developments, and indeed is not necessary.”
In other words, Post did not aim nor expect to effectively replace the usual

2See [4, 9, 20].
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style of mathematics by formal logic; it was not his ambition to cleanse or cure
mathematics from non-rigorousness or to get rid of its informality.

Even though Post’s formalism can be called methodological, it is rooted in
the believe that, ultimately, mathematics can be captured by form. This indeed
does not necessarily mean that he expected that real-life mathematics would
be replaced by formal proofs. What he did expect was that mathematics can
be captured by (a) general form and that (b) by studying (particular instances
of that) form it would become possible to prove theorems that say something
about the whole of mathematics, about mathematics in general. An example
of such a problem, which would in fact become his main focus in the period
1920-21 when he was a Procter fellow in Princeton, was what Post called the
finiteness problem for first-order logic, viz. the famous Entscheidungsproblem
proven undecidable by Church and Turing in 1936.

In its concrete realization, Post’s formalism is completely in the spirit of
Lewis and any hardcore formalist philosophy. Indeed, in the same unpublished
note just mentioned, Post identifies this “method” as the method of combinatory
iteration and describes it as follows:

[T]he method of combinatory iteration completely neglects [...] mean-
ing, and considers the entire system purely from the symbolic stand-
point as one in which both the enunciations and assertions are groups
of symbols or symbol-complexes [....] and where these symbol asser-
tions are obtained by starting with certain initial assertions and re-
peatedly applying certain rules for obtaining new symbol-assertions
from old.

How far this method of combinatory iteration would lead Post becomes clear if
one relates Post’s Ph.D. to his research during the period 1920-21 when he was
a Procter fellow.

In his PhD Post made a start with his method of generalization: he intro-
duced the truth-table method for propositional logic (isolated from Principia)
and proved that this logic is complete and consistent with respect to this method.
He also emphasized that the truth table method provides a method that allows
to decide the decision problem for the propositional calculus. He also general-
ized the two-valued truth table method to an arbitrary finite number of truth
values hence laying the foundations for multi-valued logic. Finally and most
importantly here, he proposed a first form intended as a general framework to
reason about all systems of symbolic logic and hence, ultimately, mathematics.
He referred to this form as generalization by postulation [11, 176] and later called
it the canonical form A [13, 15]. It is a form that captures an infinite number of
formal systems understood as finitary symbol manipulation systems. This form
resulted from a generalization of Post’s formulation of propositional logic based
on that from Principia Mathematica. Table 1 compares Post’s formulation of
propositional logic, using only the two logical functions ∼,∨ with the canonical
form A.3,4

3Note that I have not used the dots as brackets notation of Principia.
4Note that the description of propositional calculus in Principia is alsmot identical. How-
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Table 1: Comparison between Post’s formulation of propositional logic and his canonical
form A.

Propositional Logic Canonical form A

I. If p is an elementary proposition than
so is ∼ p

If p1, . . . , pm1 are elementary proposi-
tions than so is f1(p1, . . . , pm1)

...
If p and q are elementary propositions
than so is p ∨ q

If p1, . . . , pmµ are elementary proposi-
tions than so is fµ(p1, . . . , pmµ)

II. The assertion of a function involving
a variable p produces the assertion of
any function found from the given one
by substituting for p any other vari-
able q, or ∼ q, or (q ∨ r)5

The assertion of a function involving a
variable p produces the assertion of any
function found from the given one by
subsituting for p any other variable q,
or f1(q1, . . . , qm1), or fµ(q1, . . . , qmµ)

III. ` P ` g11(P1, ..., Pk1) . . . ` gr1(P1, ..., Prr )

`∼ P ∨Q
...

` g1r1(P1, ..., Pr1) . . . grrr (P1, ..., Prr )
produce produce produce
` Q ` g1(P1, ..., Pk1) . . . ` gr(P1, ..., Prr )

IV. Postulates: Postulates:
`∼ (p ∨ p) ∨ p ` h1(p1, p2, . . . , pl1)
`∼ (p ∨ (q ∨ r)) ∨ (q ∨ (p ∨ r)) ` h2(p1, p2, . . . , pl2)
`∼ q ∨ (p ∨ q) . . .
`∼ (∼ q ∨ r) ∨ (∼ (p ∨ q). ∨ (p ∨ r)) . . .
` (p ∨ q) ∨ (q ∨ p) ` hλ(p1, p2, . . . , plλ)

As is clear from Table 1 what Post did was to extract the essential formal
features from the postulational formulation of propositional logic and then gen-
eralized them. Instead of the two logical functions ∨,∼, a system in form A
can have an arbitrary but finite number of functions; instead of having one pro-
duction rule it can have an arbitrary number of production rules and instead
of five postulates it can have an arbitrary but finite number of them. Post’s
formulation of propositional logic clearly fits canonical form A: it is just one
of an infinite number of symbol manipulation systems that can be expressed
in form A. The result is that Post now has a means to study not one but an
infinite number of formal devices and hence study properties of mathematical
systems as symbol manipulation systems in general.

Shortly after finishing his PhD, Post became a Procter fellow in Princeton:
it was during that time that Post developed and studied several other forms,
originally with the aim of proving that there is a general method to decide for
any formula in first-order logic and ultimately Principia whether or not it is

ever, it uses the three logical functions ∼,∨,⊃. Remember that p ⊃ q can be defined as ∼ p∨q
in propositional logic (See [18, 12]).

5This corresponds to substitution
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derivable in that system, i.e., to prove the decidability of the finiteness problem
for first-order logic, and, ultimately, for the whole of Principia. This was a very
ambitious project. Indeed: “Since Principia was intended to formalize all of
existing mathematics Post was proposing no less than to find a single algorithm
for all of mathematics” [4]. Following the method of his PhD, his approach was
to generalize and study meaningless form. In the introduction to Account of an
anticipation. Absolutely unsolvable problems and relatively undecidable proposi-
tions [2], a manuscript which gives detailed descriptions on Post’s research dur-
ing 1920-21 and which was posthumously published in 1965 by Martin Davis,6

Post explains that this was an important feature of his approach [15, 341–342]:

Perhaps the chief difference in method between the present devel-
opment and its more complete successors is its preoccupation with
the outward forms of symbolic expressions, and possible operations
thereon, rather than with logical concepts as clothed in, or reflected
by, correspondingly particularized symbolic expressions, and oper-
ations thereon. [This] allows greater freedom of method and tech-
nique.

Hence, instead of starting from the logic of Principia, Post decided to focus
on his canonical form A, convinced that if one can work with a generalized
form, stripped of meaning, it might be more easy or straightforward to prove
the decidability of decision problems. Post knew that if he would be able to
prove the decidability of the finiteness problem for systems in canonical form
A and if, on top of that, he would also be able to prove that first-order logic
reduces to a system in canonical form A Post would have succeeded in his
ambitious goal of proving that any mathematical problem can be decided in a
finite number of steps. Post was indeed able to prove that first-order logic as
described in Principia can be reduced to a system in canonical form A (by way
of a second form, canonical form B).7 All that remained to be done now was to
demonstrate the decidability of the finiteness problem for systems in canonical
form A. Post’s approach here was to start from the simplest (classes of) cases,
by studying systems in “which the primitive functions are all functions of one
variable, the resulting relative simplicity of the systems allowing a direct analysis
of the formal processes involved” [15, 346]. However, “considerable further labor
produced but minor dents in the problem for [systems in canonical form A] not
so restricted”.

2.3 The frustrating problem of “tag”

So what to do next? Here things become a bit unclear, but it is known from
[13, 15] that the next important step forward in the method of combinatory
iteration are Post’s tag systems [9].

6This manuscript was offered for publication to American Journal for Mathematics but
rejected by Hermann Weyl. A significantly abbreviated version of it was finally published as
Post’s influential [13].

7See pp. 350–361 pf [15] for the details of the proof.
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Definition 1 (v-tag system) A tag system T consists of a finite alphabet Σ of
µ symbols, a deletion number v ∈ N and a finite set of µ words w0, w1, . . . , wµ−1 ∈
Σ∗ called the appendants, where any appendant wi corresponds to ai ∈ Σ. A
v-tag system has a deletion number v.

In a computation step of a tag system T on a word A ∈ Σ∗, T appends the ap-
pendant associated with the leftmost letter of A at the end of A, and deletes the
first v symbols of A. This computational process is iterated until the tag system
produces the empty word ε and hence halts. To give an example, let us consider
the one tag system mentioned by Post [13, 15] with v = 3, 0 → 00, 1 → 1101
[13, 15]. If the initial word A0 = 110111010000 we get the following productions:

110111010000
` 1110100001101
` 01000011011101
` 0001101110100
` 110111010000

The word A0 is reproduced after 4 computation steps and is thus an example
of a periodic word.

So how exactly did Post arrive at this form of “tag”? As explained by Post
in his [15], he arrived at tag systems when working on a problem related to
but different from the finiteness problem, which is now known as the unification
problem [4]. This is the problem to determine for any two (logical) expressions
what substitutions would make those two expressions identical.8 Post further-
more found that tag systems and their decision problems are relevant for the
finiteness problem the canonical form A. Hence, “[tag systems] appeared as a
vital stepping stone in any further progress to be made” [15, 361]

If we compare the formal definition of tag systems with that of systems
in canonical form A, it is clear that whereas the canonical form still bears a
clear relation with propositional logic and its deductive nature, this is no longer
the case for tag systems. These are mere string producing systems stripped
of all meaning. These apparently simple forms do not care about expressing
logical concepts. Having this meaningless and apparently simple form, Post
could now fully focus on properties of the method of combinatory iteration at
its purest. It was Post’s hope that his study of tag systems would in fact be the
first step towards a solution for the finiteness problem for systems in canonical
form A. More specifically, Post hoped to tackle what he called the problem of

8Unification has played a central role in automated theorem proving and is also one of the
central mechanism of Prolog, the well-known logic programming language. It was Robinson
who proved that first-order unification is decidable by providing a uniform algorithm for uni-
fying arbitrary first-order expressions [17] and it is exactly this algorithm that is incorporated
into the resolution principle. To give the reader an idea of the problem of unification, consider
the two terms f(x, a) and f(b, y). These two terms can be unified by setting x = b and a = y.
Note that Post had solved the unification problem for systems in canonical form A through
what he called the L.C.M. process. As remarked by Davis, this is most probably nothing
more than the famous unification algorithm developed by Robinson some 40 years later (See
[4, footnote 6]).
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“tag” for which he formulated two variants nowadays known as the halting and
reachability problem for tag systems [10]:

Definition 2 The halting problem for tag systems is the problem to determine
for a given tag system T and any initial word A0 whether or not T will halt
when started from A0.

Definition 3 The reachability problem for tag systems is the problem to deter-
mine for a given tag system T , a fixed initial word A0 and any arbitrary word
A ∈ Σ∗, whether or not T will ever produce A when started from A0.

Post would spend nine months of research on his tag systems. His approach
was to start from the simpler cases, and, if successful, try to “scale” the results
for the simpler cases to the whole class of tag systems. He was able to prove that
the class of tag systems with v = µ = 2 has a decidable halting and reachability
problem, a proof which involved considerable labor. He considered it as the
major success of his Procter fellowship.9 However, for cases that seemed to go
but one step beyond the case v = µ = 2, Post only found “intractable” cases
and cases of a “bewildering complexity” [15, 382]. In the end, even though Post
initially had been quite optimistic about the possibility of successfully proving
the problem of “tag” decidable, it was his meeting and interaction with this
form that ultimately led to the reversal of his entire program of proving the
finiteness problem decidable [15, 363]:

For a while the case v = 2, µ > 2, seemed to be more promising,
since it seemed to offer a greater chance of a finely graded series
of problems. But when this possibility was explored in the early
summer of 1921, it rather led to an overwhelming confusion of classes
of cases, with the solution of the corresponding problem depending
more and more on problems in ordinary number theory. Since it had
been our hope that the known difficulties of number theory would,
as it were, be dissolved in the particularities of this more primitive
form of mathematics, the solution of the general problem of “tag”
appeared hopeless, and with it our entire program of the solution
of finiteness problems. This frustration [my emphasis], however,
was largely based on the assumption that “tag” was but a minor, if
essential, stepping stone in this wider program.

Post had clearly underestimated the complexity a simple form such as that of
“tag” can give rise to. Instead of being convinced of the existence of an ultimate
method to decide all of mathematics, he now first considered the possibility that
this might be a hopeless ambition since even this “primitive form of mathemat-
ics” results in such difficulties.

9And I regard it as one of my own major successes to have reproven this result (See [10]).
Note that (developing) this proof also involved considerable labor.
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2.4 The actual reversal of Post’s programme

After his frustrating experience with tag systems, Post developed two more for-
malizations during his Procter fellowship: systems in canonical form C, which
are nowadays known as Post production systems in the context of formal lan-
guage theory, and the normal form. I only describe the normal form here.

Systems in normal form, shortly, normal systems are a special class of sys-
tems in canonical form C. A system in normal form has only one initial word
(postulate) and a finite set of production rules all of the following form:

giPi
produces

Pig
′
i

Clearly, normal systems are very similar to tag systems. In fact, the production
rules of a tag system are easily rewritten in normal form.

Knowing from his experience with tag systems that apparent formal sim-
plicity does not necessarily imply real simplicity, Post started on a project of
proving the “power” of systems in normal form, viz. their generality: he first
proved that canonical form A and B can be reduced to a system in canonical
form C and then, most importantly, proved that the canonical form C reduces
to normal form. This fundamental result was later published as [13]. From this
Post concluded that in fact the whole of Principia and hence mathematics could
be reduced to the normal form:

[F]or if the meager formal apparatus of our final normal systems can
wipe out all of the additional vastly greater complexities of canonical
form B, the more complicated machinery of [Principia] should clearly
be able to handle formulations correspondingly more complicated
than itself.

This insight resulted in the formulation of what Martin Davis has called Post’s
thesis I:

Post’s Thesis 1 Every generated set of sequences on a given set of letters
a1, a2, ..., aµ is a subset of the set of assertions of a system in normal form with
primitive letters a1, a2, ..., aµ, a

′
1, a
′
2, ..., a

′
ν , i.e., the subset consisting of those

assertions of the normal system involving the letters a1, a2, ..., aµ.

Post’s thesis identifies the vague notion of generated (set of) sequence(s) with
generated by a normal system. Even though this thesis is quite technical in
nature, it is logically equivalent to Turing’s more famous thesis which identifies
the intuitive notion of computability with computability by a Turing machine.

Post soon understood the implications of this thesis. He had already learned
from tag systems that his programme of proving the whole of mathematics
decidable might in fact be hopeless. He was now able to prove with the diagonal
method that there is no finite method to decide for any normal system and some
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word whether or not that word can be generated by that normal system. Being
convinced of the universality of normal systems in the sense that there is a
normal system that can generate whatever one can generate with some other
process, he was now fully convinced of the existence of absolutely unsolvable
problems. He had proven that there are problems that cannot be solved by any
finite process. Post even went one fundamental step further and concluded, on
the basis of these results, that no logic is complete hence anticipating part of
Gödel’s results be it without formal proofs.

Hence, starting out from the idea of mechanizing the whole of mathematics
and a strong believe in the power of formalization to tackle this kind of general
problems, Post, through his experience with something that resulted from his
formalist approach, viz. tag systems, came to exactly the opposite conclusion.
The impact on one’s mind of having not only to change but reverse ones views
on the foundations of mathematics, because of ones experience with the very
systems developed to support these original views cannot be underestimated.
This was the case for Post: his “philosophical” thoughts that would follow relate
back to this fundamentally human experience.

2.5 “I study mathematics as a product of the human mind”

Having established a thesis logically equivalent to Church’s and Turing’s 15
years before the facts, Post understood that even though he was now convinced
of the universality of normal form [15, 387]:

[for the thesis to obtain its full generality] an analysis should be made
of all the possible ways the human mind can set up finite processes
to generate sequences.

This view is very similar to what Turing would later write in his famous 1936
paper On computable numbers [19] where he states that regarding his thesis:

The real question at issue is: “What are the possible processes which
can be carried out in computing a number?”

Although hardly ever acknowledged in the literature, in 1921 Post was already
aware of the significance of what Turing calls the “real question at issue”. In
fact it can be argued that Post made a start with such an analysis as early as
1921-22, an analysis which lay at the basis of Post’s note from 1936 [12] which
contains a formulation which is almost identical to Turing machines. How else
does one explain that both Post and Turing found quasi-identical formalisms?10

10The main reason why Turing’s thesis is considered in the literature as the better one is
exactly because of this analysis of the processes involved when the mathematician is computing
a number, an analysis which, by eliminating all the non-essential features of this process,
resulted in the well-known Turing machine. Even though I value Turing’s work very highly, it
is my view that several recent historical and philosophical studies on the topic are too much
biased in their high praise for Turing’s work against Church’s and especially Post’s. I have
found no satisfying reason in the literature to regard Turing’s thesis as being superior to Post’s
second thesis (see below) especially since it uses a formalism which is almost identical to the
Turing machine. It is not because Post’s paper does not contain the (philosophical) analysis
nor the major results of Turing’s [19] that the thesis as such would be less.
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In this 1936 note, Post proposed a second thesis which identifies the vague
notion of solvability of a problem with solvability by his formulation 1. Although
almost identical to Turing machines there is one important and philosophical
difference between Post’s and Turing’s approaches: Turing’s analysis is one of
the mathematician in the process of computing a number, for Post it is about
an analysis of the possible mental processes involved when generating a set and,
later in 1936, when solving a decision problem. This is reflected in the fact that
whereas Turing proposes a formalism in terms of idealized computing machines,
Post’s was in terms of sets of instructions in a formal language (see [4]).The fact
that for Post his theses are related to human mental processes is reemphasized
in his note [12, 105]:

Its purpose [of formulation 1] is not only to present a system of a
certain logical potency but also, [...] of psychological fidelity

It is exactly for this reason that Post could not agree with Church on the idea
of regarding his thesis (or any other logically equivalent one) as being but a
formal definition of a vague, intuitive concept.11 It is also why for Post his
thesis should be understood as a working hypothesis and, in case more and
more support could be found for it, a natural law. Indeed, for Post his thesis is
about the human mind and its mathematical capabilities, hence [12, 103]:

[...] to mask this identification under a definition hides the fact that
a fundamental discovery in the limitations of the mathematicizing
power of Homo Sapiens has been made and blinds us to the need of
its continual verification.

This is a very strong philosophical point of view not only with respect to the
thesis but also with respect to mathematics in general. It shows that even
though Post can be considered as a formalist, this does not mean that he un-
derstood mathematics and its formalizations as something that can be isolated
from humans, a point made even more explicit here [15, 403]:

I study mathematics as a product of the human mind not as absolute

Does the conclusion of a fundamental limitation of the “method of combinatory
iteration” mean that Post had turned his back to symbolic logic and “form”? No.
On the contrary, the normal form would remain a fundamental form throughout
his work. He even used it as the formal framework in his founding paper on
recursive functions [14]. More important here, given the discovered limitations,
it is symbolic logic itself that can be used as a method to explore and develop
these limitations [15]:

[...] the creativeness of human mathematics has a counterpart in-
escapable limitation thereof – witness the absolutely unsolvable (com-
binatory) problems. Indeed, with the bubble of symbolic logic as

11For instance, in Church’s thesis, effective calculability is defined as λ-definability and
general recursive functions

11



universal logical machine finally burst, a new future dawns for it
as the indispensable means for revealing and developing those lim-
itations. For [...] Symbolic Logic may be said to be Mathematics
become self-conscious.

In a letter to Church dated March 24, 1936 a similar point is made:12

For if symbolic logic has failed to give wings to mathematicians this
study of symbolic logic opens up a new field concerned with the
fundamental limitations of mathematics, more precisely the mathe-
matics of Homo Sapiens.

To be clear: this particular view does not imply that Post somehow supported
computationalism, viz., the idea that the mind is like a Turing machine.13 It
only means that there are things we cannot do (at least if we indeed interpret
the thesis as something that relates to human activity) and that it is symbolic
logic than can be used to study the boundaries of these human limitations.14

3 Re: some high-speed logic. A discussion

The fact that Post emphasized that his thesis (and those that are logically
equivalent to it) should be understood as a hypothesis because, if true, it implies
a discovery of a fundamental human limitation, is most probably rooted in Post’s
explorations of “form” in the period 1920-21 and the reversal of his program
that resulted from it. Indeed, quite unlike Turing who started out from the idea
of formalizing the vague notion of computability, Post formulated his thesis on
the basis of a profound analysis of systems of symbolic logic.15 The insight
that something as simple as tag systems cannot be controlled algorithmically,
confronted Post with the limits of finite methods and, since these methods
are human, also with his own limitations. Hence, Post’s formalist approach
ultimately resulted in a view on symbolic logic that seems far removed from the
kind of picture one gets from Lakatos’ reading of formalism. Here is an excerpt
from his [6]:

12The letters from Post to Church can be found in the Alonzo Church papers, box 20, Folder
14; Department of Rare Books and Special Collections, Princeton University Library.

13It should be noted here that after his discoveries he became more and more convinced of
the significance of mathematical creativity. On several occasions he pleaded for a mathematics
that is more informal (!) and less axiomatic. In fact in the introduction of [15, 343] he even
makes a plea for a reversal of the entire axiomatic trend [...] with a return to meaning and
truth”

14Regretfully this is not what the debate on the Church-Turing thesis focuses on nowadays.
On the contrary, if one takes some of the statements by people like Copeland and Wegner
seriously then one cannot but conclude that they want to deny us these very limitations. In an
attempt to go “beyond” Turing with, what seems to me, the underlying motivation to prevent
the world of being like a Turing machine, they forget that the thesis is, above all, about these
limitations instead of, what they seem to assume, a support of computationalism.

15This aspect of Post’s early work is quite parallel to the way Church arrived at the first
formulation of his thesis in which he identifies calculability with λ-definability. It was only
by studying (properties of) λ-calculus and understanding its power that Church first came to
the idea of defining (in his view) the vague notion of calculability.
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But what can one discover in a formalized theory? [...] First, one
can discover the solution to problems which a suitably programmed
Turing machine could solve in a finite time [...]No mathematician
is interested in following out the dreary mechanical ‘method’ pre-
scribed by such decision procedures. Secondly, one can discover
the solutions to problems (such as: is a certain formula in a non-
decidable theory a theorem or not?), where one can be guided only
be the ‘method’ of unregimented insight and good fortune. Now
this bleak alternative between the rationalism of a machine and the
irrationalism of blind guessing does not hold for live mathematics

In the light of Post’s struggle with “form” which resulted in a philosophical point
of view that understands symbolic logic as the means to develop and explore the
limits of mathematics and its formalizations, but also as “mathematics become
self-conscious”, this black-and-white picture of formalism vs. informal mathe-
matics should at least be nuanced.16 Furthermore, even at the time one Post
was still a full-blood formalist he did not expect that real-world mathematics
would be replaced by formalism (See Sec. 2.2, p. 4).

If there is one thing one can learn from Post’s formalism, it is that it is
formalism itself and in practice that makes possible the study of its very own
limitations. In this sense, Lakatos’ question But what can one discover in a for-
malized theory? gets a very different answer then the one provided by Lakatos.
It is Post’s formalist method of simplifying through generalizations that led to
his results and philosophical point of view and it is hard to imagine that Post
would have called this method one of “unregimented insight and good fortune”,
formalist though he was at that time.

Post’s story shows us that it was exactly the Lewisean heterodox view on
mathematics, a mathematics stripped of all meaning, that resulted in the an-
ticipation of the fundamental results of the 30s by Gödel, Church and Turing,
even though it was not published at the time. Indeed, whereas [3]:

Hilbert and his school went on to approach the decision problem
for quantification theory semantically, Post evidently felt that was
not a promising direction because the combinatorial intricacies of
predicate logic were too great to penetrate into that manner, and
what he proposed instead was to simplify through generalization.

Some 10-15 years after Post, the formalist school of thought would officially
achieve the height of its (own) failure. The very limitations already discovered
by Post in 1921 were now proven in detail and published. Gödel’s incomplete-
ness results are often seen as the death knell of the Hilbertian optimism so

16Even though I adept the philosophical view on mathematics which is historically-
embedded and practice-based – a view which has been influenced by lakatos’ [6], the way
formalism is described by Lakatos is very much a-historical and at best caricatural. The fact
that Tarski, Curry, Church et al are put on the same line as the logical positivists seems
unfair. For instance Curry’s formalism is much more delicate than the image one gets from
Lakatos’ Curry [1].
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famously (and ironically) captured in Hilbert’s epitaph “wir müssen wissen,
wir werden wissen”. It showed that no finite axiomatic system would ever be
able to capture the whole of mathematics. Some five years later it would be
up to Church and Turing to furthermore prove that no finite (formal) method
will ever be found which is able to decide problems logically equivalent to the
Entscheidingsproblem of first-order logic.

Despite the failure of the formalist program in the sense of Hilbert, it is not
the case that formalism was death and buried after that. In fact, out of the
ashes of the failure some of the foundations would be laid for a new discipline to
be: computer science. Indeed, with the rise of the electronic and programmable
computer it became clear that the formal devices developed by Church, Post,
Turing et al were in fact very useful. Hence, the results of that which is often
regarded as an abstract and old-fashioned philosophy of mathematics, attained
a new and vigorous life in the context of the machine that we all use on an
everyday basis.

Is this somehow surprising? In a sense it is not. One should not forget that
the computer can in fact be understood as the physical realization of “calcula-
bility” and is hence the physical pedant of the forms developed by Church, Post
and Turing. In this sense, the computer can also be understood as a machine
without meaning, at least to some extent. That the computer is a machine
without meaning, a machine that does not really understand in the way we
are able to understand, is in fact one of the classical arguments of those who
are against the idea of an intelligent machine, and, quite often, consciously or
unconsciously, in favor of a pejorative and derogatory view on the machine. On
the other side of the spectrum there are those who are trying to understand
how the machine can be made (more) intelligent and/or (more) natural mostly
by focusing on simulation.

If we look at what is done with computers nowadays, the least one can say is
that these machines are quite influential in our everyday and professional lives.
Understood as machines without meaning who can only “understand” form but
not meaning, this would mean that it is mechanized “formal logic” that we all
so much depend on. Of course, when we are interacting with the machine, we
are hardly aware of this. This is due to the fact that it is the explicit purpose
of software developers to create an illusion of meaningfulness made possible by
adding many layers on top of the bare electrical pulses of the machine so that
the user does not need to be bothered with the technicalities of the machine,
all, of course, for the sake of “user-friendliness”. In the meantime philosophers
keep debating for or against the ‘art of simulation’.

Few, however, are taking up the challenge posed by Derrick H. Lehmer, a
number theorist and computer pioneer, in his paper Some high-speed logic [7]:
instead of trying to let the machine excel in the art of simulation, or criticize
it because it is poor at mimicking us, we should perhaps start to take serious
the idea of having a fair contest/interaction, one in which the machine is al-
lowed to do what it is good at. Taking such challenge philosophically serious,
Post’s formalism put into modern perspective could be one possible approach.
It was argued here that Post dismissed meaning convinced that by focusing in-
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stead on the formal aspects/structure of mathematics it would be possible to
understand some fundamental properties of the whole of mathematics. It was
this approach which allowed Post to take form serious, to explore it and to un-
cover not only its possibilities but also its limitations. Similarly, it is perhaps
by interacting with and studying the computer as a machine without meaning,
stripped of its simulated “semantics”, that we will be able to understand and
explore the limitations and possibilities of computation in a context averse to
the philosophically laden idea of the mimicking machine.
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